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A n o t e  o n  a p r o b l e m  o f  B o a s  

B y  B o  KJELLBERG 

Boas has in a paper [1] generahzed certain theorems of Plancherel and 
P61ya [2] concerning simultaneous convergence of 

+ o O  -boO 

j I / (x) l 'dx  and ~11(~.)1 ~ 
_ ~  - ¢ ¢  

for entire functions ] (z) of exponential type. He also puts the question how 
to treat  corresponding problems for functions regular in a half-plane, especially 
what may  be precisely stated as follows. 

P r o b l e m .  Let ](z) be regular /or x>O, z = x + i y ,  and such that, i/  z--> 
in this hall-plane, 

log It (~)[ 
lim sup iz [ =c, 0 < e <  oo. (1) 

Let qD (t) be, /or t>>_ 0, a non-decreasing convex /unctio~z o/ log t with q~ (0)=0.  
Consider /urther a sequence o/ positive numbers 2o< 21 <2~ < .-" such that 

Does then 

imply 

inf (2n+1 - ~ )  >- 2 (~ > 0. (2) 
n 

oo  

0 

~o 

Z~ {~_c+ I! (~.)l} < ~? (4) 
0 

At first I thought the answer ought to be negative. Therefore the following 
affirmative proof was not finally elaborated until I heard Professor Lennar t  
Carleson express a contrary Opinion: tha t  my  original condition (5) was superfluous. 

By  means of an example Boas shows that  the factor e -c° in (4) cannot be 
dropped. I t  signifies a number arbitrarily close to 1 since--as soon as (2) is 
fulfilled--~ may be chosen arbitrarily close to 0. 

The proof is given in two steps. 
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T h e o r e m  I. Condition (3 )  implies (4)  i / w e  impose the additional condition 

t log ~ 
(5) 

P r o o f .  We denote  the coordinate half-axes and  the quadrants ,  counted in 
the  positive direction and s tar t ing with the  positive x-axis, by  L 1 . . . . .  L4, and  
K~ . . . . .  K 4 respectively. 

L3 

L~ 

Kz K1 

K3 K4 

L4 

We do no t  repeat  here a proof of the fac t  (proved e.g. b y  Boas) t h a t  ( 1 ) a n d  
(3) imply  tha t  i t  is possible, for each c ' >  c, to  find a constant  B such t h a t  

I/(z)l_<Be¢ ~J (6) 

Choosing c " >  c' we consider the funct ion 

~ (z) =~ {e-°" ~ [/(x+iy)l}.  (7) 

The funct ion ~ (z) is subharmonic  bo th  within K 1 and within K 4. I n  K1, 
for instance,  we have  ~o (z) = T {I e* c-~ / (z)[} which is subharmonic  in consequence 
of the  properties of ~. F rom (6) we infer t h a t  yJ (z) is bounded.  

The essential point  of the  proof is to  make  sure of the convergence for 
y~=0 of 

¢ 0  

~2" (y) = f yJ (x + iy )  dx ;  (8) 
0 

according to  (3) we know t h a t  LF (0) is finite.  
I n  order  to  est imate (8) we now form in K l - - a n d  analogously  in K 4 - - t h e  

harmonic  ma jo ran t  of the  bounded  subharmonic  funct ion ~ (z) whose b o u n d a r y  
values agree with those of ~. We  so obta in  for, e.g., z EKI:  

~p (z) <_ h 1 (z) + h 2 (z), (9) 

where h i (z) is harmonic  and  =~v (x) on L1, = 0  on L 2, and h 2 (z) harmonic  and 
= 0  on L1, = ~ ( i y )  on L 2. B y  reflection in L z we extend h l(z) to  be har-  

monic in K 1 + K 2 with bounda ry  values - ~ ( - x) on L a. Analogously h 2 (z) will 
be defined in K 1 + K 4 with the values -~v ( -  i y) on L 4. 
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According to the representation formula for functions harmonic in a half- 
p]ane we obtain 

and 

1 1 
h ~ ( x + i y ) = ~  y~p(~) i~_x)2+y 2 (~+x)2+y 2 d~ (10) 

0 

oo 

(~ _. y)2 + x ~ 
0 

1 } 
(rl+y)2 +x ~ dr]. (11) 

From this we obtain 

and 

f f ~d~< h~(x+iy)dx= ~ ~p(~) arctg Y _ ~p(~:)d~=~-F(O) 
O 0 0 

f f  l; ] ~ ÷ y  ;yj ({~) h2(x+iy )dx= ~ ~ (i~) log d~<_A +C d~, 
~ - Y  

0 0 2~ 

(12) 

(13) 

where A and C may be taken as fixed constants if we restrict the variation 
of y to some interval 0_< y_< ~. 

From (7), (6) and the fact tha t  ~ is non-decreasing we obtain y~(i~)<_q~(t ), 
where t = B c  -(c .... ")7. After introducing t as variable instead of ~ we then obtain 
(5) as a condition for convergence in (13) and also after addition of (12) and 
(13)--as a condition for uniform boundedness of Uf(y) for 0 ~ y _ _ &  Because of 
the analogous situation in K a we may here just as well write [yl_< 8. 

To finish the proof we again follow the paper quoted. From the foregoing 
we infer tha t  

f f v / ( x + i y ) g x d y <  ~ .  (14) 
- ~  0 

For [yl_<~ it holds true that  

This latter function is subharmonic for | y ]  _< (~, whereas ~p is not. In the strip 
[y[<c(Vc" it holds that  yJ>_~{e-C~[/]}. Each number ~{e -c~[/(2n)[} is ac- 
cordingly less than or equal to the average of ~p over a circular disc around 
2n, i.e. (14) implies (4) and Theorem I is proved. 

I t  now remains to examine the condition (5). If  this be not satisfied it must 
hold true tha t  

x]2 

f q)(t)dt 
i Fog ~-/t + ~ "  (15) 

0 
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T h e o r e m  II.  The class o/ functions f (z), satisfying (1), (3) and (15) is empty. 
Proof .  Let  us s tudy log If(z)l in K r The weak growth according to (1) 

implies tha t  log ]f (z) t within K 1 is dominated by  the harmonic function which 
is obtained in form of an integral of the boundary values along L 1 + L 2. Let  
z 0 = x  0 + i y o be an arbi t rary point within K 1. We then obtain 

oo 

f 4xxodx log I/(~0)l<A0+ Y--" log If( )l . (16) [(x - Xo) 2 + ~ ]  [(x + xo) 2 + y2] 
0 

Here A 0 denotes a convergent integral along L~ corresponding to (11), and the 
second integral corresponds to (10). Since 11 (x) l is bounded this integral either 
converges or diverges towards - o ~  at  the same time as 

1 

f f l°g' f(X) 'dx.  log [l(X) ldx or - 

X3 2:3 
1 1 

For simplieity's sake we set u (x) = log {1/I/(x) [} and g {u (x)} = ~ {[ [ (x)I}- Thus 
g (u) is a steadily decreasing function of u. Formula (3) can now be written 

g {u (x)} dx < ~ .  (17) 
0 

The substitution u = -  log t transforms (15) into 

g du= + oo. (18) 
(u) 

log 2 

We shall show that  
i.e. tha t  

these relations imply that  the integral in (16) diverges, 

c o  

(10) 
j x 
1 

Let  v (x) be obtained from u (x) by  a measure-conserving rearrangement, such 
that  v (x) is steadily increasing (towards + ~ according to (17)). Then 

f ( v (x) g{v(x)}dx= g{u(x)}dx and j x3 dx~ dx. (20) 
0 0 0 O 

Summing up, the present problem may be stated as follows: 
From 

f g {v (x)} dx < oo (21) 
0 
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and  

we want  to  deduce 

t ~  

f g(v) dr= + 
V 

1 

oo  

1 

( 1 8 )  

(22) 

I n  (18) we m a y  consider v=v(x), where x varies f rom some number  a > 0  to 
+ oo. B y  par t ia l  integrat ion we m a y  res ta te  (21) and (18) as 

A 

lim {(g. X]a n + f x d ( - g)} < ~ (23) 
A - - ~ + ~  

a 

and  
A 

lim {[g log v]~ + f log 
A--~+~ 

v d ( - g ) }  = + ~ .  ( 2 4 )  

Here  g is non-negat ive and - g  steadily increasing; accordingly there  mus t  exist 
a rb i t ra r i ly  large numbers  x~ such tha t  

Since then  

log v (x,) > x= or v (xn) > e *". (25) 

j x J z  3 2x~ - ~ + ~  
x n z n 

a s  Xn---~- -~ oo ,  

t he  val id i ty  of (22) is obvious. For  each z 0 in K 1 we thus  obtain f (z0)=0, i.e. 
/(z)~O and, therefore,  wi thout  interest  in connection with functions of ex- 
ponent ia l  type.  

Thus  the  condit ion (5) is redundant ,  and it  is demons t ra t ed  t ha t  ( 3 ) i m -  
plies (4). 
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