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1. Introduction

In an earlier paper [6] the author examined a class of Tauberian relations
with exponentially vanishing remainders, i.e. Télations of the form

[ O@—w)dF(u)=0(e7") as x—>oo, (0.1)
where ®(z) is bounded and F(x) is of bounded variation. Thus, when cer-

tain conditions are imposed on the Fourier Stieltjes transform f(£) of F(x),
it proves the validity of
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O (2)=0(7%), as x—>co, (0.2)

when @ (z) satisfies certain Tauberian conditions.

Chapter I of this paper extends these results. First, corresponding results
are derived for functions decreasing more slowly than exponentially, the con-
ditions on f(£) being the same as before. Second, it is proved possible to
weaken the conditions on f(£) in theorems 1 and 2 in [6] as was expected
([6] p- 581).

The greater part of the paper investigates conditions necessary to prove
the validity of relation (0.2). The principal question concerns the analyticity
of 1/f(&), imposed in all the sufficiency theorems. If F(z) satisfies the supple-
mentary condition

-]

[1z]***|dF(@)|< oo for some §>0, (0.3)

— o9

then it is necessary for the validity of (0.2) that 1/f(&) is analytic in a cer-
tain stiip below the real axis. This result is obtained by reducing the problem
to the case where @ (xz) belongs to L*. '

In order to make the arrangement clear, results concerning the existence
of a relation (0.1) are collected in chapter II. In chapter IIT the validity of
(0.2) is presumed, and an analogon of Wiener’s result is obtained from this
condition. Finally, the above-mentioned results concerning the analyticity of
1/f(£) are derived. In conclusion an example is set forth proving that the
value of the constant § obtained in Theorems 3 and 4 in [6] cannot be im-
proved.

CraprER I

Improved sufficiency theorems

2. Definitions and notations

V denotes the class of functions of bounded variation and 7' denotes the
class of functions f(£) such that

f(&) = fe‘“dF(x), F(z)€eV.

-0
The total variation of F(z) is denoted by

vy = [ |aF@).

—- 00

p(x) denotes a weight-function of the kind introduced by Beurling in [3],
characterized by the conditions
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p@)Zp0)=1, pz+y)<p()p(y),
and

plez)=p(x) for o>1.
In the sequel, weight-functions of this kind are always considered. Since we need

these weight-functions for positive values of z only, we let p(x)=1 for x<0.
If ®(x) is real, say that ®(z) € B, =E, if

2 D (z) is bounded and ®(x) + f {p@)}*du is
» 0

(L1)

non-decreasing for every € >0 and z > x,.

For complex functions @ (x) the classes B, and F are defined as follows:

Definition. P (z) EE;, if R{D(x)} and J{® ()} satisfy (1.1); E,=E if p(z)=¢€"
for £>0.

We thus have extended class E, defined only for real functions in [6] to
contain complex functions. This has no influence on the sufficiency theorems
but is more convenient in the proofs of the necessity theorems.

F (x) denotes a real- or complex-valued function, which belongs to V. The

*
notation @ (x), introduced for bounded functions @ (), is used to denote the
function

@) = [O@—w)dF(u)

— o0

For the L° norm the following notations are used
b 1
M, {f; a,b} = {flf(éf)l’df}*, M {fy=M:{f; — oo, oo},
2 !

and M is written instead of M.
A denotes an absolute positive constant, not necessarily the same one each
time it occurs. A constant depending on one or more parameters is usually

denoted by C.

3. The sufficiency theorems

The following theorem is a genefalization of theorems 1 and 2 in [6].

Theorem 1. Let F(z) EV and f(&) = f e **d F (%), f(£) # 0. Suppose there exists

a function (), C=E&+1imn, such that 1/{() is analylic in the strip —a<n<0,

and .
Iy 1 2¢
”HIEI)

2

1 i&

f(é+in)
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is bounded for —a<n<0, and furthermore

lim f(§+i9)=£(&).
7>-0

Let p(x) be a weight-function, p(x)=0 (x"**9e%) as x— oo, for some §>0. If
®(x) € E, and

—(}+0)

) as x— oo,

—Z(I)(x—u)dﬁ'(u)#O(xp(x)

then

1 &
o0-0{zg)} o e
for every 6<1/(g+1).

First, two lemmas will be proved.

Lemma 1. Let F(z)€V, G@)€L and f(E)= [ " dF (),

— Q0

9(6) = [ G (@)de.

Suppose that f(&) # 0 and g(£)/f(&) € L. Let W (x) be the Fourier transform of
g(£)/f (&) and suppose that

p@)W(x) €L’ p(z)W(2)€L(0, o).
If the function @ (x) satisfies
|®@)|<B, p@ D)€L, =),
then for x>0 we have

o BVEY U W; 0, oo} + M, (0 W) My (p: 0, ==))

® % G(z)| <
@ % 6@ s

If we use the relation p(z)<p(zx—u)p(u) and Schwarz’ inequality, it is
easy to verify that

1

&l x <L
@] % | W] @)=

(BV{F}M{pW; x, oo} +

+ My {p WY M, {p®; 0, 00}), z=0, (1.2)
|®] % |W|@)=0(+]|z|"), " z<0. '
Thus, it is sufficient to prove that

® % Q(z)=® % W (). (1.3)
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. Let M(x) be a function such that (1+]|z|)* M (x) belongs to L and such
that the Fourier transform, m (%), of M (x) vanishes outside a finite interval.
The conditions f(£) €T and f(£)#0 yield m(£)/f(£) € T (cf. [3], Theorem III B,
Pp. 13). Let
_g@m()

1(&)

Then h(§) €T and h(£) is the Fourier transform of H(x)=M % W (z). Thus
H (z) € L. .

According to (1.2) and the conditions on M (x), the integral M % ® % W (z)
is absolutely convergent and may be inverted, which yields

k(&)

Mx®xW@)=bx M %W(@)=b x H@).

Since H (z) belongs to L, the double integral ®xH {z) may be inverted to
obtain

® % H(z)= 0 * H(z).
Now

H(z)=M x G(z),

since both sides are continuous and have the same Fourier transform, m (£)g (£).
Thus, it has been proved that

MxOxW@x)=0 % M % G(z),
or, upon another inversion, justified by absolute convergence

M%(I;* W (x)=M % ® 3% G ().
If we choose .
sin® L Az

M(@)=Mi(@) = =55

2

then M,(x) satisfies the above conditions for every A. By letting A > we
find by standard summability theorems

D % W(z)=0 % G(z),

since both sides are continuous and O(1+|z|!). Thus (1.3) is proved and the
result of Lemma 1 follows.

Lemma 2. Let the function K (z) satisfy the following conditions:
K ()20, K (x)=0 outside o finite interval, 0 <M {K (2)} < 0. (1.4)
If O(x)€ E, and if, for some positive constants C and o,
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o259
r r

for x>0 and 0<r<1, then as z—cc

< Cr°
P (x)

(1.5)

(I) —_ 0 1 ° 6< _.l._ .
(x)= {(m); for everg e

The proof follows from an obvious modification of the argument on page
579 in [6], and is therefore omitted.

We now turn to the proof of Theorem 1. Let ¢ denote the number in-
troduced in the conditions on f(£), in which case ¢>0. Let K (z) be a func-
tion which satisfies (1.4), and such that the function

k()= [P K@)de, C=E&+in,

fulfils the inequality

[k +in| < (1.6)

1
(L+|&h®
in the strip —a<#=<0.

The function K () may be constructed in the following way. Let g=n-+1+v,
where = is an integer and —i<v<}. Let J,({) denote the Bessel function
of order v, and let

sin £\"
w0 - (2 e

Here V2 T'(v+3)£7J,(&) is the Fourier transform of that function, which
vanishes outside the interval (—1,1) and equals (1 —2?%""* on this interval (cf.
(9] p. 178). It follows that k,(§), except for a constant factor, is the Fourier
transform of a function K (z) which satisfies the required conditions (cf. [10]
Chapter VII).

Let r be real, 0<r<1. From (1.6) it follows that

A+[ED*k(rE+in)|<r? —a<y<0;
therefore, by the conditions on f(&),

M} -q {( 1 )q 1 -q
Introduce the function
_ktro)

which is analytic in the strip —a<%n<0. Let W,(x) be the Fourier trans-
form of w,(£). Then ¢?*W,(z) is the Fourier transform of w, (£ —ip) if
0<pf<a, and Parseval’s relation gives, by the aid of (1.7)
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V2r My {ef* W, (2)} = My {w, (E—iB)}<Cyr™%, 0<p<a.
Let
pE)<Che™, 2>0; My{e *p(x); 0, co}=0C,,
then ,
My {p(x) W, ()} < M, {W, (@)} + Co My {e®* W, (x)} < Cy (1 +0p)r™°

and, by Schwarz’ inequality,
M{p)W,(x); 0, o} <M, {e"* p(x); 0, oo} M, {e** W, (2)}<C,C3r%
Since k(r&) is the Fourier transform of (1/r)K (z/r) the above inequalities

imply that the conditions of Lemma 1 are satisfied for the function G(x)
=(1/r)K (x/r). An application of Lemma 1 yields, for z>0,

—q
(D*—IK(?-) <CT
r 7

- p(@)
where C is independent of r, 0<r<1. Thus Lemma 2 may be applied to find

b

8 1
(I)(x)=0{(2—)—(1—x—))} for every 6<q+—1,

and the theorem is proved.

Incidentally, it may be noticed that if ¢ is an integer, then the function
wy (), introduced above, is of the same type as the auxiliary function w,({),
used to prove corresponding theorems in [6].

Theorems 3 and 4 in [6] may be generalized in a similar way to hold for
non-exponentially vanishing remainders. If the conditions on f(&) in these
theorems are unchanged, we find that if

®(z) € E,, where p(x)<e*, z>0.

and
é(x)= O(Zﬁ) as x— oo,
then .
1
oor-ol( 2] weom

for the values of 0 admitted in these theorems.

Coarrer IT

The existence of functions ® (x) which satisfy a Tauberian relation

4. The problem considered

Let F(z) be of bounded variation and let f(£) be the Fourier Stieltjes
transform of F(x). Consider a relation of the form

321,



SONJA LYTTKENS, The remainder in Tauberian theorems II
f O(x—u)dF(u)y=0("") as z— oo, (2.1)
—o0

where the function ®(z) is bounded, and y denotes a positive number. Our
aim is to investigate the necessary conditions under which relation (2.1)
implies

D(x)=0(7), as z—> oo, (2.2)

for every ®(z) € E and some §>0. Now it immediately follows, by the Wiener
argument, that if (2.1) implies @ (z)=0(1) as x— oo for every ®(z) € E, then
f(é) cannot vanish for any real & [cf. [12] p. 26). It is therefore sufficient,
in this connection, to consider the case where f(£)#£0. '
From the definition of class E (p. 317) it follows that if @ (z)=0 a.e. and
®(z) € E, then ®(z)=0 for x>z,, provided z, is large enough. The relation
(2.2) is trivial for such a function. We therefore exclude in the sequel the class
of functions @ (zx) vanishing a.e. Let us call a function ®(z) non-trivial if
D(x)#0 in a set of positive measure. It is easy to see that the existence
of a bounded, non-trivial function, @ (z), satisfying the relation (2.1) asserts
the existence of a continuous function with the same properties. It should

further be noted that if f(£)0 and @{(z) is trivial then ®(z) is trivial. (See
4], p. 134.) ,

In this chapter we investigate the existence of a non-trivial function, @ (z),
satisfying (2.1), when F(2) is a given function of V such that f(£)#£0. It
is clearly no restriction to assume ® (z) continuous. In section 6 we examine
the case where ®(z) is a bounded function of L. Then, in section 8, the
case is considered where ®(z) is merely bounded, and the problem is solved by
the aid of the additional condition (0.3).

In this chapter, as in chapter III, we shall make repeated use of bilateral
Laplace transforms. For .convenience of reference we shall first, in section 5,
state some results from the theory of bilateral Laplace transforms in a suit-
able form.

5. Bilateral Laplace transforms used in the sequel

For the proofs of the results in this section the reader is referred to Wid-
der [11], chapter VI.
Let the function ¥ (z) satisfy

F* V() €L, a<B<y

for two numbers « and y.
Let {=¢&+1{7 and introduce the function

-0

p(0) = [eFV@)de, -y<n<—a

By definition, p(if) is the bilateral Laplace transform of ¥ (x). For con-
venience in notation we shall call p(Z) the analytic transform of ¥ (x).
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In the sequel only the case y >0, a <0, is considered. Thus it is sup-
posed that

W (x) €L 0<B<y. 2.3)

The function u(f) then is analytic in the strip B, — y < 5 < 0, bounded in
every closed strip inside B, and w(&—zﬂ) is the Fourier transform of ¢/* ¥ (z)
if 0<f<y. Parseval’s relation gives

My {p(E—ip)} =V2aM,{f* ¥ (z)} <00, 0<f<y,

and it follows that |y(£—if)|—0 when [&|—> oo, 0<B<y (cf. [9], p. 125).
If ¥, (x) and ¥,(z) are two functions satisfying (2.3), and v,({) and y,(0)
are their analytic transforms, then the function W', % W, (x) still satisfies (2.3)
and o, () w, () is its analytic transform.
Conversely, let the function y({) be analytic in —y <% <0, and suppose that

My{p(E—if)}<oco, 0<f<y. (2.4)
Let
¥ =g Lim [ PpE-ipas, 0<p<y. (25)

Then W (x) satisfies (2.3) and ¢({) is the analytic transform of ¥(x). If, in
addltlon M,{p(£—ip)} is bounded for 0 <fB <y, then

lim Mo{yE—if)—yp(&)}=

where (&) is the Fourier transform of ¥ (z). Furthermore, for almost all
values of £ it holds that

lim y(£419)=y () (2.6)
7>-0

(cf. [9], Theorem 97, p. 130).

Finally, let 9({) be analytic in —y<5n<0, let (2.4) hold, and suppose
further that

M{p(E—if)}<oo, 0<B<y. 2.7)

The function ¥ (z), defined by the integral (2.5) as an ordinary limit, then
is continuous and

¥ @< @n)e b M (p(E=ip} <Cpe?, 0<f<.
If, in addition, M {y(&—1if)} and _M {w(6—14pB)} are bounded for 0<p<y,
then the function (&), defined by (2 6) for almost all values of £, belongs
to L. Thus its Fourier transform, ¥ (z), is bounded and

Y (x)=0("") as x—>oo.
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In the sequel we shall often use the method of constructing the analytic
transform of a required function instead of the function itself. Since we
always consider a strip of the form — 9 < < 0, the function is uniquely
determined whenever its analytic transform, satisfying (2.4) and (2.7) in such
a strip, is given.

For further references we quote the simple example

g)=gn(0)=(l1— C)_(nﬂ), Li=oy— 1P, B,>0,

where n denotes a mnon-negative integer. The function g({) is, in the half-
plane > —pB,, analytic transform of the function G(z)= G (%), defined by
the relation

(i)n+1 no—tifr
G(.’L‘)=O, z<0; G(x)=——n—'—x et x>0,

This is easily verified, since g,(&) = ({; — &' is the Fourier transform of
Gy (x)=0, z<0; Gy(x)=ie %%, x>0.

6. The function ® (x) of L?

Theorem 2. Let F(x)EV, let f(&)= Jei“dF(m), and f(£)#0. Let T denote

—oQ

a positive number. A necessary and sufficient condition that there should exist a

&
bounded, continuous function ®(x), ®(x)=0, such that © (z) € L?, &’ D (x) € L7,
and @ (x)=0(e"*%), is that

[+ [10g | (&) | d& < oo. (2.8)

To prove that the condition (2.8) is necessary, suppose that there is a
function @ (x) which fulfils the conditions of the theorem. We may without
loss of generality assume that F(x) is absolutely continuous. For, let K ()
be defined by the relation

K(@)=ie", 2<0; K(z)=0, 2>0,

then ;{ () belongs to L and

® x K(z)=® x K (z)=0 (e,

the inversion being justified by absolute convergence. The Fourier transform
*
of K(x) is k(£§)=f(£)/(6—1). Thus, if the first part of the theorem holds for
x

the function J'IE (u)du, then it holds for F(x) as well. Obviously, we may
also suppose_that V{F}<1, which implies that |f(&)|<1.
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*®
Let {=&+i7n, and introduce the analytic transform, v (), of ®(x). The

assumption that ® (x) is non-trivial yields that ®(z) is non-trivial; hence the
function ({) cannot be equivalent to zero. Also, since @ (z) is assumed to
*
belong to L?, it follows that the function ® (x) belongs to L®. Therefore, by
the results in section 5, p({) is analytic in the strip — <% <0, M, {p(£—ip)}
is bounded for 0<fg <17, and im y(&+in)=yp (&) a.e., where p (&) is the Fourier
* 7>—0

transform of @ ().

Let us map the strip B, —7<#%<0, in the {-plane onto the unit circle in
the w-plane, and suppose that y({) becomes p,(w) by this transformation. It
is easy to verify that yp,(w) has a bounded characteristic function in the
sense of Nevanlinna ([7], chapter VII). Inverting back to the (-plane we
thus find

G I
[e ¥ 1og™ |9 (&)]|dé < co.
Since we have assumed F(z) absolutely continuous we may write
had *
[ ®@—w) F (w)du=d(2),

where @ () belongs to L? and F'(z) to L. Now, let @ (&) be the Fourier
transform of ®(z). Then

(&) f(E)=w(&) a.e.
{c.f. [9], Theorem 65, p. 90). It follows that

Je =" oglf@llas < [e =" {[log™ |y ()] +log* [@ (&) [} dE< oo,

and the necessity of condition (2.8) is established.

In order to prove the sufficiency part of the theorem we suppose that
(2.8) holds, and we wish to construct a function ® (x) with the desired prop-
erties. :

Let us consider the integral equation

TV(x—u)dF(u)=H(x), (2.9)

-
where H (x) is a given continuous function of L?. Let %(£) denote the Fourier
transform of H(x). If

(&) .y R(E)

36) h(&) 1
TR T (2.10)

then the function V(z), defined as the Fourier transform of k(£)/f(&), is a
solution of (2.9) and ¥V (x) belongs to L2 This is immediate, since H (z) and
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*

V(x) are continuous and have the same Fourier transform, %(§), which be-
longs to L. Hence the. existence of a function ®(z), satisfying the conditions
of the theorem, is assured if we can construct a function H (z) such that
(2.10) is satisfied, and, in addition,

H@x)=0(e"), ¢*H(z)€L.

Consider instead the corresponding problem for the analytic transform 4({)
of H (x).
If 2(l) is analytic in the strip —7t<%<0,

M, {h(£—iB)} and M{h(£—ip)} are bounded for 0<f<r,
and (2.10) holds for the function % (£) defined by

lim h(E+in)=h(E) a.e,
7->-0

then the Fourier transform H (z) of h(£) satisfies the required conditions.
This is immediate by the results of section 5.

We shall construct a funection A(() with these properties. An analogous
problem for a half-plane was treated by Paley-Wiener ([8], Theorem X1I, p. 16)
and we proceed similarly.

Let B denote the strip —t<#%<0. Then, by means of Green’s formula,
construct the function A(¢) which is harmonic in B and has the boundary
-values log |f(£)|—3log (1+|&|) on the real axis, and the boundary values
—21log (1+]&]) on the straight line n= —v. The possibility of this construc-
tion follows from condition (2.8) and a well-known property of the Green
function. Let u(l) be the conjugate harmonic function of A(f) and write

h (C) = MOHIBD
The function A(f) is then analytic in B, and |2({)| has the limiting values

(L+|&D2|f(&)] on the real axis and the limiting values (1+|£[)™® on the
straight line 7= — 7. Hence the relation (2.10) is fulfilled. Since

log M {h(&—ip)}

is a convex function of B, it follows that

8
M{p(E—ip)}<[M{r(5)}]

12
and, similarly,

r[M{h(&—elr)}]g < 2V{F}, 0<B<rm,

M, {h(E—if)}<V{F}, 0<p<rt.

This function A() therefore fulfils our conditions, and it results that the
function V(z), defined as the Fourier transform of h(£)/f(£), satisfies the
conditions of the theorem. Thus the proof of Theorem 2 is complete.

For further applications we have constructed h({) in' such a way that
&h(&)/f(8) € L, which implies that V'(x) is bounded.

In order to examine the existence of bounded functions ®(x) satisfying
the Tauberian relation (2.1), we will first derive some results concerning the
convolution of a bounded function and a function of bounded variation.
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7. Some results for harmonic transforms of bounded functions
Let ®(z) be bounded, say |®(x)|<B. We write, for <0,
Us(é, ) = [ €51 D(@)de,

which is harmonic in the half-plane %<0. In accordance with a notation
used by Beurling in [5] we shall call Ug (&, ) the harmonic transform of ® ().
Let B denote a positive number. Parseval’s relation gives

My {Ug (6, — )} = V2aM,{e?* @ ()},

hence

M {Ug (¢, —B)}< V2= BB (2.11)

Let F(z)€EV, f(&) = f ¢'**d F (x), and introduce dg(x) and its harmonic trans-
form U§ (&, ). We w—ill prove that if, for some 8, 0<8<1,

PBY=Py(F} = | [2i?]dF @) < oo,
then -
1) =M,{Us( ~B)—1(E)Us(é, —p}<2V2nP{F}BF,  (212)
and, for an arbitrary set E,
{[lvse -p Pag) <BVam@P{F}p+puiB)), (2.13)

where
uiB}=sup |{(&)].

The inequality (2.13) is a consequence of (2.11) and (2.12), for, by Minkow-
ski’s inequality,

AJlvie —ﬂ)Izdé}*sl(ﬂ)Jr{éHI(E)Um(s, —plrag)

<IB)+u{E} M {Us (& — B}
Thus it is sufficient to prove (2.12).
The integral I(8) was examined by Beurling in [5] in the case =0, and
we proceed similarly. Parseval’s relation gives
P =2aM3{ [ (¢! =Pl @ (z—u) A F (u)}. (2.14)
By Schwarz’ inequality,

327



SONJA LYTTKENS, The remainder in Tauberian theorems IT

| T(e“ﬁ’“—e‘ﬁ'""')(l)(x—u)dF(u)l2

— 0

SP{F}B [ [e?1Fl— e HI Pl 440 g F )|

-~ 00

Inserting the above expression in (2.14) and inverting the order of integra-
tion, we find

P(f)<2nP{F}B* f]u[*”lti}?(u)l fle_““—e""x"”[2lulb‘“+2‘”dx.

-
The inner integral is dominated by (cf. [5], p. 275)

4[3!’“ 1-24
1 +;‘3|2u2 < 4p.

Hence,
I*(B)<8n P*{F} B* %,
which proves (2.12).

8. The function P (x) hounded

The following theorem shows that if we assume that there exists a non-
trivial bounded function @ (z) satisfying our Tauberian relation, then we have
restricted the class of functions F(x) under consideration. The corresponding
converse theorem is included in Theorem 2.

Theorem 3. Let F(x) €V and f(§) = [ €'**dF(z), f(§) #0, and let, for

some >0

}o|x|*+”|dF(x)[<oo. (2.15)

-0

If there exists a bounded, continuous function ® (z), O (x)£0, such that, for some
positive number T,

5>(x) =0(7), (2.16)
then
[eettiog f@llag <o, o>%. (2.17)

The proof is based on the analyticity of the analytic transform, w({), of

®(z) and follows the same idea as the proof of the first part of Theorem 2.
This proof is, however, more complicated, due to the fact that, cancelling
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the hypothesis @ (x) € L?, we cannot use in our argument the strip B,
— 1<% <0. Instead of B we shall introduce ancther domain, D, inside B,
which will allow us to make use of the above results for harmonic transforms
along a part of the boundary of D. The proof is sketched below, and after-
wards worked out in detail.

Consider the curve n=|f(&)[*, where x=x(d) is a certain positive constant.
This curve is approximated by a step-function, s(£), such that s(£) is less
than 17 and log s(£)—x log |f(£)| is bounded. Then, by applying (2.13) to

X :
the glarmom'c transform of ®(zx), we can prove that (& — is(£)) belongs
to L*°.

Let S denote the curve obtained in joining the graph of = —s(&) by straight
lines parallel to the %-axis, and define D as the domain lying between § and
a straight line 5= —b in the {-plane. Let the function w=w(l) represent

D conformally on the unit circle. Then, if s(&) is appropriately constructed,
the relation

[Nog™ [p @) [l @ []d¢] < oo (2.18)
S

may be derived from the corresponding relation for log* |v({)].
We further introduce a set, H, consisting of small intervals around the

points of discontinuity of s(£), and denote the complement of H by C H.
The set H is constructed such that

fe—r_m|log s(£)|d&< oo,
H
yet such that

| E—is(E)|>Ce” G reom, (2.19)

for every £>0. The possibility of this construction will follow from condi-
tion (2.15).

From the relations (2.18) and (2.19) it can be derived, by the aid of (2.13),
that

fe_°|5'|1°g 8(§)|d£< oo, c>> ;)—t,
Lor:4

and the result of the theorem then follows, since b can be chosen arbitrarily
close to 7.

Now, proceeding to the detailed proof, let us first normalize our functions
in a way convenient for our purpose. Suppose that

|0@)]|<1, |D@)|<e, (2.20)
[ Q+|x])?*°|d F(z)|<27% for some 8, 0<d<}, (2.21)
and lf@& <2 @+|eh™ (2.22)
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This is no real restriction. For, by the argument used in Theorem 2 (p. 324)
we may suppose that f(£)=0{(1+]&])""}. Also, by changing the variable we

obtain from (2.16)
Folezort) =it -ovn

Since f(r&) is the Fourier Stieltjes transform of F (x/7) it is sufficient to con-
sider the case v=1. And obviously we may always multiply ®(z) and F(x)
by constants.

In Lemma 3 we derive the inequalities for 9 ({) used in the proof. Then,
in Lemma 4, we construct a step-function s(£) and a set H with the desired
properties. The main proof is given on page 338.

Lemma 3. Impose the conditions (2.20) and (2.21) on F(zx) and @ (z). Let
f6) = [€°dF (@) and let y(C) be the analytic transform of D(z). If ¢(E) is

— 00

a step-function, taking only the values ¢ ", n=1, 2, ..., such that for some p>0

146

x log |f(&)| —log t(£)<g, *= 175 (2.23)

then, for a constant C depending only on &, we have
M {p(E—it(E)}<0¢, (2.24)

and, if y(§) €L, 0<y(§)<1,

s o .
g [ r@los nelae < _fx(s) llog™ [ (¢~ st (el a8

+(C+o) M {x(®)}+4, (2.25)

whenever the right side infegral converges.
The proof is an application of the results in the previous section concern-
ing harmonic transforms. € is used to denote a positive constant depending

only on §, but not necessarily the same one each time it occurs. This nota-
tion will be used throughout thé present section.

. Let Ug (£, 1) be the harmonic transform of &)(x). Parseval’s relation gives,
for 0<f <1, ' '

Mi{y(E—if)-Us (& — P} =2a [ (>~ | b (@) do.
0
Since |&>(x)|$e" we find that
My{p(E—ie ™ —-Us (& —e}<3V2me™, n=1,2, ...
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Let E, be the set defined by

and let
R R T
Then, by (2.23),
e_n _r
[f(E)|<er *<e’ %  EE€E,,

and an application of (2.13) gives

{105 - emPag) <Vame o +en).

Using Minkowski’s inequality we find that

{[lwe —ie‘")lzdé}ir <V2m(4e " +ethm) < Aet0m, (2.26)
En

And it follows that »
Mi{p(E—it(E)}= 2 f lp(E—ie ™ PdE<defe T e 20" <Ce®e,
n=1 n=1
En

which proves (2.24).
We now turn to the proof of (2.25). Schwarz’ inequality and (2.26) yield

[2@®lpE—ie™|de < L[xz (E)de} Aoz m (2.27)

En

Consider the integers n such that _f 2 (E)dE+#0 and let
E.

n

{ [ ag)
K(m)=—r» |
™ e
then, since y(£)<1,
[x(&)dE<{K ()} (2.28)
En

The inequality (2.27) can be written

"'7(1,5;% JX(g)|‘P(5—ie‘")]d§§K(n)Aeg-,;.n.

E, n

24 331



SONJA'LYTTKENS,1The remainder in Tauberian theorems I1

Hence, by the convexity property of the logarithm,

J2@) log |p(E—ie M) |dEx(Adg+1og K(n)—8n) [y (H)dE.
Ey, Eq

Let {n}=M,+M,, where » G‘Ml_r:‘if K@)<w® and n € M, if K(n)>n?
If n€M, we have

log K(#)—8;n<2log i—8;n<C—}d;n

and
e fx(f) log [p(—ie™)|dE<(C+o) M {x ()} 46 2" f
Therefore n i
f 7(6) log™ |y (£ ~3u (&) [de £ §1 fx (&) log™ |y (&—ie ™) |dE
<O+ M{z(E) -0 3 » (BdE (2.29)

0

and the right side sum must converge, as the left side is finite by assumption.
If n € M,, then K (n)>n® and, according to (2.28),

[r®de<n™
En
Since log t(§)= —= in E, we find

> fx(f) log t(£§)d& = — E x(é)d.£>— > ni> A,
neM, " neM, £y neM,

and

neM, -
“n

[r@r0g1@az=- Sn [r@ae>-a- 5 [r@ae

Taking into account (2.29) we have proved

J 2@ log™ |p(E—it(€)|dE< 18, [ x(8) log t(E)dE+ (C+) M {x (5} + }6, 4,

which is equivalent to (2.25). This completes the proof of Lemma 3.
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Fig. 1.

We are now going to construct a step-function 1=5(€) of the above type
such that the domain D is appropriately represented on the unit circle.
Choose a number b, such that

1-2*<b<l.

Let (&) be a step-function such that 0<s(&)<e”!, and introduce the following
quantities depending on s(£):

S denotes the curve obtained in joining the graph of = —s(£) by straight
lines parallel to the #-axis at each point of discontinuity of s(£).

a w=..-10,1, ..., a,< a,,;) are the points of discontinuity of s(£).
l, denotes an interval around a, of length ||, and A, is the arc of § whose
projection on the real axis is I,.

D denotes the domain lying between S and the straight line #= —b in the
{-plane; (=£&+i7. The function w=w(}) maps D conformally on the unit
circle in the w-plane, w({y)=0, w' ({,)>0; {o= —%1.

w(C, A,, D) denotes the harmonic measure of 1, with respect to D.

H= 3 1, and CH denotes the complement of the set H.

P=—00

With these notations Lemma 4 can be stated as follows:

Lemma 4. Impose conditions (2.21) and (2.22) on F (x) and its Fourier Stieltjes
transform (&) and let f(£)#0. Then we can construct a step-function s (&) taking only
the values e ", n=1,2, ..., and a set H= 3> 1, such that

|2 log | f(§)| ~1og s(£)| <2, x——i—i——g (2:30)
d¢

Jllog 583 5 <O (2.31)

(Lo, b, D)<Ce Y1, (2.32)
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7

e Log 7E)
- logs(E)
Fig. 2.
and, for every £>0,
Coe 5 < lu (£— is(8))|<Ce ', zecCH, (2.33)

where C depending only on 6 and C, on & and ¢ are positive constants.
Let us first state the properties of f(£) to be used in the proof, viz.
o<|f&]=27°Q+[E)7,
which is immediate from (2.22), and

&) |- F €S2 & — &P, (2.34)

which is easily verified by use of (2.21). Note further that the assumption
0<d<} yields 3/2<x<2.
Now proceeding to the construction of s(£), let P, be the set defined by

er<|f(E)f<e D, EeP,
and introduce the step-function q(£), defined by the relation
g(§)=e", E€EP,.

To obtain s(£) we shall remove, successively, the steps around the intervals
in which ¢(£) has a maximum or a minimum, and we proceed as follows:
Let 4,,m=---—1,0,1,..., denote the intervals in which ¢(&) is constant;
zm+1 lying to the rlght of i,. Let @ denote the set consisting of all intervals
in such that ¢(£) in.i, assumes a value greater than its value in the two
adjacent intervals, i,_j and %,,;. Introduce the step-function r(£), defined by

elq(&) if £€Q,
r(é) =
q (&) elsewhere.

(The construction is shown in Fig. 2 in logarithmie scale.) Slmllarly, let
Jm, m=---—1,0,1, ..., denote the intervals in which r (£) is constant; 7m+1 lying
to the rlght of 7,,, Let R denote the set consiging of all intervals j,, such
that r(£) in §, assumes a value smaller than its value in the two adjacent
intervals, jn_1 and §n,1.
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Fig. 3.

We define the step-function s(£) as follows
{ er(§) i £€ER,

r(§)  elsewhere.

It is easy to verify that the function s(£), thus defined, satisfies condition
(2.30) and that s(&)<e2

Now consider the points of discontinuity, e, (@.< @31, 7v=...—1,0,1,...)
of s(£). Let A, denote the step of s{£) at a,, and put

S 1
=2 |bl=2|h[F

We define I, as the closed interval of length |, | lying symmetrically around a, .
To prove that the function s(£) and the set H = > 1, satisfy the conditions

y=— 00
of Lemma 4, we shall first prove the following relations:

L] <27, (2.35)
s(&)>e?|L 't fe€l, (2.36)
L1 *<3tlayu—a), p=-1,1, (2.37)
where
So—1 — 1+6, 38
3 1+  4(1+9)

Choose a point a, such that g, is a point of increase of s(&), in which case
a, is also a point of increase of the functions ¢(¢) and r(£). Let o, be the
point of discontinuity of ¢(£) immediately following a,, and let «,.; be the
point of discontinuity of r(£) immediately preceding @,. From the construction
(Fig. 3) it may be seen that

|k =(1—e)|f(a)|*
82 l f (“v—l) \” =e l f(av) lx__: l f(av+1) ‘x.

The relation (2.35) follows immediately from these equalities. Furthermore
we find

and
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|2, | K| f @)= |f e |l p=—-1,1,

1

K=(e—1)(e*—1)7"

where

According to (2.34) we have

@) | =) | =27* @ — ot %‘H’f
Since #(3+0)=1+6, we get

|2 | <K 27*|a,— otpyu|'*, u=—1,1,

where, by the construction of s(&),
Iav_dwplslav_awul’ H= - 1, 1.

As a consequence of the last two inequalities we obtain (2.37). It is easy to
see how (2.35) and (2.37) may be derived by a similar argument if a, is a point
of decrease of s(£). From (2.35) and (2.37) it follows that the intervals [, are
non-overlapping, and through this fact the relation (2.36) is readily verified.

Proceeding to the proof of (2.31), let @ denote an interval of length |w]|.
We wish to establish the following relation

[ llog s(®)|dé<C1+]al), (2.38)

wnNH

from which (2.31) follows after a partial integration. To prove (2.38) consider
an interval w. If wnNH=0 there is nothing to prove. If not, let w Nl #0
for »,<v=<v,. Then

f IAlogs(aE)IdéS i |log s(&)|d&.
1

v=y,
wnH e4

According to (2.36) we have

[llog s(&)|dE<2||—(1+6,)|%] log |4,

by

and hence, by aid of (2.37),

[llog s(&)|de<C L[> < O (tys1—a). (2.39)
li’

Therefore,

v,—1
> |l|ogs(e)|de<Cla,—a)<C(w|+ 3]0, |+ 3L.)-

v=y,
v

The relation (2.39) yields
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Fig. 4. Fig. 5.

[llog s(&)|ag<ca, -
1

Va3

and, in view of the fact that |/,| is bounded, the last two inequalities prove
{(2.38). Thus (2.31) is established.

We now turn our attention to the domain D lying between the straight line
7= —b and the curve 8, n= —s(&) in the {-plane. Let (£, &) be an interval
of the real axis and let ¢ be the arc of S whose projection on the real axis
is (& &). If (& &) is contained in C H, then ¢ is a segment of a straight line
paralleling the §-axis. With the notations introduced on page 333 we can write

toE_ . - . 2‘(603 o, D)

It follows that propositions (2.32) and (2.33) of Lemma 4 are verified if we
can prove that

., E€CH.

Coe 2 gl <w (g, 0, D)< B E—F], e>0,  (2.40)

if
(&, &)=1, for some v, or (£ &) < CH. (2.41)
Let D denote the image of D in = —b and let Q=D+ D. By considering

the representation of Q on a strip and making use of the inequalities of Ahl-
fors (see [1]) it is easy to verify the following relation

K e—i;(l+€)15] < w(CO963D)
e

-The
Ae ® >0
w({-‘—-ib,o’,Q)< e , €>0,

where, in view of (2.22), K, is a positive constant depending only on . There-
fore, to establish (2.40) it suffices to show that

Clé—E&|<w(E—ib, o, Q<ClE-¥| (2.42)
for each interval (£, &) of the type described in (2.41).
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To prove the right inequality in (2.42) we use the comparison domain U,
n<lefs,

where &, denotes the quantity introduced in the definition of I, (p. 335) in
which case J,>0. Choose an interval (&, £') as described in (2.41), let =& —1s(&)
and {'=& —is(£’). Translate U into a new domain, U,, such that the boundary,
G,;, of U, passes through the two points { and {’. From the construction of
S and U it follows that the curves § and G, intersect only at { and {’. Let
y denote the arc of G, between ( and (' (Fig. 4). Then y<Q, S—ocU,,
and, by a well-known argument based on the maximum prineiple,

w(f—tb, 0, Q) <w(E—1idb,p, U,).
Now, as is easily verified (cf. [2]),
w(E—ib,p, U,)<C|E—&|,
where C is independent of ¢. Hence
w(E—1ib, 0, Q<C|E-E].

The converse inequality can be derived similarly by considering a comparison
domain such as

n< —|E[% E4P<(@)®

(cf. Fig. 5). Thus (2.42) is proved; (2.32) and (2.33) follow. This completes
the proof of Lemma 4.

Proof of Theorem 3.

Let s(£) denote the step-function and H the set constructed in Lemma 4.
Notations used below are defined on page 333.

For each sufficiently large integer & we construct a domain, Dy, as follows:
Let the real numbers &; and &, be defined by

s(€x)=s(E)=e",
s(£)<e™® outside the interval &, <E<E,.

Obviously &; and &), exist if k>k,, and &—>— oo, £ ->c0 as k—>oo. In the
sequel we tacitly assume k to be an integer >k,. Let s;(£) be the step-
function defined by

s(&), En<E<E,

e " elsewhere,

s () = {
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and let 8, denote the curve obtained in joining the graph of s (&) by straight
lines paralleling the 7-axis. D, is defined as the domain lying between Sy and
the straight line 5= —b in the [-plane, and its boundary is denoted by I'x.
Then DycDy.1<---<D, and D, —>D as k— oo.

Let us map the domain D, conformally on the unit circle in the w-plane
by means of the function w=1w; ({); wi () =0, wy (o) >0. We wish to prove
the following relation /

rf log* (O] |we@||d¢l= [ +[<B, (2.43)

n=-b S

where B is a constant, only dependent on § and b. From our normalized con-
ditions (p. 329) it follows that

1
E—if)| < ————, O<p<l,
and hence, in view of our choice of b,
’ 2
flog+Iw(é)llwk@)lldc|<2nlog o (2.44)
n=~b

Let Hy be the subset of H consisting of those intervals I, which contain some
point of discontinuity of s,(£). Let C H, denote the complement of H,. If
we put ’

m,=max log* |y (£ —1is(£))],

. gel,
then we can write

Sf log* l«p<c>||w;(c)||dc|s2nl S (o, by Di)m,
k vCHk

+ [ log*|p(E—ise(&)]|wk(E—isk (&) |dE=T;+1I,.

cHy
Remembering that the intervals I, are non-overlapping we find

m,,<log%<2|logf.s(§)|, E€l,.

And since D, < D, we obtain by the aid of (2.32)
@ (Los Avs D) <o (Lo, Ay D)< OB ]e '™, IcH,.

Observing that || is bounded, we find

d&
1+ &2

CHy

IL,<Cc 3 e‘%"“v'fuog s(§)|d£<0fllogs(§)[
L
v 1, Hy,
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and, by (2.31)

¢ ¢ (2.45)

Il<0f|10g3(§)|1+£2 .

H

To evaluate the integral I,, let us notice that the relation

| (E— s ()| < Ce 3", e Cm,

is a consequence of the construction of D, and the inequality (2.33). Therefore,

I,<C [log* |p(E—isc(E)|dE<C [|yp(E—is,(£)]PdE.

cHy cHy

Since s(&) is constructed such that x log |f(£)|—log s(£)<2, it follows from
our choice of & and &, that x log |f(&)|—log s, (&) <2. An application of (2.24)
yields

I,<C [ |p(E—isc(@)Pas<c. (2.46)

By adding (2.44), (2.45) and (2.46) the relation (2.43) is proved.

Suppose that y(f) is transformed to y,(w) by use of w=w; ({). From the
construction of D, it follows that vy (w) is analytic and bounded in the unit
circle for every k. Furthermore, . (w) cannot be equivalent to zero since @ (x)
is assumed non-trivial. The inequality (2.43) therefore asserts that the charac-
teristic function of wy(w), b=k, k,+1, ..., does not exceed B. We may con-
clude that

[ Nog™ |9 @)l |wi ()} |d¢| < By,

Tk

for some constant B, which is independent of k. Accordingly,

3%
[log™ (& —is @)l |wi(E—is(€))|aE<B,.
&
The integrand increases as k increases. Letting k— oo we find

[ og™ |p(e—is(@) || |w (6 —is(€)|de<B, .

— o0

Hence, by the aid of (2.33)

fe""“ |log™ |y (£ —is(E)||d€E < oo, ¢> ;)—t

CH
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Choosing y(&§)=e !¢l € CH; y(£)=0, £€ H in formula (2.25) and applying
(2.25) to the function s(&) we find

fe'cm [log s(£)|dE< o=, ¢> 2—‘
cu

"We already know that
aé

The last two inequalities imply

o0

f e l]log |[f(§)[|dE < 0, © >

-0

Since b can be chosen arbitrarily close to 1 it follows that

[ec1¢l |log |f(&)]|[de< 0, ¢>am.

- 0Q

This was, in fact, the result to be proved. Thus Theorem 3 is established.

CrmartER I11

The necessity of the conditions

9. Definitions

E denotes the class defined page 317. As before, a function ®(z) is called
non-trivial if @ (x)£0 in a set of positive measure (see section 4). Define the
class I of functions F(z) as follows:

Definition, F(x) €I i¢f F(x) € V and if two positive constants a =y and 0 =0,
0<0=<1, can be found such that the relation

[ @ @—u)d F(u)=0(e"") (3.1)
implies -
®(z)=0("°7)

for every function ®(x)€EE and every y, 0<y<a; and the class of non-trivial
functions ®(x) € E, satisfying (3.1) is non-empty for y <«.
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The definition of class I in [6] does not exclude the cases where no non-

®
trivial function @ (z) of class E exists such that @ (z)=0 (e ?’) as z—co. How-
ever, we now know, from Theorem 3, that this restriction is essential. In the
above definition we therefore exclude cases where the definition is meaningless.
Furthermore, in the definition of class I in [6] it is tacitly assumed that F(x)
is real. If we restrict ourselves to real functions F(z) then the two definitions,
except for the above remark, are equivalent, as is easily seen when separating
*

the real and imaginary parts of ®(x).

The only property of class £ which will be used in the sequel is the follow-
ing: If ®(z) is bounded and 7 '|®(x+r)—®(z)| is bounded for r>0 and
x>z, then ®(z) belongs to Z.

10. The Wiener condition

By the argument of section 6 the following property of class I is obvious:
If the function F(x) belongs to class I, then its Fourier Stieltjes transform f(£)
cannot vamnish for any real £. This section demonstrates an analogous theorem,
the proof being similar to the Wiener argument.

Let us first note the following result: If ®(z) is a bounded function and
G (x) belongs to L and V, then the function @, (z)=G % ®(x) belongs to E.

For, let |®(x)|<B and put Q(z) = fd)(x—u)dG(u); then for »>0

z+r

| @, (@+7r)— @,(@)|=| [ Q)du| < BV{G}r.

Theorem 4. Let F(x) €I and let ®(x) be a non-trivial function of E such that
O (x)=0(e?"), where 0<y<a. Let @(l) and y({) denote the analytic transforms
of ®(x) and ®(x) respectively. Then the function @(£)/y (L) is analytic in the
strip —0y<§{¢}<o. :

The conditions imply that @ (z)=0(e™"*), and it follows that, for {=£+1i,
() and y({) are analytic in the strip —0y<n<O (section 5). Since @ (x) is
assumed non-trivial, the functions ¢ ({) and ({) cannot vanish identically.

The proof is indirect; thus we suppose that, for some (,,

"/J(Cl) .
=0; =0, —1f0;, O0<pBy<0Oy. (3.2)
?(Cy) {y=0y—1if, Pr<0y
Choose y, such that B,/6<y;<y. We will construct a function @, () of class £

such that, as z—>o0, @, (x)=0(e"") but &"*|®,(z)|-—>o0, thus obtaining a
contradiction. Using the results of section 5 we start with the construction

of the analytic transforms of ®,(z) and (Bl ().
If () has a zero at the point {={,, let » denote the order of that zero;
if not, let n=0. Then, by (3.2), the point {, is a zero of order =n+1 of
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(). Put

__e0 . @)
@1(C) (C,— )™+ ’/’1(4') -0+

In the strip —f;<9<0, ¢;(£) and y, () are analytic transforms of G % ®@(x)
and G % @ (x) respectively, where G'(x) is the function defined by

(,i)n+1
G(x)=03 .’L’<O; G(z)=7‘—x"e"“, x=>0.

Writing @, (x)=G % ®(z), we find that since @(z) belongs to L and V,

®, (z) € £, (3.3)
and after an inversion,

G % @ (@)=, (2).

The function ,({) is analytic in the strip —y <#5<0, and p, (§—ip) belongs

to L and L* if O0<B<y. Since w,(l) is the analyﬁic transform of @, (z) it
follows that

®, ()= 0 (). (3.4)
The function ¢, ({) is analytic in — 6y <%n<0, save for a simple pole at

E=0;; and |@,(E—if)|—>0 when |£|>oco if 0<f<By. For 0<B<f, we can
write

D, {z) =§% f e TPy (E—if)dE.

Let R, be the residue of ¢,() at {={;. Then, by Cauchy’s theorem,

o0

. ; 1 i .
D, (x)= —iRje " + 5 f e PFETIW g (E—iBy)dE.

— 0

Since ¢, (§—10y,) € L, this implies
| @, (x)|=|Ry|eP*+ 0™ *"%) as z—>co,
where 8, <0y,, due to our choice of §,. It follows that
77| @, (z)|>o0  as z—>oo,

and, in view of (3.3) and (3.4), this would imply F(x) ¢ I. We have obtained
a contradiction, and conclude

gg—g;eo, .—0y<17<0,

which proves the theorem.
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11. The analyticity of 1/ (&)

-
Theorem 5. Let F(z) €1, f(§)= [ €¥*dF(z) and suppose that

-~ 00

[ el |log |f(&)||dE< oo, (3.5)

for some real c. Then there exists a function f(L), {=E+in, such that 1/f(L)
ts analytic in the strip —O0a<9n<0,

Lim f(&+14n)=f(&), (3.6)
n>-0
and
@) _ 1 |
p (&) 1D

where @(C)/y(L) is the function introduced in Theorem 4. In particular, @ ()/v (L)
is independent of ® (x)

We may without restriction’ suppose that ¢>m/a. Writing ¢=n/7, the above
condition (3.5) is precisely condition (2.8) of Theorem 2. Thus we may con-
struct the function A(Z) as in the proof of Theorem 2. Let, as before, H (x)
denote the Fourier transform of k(&) and V(z) that of % (£)/f(£). Then

V (@)= H (®)=0 ().

The function V(z) belongs to E since V(x) and V’(x) are bounded (p. 326).
Since F(z) belongs to class I by hypothesis it follows that

V(x)=0 (e 7).

Introduce the analytic transform, v (), of V(z). Since V() and H (x) both
belong to L* we have

im o (E+in)=h(E)/(£) ae.
n>-0
and
lim R(E+in)=h(§) a.e.
7->-0

An immediate result is that, for almost all values of &,

o(E+in) 1
o hE i) 1@ (3.7

We will first prove that (3.7) holds for all values of .
By their very construction, the functions A(f) and 1/A({) are analytic in
—1<n<0 and
HEI
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Now f(£)#0, since F(z) €I. The above results concerning % ({) therefore imply
that the function 1/A({) is bounded in every finite sub-domain of the strip
—37<%<0. Furthermore, since H (z) and V (z) both are of L? we have

- ) )
?i‘&M{S P - I(E)} 0

lim My {h(E—ip)—h(§)}=0.

and

Hence, for every finite interval (a, b)

b
lim f
p->0
a

Let & be a point on the real axis, and choose &, and &, such that & <&;<§,
and such that (3.7) holds at & and &,. Let R denote the rectangle &, <§<§&,,
—30t<9n<0, I its boundary and let g (z, {) be Green’s function for R. The
function v (£)/A({) is analytic in R. By (3.8), and our choice of £, and &,, it

easily follows that
_ 1 £) v(2)
-~ | Fglaeh
r

0/0n denoting differentiation along the outward normal. If we observe that
on the interval & <z<&, we have v(z)/h(x)=1/f(x) and that 1/f(£) is con-
tinuous, we find from the above representation of v({)/A () that (3.7) holds at
E=§,. Hence (3.7) holds for all values of £&.

Let us now define

v(—if) 1

we—ip) F@| ©0 &)

<
vy

als

1o
HD) (€

Then 1/f({) is analytic in —fr<7<0 and

vy
~—

Iil

B

HEm ! = —1—
m—of(E+in)  [f(£)

It ,follows that the function f({) fulfils proposition (3.6) and, for every finite
interval (a, b), f({) is analytic in the rectangle a<&<b, —§<zn<0, for some
6 >0. Introduce the functions

-]

Q)= [ dF (@), n=0;
0

0
@)= [eFdF@), 5=<0,

- o0
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analytic in the upper and lower half-plane respectively. (3.6) can be written
Hm {f(§+in)—f (E+in} =1 (),
7>—0

which implies that f"({) can be analytically continued across every finite
interval of the real axis.

Let @ denote an interval. Following Beurling (see [3]) we now introduce
the classes T, ="T,,, and T,=T;, defined by

[T, i f(§)= [e**dF (@) where [p(2)|dF(z)] <oo;

@ ET, it [(E)=h() E€o where [,()ET,.

Let
(1+x)t, =0,
P (%) =

1, <0,

and let @ be a finite interval. By use of the fact that f*({) is analytic in a
domain containing w it is easy to see that

ff&e fm .
Now f(&)=f*(&)+f (£), where [~ (§) € Tp,. Hence

f(&) €T, for every finite interval w. (3.9)

*
Let ®(z) be a non-trivial function of class E such that @ (x) =0 (e”*"), where
0<y<a Let @(f) be the analytic transform of ®(z) and () be that of

@ (x). We will prove that

1 _e0@
10" v© (310
or
e () = y()v())
which amounts to showing that
O % V(z)=D % V(). (3.11)
Now, as > — oo,
|V % | @] (@)= 0{p,(—=)}- (3.12)

This is easily verified because V (x) € L’. Therefore, should f(£) belong to T',,
then the double integral

_TdF(:z:—u) }OCD(u'—v)V(v)d'v
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would be absolutely convergent, justifying the inversion in (3.11). Here we
shall use the method by which Lemma 1 was proved and the aid of the weaker
condition (3.9) to prove (3.11).

Let M (x) be a function such that p,(x) M (z) € L and such that the Fourier
transform, m (&), of M (z) vanishes outside a finite interval, w. Then, by (3.9)

m(E)f(E)€T,,. The function m(£)f{&) has the Fourier transform M {z), thus

*
py () M (z) € L. Therefore, according to (3.12), the integral M % @ % V (x) is
absolutely convergent and may be inverted. We thus find

@ x M % V(x)=V*]lZf*<D(z)

which, after further inversion, yields
D xMx V@)=V %M x ). (3.13)

It is easy to verify that |®| *[ﬁ[(x) and | V| *l(ﬁl(z) both are O{p;(—z)}
as x->—oco. Therefore, in view of the conditions on M (z), the integrals in
(3.13) are absolutely convergent. Inverting again, we find

Mx®xV@)=Mx%Vxb@).
By the argument used in Lemma 1 (p. 319) this yields

d)v* I7(x)= V%Cﬁ(x),

which proves (3.11). Thus (3.10) is established.
Let us choose another function @, (2) € E, such that @, (x) is non- tr1v1al and

(I) () =0(™7%), 0<y,<oa. Denoting the analytic transforms of @, (x) and (1)1 (z)
by @, ({) and v, () we find, since the above argument applies to any function
of this kind, 1/f({)=e,()/w, (0). Therefore

@) _ 9O,
(O w@
ie. @)y () is independent of the function ® (x).

According to Theorem 4, the function ¢ (£)/({) is analytic in the strip
—0y<n<0. Further, by the definition of class 1, we can find, for every y <«,

a non-trivial function @ (z) of class & such that ® (x)=0(7%). It follows
that 1/f({) is analytic in —0y <5 <O for every y<a. Thus 1/f({) is analytic
in —fa<n<0, and the proof of Theorem 5 is complete.

An immediate consequence .of Theorems 3 and 5 is the following

Theorem. 6. Lei F(x)€EV, f(& Jel“dF(x) and let, for some >0,

flxl“‘sldlf’(x)] < oo,
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If F(z)€I, then there exists a function f({), {=E&=+in, such that 1/f() is ana-
lytic in the strip —Oa<n<O0, and

lim f(£-+i7)=1(8).
n->—0

12. The constant §

In the definition of class I (p. 341) we introduced two constants, =6y and
a=ar. Let us say that

F(x)€ (0, a),

if F(x) fulfils the conditions in the definition of class I for the constants 6
and o. ,

Earlier, a theorem has been proved ([6], Theorem 3), which can be restated
as follows:

If F(x)EV, f(§)= f e'€* d F(x), and if there exists a function f({), {=£E+1iy,
such that 1/f(L) s analytw in the strip —a<9n<0, and

’ d

dff(5+

for —a<n<0 and some r>0, and furthermore lim f(£+in)={f(£), then
7->-0

)’ < const. (1+]&]) (3.14)

Fx)eI(6,a) for 6 < —— ol

That in this theorem the boundary 1/(r+1) for 6 is essential may be seen
from the following simple example. Let, for some r>0

r'()
(L+42)
Then 1/f(f) is analytic in <0 and satisfies (3.14) in this half-plane. The

function f(£) is the Fourier Stieltjes transform of an absolutely continuous
function F(x) such that

Q)=

Fzy=|z|te’, z<0; F(z)=0, 2>0.
Let us choose, for some ¢>0,
D@)=0, z<0; @@)=e“sine”, z=0.

The function ®(x) is of class E, since @' (x) is bounded for =>0. Moreover,
&)(x) = f ¥ 2 (x—u)(I)(u)du=e"f e % (w—2)" ! sin e du.
—00 z
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It is easy to verify that

o ()=0(e V%) as z—>oo.

It follows from this relation and the order of magnitude of ® (x) that the func-
tion F (), introduced above, cannot belong to I(8, «) if 8>1/(r+1) for any «.
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