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l .  Introduction 

I n  a n  e a r l i e r  p a p e r  [6] t h e  a u t h o r  e x a m i n e d  a c l a s s  o f  T a u b e r i a n  r e l a t i o n s  
w i t h  e x p o n e n t i a l l y  v a n i s h i n g  r e m a i n d e r s ,  i . e .  ~ e ] a t i o n s  o f  t h e ' f o r m  

~¢(x-u)dF(u)=O(e -~x) as x - ~ ,  (0.1) 
- - O ~  

w h e r e  ~b (x) i s  b o u n d e d  a n d  F ( x )  i s  Of b o u n d e d  v a r i a t i o n .  T h u s ,  w h e n  c e r -  
t a i n  c o n d i t i o n s  a r e  i m p o s e d  o n  t h e  F o u r i e r : S t i e l t j e s  t r a n s f o r m  ] ( ~ )  o f  F ( x ) ,  
i t  p r o v e s  t h e  v a l i d i t y  o f  
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SONJA LYTTKENS, The remainder in Tauberian theorems I[  

¢(z)=O(e-°:'x), as  x - + ~ ,  (0.2) 

when (I)(x) satisfies certain Tauberian conditions. 
Chapter I of this paper extends these results. First,  corresponding results 

are derived for functions decreasing more slowly than  exponentially, the  con- 
ditions on /(S) being the same as before. Second, it  is proved possible to 
weaken the conditions on /(~) in theorems 1 and 2 in [6] as was expected 
([6] p. 581). 

The greater  pa r t  of the paper investigates conditions necessary to  prove 
the val idi ty of relation (0.2). The principal question concerns the analyt ici ty 
of 1//(}),  imposed in all the  sufficiency theorems. I f  F(x) satisfies the supple- 
men ta ry  condit ion 

f for some (0.3) 

then  i t  is necessary for the validity of (0.2) t ha t  1/f(~) is analytic in a cer- 
tain strip below the  real axis. This result  is obtained by reducing the problem 
to the  case where (I)(x) belongs to L 2. 

In  order to make the arrangement  clear, results concerning the existence 
of a relat ion (0.1) are collected in chapter  II .  In  chapter  I I I  the validity of 
(0.2) is presumed, and an analogon of Wiener 's  result  is obtained from this 
condition. Finally, the above-mentioned results concerning the analyt ici ty  of 
1//(~) are derived. I n  conclusion an example is set for th  proving tha t  the  
value of the constant  0 obtained in Theorems 3 and 4 in [6] cannot  be im- 
proved. 

CHAPTER I 

Improved sufficiency t h e o r e m s  

2. Definitions and notations 

V denotes the class of functions of bounded variat ion and T denotes  the 
class of functions /(~) such tha t  

f F( )ev. 

The total  variat ion of F(x) is denoted by  

- - 0 0  

p(x) denotes  a weight-fmaction of the kind introduced by Beurling in [3], 
characterized by  the conditions 
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p(x)>_p(O)=l, p(x+y)<_p(x)p(y) ,  
and 

p ( ~ x ) ~ p ( x )  for ~ > 1 .  

I n  the  sequel, weight-functions of this kind are always considered. Since we need 
these weight-functions for positive values of x only, we let p (x) = 1 for x < O. 

I f  O(x) is reM, say t ha t  ( I ) (x)EEr(x)=Ev if 

E, ¢(~) is b o ~ e ~  a ~  ¢(~) + f {p(u)}~du is (~.l) 
0 

non-decreasing /or every e > 0 and x > x~. 

For  complex functions (I)(x) the  classes Ep and E are defined as follows: 

Definition. O(x) E Ev i t ~{O(x)}  and 3{(I)(x)} satis/y (1.1); E r = E  i / p ( x ) = e  x 
/or x > 0 .  

We thus have  extended class E, defined only for  real functions in [6] to 
contain complex functions. This has no influence on the  sufficiency theorems 
but  is more  convenient  in the proofs of the necessi ty theorems.  

_~(x) denotes  a real- or complex-valued function, which belongs to V. The 

nota t ion  O(x), in t roduced for bounded functions (I)(x), is used to denote  the  
funct ion 

$ (~) = f ¢ ( z -  u) d F (u). 

Fdr  the  L 8 norm the following notat ions  are used 

and M is wr i t ten  instead of M 1 . 
A denotes  an absolute posit ive constant ,  not  necessarily the  same one each 

t ime i t  occurs. A cons tan t  depending on one or more  pa rame te r s  is usually 
denoted  by  C. 

3. T h e  suff ic iency theorems  

The following theorem is a generalization of theorems 1 and 2 in [6]. 

Theorem 1. Let F(x)  EV and/(~)  = f e~XdF(x),  ](~) # O. Suppose there exists 

a ]unction /(~), ~ = ~ + i ~ ,  such that 1//($) is analytic in the strip - a < ~ < 0 ,  
and 
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is bounded /or - a <_ ~ < O, and /urthermore 

l im/ (~  +i~1) =/(~).  

Let p(x) be a weight./unction, p(x)=O(x-(~+O)eaX) as x-->c~, for some ~>0 .  I f  
(b (x) e E~ and 

¢JO 

¢ ( x - u ) d F ( u ) ~ O  \ p(x) / a s  Ir, ..--> c ~  ~ 

then ((&)°} 
/or every 0 < 1/(q + 1). 

First, two lemmas will be proved. 

I,e,,,,,,a 1. Let F(x) ~. V, O(x) ~ L .and /(~)= ; e ~ d F ( x ) ,  

g(~) = S e~G(x )  d~e" 

Suppose that t ( 2 ) #  0 and g(~)//(~) e L ~. Let W (x) be the Fourier trans/orm of 
g (~)//(2) and suppose that 

p (x) W (x) e L ~, p (x) W (x) e L (0, ~) .  

I/  the /unction ~P (x) satis/ies 

I¢ (~) I_<B,  

then /or x > 0 we have 

$ . 

p (z) ¢ (x) ~ L ~ (0, ~) ,  

I¢ ~ G(x)l < _ ~ )  (B V(~}M{p  W; O, ¢~}+ M~{p W} M2{p¢; O, ~}). 

If  we use the relation p (x) _< p ( x -  u) p (u) 
easy to verify tha t  

[ ~P] * I WI(x) <T-~) (B V {F) M {p W; x, ,~) + } 

+M,{pW}M~.(p$; O, ~)) ,  x>O, 

I $ 1 * I  wl(x)=o(1 + I lr), ,, 

and Schwarz' inequality, i t  is 

(1.2) 

Thus, i t  is sufficient to prove tha t  

(P ~ G (x) = (b ~ W (x). (1.3) 
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Let  M(x)  be a function such tha t  ( l + ] x l ) ~ M ( x )  belongs to L and such 
%hat the Fourier transform, m(~), of M(x)  vanishes outside a finite interval.  
The conditions /(~) 6 T and / (~)~ 0 yield m (~)//(2) 6 T (cf. [3], Theorem I I I  B, 
p. 13). Le t  

h (~) = g (2) m (~). 
1(~) 

Then h(2) E T and h (2) is the Fourier transform of H (x)= M * W (x). Thus 
H (x) E L. 

According to (1.2) and the conditions on M (x), the integral M * (~ * W (x) 
is absolutely  convergent and may be inverted, which yields 

M * ( I ) .  W (x) - . M .  W (x) = ( I ) .  H (x). 

Since H (x) 
obtain 

Now 

$ 

belongs to L ,  the double integral (I)* H(x) 

$ .  H (x) = ¢ . / ~  (x). 

H (x) = M * G (x), 

may  be inverted to 

since both sides are continuous and have the same Fourier transform, m (~) g (~). 
Thus, i t  has been proved tha t  

M .  ¢ . W ( x ) = ¢ . M .  a(x) ,  

or, upon another inversion, justified by absolute convergence 

M .  ~) * W (x)= M .  ¢ .  G (x). 
If  we choose 

sin ~ ~ 2 x ,  
M ( x ) = M ~ ( x ) -  l x  ~ 

then  Ma(x) satisfies the above conditions 'for every 2. By letting t - *  oo we 
find by standard summability theorems 

~) . w (x)= ¢ .  a (z), 

since both sides are continuous and 0(1 + ]xl½ ). Thus (1.3) is proved and the 
result  of Lemma 1 follows. 

Lemma 2. Let the /unction K (x) satisfy the /ollowing conditions: 

K (x) >_ O, K (x) =0 outside a finite interval, 0 < M {K (x)} < oo. 

I /  ~P (x) 6 Ep and i/, /or some positive constants G and a, 

(1.4) 
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(P ~ r  \ r /  - p(x) 

/or x > O  and O < r ~ l ,  then as x - -+~ 

(1.5) 

09 (x) = 0 /or every 0 < 1_1_ . 
1+(~ 

The proof  follows f rom an obvious modification of the a rgumen t  on page 
579 in [6], and is therefore omitted.  

We now tu rn  to the  proof  of Theorem I.  Le t  q denote  the  number  in- 
t roduced in the  conditions on /(~), in which case q >0 .  Le t  K (x) be  a func- 
t ion which satisfies (1.4), and  such t ha t  the funct ion 

c ~  

k(~) = ~ e '¢*K(x)dx ,  

fulfils the  inequal i ty  

$=~+i~, 

1 
Ik(~+~) l  _< (l+l~l)~ (1.6) 

in the  strip - - a _ < ~ _ 0 .  
The funct ion K (x) may  be constructed in the following way. L e t  q = n + ½ + v, 

where n is an  integer  and - ½ < v _ < ½ .  Le t  J , ($)  denote  the  Bessel funct ion 
of order  v, and  le t  

Here  V ~ 2 " F ( v + ½ ) ~ - ' J , ( ~ )  is the Fourier  t rans form of t h a t  function, which 
vanishes outside the  in terval  ( -  1, l) and equals (1 -x2 )  ~-~ on this in terval  (el. 
[9] p. 178). I t  follows tha t  k 1 (~), except  for a cons tan t  factor,  is the Fourier  
t ransform of a function K (x) which satisfies the  required conditions (cf. [10] 
Chapter  VII ) .  

Le t  r be real, 0 < r _ < l .  F rom (1.6) i t  follows tha t  

(1+ I~lf Ik(r($+ i@ I_<r-°, -~_~_<o; 

therefore,  b y  the  conditions on /(~), 

{(1 ; , 
M2 -f(~S~i~) J - r - ~ M ~  ~ ] ( ~ - i f l )  

In t roduce  the  function 

w ,  ( 0  = k (~ O, 
/(0 

which is analyt ic  in the  strip - a ~ ~ < 0. L e t  WT (x) be the  Fourier  t rans-  
form of Wr(~). Then eaXWr(x) is the  Fourier  t rans form of w r ( ~ - i f l ) i f  
O<_fl<_a, and Parseval ' s  relat ion gives, by  the  aid of (1.7) 
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V-~M2(e~xWr(x)}=M2(wr(~- i~)}<Clr  -q, O ~ a .  
Let  

p(x)<_C2e ~,  x > 0 ;  Ms(e-aXp(x); O, ~ } = C  a, 
t hen  

M S {p (x) Wr (x)} <_ M 2 { Wr (x)} + C s M 2 {e ax Wr (x)} < C 1 (1 + C2) r -q 

and, by  Schwarz' inequality, 

M {p (x) Wr (x) ; 0, ~ } _< M s (e- ~ ~ p (x) ; 0, o~ } M s {e a ~ Wr (x)} < C~ C 3 r-  q. 

Since k(r~) is the Fourier  t ransform of ( 1 / r ) K ( x / r ) t h e  above inequalities 
imply t ha t  t h e  conditions of Lemma 1 are satisfied for the function G(x) 
=(1/r)K(x/r) .  An application of Lemma 1 yields, for x > 0 ,  

(I)~ _< , 
r p(x)  

where C is independent  of r, 0<r_< 1. Thus Lemma 2 may be applied to find 

~P(x )=0  for every  0 < q + l ,  

and the theorem is proved. 
Incidentally, i t  may be noticed tha t  if q is an integer,  then  the function 

wr(.~), introduced above, is of the same type  as the  auxiliary function wr(~), 
used to  prove corresponding theorems in [6]. 

Theorems 3 and 4 in [6] may be generalized in a similar way to hold for 
non-exponential ly vanishing remainders. I f  the conditions on f ( ~ ) i n  these 
theorems are unchanged, we find tha t  if 

and 

then  

~P (x) E Ev,  where p (x)_< e az, 

0 1 

x > 0 .  

as x-~ c~, 

a s  ~ - - ~  c ~  

for  the values of 0 admit ted in these theorems. 

C~APT~R I I  

The existence o f  functions ~ ( x )  which satisfy a Tauberian relation 

4. The problem considered 

Let  F(x) be of bounded variat ion and let  /(~) be the Fourier  Stieltjes 
t ransform of F(x).  Consider a relation of the form 
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f ¢(x-u)dF(u)=O(e -~) a s  x ~  ~ ,  (2.1) 

where the funct ion ~ (x) is bounded, and ~ denotes a positive number.  Our 
aim is to investigate the 'necessary conditions under which relation (2.1) 
implies 

(x) = O(e-°vx), as x -+  co, (2.2) 

for every ¢ (x) E E and some 0 > 0. Now it  immediately follows, by  the  Wiener 
argument, tha t  if (2.i) implies ¢ ( x ) = o ( 1 )  as x - ~  for every ~P(x) EE, then  
](~) cannot  vanish for any  real ~ [cf. [12] p. 26). I t  is therefore sufficient, 
in this connection, ~o consider the case where / ( ~ ) # 0 .  

F rom the definition of class E (p. 317) i t  follows tha t  if ¢ ( x ) = 0  a.e. and 
¢ (x )  f iE,  then  ¢P(x)=0 for x>xo, provided x0 is large enough. The relation 
(2.2) is trivial for  such a function. We therefore exclude in the sequel the class 
of functions ¢ (x )  vanishing a.e. Le t  us call a function ¢ (x )non- t r iv i a l  if 
qb(x) # 0  in a set of positive measure.  I t  is easy t o  see tha t  the existence 
of a bounded, non-trivial function, ¢(x) ,  satisfying the relation (2.1) asserts 
the  existence of a cont inuous  function with the same propert ies .  I t  should 

fur ther  be noted  that  if ] ( ~ ) # 0  and ¢ (x )  is trivial then  ¢ (x) is trivial. (See 
[4], p. 134.) 

In  this chapter we investigate the existence of a non-trivial function, (I)(x), 
satisfying (2.1), when .F(x) is a given function of V such that  ] ( ~ ) # 0 .  I t  
is clearly no restr ict ion to assume (I)(x) continuous. In  section 6 we examine 
the case where (I)(x) is a bounded funct ion of L ~. Then, in section 8, the  
case is considered where (I)(x) is merely bounded, and the problem is solved by  
the  aid of the additional condition (0.3). 

In  this chapter,  as in chapter I I I ,  we shah make repeated use of bilateral 
Laplace transforms. For convenience of reference we shall first, in section 5, 
State some results from the theory of bilateral Laplace transforms in a suit- 
able form. 

5. Bilateral Laplace transforms used in the sequel 

For  the proofs of the results in this section the reader  is referred to Wid- 
der [11], chapter  VI. 

Le t  the function ~F(x) satisfy 

e~x~f'(x) EL2, ~<f l<7 

for two numbers ~ and 7- 
Le t  ¢ = ~ + i ~ and introduce the function 

~(~)= f e'¢::~F(x)dx, - y < ~ < - ~ .  

By  definition, yJ(i~) is the bilateral Laplace transform of ~F(x). For  con- 
venience in notat ion we shah call ~($) the analytic transyorm of ~F(x). 
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In  the sequel only the case ~ > 0, ~_< 0, is considered. 
posed tha t  

e~::~(x)~L ~, 0 < f l <  7. 

Thus i t  is sup- 

(2.3) 

The function ~v(~) then  is analytic in the strip B, - 7  < ~ < O, bounded in 
every closed strip inside B, and ~v(~'-ifl) is the Fourier transform of e~*tF(x) 
if 0 < fl < ~. Parseval's relation gives 

and it follows tha t  [~p(~-if l ) [ -~0 when 1~1-~¢~, 0 < f l <  7 (cf. [9], p. 125). 
If  ~Fx(x) and ~F~(x) are two functions satisfying (2.3), and ~ (~ )  and ~ ( ~ )  

are their analytic transforms, then the function ~Fx ~e W~.(x) still satisfies (2.3) 
and ~P~(~)Y~2(~) is its analytic transform. 

Conversely, let the function v 2 (~) be analytic in - ~  < ~ < 0, and suppose t ha t  

Let  
M2{y~(~-ifl)}<~, 0 < f l <  7. (2.4) 

T 1 / 
= 1.i.m. e-*x¢~-*~)~p(~-ifl)d~, 0 < f l <  7. (2.5) 

- T  

Then 1F(x) satisfies (2.3) and ~($) is t he  analytic transform of ~F(x). 
addition, M2{y~(~-ifl) } is bounded for 0 < f l < 7 ,  then  

lim M~{y~(~- i~) -~(~)}  =0,  

If, in 

where y~(~) is the Fourier transform of ~F(x). 
values of ~ i t  holds tha t  

l i m  w ( ~ ÷ / n ) = ~ ( ~ )  
~--~- 0 

Furthermore, for almost all 

(2.6) 

(cf. [9], Theorem 97, p. 130). 
Finally, let yJ (~) be analytic in - y < ~/< 0, let 

fur ther  t h a t  

M { ~ ( $ ' i f l ) }  < ~o, 0 < f l < 7 .  

(2.4) hold, and suppose 

(2.7) 

The function ~F (x), defined by the integral (2.5) as an ordinary limit, then  
is continuous and 

]~F(x)l<-(2:~)-le-~XM{y~(~-ifl)}<C~e-PX, 0<f l<  7. 

If, in addition, M{~p,(~-ifl)} and M2{~p(~-ifl) } are bounded for 0 < f l < ~ ,  
then  the function ~(~), defined by (2.6) for almost all values of ~, belongs 
to L. Thus its Fouriex transform, ~(x) ,  is bounded and 

~F (x) = O(e  -~x) as  x ~ ~ .  
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In  the sequel we shall Often use the method of constructing the analytic 
t ransform of a required function instead of the function itself. Since we 
always consider a strip of the form - 7 < ~1 < 0, the function is uniquely 
determined whenever its analytic transform, satisfying (2.4) and (2.7) in such 
a strip, is given. 

:For further  references we quote the simple example 

g($)=g~($)=(~-~)-(~+~), ~ = ~ - i ~ x ,  /~>o, 

where n denotes a non-negative integer. The function g (~) is, in the half- 
plane ~ > - i l l ,  analytic transform of the function G(x)=G,~(x), defined by 
the relation 

• n+ l  

O(x)=O, x < 0 ;  G ( x ) = ~ .  x~e -~:'~, x>_O. 

This is easily verified, since go(~)= (~1-  ~)-1 is the Fourier t ransform of 
Go(x)=O, x < 0 ;  Go(x)=ie -~'x, x>_O. 

6. The  funct ion  ~ ( x )  o f  L 2 

Theorem 2. Let F(x)C V, /et / (~)= f e~XdF(x), and / (~)¢0 .  Let T denote 
- ¢ ~  

a Tositive number. A necessary and su//icient condition that there should exis~ a 
$ 

bounded, continuous /unction ~ (x), ~P (x) ~ O, such that ~P (x) E L ~, e ~x ~P (x) E L ~, 
$ 

and ~ (x) = 0 (e-'X), is that 

f e -~J~l Ilog ll(#)lld~< o~. (2.8) 
- o o  

To prove t h a t  the condition (2.8) is necessary, suppose t ha t  there is a 
function (I)(x) which fulfils the conditions of the theorem. We may  without  
loss of generali ty assume tha t  F(x) is absolutely continuous. For, let K(x) 
be defined by the relation 

K ( x ) = i e  ~, x < 0 ;  K(x)=O, x_>0, 

then  K(x) belongs to L and 

¢ k(x)- $ - ~ K ( x ) = O ( e - ~ X ) ,  

the inversion being justified by absolute convergence. The Fourier transform 

of K(x) is k (~) - [ (~ ) / (~ - i ) .  Thus, if the first par t  of the theorem holds for 

the function f K(u)du,  then i t  holds for F{x) as well. Obviously, we may  

also suppose t h a t  V {F} < 1, which implies tha t  I/(~)1 < 1. 
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Le t  ~ = ~ + i ~, and introduce the  analytic t ransform, ~0 (~), of q) (x). The 

assumption tha t  gP (x) is non-trivial yields t h a t  q) (x) is non-trivial ; hence the 
funct ion ~v(~) cannot  be equivalent to zero. Also, since ¢ (x) is assumed to  

belong to  L ~, i t  follows tha t  the function (I)(x) belongs to L 2. Therefore,  by  
the  results in section 5, ~o (~) is analytic in the strip - ~ < ~ < 0, M S {~v ( 2 -  ifl)} 
is bounded for 0 < f l < ~ ,  and lim ~v(~+i~)=~o(~) a.e., where y~(~) is the Fourier  

; T - ~ -  0 

t ransform of ~)(x). 
Le t  us map the strip B, - z < ~ 7  < 0, in the ~-plane onto the uni t  circle in 

the  w-plane, and suppose tha t  ~(~) becomes %(w) by  this t ransformation.  I t  
:is easy to verify t ha t  ~0o(W ) has a bounded characterist ic function in the 
sense of Nevanlinna ([7], chapter  VII). Invert ing back to  the S-plane we 
~hus find 

fe  -~t¢l [log- ] ~0(~)Ild~< oo. 

,Since we have assumed /~(x) absolutely continuous we may write 

o¢ 

y ¢ (x -  u) ~ '  (u) d ~ = $ (x), 
--OQ 

w h e r e ~ P ( x )  belongs to L 2 and F'(x) to L. Now, let  ~ ( ~ ) b e  the Fourier  
Cransform of (I)(x). Then 

~(~)1(~) =~(~) a.e. 

(e.f. [9], Theorem 65, p. 90). I t  follows tha t  

~e-~'elllog II(~:)llae < ~ - 7 ' " ( l l o g - i w ( ~ ) l l + l o g +  Im(~)l}a~< oo, 
-oo  -oo  

and  the necessity of condition (2.8) is established. 
In  order to prove the sufficiency pa r t  of the theorem we suppose t h a t  

(2.8) holds, and we wish to construct  a function ¢ (x) with the desired prop- 
erties. 

Le t  us consider the integral equat ion 

~ V  (x - u) d F (u) = H (x), (2.9) 
- - 0 0  

where H (x) is a given continuous function of L 2. Le t  h (2) denote  the Fourier  
t ransform of H(x). I f  

h(~__)) ~ L2 ' h(~_)) e L, (2.10) 
/(~) I(~) 

t hen  the function V(x), defined as the Fourier  t ransform of h(~)/f(~), is a 
solution of (2.9) and V(x) belongs to L ~. This is immediate,  since H (x) and 
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l~(x) are continuous and have the same Fourier  transform, h(~), which be- 
longs to L. Hence the. existence of a funct ion (I)ix), satisfying the condit ions 
of the theorem, is assured if we can construct  a function H(x) such t h a t  
(2.10) is satisfied, and, in addition, 

H(x)=O(e-~), eTCH(x) e L ~. 

Consider instead the corresponding problem for the analytic t ransform h($) 
of H (x). 

If  h ($) is analyt ic  in the strip - r < ~ < 0, 

M2{h(~--ifl) } and M{h(~-i f l )}  are bounded for 0 < f l < ~ ,  

and (2.10) holds for the function h(~) defined by  

lim h(~+i~)=h(~) a.e., 
rt~-O 

then  the Fourier  t ransform H(x) of h(~) satisfies the required condit ions.  
This is immediate  by  the results of section 5. 

We shall cons t ruc t  a function h ( ~ ) w i t h  these properties.  An analogous 
problem for a half-plane was t rea ted  by Paley-Wiener ([8], Theorem XI I ,  p. 16) 
and we proceed similarly. 

Le t  B denote  the strip - v < ~ < 0 .  Then, by  means of Green's  formula, 
construct  the function 2(~) which is harmonic in B and has the boundary  

va lue s  log / ( . ~ ) l - 3 1 o g ( l + l ~ ] )  on the real axis, and the boundary  values 
- 2  log (1 + eD on the straight  line 7 = - T .  The possibi l i ty of this construc- 
t ion follows from condition (2.8) and a well-known proper ty  of the  Green 
function. Le t  /~(~) be the conjugate harmonic function of ~(~) and write 

h ($) = e ~(v+''(~). 

The function h(~) is then analytic in B, and I h(~)] has the limiting values 
( l÷ l~ ] ) - a l / (~ ) l  on the real axis and the limiting values ( l ÷ l ~ l )  -~ on the 
straight line 7 =  " v -  Hence the relation (2.10) is fulfilled. Since 

log M ( h ( ~ -  ifl)} 

is a convex function of fl, i t  follows t h a t  

M{h(~-i~))_<[M{h(~)}] ~[M{h(~-i~)}];<2V{P}, 0<~<~, 

and, similarly, 
M~{h(~-if l)}< V(F}, 0 < f l < v .  

This function h(~) therefore fulfils our conditions, and i t  results t h a t  the 
function V(x), defined as the Fourier  t ransform of h(~)/f(~), satisfies the 
conditions of the theorem. Thus the  proof of Theorem 2 is ~complete. 

For  fur ther  applications we have constructed h($) in such a way t h a t  
~h(~)/](~) e L, which implies tha t  V ' ( x ) i s  bounded. 

In  order to examine the existence of bounded functions (I) (x) satisfying 
the Tauberian relat ion (2.1), we will first derive some results concerning the  
convolution of a bounded function and a funct ion of bounded variat ion.  
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7. S o m e  results  for h a r m o n i c  transforms o f  bounded  funct ions  

Let  (I) (x) be bounded, say [ (I) (x) [ -< B. We write, for ~ < 0, 

which is harmonic in the half-plane ~ < 0 .  In accordance with a notat ion 
used by  Beurling in [5] we shah call U¢ (~, ~) the harmonic transform of (I) (x). 

Let  ~ denote a positive number. Parseval 's  relation gives 

Ms {U® (~, - fl)} = 21/ff~M2 {e -~1 ~ I + (x)}, 
hence 

M2{U+(~, -fl)}_< 21/-~Bfl -~-. (2.11) 

Le t  F(x)  E V, 1(~) = f e~¢Xd.F(x), and introduce (I)(x) and its harmonie trans- 

form US (~, ~). We will prove tha t  if, for some ~, 0 < ~-< ½, 

then 

P{F}=Pn(F} = ?l~I++°ld~V(x)]< ~ ,  

I(fl)=-M~{US(~, -fl)-l(~)U¢(~, -fl)}<_2 2~P{F}Bfl  ~, (2.12) 

and, for an arbi t rary  set E, 

{flu$(~, -~)l~d~} ~ <_ B12,~(2P{F} f+~-+~{E}), 
E 

where 
{El  = sup I/(~)1. 

~eE 

(2.13) 

The inequality (2.13) is a consequence of (2.11) and (2.12), for, by Minkow- 
ski's inequality, 

_< x (~) + ~ {E)M, {V® (~, - ~)}. 
Thus it  is sufficient to prove (2.12). 

The integral I (fl) w a s  examined by  Beurling in [5] in the case ~ = 0, and 
we proceed similarly. Parseval 's  relatibn gives 

e~  

- o o  

By Sehwarz' inequality, 

(2.14) 
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oo 

[ f (e-~l:l-e-~l=-:l)¢(:-u)d~(~) ~ 
- - 0 0  

OO 

Insert ing the above expression in (2.14) and invert ing the order of integra- 
tion, we find 

I'(~)-<2:,P{~iB ~ f l~I~+~la-'V(u)l f le-~'='-~-~'=-='l~lul-'~+~'a~. 
-oo -oo 

The inner integral  is dominated by  (cf. [5], p. 275) 

H e n c e ~  

which proves (2.12). 

4~lul T M  
4f126 . 

1 + flz u* 

12 (fl) < 8 ~ P  ~ {F) B2fl ~, 

8. The function ~ (x)  bounded 

The following theorem shows t h a t  if we assume tha t  there  exists a non- 
trivial bounded function (I)(x) satisfying our Tauberian relation, then  we have 
restr icted the class of functions F(x) under  consideration. The corresponding 
converse theorem is included in Theorem 2. 

Theorem 3. 

some ~ > 0  

Let F(x )E  V and / (~)= f e t~dF(x) ,  / ( ~ ) 5 0 ,  and let, /or 

f' I~ l++~ I d F (~)[ < oo. (2 .15)  
- c o  

I /  there exists a bounded, continuous /unction ~ (x), (I)(x)~ O, such that, /or some 
positive number ~, 

(I) (x) = 0 (e-~X), (2.16) 
then 

7g 
e-~t~'l log I/(#)lld#<oo, c >-. 

T 
(2.17) 

The proof is based on the analytici ty of the analytic t ransform, ~(~), of 

q) (x) and follows the same idea as the proof of the first  p a r t  of Theorem 2. 
This proof is, however, more complicated, due to  the fac t  tha t ,  cancelling 
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the  hypothesis  q ) ( x ) e L  ~, we cannot  use in our argument  the strip B, 
- T  < ~1 < 0. Ins tead of B we shall introduce another  domain, D, inside B, 
which will allow us to make use of the above results for  harmonic t ransforms 
along a pa r t  of the boundary  of D. The proof is sketched below, and after- 
wards worked out  in detail. 

Consider the curve ~ = If(~)]~, where ~ =  ~(~) is a certain positive constant .  
This curve is approximated by a step-function, s (2), such tha t  s (~) is less 
t han  ½~ and log s ( 2 ) - ~ l o g [ ] ( 2 ) l  is bounded. Then, by  applying (2 .13 ) to  

the harmonic t ransform of ¢(x), we can prove t h a t  v2(2- i s (2 ) )be longs  
to  L ~. 

Le t  S denote  the "curve obtained in joining the graph of ~ = - s (2) by straight  
lines parallel to the ~-axis, and define D as the domain lying between S and 
a straight  line ~ = - b  in the ~-plane. Le t  the function w=w(~)represen t  
D conformally on the unit  circle. Then, if s(2) is appropriately constructed,  
the relation 

f l l og  - Iv<~)ll Iw' ¢~)[ I ~ 1  < ~o (2,18) 

may be derived from the corresponding relation for log+ ]~(~)1. 
We fur ther  introduce a set, H, consisting of small intervals around the 

points of discontinuity of s (~), and denote  the complement  of H by  C H. 
The set H is constructed such tha t  

ye t  such t ha t  

fe-~ ~j ]log s (2) 1 d2 < oo, 
H 

1w,(2-~8(2))1>c~-(~+=)~', 2eCH, (2.19) 

for every  e >0.  The possibility of this construction will follow from condi- 
t ion (2.15). 

From the relations (2.18) and (2.19) i t  can be derived, by  the aid of (2.13), 
t ha t  

e-Cl~lllog s(~.)ld2< ~ ,  c > ~ ,  
C H  

and the result of the theorem then follows, since b can be chosen arbitrari ly 
close to ~. 

Now, proceeding to the detailed proof, let us first normalize our functions 
in a way convenient  for our purpose. Suppose tha t  

and 

$ 

I¢(x)l<~l, l ¢ (x ) l ~  -~, 
oo 

f (1+l~l)++°ld_~(~)]_<2 -5, for some 8, 
- - O 0  

] 1(8) 1___ 2-5(1 +181) -1. 

0<8<½, 

(2.20) 

(2.21) 

(2.22) 
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This is no  real restriction. For, by the argument used in Theorem 2 (p. 324) 
we may  suppose tha t  ! (~)=0{(1+[~] ) -~} .  Also, by  changing the variable we 
obtain from (2.16) 

- - 0 0  

Since /(v~) is the  Fourier  Stieltjes t ransform of F(x/T) i t  is sufficient to con- 
sider the case v =  1. And obviously we may  always multiply • (x) and F(x) 
by  constants.  

In  Lemma 3 we derive the inequalities for ~($) used in the  proof. Then, 
in Lemma 4, we construct  a step-function s (~) and a set H with the desired 
properties.  The main proof is given on page 338. 

Lemma 3. Impose the conditions (2.20) and (2.21) on F(x) and ¢(x). Let 

](~) = ~ e ~ d F ( x )  and let yJ(~) be the analytic trans/orm o/ ~(x). I! t(~) is 
- - o o  

a step-/unction, taking only the values e -n, n = l ,  2 . . . . .  such that /or some ~ > 0  

1 + ~  
log I!¢~)1 -~og t (~)_< e, ~ = ~- -~ ,  (2.23) 

then, /or a constant C depending only on ~, we have 

~ {~ (~ - i t (2))} < v~  °, (2.24) 

and, i /  Z(~) EL,  O < z ( ~ ) < l ,  

o o  oO 

f 4(1+c3) z ( ~ ) l l o g t ( ~ ) l a ~ <  x(~) I l o g - I ~ ( ~ - i t ( ~ ) ) l l d ~  
- - o 0  - - o O  

+ (C + o)M {z(~)} + A, 
whenever the right side integral converges. 

(2.25) 

The proof is an application of the results in the previous section concern- 
ing harmonic transforms. C is used to denote a positive constant  depending 
only on ~, bu t  not  necessarily the same one each t ime i t  occurs. This nota-  
t ion will be used throughout  the present  section. 

Le t  US (~, 7) he the harmonic transform of ~(x) .  Parseval 's relation gives, 
for 0 < f l < l ,  

M2 ~ {yJ ( $ -  i fl) - US (~, - fl)} = 2 zr ] (e ~ ~ - e -p~)~ I (I) (x) I S d x. 
0 

Since ] (b (x ) ]_e  -x we find tha t  

M2{~v(~- ie-n) -U$(~,  - e - n ) } < 3  2 ~ n e  -~, n = l ,  2 . . . . .  
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Let  E .  be the set defined by 

and let 

Then, by (2.23), 

t(~)=e -~, ~eE . ,  

1 1 
2 2(I +~) 

Q ~ ~t 

It(~)l~ ~ ~ < e  '-~, ~ e E . ,  

and an appheation of (2.13) gives 

{ ~lv~ (~ , -  ~-')l~d~} ̀  < ~(~-°~ +~-°,~). 
E n 

Using Minkowski's inequality we find that  

{ f l ~ ( ~ - . - ~ ) l ~ } '  < ~ ( 4 ~ - ~ o  +~0-~.~)<A~o-~,~. 
E n 

(2.26) 

And i t  follows tha t  

E n  

which proves (2.24). 
We now turn to the proof of (2.25). Schwarz' inequality and (2.26) yield 

Ix(e)l~(e - ~-~) lee  <_ { fz~(~)e~}~A~ o-~,~ (2.27) 
E n E n 

Consider the integers n such tha t  ~ g ( ~ ) d ~ # 0  and let 
E n 

then, since g (~) -< 1, 

E n  
g(n) 

fZ(~)d~ 
E n 

f z (~) d } _< {K (n)} -~. 
E n 

(2.28) 

The inequality (2.27) can be writ ten 

1 ! X(~)l~(~_ie_,~)]d~<K(n)Aeq_~,n. 
f z~)d~E 

E n 
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Hence, by the convexity property of the logarithm, 

fz(~)  log lyJ(~-ie-,~)]'d~(A,+q+log K(n)-a,n) f x(~)d~. 
E n E n 

Let (n} = M~ + M2, where "~ e M~, if K (h).< n 2, and n e M 2 if g (n) > n 2. 

If h e M  1 we have 

log K(a ) -~ in_<2  log n'O]n<C:½8in 
and 

Z fz(~)logl~(~-i..e-")]d~<-(O+~IM{X(~)}-½(5, ~ n fx(~)d~. 
h e M ,  " " ' " ' : r ~ e M t  

E n . E n 

Therefore 

o o  

- -  oo  E n 

-<(C+0)M{x(~)}-½O~ 2 n f Z(~)d~; 
r t e M  t 

(2.29) 

and the right side sum must converge, as the left side is finite by assumption. 
If n CM2, then K(n)>n~ and,  according, to (2.28), 

f x(~)d~<n-*. 
E n  

Since log t (~)= - n  in E., we find 

and 

h e M ,  r t ~ M )  n E M .  

En E n 

f x ( ~ ) l ° g t ( ~ ) d ~ = - ~ n  Z ( ~ ) d ~ > - A -  5 n Z(~)d~. 
- o o  E n E n 

Taking into account (2.29) we have proved 

f Z(~) l o g - ] ~ ( ~ - i t ( ~ ) ) [ d ~ <  ½ 61 Z(~) log t(~)d~+ (Cq:~)M{x(~)} + ½~51A, 
- - 0 0  - -  o¢~ 

which is equivalent to (2.25). This completes the proof of Lemma 3. 
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S 

~uw~ 

/ / i  i 
~v÷l 

i 
I / /  

× I/~ 

~5  

Fig. 1. 

We are now going to construct  a step-function ~ = s (~) of the above type  
such tha t  the domain D is appropriately represented on the unit  circle. 

Choose a number  b, such tha t  

1 - 2 - 4 < b < 1 .  

Le t  s (~) be a step-function such tha t  0 < s (~) _< e -1, and introduce the following 
quantit ies depending on s (~): 

S denotes the curve obtained in joining the  graph of ~ = - s  (~ )by  straight  
lines parallel to the ~/-axis a t  each point of discontinuity of s(~). 

a, (v = . . . -  1, 0, 1 . . . . .  a~< a,+l) are the points of discontinuity of s(~). 
lv denotes an interval  around a~ of length I I~ ], and 2, is the are of S whose 
projection on the  real axis is l,. 

D denotes the domain lying between ~q and the straight line ~1 = - b  in the 
F-plane ; ~ = ~ + i7.  The function w = w (~) maps D conformally on the uni t  
circle in the  w-plane, w(~0)=0 , w'(~0)>0 ; ~ o = - ½ i .  

o)(~, 2 , ,  D) denotes the harmonic measure of 2,, with respect to D. 

H = ~ l~, and C H denotes the complement of the  set H. 

With these notations Lemma 4 can be stated as follows: 

Lemma 4. Impose conditions (2.21) and (2.22) on F(x)  and its Fourier Stielt]es 
trans[orm /(~) and let ](~) # O. Then we can construct a step-/unction s (~) taking only 

the values e-n, n =  l ,  2 . . . . .  and a set H =  ~. lv such that 

l + d  
] u log ] / (~)l - log s (~)] _< 2, u = ~ ,  (2.30) 

f ]log s ( ~ ) ] l - ~  ~ < C,, (2,31) 
H 

eo (¢o, 2~, D)<Ce-Sl%l] l , I ,  (2.32) 
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and, /or every e>O,  

Fig. 2. 

......... .tog z.C~) 

• t 1 

C~e-~( ÷')l~l < lw'(#--is(#))l<Ce--bl¢l, ~eOH, (2.33) 

where C depending only on (5 and C~ on ~ and e are positive constants. 

Let  us first s tate  the properties of [(~) to be used in the proof, viz. 

0 <  I 1(#) ] < 2-5 (1 + ]#t) -x, 

which is immediate from (2.22), and 

_ 2 1~1- ~21 , (2.34) 

which is easily verified by  use of (2.21). NoSe fur ther  tha t  the assumption 
0 < ~ < ~  yields 3 / 2 < g < 2 .  

Now proceeding to the construction of 8(~), let  P ,  be the set defined by  

~-=-< I l(~)I" < e-~=-l', ~ z P= 

and introduce the step-function q(~), defined by  the relation 

q(~) =e-", ~ P . .  

To obtain s(~) we shall remove, successively, the steps around the intervals 
in which q(~) has a maximum or a minimum, and we proceed as follows: 
Le t  i~, m . . . . .  1, O, 1 . . . . .  denote the intervals in which q(~) is constant ;  
im+l lying to the right of im. Leg Q denote  the set consisting of all intervals  
im such tha t  q (~) in, im assumes a value greater  than  its value in the two 
adjacent  intervals,  im-i and ira+l- Introduce the step-function r(~), defined by  

( q (~) elsewhere. 

(The construction is shown in Fig. 2 in logarithmic scale.) Similarly', let  
jm, m . . . . .  1, 0, 1 . . . . .  denote the intervals in which r(~) is constant ;  jm+t lying 
to the right of jm- Le t  R denote  the set consisting of all intervals j~ such 
tha t  r(~) in j~ assumes a va lue  smaller than  its value in the two adjacent  
intervals,  ]m-1 and jm+l. 
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7 ( ' ~ )  . / "  "- ". 

. . . . . .  L#(~)I* . ~ ' ~  
. . . . . . . .  ~ V C ~ ) I  ~'  . ~ . - "  ~ 

r r 

Fig. 3. 

We define the step-function s(~) as follows 

er($) if ~ e R ,  

s(~) = r(~) elsewhere. 

I t  is easy to verify tha t  the function s(~), thus defined, satisfies condition 
(2.30) and tha t  s (~) < e -2. 

Now consider the  points of discontinuity, a~(a,.<a~+1,v=...-1, O, 1; . . .)  
of s(~). Le t  h~ denote the step of s(~) a t  a~, and pu t  

~,= ~, Iz, l = z l h ~ l  ~+",. 

We define l~ as the closed interval  of length I~l lying symmetrically around a, .  

To prove that  the function s (~) and the set H = ~. l~ satisfy the conditions 

of Lemma 4, we shall first prove the following relations: 

l q  < e-', (2.35) 

,(¢)>~-~13,1~% ~ e z~, (e.36) 

I z, I - ~ . <  ~ l a ,+ . -  a, I, ~ = - 1, ~, (e.37) 
where 

1 + ~ 2 =  3 ~  
~a = 1 - - -  

1 + ~  4 ( 1 + ~ ) "  

Choose a point  a~ such tha t  a, is a point of increase of s (~), in which case 
a~ is also a point of increase of the functions q(~) and r($). Let  g~+l be the 
point of discontinuity of q(~) immediately following a~, and let ~-1  be the  
point of discontinuity of r(~) immediately preceding a~. From the construction 
(Fig. 3) i t  may be seen that  

Ih, l = ( 1 - ~ - l ) l l ( a ~ )  p 
and 

The relation (2.35) follows immediately from these equalities. 
we find 

Fur thermore  
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Ih.l~Kll/(a~)l-I/(~÷.)ll", ~ =  - 1 ,  X, 
where 

1 

K = ( e -  1)(e ~ - 1)-' .  

According to  (2.34) we have 

II/(~)I-  I/(~,+.)II -< 2 - '  I a , -  ~,+.l ~÷". 
Since u ( ½ + ~ ) = l + d ,  we get 

Ih.l_<K2-'"la.-~+,l~% ~= --1, 1, 

where, by  the construction of s (~:), 

la.-~.+,l<_la.-a.+,l ,  i~=-I, 1. 

As a consequence of the  last two inequalities we obtain (2.37). I t  is easy to 
see how (2.35) and (2.37) may be derived by  a similar argument if a, is a point 
of decrease of s (~). From (2.35) and (2.37) it follows tha t  the  intervals l, are 
non-overlapping, and through this fact  the relation (2.36)is  readily verified. 

Proceeding to  the proof of (2.31), let 09 denote an interval of length leol. 
We wish to establish the following relation 

j ilog s(})ld~<c(1+1091), (2.38) 
a~f~H 

from which (2.31) follows after  a partial  integration. To prove (2.38) consider 
an interval co. I f  co N H =  0 there is nothing to prove. If  not, leg eo fl l~¢ 0 
for u,<_~_<v2. Then 

]log s(~)ld~_< Y. ]log s(~)ld~.  

According to (2.36) we have 

fllog ~(~)ld~<2 I~,l-(x +~,)lz~l log It~l, 
l v 

and hence, by aid of (2.37), 

fl log ~(~)la~< o ll, l~-~' < o (,~,+~-,~,). 
I v 

Therefore, 
V z- 1 I 
~_ [log s(~)ld~<O(av,-a, , )  

v = P z  • 
< o(i09i + ½ il,,I + ½il,.I). 

(2.39) 

The relation (2.39) yields 
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G~ 

S ~ ~  ~ 7 ~ / /  8 

Fig. 4. Fig. 5. 

fllog s( )la <clz,,I 

and, in view of the fact that ]/~[ is bounded, the last two inequalities prove 
(2.38). Thus (2.31) is established. 

We now turn our attention to the domain D lying between the Straight line 
= - b  and the curve S, ~ = -s(~)  in the ~-plane. Let ($, ~') be an interval 

of the real axis and let ~ be the arc of S whose projection on the real axis 
is (~, ~'). If (~, ~') is contained in CH, then a is a segment of a straight line 
paralleling the ~-axis. With the notations introduced on page 333 we can write 

co (~o, a, D) 
[ w ' ( ~ - i s ( ~ ) ) l = 2 z ~ l i m  - - ,  ~ E C H .  

I t  follows that propositions (2.32) and (2.33) of Lemma 4 are verified if we 
can prove that 

if 
l, (2.40) 

(~:, ~')= l, for some v, or (~, ~') c CH.  (2.41) 

Let /) denote the image of D in ~ = -  b and let ~ = / )  + D. By considering 
the representation of ~ on a strip and making use of the inequalities of Ahl- 
fors (see [1]) it is easy to verify the following relation 

z~ 1 oo(~o ,  (~, D ) ~[~[ 
K~e--b( +~)S~I < < Ae--b ~>0, 

o~(~-ib,  a, ~)  

where, in view of (2.22), K~ is a positive constant depending only on e. There- 
fore, to establish (2.40) it suffices to show that 

cl - '1 < a) < cl - (2.42) 

for each interval (~, ~') of the type described in (2.41). 
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To prove the right inequality in (2.42) we use the comparison domain U, 

r j< ]~] ~+~' , 

where ~2 denotes the quant i ty  introduced in the definition of l~ (p. 335) in 
which case ~2 > 0. Choose an interval (~, ~') as described in (2.41), let $ = ~ -  i s(~) 
and ~'= ~ ' - i  s (~'). Translate U into a new domain, Uo, such that  the boundary, 
Ga, of U~ passes through the two points ~ and ~'. From the construction of 
S and U it follows that  the curves S and Go intersect only at  ~ and ~'. Let  

denote the are of G~ between ~ and ~' (Fig. 4). Then y c ~ ,  S - a c U o ,  
and, by a well-known argument based on the maximum principle, 

a~(~-ib ,  a, Y~) < ~o(~-ib ,  ~, Uo). 

Now, as is easily verified (cf. [2]), 

m ( ~ - i b ,  r, Uo) < C ] $ - ~ ' [ ,  

where C is independent of a. Hence 

w ( ~ - i b ,  a, f2) < C [ ~ - ~ ' ] .  

The converse inequality can be derived similarly by  considering a comparison 
domain such as 

, 7<  - ] ~ 1 1 %  ~+~<(~)~ 

(cf. Fig. 5). Thus (2.42) is proved; {2.32) and (2.33) follow. This completes 
the proof of Lemma 4. 

Proof of  Theorem 3. 

Let  s(~) denote the step-function and H the set constructed in Lemma 4. 
Notations used below are defined on page 333. 

For  each sufficiently large integer k we construct a domain, Dz,  as fellows: 
Let  the real numbers ~ and ~ '  be defined by 

, ( ~ i )  = s ( ~ ' )  = e -~, 

s (~) < e -k outside the interval ~ _< ~_< ~ ' .  

Obviously ~ and ~ '  exist if k >k 0 ,  and ~ - - > -  co, ~ ' - ~  as k-->~. In the 
sequel we tacit ly assume k to be an integer > k  o. Let  s k ( ~ ) b e  the step- 
function defined by 

sk(~) = e -~ elsewhere, 
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and let Sk denote the curve obtained in joining the graph of s~ (8 )by  straight 
lines paralleling the ~-axis. Dk is defined as the domain lying between Sk and 
the straight line ~ = -  b in the S-plane, and its boundary is denoted by Fk. 
Then Dk c Dk+l ~ " "  ~ D, and ])k --> D as k --> c~. 

Let  us map the domain D~ conformally on the unit  circle in the w-plane 
by means of the function w=wk(~); wk(¢0)=0, w~(~0)>0. We wish to prove 
the following relation 

f log + I v , ( ¢ ) l l w . ~ ( ~ ) l l a ~ l  = f + f < B, (2.43) 

where B is a constant, only dependent on ~ and b. ~rom our normalized con- 
ditions (p. 329) it follows that  

1 
Iw(~-¢~)l < 0<8<1,  - ~ ( 1 - p ) '  

and hence, in view of our choice of b, 

f l ° g  [~(~)1 ]w~(~)] ]d~]<2~r  log (2.44) 
2 

l - b "  
~=-b  

Let  Hk be the subset of H consisting of those intervals l~ which contain some 
point of discontinuity of sk(~). Let  CHk denote the complement of Hk.  If 
we put  

m, = max log + ]~ (8 - is (~))], 

then we can write 

f l°g + Iw(¢)llw;~(C)lld¢l~<2~ E ,o(~-0, L, D~)m, 
S k I v C H k 

+ f log+l~(8- - iSk(8) ) ] lW'k (8- - iS '~(8) ) ld~=I~+I~  • 
C H  k 

Remembering tha t  the intervals l~ are non-overlapping we find 

2 e  
m,< log s -~  < 2 ]logs(~)[, ~e l , .  

And since Dk c D, we obtain by  the aid of (2.32) 

W(~o, L ,  nk) < eo(~o, 2~, D)<Cll~le -~1%1, l~cHk. 

Observing tha t  [l~[ is bounded; we find 

I i < O  Y. e -~M%l I logs(#)ldS<O [ l o g s ( ~ ) [ l + 8 2  
l v C H  k 

lv H k 
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and, by (2.31) 

f a~ 11 < c  [log s ( ~ ) l l ~  < C. (2.45) 
H 

To evaluat~ the integral I~, let us notice tha t  the relation 

]w'~(~-is~(~))]< Ce -~'l~l, ~ E GH~ 

is a consequence of the construction of D~ and the inequality (2.33). Therefore, 

I~<C f log + ]v2(~-isk(~))ld~<C fl~(~-i~(~))l~d~. 
C H  k O H  k 

Since s(~) is constructed such that  u log [ [ (~ ) ] - l og  s(~)_<2, i t  follows from 
our choice of ~ and ~ '  tha t  ~ log I / (~ ) ] - l og  s~ (~)<2.  An application of (2.24) 
yields 

o o  

I,.<0 f Iw(~-is~(~))l~d~<C. (2.46) 

By adding (2.44), (2.45) and (2.46) the relation (2.43) is proved. 
Suppose tha t  ~0 ($) is transformed to ~o~ (w) by use of w =  w~ (~). From the 

construction of Dk it  follows tha t  ~ok (w) is analytic and bounded in the unit  
circle for every k. Furthermore, ~ok (w) cannot be equivalent to zero since (I)(x) 
is assumed non-trivial. The inequality (2.43) therefore asserts tha t  the charac- 
teristic function of ~ok (w), k = k0, k o + 1 . . . . .  does not  exceed B. We may con- 
clude tha t  

j Ilog-I,e(OIl Iw2(~)l IdOl<B1, 
rk 

for some constant B 1 which is independent of k. Accordingly, 

g 
f Ilog I~(~-is(~))fllwi(~-~(~))la~<B1. 

The integrand increases as k increases. Letting k--> oo we find 

~ ]log-IV,(~-is(~))HIw'(~-is(~))ld~<B1. 
- - o O  

Hence, by  the aid of (2.33) 

f 7~ 
C H  
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Choosing Z(~)--e -¢1~;, ~ E CH;  g(~)=0 ,  ~ E H  in formula (2.25) and applying 
(2.25) to the function s(~) we find 

e -~l¢l [Iogs(D[d#< 0% c > ~. 
CH 

W e  already know tha t  

de 
f ilog s (8) 11---~ 

H 

o o  

The last two inequalities imply 

; e  -¢t~i/log I/(2)[la~ < oo, 
- o o  

Yg 
C ~ - - "  

b 

Since b can be chosen arbitrarily close to 1 it  follows tha t  

OQ 

f e -cial [log [/(~)lld~< 0% C > ~ .  

This was, in fact, the result to be proved. Thus Theorem 3 is established. 

CHAPTER I I I  

The necessity of the conditions 

9. Def ini t ions  

E denotes the class defined page 317. As before, a function (I)(x) is called 
non-trivial if ( I ) (x)50 in a set of positive measure (see section 4). Define the 
class I of functions .~(x) as follows: 

Definition. F (x) E I i/  F (x) E V and i/ two positive constants ~ = oct and 0 = OF, 
0 <  0<_ 1, can be /ound such that the relation 

implies 

f ¢ (2 - u ) d F ( u )  = O(e -rx) (3.1) 

• (2) = 0 (e - ° r  ~) 

/or every /unction ¢ (x) E E and every ?, 0 < ~  < ~; and the class o/ non-trivial 
/unctions ~P(x) E E, satis/ying (3.1) is non.empty /or ~<c¢. 
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The definition of class I in [6] does not  exclude the cases where no non- 
$ 

t r ivial  function (I)(x) of class E exists such tha t  (I)(x)= O(e =r~) as x - + ~ .  How- 
ever, we now know, from Theorem 3, tha t  this restriction is essential. In  the 
above definition we therefore exclude cases where the definition is meaningless. 
Furthermore,  in the definition of class I in [6] it  is taci t ly assumed tha t  F(x)  
is real. I f  we restrict ourselves to real functions _F(x) then the two definitions, 
except for the above remark,  are equivalent, as is easily seen when separating 

the real and imaginary parts  of (I)(x). 
The only proper ty  of class E which will be used in the sequel is the follow- 

ing: I f  (I)(x) is bounded and r -11 ¢ ( x + r ) - ( I ) ( x ) l  is bounded for  r > 0  and 
x > x o, then (I) (x) belongs to E. 

10. The Wiener condition 

By the argument  of section 6 the following proper ty  of class I is obvious: 
I /  the /unction F(x)  belongs to class I ,  then its _Fourier Stielt]es trans/orm /(~) 
cannot vanish/or any real ~. This section demonstrates an analogous theorem, 
the proof being similar to the Wiener argument.  

Le t  us first note the following result:  I f  dp (x) is a bounded function and 
G(x) belongs to L and F, then the function (Pl(x)= G ~e (I)(x) belongs to E. 

o o  

For, let I (I) (x)[ _< B and put  Q (x) = f (I) (x - u) d G (u) ; then for r > 0 

x+r 
I Y O(u)eul-<. V(a)r. 

t~ 

Theorem 4. Let F (x) E I and let ~P (x) be a non-trivial /unction o/ E such that 

(I) (x) = O (e-VX), where 0 < ~ < o~. Let 99 (~) and v/(~) denote the analytic trans/orms 

o/ dp (x) and ~ (x) respectively. Then the /unction 99 (()//~(() is analytic in the 
strip - 0 r < 3 {~} < 0. 

The conditions imply tha t  (I) (x) = O(e-°V~), and it  follows that ,  for ( =  ~ + i~ 7, 
99 (() and ~p (~) are analytic in the strip - 0 7 < ~7 < 0 (section 5). Since (I) (x) is 
assumed non-trivia!, the functions 99 (() and ~p(() cannot vanish identically. 

The proof is indirect; thus we suppose that ,  for some (1, 

~/) (~'1) = 0 ; ~'1 = ~ 1 - -  i /~1,  0 < ~ 1 " £  0 ~ . (3.2)  99 (~1) 

Choose 71 such t ha t  /~1/0 < 71 < 7. We will construct a function (Pl (x) of class E 
$ 

such that ,  as x-->~, ¢1(x)=O(e  -r~x) but  eOy'xl(I)l(x)]-+~, thus obtaining a 
contradiction. Using the results of section 5 we s tar t  with the construction 

of the analytic transforms of (I) 1 (x) and (I)l(x). 
I f  ~0(~) has a zero a t  the point ~=$1 ,  let n denote the order of tha t  zero; 

if not, let n=O. Then, by  (3.2), the point ~1 is a zero of order > _ n + l  of 
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v,(C). P u t  
ip(C) ,p(C) 

q~x (C) = (Cx- C) "+~ ; v'x (C)= (Cx- C) TM 

In the strip - fix < ~ < O, qx (~) and YJ1 (~) are analytic transforms of G * (9 (x) 

and  G ~ ~(x)  respectively, where G(x) is the function defined by 

(i) ~+: 
G ( x ) = 0 ,  x < 0 ;  G ( x )  = x"e -~'~, x>O. 

n! 

Writing (91 (x)= G ~e (9(x), we find that  since G(x) belongs to L and V, 

(gx (x) e E, (3.3) 
and after an inversion, 

G ~ (9 (x) = (9~ @). 

The function ~Pl (~) is analytic in the strip - y < ~ < 0, and ~x ( 2 -  ifl).belongs 

to L and L 2 if 0 < f l < y .  Since ~Pl(~) is the analytic transform of (gx(x) it  
~ollows that  

(9~ (x) = 0 (e-~'x). (3.4) 

The function ~x (~) is analytic in - 0 y < ~ < 0 ,  save for a simple pole at  
~ = ~ ;  and [ ~ ( ~ - i f l ) [ - + 0  when [ ~ { - ~  if 0 < f l < 0 y .  For 0<f l<f l~  we can 
write 

oO 1J 
(gx (z) = ~ e -~ ~(~-!~)~ ( 2 -  i/~) d e .  

- - o O  

Let  •1 be the residue of ~1 (~) at  ~= ~1- Then, by Cauchy's theorem, 

1 ;e_iZ(~_iOwlq) i (91 (x) = - iR le  -iC'~: + ~ (2 - -  i 0yi)de. 
- - O o  

Since ql (2 - i 0 71) E L, this implies 

a s  

where fix < 0 Ya, due to our choice of ill. I t  follows tha t  

~°:"~I Cx (:~){ -+ co as  ~ - >  co,  

and, in view of (3.3) and (3.4), this would imply F ( x ) ~ I .  We have obtained 
a contradiction, and conclude 

(~) 
~ (C--~ # o ,  - 0 ~ < ~ < o ,  

which proves the theorem. 
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Theorem 5. 

11. The analyticity of l / f  (g) 

oo 

Let F (x )E  I ,  1(~)= f e~¢~dF(x) and suppose that 
~ o o  

; e  -~lel Ilog II(~)lla~< oo, 
- -00 

(3.5) 

/or some real c .  

is analytic in the strip -- 0 (t < ~ < O, 

and 

Jim/(# + in)=/ (~) ,  
vt->-  0 

Then there exists a /unction /(~), $ = ~ + i ~ ,  such that 1//(~) 

(3.6) 

q~ (~) _ 1 

v, (0  /(~) 

where ~(~)/y~(~) is the /unction introduced in Theorem 4. In  particular, ~(~)/~(~) 
is independent o/ dp (x) 

We may without restriction suppose tha t  c > g/~.  Writing c = g/v ,  the above 
condition (3.5) is precisely condition (2.8) of Theorem 2. Thus we may con- 
struct the function h(~) as in the proof of Theorem 2. Let, as before, H(x)  
denote the Fourier transform of h(~) and V(x) that  of h(~)/f(~). Then 

(x) = H (x) = 0 (e-" % 

The function V(x) belongs to E since V(x) and V' (x) are bounded (p. 326). 
S~nce F(x) belongs to class I by hypothesis it  follows that  

V (x) = 0 (e-o's). 

Introduce the analytic transform, v ($), of V (x). Since V (x) and H (x) both 
belong to L ~ we have 

lim v ( ~ + i ~ ) = h ( ~ ) / / ( ~ )  a . e .  

and 
l i m h ( ~ + i ~ ) = h ( ~ )  a.e. 

r / - + -  0 

An immediate result is that,  for almost all values of ~, 

nm v (~ + iT) 1 (3.7) 
, - . -0h(~+i~)  I(D 

We will first prove tha t  (3.7) holds for all values of ~. 
By their very construction, the functions h(~) and 1 / h ( ~ ) a r e  analytic in 

- ~ < ~ < 0  and 

 mlh( + v)l = (1+1 1) 
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Now l (2) # 0, since F (x) E I .  The above results concerning h (C) therefore imply 
tha t  the function 1/h(~) is bounded in every finite sub-domain of the strip 
- ½ T < ~ < 0. Furthermore,  since H (x) and V (x) both are of L ~, we have 

and 

lima.+o M3{ v(2 - i f l ) -  /-~ ~ = 0 

lim M 3 {h ($ - i/3) - h (2)} = 0. 

Hence, for every finite interval (a, b) 

b 

lira [Iv(2-ifl) 1 12d2=0. 
a-~o j l~ , (~-¢~)  1(2) 

e& 

(3.s) 

Let  2o be a point on the real axis, and choose 21 and 23 such tha t  21< ~0 < 23 
and such tha t  (3.7) holds at  21 and 22. Let  R denote the rectangle 2 1 < 2 <  2~, 
- ½  0 T < ~/< 0, F its boundary and let g (z, ~) be Green's function for R. The 

function v(~)/h (~) is analytic in R. By (3.8), and our choice of ~1 and $2, it  
easily follows tha t  

,,(C) a ]'ag(~,C) ,,(~) a~l, 

1" 

O/On denoting differentiation along the outward normal. If  we observe tha t  
on the interval 2 1 < x < 2 3  we have v(x)/h(x)=l//(x) and tha t  1//(2) is con- 
tinuous, we find from the above representation of v(~)/h(~) tha t  (3.7)holds a t  
2 = 2o. Hence (3.7) holds for all values of 2. 

Let  us now define 

1 _ v ( 0  

1 ( 0  - h (C) 

Then 1//(C) is analytic in - 0 T < ~ / < 0  and 

1 1 
l i m  I ~ 

~-~-ot(2+i~) I(2) 

I t  follows that  the function ]($) fulfils proposition (3.6) and, for every finite 
interval (a, b), ] (~) is analytic in the rectangle a < 2 < b, - ~ < U < 0, for some 

>0 .  Introduce the functions 
c o  

I+(C) = f d¢~dF(~), 7>_0; 
0 

0 

1-(0 = f ~'¢~dF(~), v<_0,  
- o o  
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analytic in the upper and lower half-plane respectively. (3.6) can be written 

which implies that f +  ( 5 )  can be analytically continued across every finite 
interval of the real axis. 

Let o denote an interval. Following Beurling (see [3 ] )  we now introduce 
the classes T, = T,,,, and T, = Tp(=) defined by 

0 0 

m m 

f ( t ) € T ,  if f ( E )  = j e i E x d ~ ( x )  where j p ( z ) ] d F ( x ) l  i w ;  
- m  - m 

Let 

and let w be a finite interval. By use of the fact that f +  ( 5 )  is analytic in a 
domain containing w it is easy to see that 

Now f ( 6 )  = f ' ( E )  + f - ( t ) ,  where f -  ( E )  E T,, . Hence 

f ( E )  E T,, for every finite interval lo. 
0 

(3.9) 

8 

Let @ ( x )  be a non-trivial function of class E such that @ (2)  = 0 (eTYX) ,  where 
0 < y < a. Let ~ ( 5 )  be the analytic transform of @ (x)  and y ( 5 )  be that of 
* 

which amounts to showing that 

This is easily verified because V (x)  E L2. Therefore, should f ( f )  belong to T,, , 
then the double integral 
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would be absolutely convergent, justifying the inversion in (3.11). Here w e  
shall use the method by which Lemma 1 was proved and the aid of the weaker 
condition (3.9) to prove (3.11). 

Let  M (x) be a function such that  Pl (x)M (x)E L and such that  the Fourier 
transform, m(~), of M (x) vanishes outside a finite interval, ~o. Then, by (3.9) 

m (~) I (~) E T~,. The function m (~) / (~) has the Fourier transform M (x), thus 

pl(x)fil(x) EL. Therefore, according to (3.12), the integral M ~ (I) ~ V(x) is 
absolutely convergent and may be inverted. We thus find 

• .  ~ .  v (~) = v .  ~ .  • (~) 

which, after further inversion, yields 

(I) ~ M ~ l ~ (x) = V ~- M ~e (~ (x). (3.13) 

I t  is easy to verify that  I O I ~ [ l~ {(x) and I V[ ~- l ~ I(x) both are 0 {PI ( - x)} 
as x - + - c ~ .  Therefore; in view of the conditions on M(x), the integrals in 
(3.13) are absolutely convergent. Inverting again, we find 

$ 

M -)e ¢ -~ V (x)= M ~ V ~ ~P (x). 

By the argument used in Lemma I (p. 319) this yields 

¢ .  ~ (x) = v ~ $ (x), 

which proves (3.11). Thus (3.10) is established. 
Let us choose another function (I) 1 (x)E E, such tha t  (I) I (x) is non-trivial and 

• * 

(I) 1 (x) = 0 (e-v'x), 0 < ~1 < ~. Denoting the analytic transforms of (I) 1 (x) and (I) I (x) 
by ~1(~) and ~Ol(~) we ,find, since the above argument applies to any function 
of this kind, 1//(~)~01(~)/~o 1 (~). Therefore 

(~) w~($) 

i.e. ~0 (~)/~p(~) is independent of the function ffP (x). 
According to Theorem 4, the function ~0(~)/~0($) is analytic in t h e s t r i p  

- 0 7 < ~/< 0. Further, by the definition of class I, we can find, for every y < , ,  

a non-trivial function d) (x) of class E such tha t  (p (x) = 0 (e-V~). I t  follows 
that  1//(~) is analytic in - 0 y < ~ / < 0  for every y<:¢. Thus 1//(~) is analytic 
in - 0 : ¢  < ~ < 0, and the proof of Theorem 5 is complete. 

An immediate consequence of  Theorems 3 and 5 is the following 

O0 

Theorem.6.  Let F(x) ~ V, ](~)= f e~XdF(x) and let,' ]or "some ~>0 ,  
- - o 0  

f Ix l~+~l~(~) l  < ~ .  
- - o 0  
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I /  F ( x ) E I ,  then there exists a /unction /(~),  ~ - ~ ÷ i ~ 7 ,  such that 1//(~') is ana- 
lytic in the strip - 0 ¢¢ < ~ < O, and 

l i r a / ( ~ + i ~ ) = / ( ~ ) .  
rk--~-0 

12. The constant 0 

In  the definltion of class I (p. 341) we introduced two constants, O= Op and 
=:¢~. Let  us say tha t  

F (x) e I (0, a), 

if F (z) fulfils the conditions in the definition of class I for the constants 0 
and c¢. 

Earlier, a theorem has been proved ([6], Theorem 3), which can be restated 
as follows : 

oo 

I [  F ( x )  e V, /(~) -~ ] e~X d F ( x ) ,  and i /  there exists a / u n c t i o n / ( ~ ) ,  ~ = ~ + i ~ ,  

such that 1 / / (~ )  is analytic in  the strip - a <_ ~ < O, and 

t(~+i~) < const. (1+1~1) '-~ (3.14) 

/or - a <_ ~ <_ 0 and some r > O, and /urthermore lira / (~ ÷ i 7) = / (~), then 
~-~-0 

1 
F(x)  e I ( 0 ,  a) /or O <  

r + l  

Tha t  in this theorem the boundary  1 / ( r +  1) for 0 is essential  m a y  be seen 
from the following simple example. Let, for some r > 0  

r (r) 
! (0 = (1 + i ~)'" 

Then 1//($)  is analyt ic  in 7_<0 and satisfies (3 .14) in  this half-plane. The 
function /(~) is the Fourier Stieltjes t ransform of an absolutely continuous 
function F (x )  such tha t  

~ ' ( ~ ) = l x l ' - l e  =, ~ < 0 ;  F ' ( x ) = 0 ,  ~ > 0 .  

Let  us choose, for some c > 0, 

(I) (x) = 0, x < 0 ; (I) (x) = e -cx sin e cx, x >_ 0. 

The function • (x) is of class E,  since O'  (x) is bounded for x > 0. Moreover, 

$(~) = ~' ~" ( x - u ) ¢ ( u ) d u = e =  f e -=-°~ ( u - x y  -1 sin ~C=du. 
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I t  is  e a s y  t o  v e r i f y  t h a t  

¢ ( x ) = 0 ( e  -(~÷~)~) as x- ->oo.  

I t  fo l lows  f r o m  t h i s  r e l a t i o n  a n d  t h e  o r d e r  of m a g n i t u d e  of (I)(x) t h a t  t h e  f u n c -  
t i o n  F ( x ) ,  i n t r o d u c e d  a b o v e ,  c a n n o t  b e l o n g  t o  I ( 0 ,  ~) i f  O> l / ( r  + l )  f o r  a n y  ~. 
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