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Some groups of order p*q® with Abelian subgroups of
order p” contained in the central

By Erik GOTLIND

The group of order p” ¢° where p and ¢ are different prime numbers may be gener-
ated by A; B, where A, runs through all elements of a.subgroup of order p” and B;
all elements of a subgroup of order ¢°. There are p"¢* 4, B, and they are all different.
Hence they exhaust the group &7, s. (Here and in the following “@,”” denotes a group
of order n.) This means that if under certain conditions every 4; must be permutable
with every B; and if a pair of groups, G,r, Gs, fulfils these conditions, there is one
and only one group of order p”¢* with just these groups as subgroups, because the
relations between 4, and B, are completely determined in this case. If under these
conditions one of the groups in the pair, say G, r, is Abelian, G, r is contained inthe
central of the group G, r,s.

It has been shown that if p >¢* and p % 1 (mod ¢) and G,r is a cyclic subgroup
of G 7,s, then G r must be contained in the central of G r, s. This also means that
there can only be as many abstract groups of a given order p”¢* with these conditions
fulfilled as there are different groups of order ¢°.! In the following the case where

G, ris an Abelian group generated by two elements will be considered and the theorem
to be deduced is:

Theorem: If G r is an Abelian subgroup of G ,r,s generated by two elements of dif-
ferent order and p > q* and p =1 (mod q), or if G,r is an Abelian subgroup of G, r,s
generated by two elements of the same order and p > ¢° and p* £ 1 (mod q), then G, r must
be contained in the central of G, r,s.

The proof requires some lemmas.

Lemma 1. When p >¢°, there is only one subgroup of order p” of the group
G, 1,8

Suppose @,r and G,r were two different subgroups of G, r,s. Then @, r would
contain at least some element, say A’, not contained in @, r and of order p*, where
v# 0. (4')* 4, would then produce p™t! different elements, when n takes the values
1,2,...,p, and 4, runs through all elements of G, r. They are all different, because
if (4")" A4, =(A')* A, we would have (4")™" =4,4,7 and A’ would be an element
of G, r if m # n, contrary to the assumptions, because in this casem—n= 0 {mod p).

1 E. Goruinp: Nagra satser om grupper av ordningen p” ¢5. (Some lemmas about groups of
order p' ¢°.) Norsk Matematisk Tidsskrift, 1948, p. 11, together with a correction note to this

paper: Not till uppsatsen “Nagra satser om grupper av ordningen p' ¢°”, the same journal,
1949, p. 59.
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When m =n we get 4, = A, as the only possibility. Hence there are p+! different
elements of the type (4')" 4; all belonging to the group G, r,s. But when p > ¢*, p"+1
is greater than p”¢® and in this case p™! different elements of G r, s is an impossibility.
This means that when p > ¢* there cannot exist more than one subgroup of order p*,
and this group must be self-conjugated.

Lemma 2. When p >¢° and p %1 (modg), an element B (% E) in a subgroup
G, s of the group G, r,s cannot be non-permutable with one and only one of the base
elements of an Abelian subgroup G, r of G, r,s.

Let 4,, 4,, ..., A, be the base elements of G, r, and let 4, be an element not permut-
able with the given B. A, is of order p"i. Transformation of 4; with B gives:

BA,B-1=A A% ... A¥n (1)

BA,B1=4, (t=2,3,...,n) (2)

where ¢ =1 and w; = 0 for all ¢ do not both hold. (We know that a relation of type (1)

must hold when p > ¢* because in this case @, r is self-conjugated, as was shown
above.) Iterated transformation of 4, using (1) and (2) gives

- m m-1 m-1
BmAlB m=At1 Ag},+w,t+ +w, i _._A”fn'*wn‘*f +wy t R (3)

However, B is an element in Gys and hence of order ¢* where u#0 (B# E).
Substituting ¢“ for m in (3) we get

BEA B~ =K A BE=A,= A% Aptostt ot Tl g togte o by o1
Hence
t7“=1 (mod p") (4)
and
w+wit+ o Fwyt’ _IEO(modp'i). (5)

From the number theory we know that
2" =1 (mod p") (6)
and (4) together with (6) gives |
@ (p")=0 (mod g) o
when ¢+ 1 (mod p™). But p and g are different prime numbers. Hence (7) implies
p—1=0 (mod g¢).

When p—120 (mod ¢) the only possibility is that ¢=1 (mod p™) which gives
t=1 and in that case (5) is reduced to

4w =0 {(mod p™) (2=2,3,...,n)
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and since (p, ¢)=1
w; =0 (mod pM)

which gives w; =0. This means that when p—1 =0 (mod g) (1) takes the form
BA,B1=A4, and Lemma 2 is proved.

Lemma 3. When p > ¢*and p =1 (mod g), an element B (# E) in a subgroup G, s
of the group G,r,s cannot be non-permutable with both of two base elements gener-
ating an Abelian subgroup @, and being of different order.

Let 4, of order p* and 4, of order p* be two base elements together generating
G,r, and let pt > p*. It is assumed in the following that p > ¢°.

Suppose we have

BA,B1=AT A3 (8)
BA,B1=A547 (9)

where m =1 and % =0 do not both hold and » =0 and w =1 do not both hold.

(The transformation of 4, and 4, with B gives elements contained in G,r when

p > ¢° according to Lemma 1.) :
The proof of Lemma 3 will proceed in three steps (3a, 3b, 3¢).

3 a. If there were an element 4, in G',r with which B were permutable, it could
not be of the highest order (in G,r) if p %1 (mod g).
4, belongs to G, r and hence must be of the form

A=Al AL

because A, and 4, generated G,r. If 4, should be of the highest order (which is p?)
in G, 7, it must hold that

h % 0 (mod p) (10)

because otherwise 4, could not be of higher order than p*-!. But when (10) is fulfilled
A; and 4, form a base for @, 7. Then we would have a base consisting of one element
permutable with B, A4,, and one not permutable with B, A,. However, this is im-
possible according to Lemma 2 when p %1 (mod ¢). Hence 4, cannot be of the
highest order when p = 1 (mod g).

3 b. If there were an element B of order ¢™ (m # 0) fulfilling (8) and (9), every
element of the highest order (p’) in @,r would be contained in a cycle (produced
through iterated transformations with B) of ¢* (1 < ¢ < m) different elements all of
the highest order, provided that p % 1 (mod g).

The transformation of an element of the highest order with B will give a new
element contained in G r (according to Lemma 1 because it is assumed that p > ¢°)
and of the same order as the transformed element. Let 4,, be an element of the
highest order (p*), and let 4,; be defined thus:

Bi4, Bi=A4,, (1)
But B is of order ¢™. Hence
B A B= " = E A, = Ayy= Ay jm
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This means that there can be at most g™ different elements in the cycle of elements
of the highest order constructed through repeated transformation with B and
starting from a given element of the highest order in /,». However, two elements,
say A4,; and A4,; (where i # ), of such a cycle cannot be equal if ¢+ —j % 0 (mod ¢)
and p =1 (mod g) because, if they were, we would have

BiA,,B*=DBA,,B~
according to (11) and hence
Bi-i A,y =A,, B (12)

But (12) is impossible when p %1 (mod g¢) because then 3a holds, and A,, which is
of the highest order cannot be permutable with B® where » % 0 (mod q) since this
implies that A,, is permutable with B. (When v = 0 (mod ¢) there is a k& such that
vk=1 (mod ¢™) and k iterated transformations of A,, with B® will give B"*4,, =
= A,,B-*% and hence BA;,=A;,B.) Hence 1 —j=0 (mod q) if two elements 4,;
and A,; in the cycle are alike and the number of different elements in the cycle
is =0 {mod ¢).

3 c¢. When two cycles contain some element in common they contain all elements
in common.

If there were an element A,; belonging to a cycle C; contained in the cycle C,
constructed on A4,,, then for some ¢:

BiA; B~ =4, (13)

But then BYA,; B~ will also belong to C, for all v (B®A,, B-* = B** 4,, B-"*
according to (13)), and since the cycle C, may be constructed on 4,; (as on every
other element belonging to the cycle C,) we get that C; = C,.

-3a, 3b and 3c then give that whén p >¢* and p =1 (mod ¢) every element of
the highest order in G, r belongs to one and only one cycle of the type described.
Hence the number N of elements of the highest order in G, r must be a multiple of g,
because in every cycle the number of different elements is a multiple of ¢ (according
to 3b). The number of highest-order elements in G, r is

N =pio(p)=p""(p—1)

(which means A} for all i combined with the A] where (5, pt) =1).
Hence

p*+-1(p—1)=0 (mod g).
But since (p, g) =1 we get
p—1=0 (mod q)

which contradicts the assumption that p %1 (mod ¢). This means that no B (# E)
can be non-permutable with both 4, and 4, when p > ¢* and p =1 (mod ¢). Thus
Lemma 3 is proved.
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Lemma 4. When p >¢° and p?#1 (mod ¢), an element B {# E) in a subgroup
G,s of the group G r,s cannot be non-permutable with both of two base elements
generating an Abelian subgroup G, r and being of the same order.

4 a. Like 3a with the difference that when p* = p¥, 4, (= A% A4%) is of the highest
order provided that & or k or both are incongruent 0 modulo p.

4D, Like 3b.

4 c. In this case the value of VN is

N =p'e(p") + (p* — ¢ (")) @(p') = p2 ¢ (p? —1).

Hence because N must be a multiple of ¢

p* 1 (p? —1)=0 (mod g)
and since (p, g) =1 we get
p? ~1=0 (mod gq).

Hence we get that in this case no B (# E) can be non-permutable with both 4, and
A, when p>¢® and p2=1 (mod g). (p®£1 (mod ¢) implies that p *1 (mod g),
which is a condition needed for the proof.)

Lemmas 2, 3 and 4 immediately give the theorem.

A consequence of the theorem, together with the result mentioned in the beginning,
is that when p>¢* and p2 %1 (mod ¢) there are only as many abstract groups of
order p%g® as twice the number of abstract groups of order ¢°, because in this case
there are only two groups of order p”, the Abelian groups (2) and (1,1) and each of
them determines one and only one group of order p2¢® together with a given group

of order ¢°. For instance, when p >g¢* and p%# 1 (mod g), there are 30 groups of
order p2g*.
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