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On the associativity formula for multiplicities

By Carister LECH

This paper is concerned with a theorem of Chevalley on multiplicities in a
local ring ([1], Theorem 5, p. 25). We shall present a generalized form of this
theorem, for which we can give a new and rather simple proof. Before stating
our theorem we introduce some notations. If q is a primary ideal belonging to
the maximal ideal of a local ring, then e(q) means its multiplicity, defined
according to Samuel, and L(q) its length; if a is an arbitrary idealf in a
Noetherian ring B and p a minimal prime ideal of a, then we define e (a; p) =
=e¢(aRp) and L (a; p)=L (a R,), where R, denotes the generalized ring of quo-
tients with respect to b. It may be pointed out here that our result depends
in an essential way on Samuel’s notion of multiplicity, which is more general
than Chevalley’s original notion.

Our theorem reads:

Theorem 1. Let Q be a local ring of dimension r and let {x,, ..., .} be a
system of parameters in Q. Put q=(x, ..., %) ond D= (Tmi1, ..., T), where

0<m<r. Let p range over those minimal prime ideals of 0 for whichk dim p+
rank p=dim Q. Then

6(Q)=%6((Q+P)/P)€(0; b)-

Chevalley’s theorem is restricted to local rings which admit a nucleus. (It is
formulated for the even smaller class of geometric local rings.) In his theorem,
p ranges over all minimal prime ideals of v. This difference from our theorem
comes from the fact that in a local ring which admits a nucleus it is true for
every prime ideal p that dim p+ rank p= dim . Chevalley’s theorem as well
as ours has its greatest 1mp0rtance in the algebro-geometric theory of inter-
section-multiplicities.

We begin our proof by deriving a certain expression for the multiplicity of
an ideal generated by a system of parameters (Theorem 2, Section 1). Theo-
rem 1 is then proved by induction on the dimension of @ (Sections 2 and 3).
The proof is based directly on the fundamental properties of Noetherian rings
and of local rings.t The local rings which occur during the demonstrations are

+ By an ideal we shall always mean a proper ideal; in other words, the whole ring does not
count as an ideal.

1 As a general reference, also for the terminology, see [2].
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CH. LECH, On the associativity formula for muliiplicities

either general local rings or submitted to restrictions which refer only to the
dimension and to the primary components of the zero ideal.

Following Northcott and Rees ([4], [5]) one can obtain a generalization of
Theorem 1 in terms of analytically disjoint ideals. This is outlined in Section 4
below, the result being stated as Theorem 3.

The concluding Section 5 contains a couple of simple formulas obtained as
side-results.

1. Before we enter on the proper subject of this section we recall some
well - known facts, fundamental to the whole paper. Let @ be a local ring, m
its maximal ideal and let g be an m-primary ideal.

The length L(q) of q is defined as the maximum of the number A of steps
in a chain

Q@=0>0,> " 2q:=0,

where each inclusion is strict and where, apart from g, each term is an m-
primary ideal. A way of viewing this situation is to regard ¢ as a module
with itself as a multiplicative operator domain. The permitted submodules are
then the ideals of @Q; and L (q) is equal to the length of a Jordan-Holder com-
position series of the @Q-module @/q. Notice that, if q' is another m-primary
ideal contained in ¢, then L{q')—L(q) is equal to the length of a composition
series of the Q-module q/q’. By saying that two modules are @-isomorphic we
shall mean that they are isomorphic regarded as @-modules.

The dimension of @ can be equivalently defined in two quite different ways.
According to one, dim @ is the minimum number of generators of an m-primary
ideal. (The number of generators of (0) is thereby counted as zero.) A system
of elements which generate an m-primary ideal and whose number iz dim @,
is called a system of parameters in Q. According to the other way of defini-
tion, dim @ is the maximum of the number g of steps in a chain

m=p,>p, > 2h,

where each inclusion is strict and each term is a prime ideal in Q. If a is
any ideal and p any prime ideal in @, then by definition, dim a=dim (Q/a)
and rank p=dim @, Using the correspondence between the prime ideals in @
on one hand and those in @/p and in @, on the other, we see that we always
have dim p+rank p < dim Q. :

~ Let now the dimension of @ be r. Samuel has shown that, for n sufficiently
large, L (q") is a polynomial in », whose degree is exactly r (see [6], pp. 24-28,
or [3]; cf. the formula (5) below). He defines ¢(q) as 7! times the leading coef-
ficient of this polynomial. From this definition it can easily be concluded that
e(q) is a positive integer. On the other hand, it is plain that we can write

(r) L (9")

e(@)= lim T2, )

and we shall take this expression as our starting point.
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The main object of the present section is to derive another similar expression
for e(q) in the case where q is generated by a system of parameters. At the
same time we shall get an independent proof of the fact that the above limit
exists for such a q. For simplicity we write e (z,, ..., «,) instead of e ((z, ..., r)),
ete. Our result is as follows.

Theorem 2. If {z,, ..., x,} is a system of parameters in a local ring, then
) L (xl, ...,
e(xl’ ._.,xr)= Iim _¥__’—r).
(mt.m ny)—>o00 ’I’Ll vee Ny

Denote by @ the local ring referred to in the theorem, by m its maximal
ideal and by q the ideal (z;, ..., z;). Let a be an arbitrary ideal in Q. Ap-
plying a method which goes back to Krull we shall deduce an expression (the
formula (5), p. 304) for L(a+q") in terms of certain ‘“form ideals” (cf. [6],
p- 19, and [3], Section 4). This expression will then be used for estimating
L (27, ..., z77).

Fix a composition series from @ to g,

@=0y2q, > 2q:=4,

so that !=L(g). Multiplying the terms of this chain successively by @ =4q°
g, ..., q""! and linking together the chains so obtained, we get a chain

340202 D120 20; D0 D DQagSgi D Dq7,

which is of course in general no composition series. Adding a to each term of
this chain, we get a chain from @=a+gq, to a+q”, from which we obtain

n-11-1

L(a+q")= 2 2 lengthg ((a+4,9%)/(a+g,+19"), (2)

p=0 v=0

where lengthe of a @-module denotes the length of a composition series for this
@-module. The final formula for L (a+q") will be obtained from (2) by re-
Placing

(a+q,9)/(a+g,,19")

by a Q-isomorphic image. As a first step in this direction, we note that, by
one of the isomorphism theorems for groups, there is a @-isomorphism

(a+9,0)/(a+ 0,41 9") ~0q,9"/(a N g, 9" + o1 G°). (3)

Now put K=Q/m. Form the polynomial ring K{X,, ..., X,]=K [X], where
the X; are indeterminates. Denote by F, the K-module consisting of all the
forms of degree y in K[X]. For each y(0<y»<I—1) we shall define an ideal
I, (o) in K[X].

Without reducing the structure we may consider every @-module annihilated
by m as a K-module. Now mgq,< q,.; (for otherwise g,,;+ngq, would be an
ideal strictly between q, and @,,;, cf. [2], Proposition 1, p. 65). Hence the
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CH. LECH, On the associativity formula for multiplicities

modules in (3) are K-modules and the symbol “lengthy” in (2) may be re-
placed by “dimg”. Furthermore, the module g,/q,,: is a K-module and, as it
is irreducible, it is actually K-isomorphic to K. Let us fix such an isomorphism
between @,/q,.1 and K.

For u=0,1, 2, ... we shall define a mapping

Ty u: Fu>0,9"/,:10"

Let f be a form of F,.. A representative ¢ in g,q9* of its image under 7, , is
obtained as follows. Replace in the form f the indeterminates X; by the corre-
sponding elements x; and the coefficients in K by a representative in g, of the
corresponding elements in q,/q,;;. (The form f is then a kind of a leading form
of ¢. Cf. [3], p. 71.) We write

Tv, I f =@ + Gv+1 q”'
Notice that
Tyuri (Xif)=mo+00"""  (=1,2,..,7). (4)

As is easily verified, the mapping 7, , is a K-homomorphism onto g, g"/q,.1q".
It induces a further K-homomorphism

F,—q,9"/(ang,q"+0,.19%),
the kernel of which we denote by K, ,.(a). We have
K, p(@)={f|f€Fu T,uf < (€00, 0"+ 01 9%)}-
Using (4), we see that
X; K, (a)= K, pa(0) (=12,...,7).

Therefore the set

o0

U K, .(a)

n=0

is the set of forms in a homogeneous ideal of K [X]. We denote this ideal by
I,(a). The ideals I,(a) (»=0,1,...,1—1) may be called form ideals of a.
Note that

acbh implies I,(a)< I, ().
According to the definitions of K, ,(a) and I, (a) there is a K-isomorphism
F./(I,(0) N Fu)~q,9"/(a nag,0"+ G410

Hence, from (2) and (3), after changing the order of summation in (2),
1-1n-1

La+q")= 3 2 dimg (Fu/(I,(a) N Fy)). (5)

y=0 pi=1

304



ARKIV FOR MATEMATIK. Bd 3 nr 27

This is the desired formula for L (a+q"). If a is an m-primary ideal, we get
from (5), by taking n large and summing over pu,

-1

L(0)= 2 dimg (K [X]/I, (a)). (6)

v=0

For exactly e(q) values of v we have I,(0)=(0). In fact, if we apply (5)
with a=(0), we see that those values of » for which I, (0)=(0) will contribute
to L(9") with an amount »'/r!'4+ O (n"~'), the other values of v with merely
O(nw™'). The assertion therefore follows from (1). At the same time we see
that the limit in (1) exists for g =(z,, ..., 2,). The number of values of v for

which I, (0)=(0) cannot exceed I. For later use we may thus note with Samuel
that

efxy, ..., z) <Lz, ..., z,). (7)

(It may be remarked that the analytic independence of {x,, ..., %,} means pre-
cisely that I,(0)=(0), hence implies that e (z,, ..., 2,)>0.)

The formula (6) applied to a= (27, ..., 27r) will now be used to get an upper
estimate for L (x7Y, ..., z7r). Since

L (@0, ..., ar) o (X7, ..., X77),

we have, for »=0,1, ..., 11

’

dimg (K [X1/1, @5, ..., 2}7)) < dimg (K [X]/(X?, ..., X)) =n, ... n.

This estimate is appropriate when I, (0)=(0). For those values of » for which
I, (0)==(0) we consider, instead of (X7, ..., X7r), an ideal (X}, ..., X7, f), where
f is an arbitrarily chosen non-zero form of I,(0). Order the power products of
K [X] lexicografically on the basis of the sequence of their exponents. Let
X§' ... X7r be the highest power product occurring in f. Then every power prod-
uct divisible by X{ ... X7r is the highest power product in some homogeneous
multiple of f. By subtracting a suitable multiple of f one can therefore from
any form in K[X] derive another form of the same degree in which the power
products divisible by X ... XJr, if occurring at all, have a lower maximum
height than in the first form. It follows by induction that modulo (f) every
form in K[X] is congruent to a form which contains no power products di-
visible by X{ ... X7r. Therefore K [X]/(X}, ..., X}, f) is generated over K by
those power products X7 ... X7 which satisfy the r inequalities

OS‘ci<ni (’t=1, 2,..,,7‘)
and in addition at least one of the inequalities

<o (1=1,2,..,7).
Hence

dime (€ LV, oo, X0, ) Sy (244 2).
1

7y
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Thus, if f€1,(0),

dimg (K [X1/1, @, ..., &) <7y ... n (ﬁ+ +ﬁ).

Putting together our two types of estimates we get from (6)

Lz, ..., zrr)<n, ... : ,
(=1, z") 1 Nr (e (Q)+mm 7’4)
i

where 4 is a constant, independent of the n,. Hence

En— L (xi", ceey x;”')

(m%n ni)—»o Ny eor Ny

<e{g)=e(xy, ..., Tr). {8)

Next we prove a reverse to (8), namely: If n, ..., n, are any natural num-
bers, then

e(xl, ..., 2/ )=my ... Neexy, ..., X)) 9
Choose m,, ..., m, such that m,n,=--=m, n,. An application of (8) gives
4 t _ nn\m, n Np\m, n 7y n
limL(xl, ;--:xT)S 1 th((zl) ’ '-"(xr ) )Se(xl’ '--,xfr)' (10)
ey ¢ Ny ven By noo {myn) ... {m,;n) Ny oo By

Applying (7), we have, for every value of ¢,
L, ..., a)=e(xf, ..., 2 )>e((zy ... m))=Fe(zy, ..., ).

In particular
)

li ;

t—->o00

>e(xy, ooy Tr).

Combining this inequality with (10}, we get (9).
By applying (7) with {z,, ..., =} replaced by {z7’, ..., a7r} we deduce from
(9) that

Ly, ., zrr)=n, o nee(xy, ..., &)
This inequality, together with (8), proves Theorem 2.

The lemma which follows will be used in Section 3 as a complement to
Theorem 2.

Lemma 1. Let Q be a local ring of dimension r, m its maximal ideal and

let (24, ..., %s), where s>, be an m-primary tdeal. Then
th(zl: .;',x3)=0-
n->00 n
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It is sufficient to show that
ET L(x;L’ reey x:)<

lim ;
n—>00 n

As (21, ..., 25) 2 (2, ..., %,)*", we have L (af, ..., 27) < L((xy, ..., 5)'"). Hence

— L(af, ..., o} . Lz, ..., )"y &
hm _.(_l_’_TL_S_)S hm —(L—I—T’—S)—_)=_ie(xl’ _“’xs)<00,
n-»00 n n—>00 n r!

which was to be proved.

2. Via the Lemmata 2 and 3 we prove Lemma 4, which is essentially the
one-dimensional case of Theorem 1.

Lemma 2. Let q be primary tot the mazximal ideal in a local ring @, and
let p€Q. Then

L(a)=L{g+(@)+L(q:(g)

Proof. The transformation which transforms ¢€Q into ppo€E@pQ=(p) is a @-
homomorphism with the kernel (0):(¢). As q:(p) >(0):(¢p), it follows from one
of the two isomorphism theorems for groups that

Q/: (@) > 9Q/p(q: (p)-

From the other isomorphism theorem we get

PQ/p (q: (@) =(9)/(p) N9)=((p) +9)/q.

Hence
Q/(q: (p) = ((p)+q)/a,

from which the lemma follows readily (cf. the beginning of Section 1).

If m is the mazximal tdeal and @ an element of a local ring, then, given any
integer s>0, one can delermine n so that

m*{p) < (0): (@) +m’.

This fact is a corollary of a well-known theorem of Chevalley (see [6], Coro.l-
lary 2, p. 10). We shall prove it directly, using the idea of the proof of his

theorem. Put I— [} (m”: (p)+m'). We have I=(0): (¢)+m’. For, if « €7, then
v=1

pa€N(pm’+m)=pm’. Thus there is an element w€m’ so that ¢ («—pu)=0
v=1

and hence (x— u)€(0):(p). This shows I < (0):(p)+m’. The reverse inclusion is

obvious. On the other hand one can find an integer » such that I =m": (¢) +m’.

T By an ideal primary to p we mean a primary ideal belonging to (the prime ideal) p or,
what is the same, a p-primary ideal. :
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For there can only be a finite number of different ideals among the ideals
m:(p)+m® (v=1,2,...), since they form a descending chain and all contain
m’. From I=(0):(p)+m'=m":(p)+m’ we get the desired result,

m": (@) < (0) : () + m".

The lemma which follows contains a similar but sharper result in a spe-
cial case.

Lemma 3. Let Q be a one-dimensional local ring in which not every non-unit
is a zero divisor. If @ is an element of Q and x a parameter, then there exists
o non-negative integer k such that for n>Fk

(@"): (@)= (0): () + (=" ).
According to what we have just proved there exists an integer £ >0 such that
@) (p) = (0): (@) + (2)-

We shall show by induction on n that this integer k& has the property required
by the lemma. This is true for n=k+1. Suppose n>k+1 and let y € (z"): ().
Then certainly y€ (z**'): (p), and we can write y=n +xz with €(0): (p), 2€Q.
It follows that xz€(z"):(@). According to the assumptions, x cannot be a
zero divisor. Therefore z€ (2" ') : (p). By the induction hypothesis this implies
2€(0): (@) + ("~ *). Hence z2€(0):(p)+ (#"*) and thus

y=mn+2zz€(0): (p)+ ("),

which proves the lemma.

Before stating the next lemma we shall slightly extend our notation. Let n
be an arbitrary primary ideal in a Noetherian ring B and let b be the prime
ideal belonging to n. By L (n) we shall denote the length of n. In terms of
our previous notation this notion can be defined by L (n)=L (n; p)=L (n Ry).
However, taking into account the correspondence between the p-primary ideals
in R and the (p R,)-primary ideals in Ry, we see that L (1) can also be char-
acterized as being the maximum number of steps in a chain Rop> - >1
where, apart from R, each term is a p-primary ideal.

Lemama 4. Let @ be a one-dimensional local ring with the parameter x. Let

P (0=1,2, ...,8) be the minimal prime ideals in Q and 1, (i=1,2, ..., s) the
corre~qonding primary components of the zero ideal. Then

e () =1§1 e (%) + ps/pi) L ().

As e ((0); p))=L ((0); p;)=L (1;), the statement of Lemma 4 coincides with the
case r=m=1 of Theorem 1.
To prove the lemma we shall use induction with respect to the number

t= 3 L ().
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Put (x)=q and let m be the maximal ideal of Q. If a is an arbitrary one-
dimensional ideal in @, we have, since ((q+a)/a)"=(q"+a)/a, that

e((q+a)/a)= lim%L(q"+a). (11)

Suppose that we can write a=a, N g, where q, is an m.primary ideal. Let us
show that then

e((q+a)/a)=e((q+a)/a,). (12)

There is a @-isomorphism

(9" +00)/ (0" + )= 0,/(9" Nay+a),

and for large values of n we have q” < q, so that a,/(q" na,+a)=a,/a. Tt
follows that L(q"+a)— L (q"+aqa,) is constant for large values of n (cf. the be-
ginning of Section 1). Hence we get (12) from (11). (This result is contained
in [6], Proposition 3, p. 32, and also in [3], Theorem 8, p. 77.)

For each value of ¢ we can reduce our proof to the case where the zero ideal
in @ has no primary component belonging to m. In fact, if the zero ideal in
@ has the form

(0)=n1 n--- nns n q()’
where q, is m-primary and irredundant, then we pass from @ to @/ -01 1 and

replace %, p; and 1; by their residues modulo n 1t;. Thereby the multiplicities

and lengths occurring in Lemma 4 will not change their values. This is seen
for e(z) from (12) applied to -a=(0), for e((x)+p:;/P;) for instance from (11),

and is obvious for L (). As the zero ideal in @/} 1; has apparently no pri-
i=1

mary component belonging to the maximal ideal, our assertion follows.
When t=1 there is nothing more to prove. Suppose that #>1 and that
s

)= ﬂ ;. If m +p,, choose 1} >n, primary to p,, such that L (1) — L (my)=1.
If n,= pl, put n;=@. Choose

PEM NN N - N, @=0.

We shall write down a primary decomposition of the ideal (¢). As by, ..., Ps, M
are the only prime ideals in @, and as, for each ¢, every p;-primary ideal must
contain 1;, we have

(@)=11 Ny N -~ N N Gos

where q, is an m-primary ideal, possibly redundant. Furtbermore (cf. the fact
that mg, < q,.1, p. 303),

0): (@) =;- (13)
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By Lemma 2, we have
L(z"y=L((=") + (@) + L ((z") : (¢)).

Divide by # in this formula and let » tend to infinity. The left-hand side will
tend to e(z). The first term of the right-hand side will tend to e ((z) + (¢)/(p)).
By the induction hypothesis we can apply Lemma 4 to the ring @/(p). In
this way we get

e((®) + (p)/ (@) =e () +p,/p1) (L () — 1) + Eze (=) +pi/ps) L ().

Thus, in order to prove Lemma 4, it remains to show that

aim ZELDN_ ) 1), (14y

n—>o0

Since, by our assumption, (0)= !i 1t;, we deduce from Lemma 3 that there exists
an integer k such that for n>Fk
(") : (@) = (0): () + (" 7).
On the other hand it is obvious that
(") : (p) 2(0): () + (=").
Because of (13), these two inclusions imply
L(@")+ p) S L((@") : (pN <L ((=") + py)-

The formula (14) now follows from (11). Thus the proof of Lemma 4 is com-
plete.

3. Proof of Theorem 1. Assume @ to be an r.dimensional local ring, m its
maximal ideal and {z,, ..., #,} a system of parameters in Q. Denote by & the
set of sequences

(Pos Prs wevs P1)
of r+1 prime ideals in @ which satisfy the condition that, for £=0,1, ..., r—1,
Pe O Pkt PeFPrsr and  Pi D (Tper, ..., Tr)-
If (g, ..., pr)ES, then, for each k, dim p,+rank p,=dim @, and dim p,=
=k=dim (rx4,, ..., %), so that P, is a minimal prime ideal of (%x41, ..., %)
In particular, it follows that & is a finite set. Let us show that, if b, is a
minimal prime ideal of (Zmi1, ..., #r) such that dim p,+rank p,=dim ¢ (and

hence dim p,=m, rank p,=r—m), then p, occurs in some element of & By
passing to the rings Q/pn and @ , and sets analogous to © in these rings,

we may reduce the demonstration to showing that the set & is necessarily non-
void. Now an element (p,, ..., pr) of © may be constructed as follows. Choose
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Pr as a minimal prime ideal of (0) such that dim p,=r. Then dim ((x;)+b,)=
=r—1, Choose p,_, as a minimal prime ideal of (z;)-+p, such that dim p,_;=
=7r—1. Form (% .)+p,_1, ete.

We introduce the abbreviation

E (z; p, a)=e(()+a/a; p/a),

where it is assumed that z is an element and a an ideal of a Noetherian ring,

and that ) is a minimal prime ideal of (#)+a. Notice that, if (z)+a is an
m-primary ideal in @, then

E (x; m, a)y=e ((z) + a/a).

‘We shall prove the following formula:

~€(ﬂ¢1’---,9ﬂr)=0J Zp )GGE(%;PO, P1) B (253 Py, Do) - B (5 Proa, ) L((O); By). (15)

Let us first show that (15) implies Theorem 1. Let pn be the (m+1)th
prime ideal in an element of ©. We shall apply (15) to the ring @/p, and the
parameters in this ring represented by =z, ..., n. In order to write down the
resulting formula in a suitable form, we observe that the prime ideals in Q/Pm
are precisely the ideals p/p, where p is a prime ideal in @ containing },, and
that, furthermore, the symbol E (z; b, a), if defined, does not change its value

when », p and a are replaced by their residues modulo an ideal contained in a.
Thus we get

e((xy, oor, Tm) + pm/pm) = Z E (x5 Po, Py) .- E(@m; Pr-1, Pr) L (Pm; P,

(00, -+ B) €& (P

‘where &' (pn) denotes the set of those sequences of m+1 prime ideals in Q
that end with p, and can be extended to elements of ©. Similarly, by applying
(15) to the ring @, and the parameters zm.y, ..., %, we obtain

e ((Zmer, ..., Z,); pm)= 2 E(xmys; Pm, pm+1)
(s + -+ D) €S (D)
. E (xr; pr—l: Pr)L((O): ‘pf):

‘where &' (p,) denotes the set of those sequences of » —m+1 prime ideals in
@ that begin with P, and can be extended to elements of &. Using these two
formulas and the fact that L (Pn; pn)=1, we derive Theorem 1 from (15} by
‘performing the summation in two stages, keeping b, fix in the first stage.

It remains to prove (15). When r=0, the formula (15) follows from the fact
‘that in a zero-dimensional local ring e(0)=L (0). When r=1, the formula (15)
follows from Lemma 4. We proceed by induction on r and assume r=2. The
ideals (xz, ..., a7) (=1, 2, ...) have the same minimal prime ideals, all of di-
‘mension 1. Let p range over these minimal prime ideals. Apply Lemma 4 to

‘the ring Q/(x%, ..., z7') and the parameter in this ring represented by z,. This
yields

e (@) + (25, ..., a0/ (=3, ..., xi‘))=%E (@y; m, p) L ((2F, ..., «7); D).
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Dividing by n"~! and expressing the multiplicity on the left-hand side according
to (1), we obtain

£ n n
lim L (x;, xz;_.l.-, xr)= %E (5 ™, D)

L((x2, ..., zr); D)

t>o0 tn n

On account of Theorem 2 and Lemma 1 we can take n so large that for any
given £>0

t n n
im L (z, x2;~.1” , x')—e(xl, om)<e,
t->00 tn
L((z3, ..., 27);
’ ((xz’nr_’lx ) p)—e((xz, ..oy Zr); P)| <& when rank p=r-1,

IL((xé‘, e Zr); P)

<& when rank p<r—1.

nt
Hence
e(@y, ....z)= >  E(xym, p)e((®y, -.., :); D).
rank p=r—1
By expressing e ((z,, ..., 2); p) according to the induction hypothesis we arrive

at the formula (15). Q.E.D.

4. In analogy with a result of Northeott and Rees and by means of a method
of theirs one can deduce from Theorem 1 .the following, more general theorem
([41, [5]; esp. [4], Theorem 1, p. 158).

Theorem 3. Let a and b be analytically disjoint ideals in a local ring @, and
assume that a+b is primary to the maximal ideal of Q. Then

e(a+B)=§e((a+p)/p)e(B; P

where P ranges over those minimal prime ideals of b for which dim p+rank p=
=dim @.

The notion of analytical disjointness has to be explained. Let m be the
maximal ideal and a an arbitrary ideal of ¢. For large values of n the di-
mension of a"/a"™m over @/m is equal to a polynomial in n, whose degree in-
creased by 1 is called the ‘“‘analytic spread” of a and is denoted by I(a). The
null polynomial is thereby considered to be of degree —1. Two ideals a and b
are called “analytically disjoint” if I(a+b)=1(a)+17(b). It is always true that
Ia+b)<I(a)+1(b). If qis an m-primary ideal, then 1{g)=dim Q. If {z,, ..., =}

is a system of parameters in @, then, for each m (0 <m <r), the ideals (x,, ..., Zn)
and (1, ..., ;) are analytically disjoint, which shows that Theorem 3 includes
Theorem 1.

We shall outline the deduction of Theorem 3 from Theorem 1. Let ¢ be an
ideal of a Noetherian ring R. An element z of R is said to be “integrally de-
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pendent” on ¢ if it satisfies an equation of the type
&' +y 2"ty =0,

where y,€¢" for =1, 2, ..., n.t The integral closure of ¢, i.e. the set of ele-
ments integrally dependent on ¢, is denoted by ¢. An ideal ¢’ such that ¢'cc<¢’
is called a “reduction” of ¢. One proves the statements (A)-(D) below:t

(A) § is an ideal;

(B) t=¢;

(C) ¢ and © have the same minimal prime ideals; if p denotes any one of
these, then e (¢ p)=e{(c; b);

(D) If ¢ is an ideal in a local ring, then there exists a natural number »

such that ¢, and, in consequence, each of the ideals ¢ (u=1, 2, ...), has a
reduction generated by I(c) elements.

Let now a and b be the ideals of Theorem 3. According to (D), choose »
such that o” and §* have reductions a, and b, generated by I(a) and I(b) ele-
ments resp. Then a,+b, is m-primary. As I(a)+1(b)=1(a+b)=dim @, we can
apply Theorem 1 with g=a,+b,, 0=0,. We get

e(a,+6,) =2 e((a, +p)/p) e (b;; p),

p

where p ranges over those minimal prime ideals of b, for which dim p +rank p =
=dim ¢. From (A), (B) and the definitions one can infer that the following
ideals have two and two the same integral closure: (a+ b)” and (a,+b,), (a”+p)/p
and (a,-+p)/p, 6 and b;,. Hence, by (C),

e((a+b))= 2» e((a”+p)/p) e (b p).

This is the formula of Theorem 3 except for a factor »¥™© in both members.
A noteworthy special case of Theorem 3 is obtained by taking for b the zero
ideal and for a an arbitrary m-primary ideal. Part of that result has been

proved by Northcott and Rees for equicharacteristic local rings ([5], Theorem 1,
p. 354).

5. The formulas given below are simple consequences of our previous results.

They do not seem to have been proved before without some extra condition for
the local rings in question.

In a one-dimensional local ring where x and x' are parameters we have
e(xx')=e(x)+e(x'). (16)

1 There are other equivalent definitions, cf. [4], Theorems 1-3, pp. 155-156, and Definition 1,
p- 145, Notice that our “‘integral dependence” is termed ‘‘analytical dependence’ in [4].

1 (A)-(C) are inherent in 4], Sections 1 and 7, except for a detail, marked by the presence
of the notion of “relevant ideal”” in Theorem 3, p. 156. Actually, we indicate in our outline
an approach which is slightly different from that of [4], but which seems to us more suggestive.
(D) follows by an argument similar to that given in [5], proof of the Theorems 1-4, pp. 355-357.
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Proof. Using Lemma 4 {or the first part of its proof) we may assume that
z and &’ are not zero divisors. Then (z"z'"): (") = (z'"), and hence, by Lemma 2,

L'z "y=LE")+L'™).
Hence (16).
Combining (16) with Theorem 1, the case m =1, we obtain

If {x,71, 25, ..., %} 15 a system of parameters in a local ring, then
e (2,21, gy ..., L) =€ (%), Ty, ..., Tr) + (X1, Ty, ..., ).

A repeated application of this formula gives

If {z,, ..., z,} is a system of parameters in a local ring, then
ezl .., ZrT) =My, ... Br{Xy, ..., ).

This formula, , which is well known in the equicharacteristic case, is also an
immediate consequence of Theorem 2.
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Added in proof: In January 1956 a research note by D. Rees appeared, where
by means of a beautifully simple argument he proves a great generalization of
Lemma 3 of this paper (Rees, D., Two classical theorems of ideal theory, Proc.
Cambridge Phil. Soc. 52 (1956), 155-157; the Corollary on p. 156 may be for-
mulated: If a is an ideal and « an element of a Noether ring, there exists an integer
k such that a" :x < 0:2+a" " if n>k). Using this result we could have given a
more direct final proof of Theorem 1 by first proving a more general Lemma 4,
covering the case m = r of Theorem 1 instead of merely the case m=r=1.
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