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Introduction

1. Definitions

In this paper we shall deal with the theory of “spherical”’ summability of mul-
tiple Fourier series.

Let f(x)=7f(xy, 2, ... 2,) be a Lebesgue integrable function defined on the funda-

mental cube @, —n<x;<m, t=1, ... k, in Euclidean k-space. We form the Fourier
series of f(x)

@)= 2 ap €™ T =3 @npn,..n, €T 1R, (1.1)
where n=(n,, ...,n) is a vector with integral components, n «x=n, 2, + 12y + Ny Xy,

with
@ =@2n) " [fa)e " da,
QA
and dx=dx dz, ... dz,.
We next form the spherical Riesz means of order § of f(x)

4
8% (2) =S (2, f)=I 2 (I—M) a, e, (1.2)

nl<R R?

where |n|=(ni+ --- +n})}. Unless stated to the contrary, we shall assume that k> 2.
The general problem of the theory concerns itself with the validity (and mean-

ing) of
Iim Sh(z, )=/ (2), (1.3)

for some appropriate .

(') This research was supported by the United States Air Force under Contract No. AF 49 (638)—42,
monitored by the AF Office of Scientific Research of the Air Research and Development Command.
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2. Localization

In the theory, the so-called “critical exponent” « (x=4(k—1)), plays a signi-
ficant role. If 6> «, the behaviour of the Riesz means S%(z, f) is “Fejér-like” : the
relationship (1.3) holds almost everywhere; the convergence is bounded if f(x) is
likewise bounded, and is uniform if f(x) is continuous; finally the validity of the
relationship (1.3) depends only on the values of f(z) in any neighborhood of .
When d<«, the above is no longer generally true. In the classical case, k=1, an
important property remains for § =a. According to the localization theorem of Rie-
mann, the existence of (1.3) (when k=1, §=0) depends only on the values of f(x)
in any neighborhood of x. It is natural, therefore, to ask whether the localization
property for (1.3) still holds for d =« when k>2. Two results for the critical ex-
ponent «, which give a partial answer to the above question, are due to Bochner [3].

First, there exists an f(z) integrable over @, and vanishing in a neighborhood

of the origin for which
lim sup 8% (0, f)= + oc.
R0

Thus the localization principle fails to hold unrestrictedly at the critical expo-
nent, when k>2. However, by another result of Bochner, the localization principle
for (1.3), when d=g¢, still holds if we restrict ourselves to functions in L?(Q,). Thus
the natural question arose whether localization still holds at the critical exponent if
we limit ourselves to functions of the class L?(Q,), 1< p.

It will be one of the purposes of this paper to give an affirmative answer to
the above problem. In fact, we shall show that localization for d=a still holds if

we restrict ourselves to the class of functions for which

Qflf(x)llog*lf(x)ldx<oo. 2.1)

Of course, the class of functions for which (2.1) holds includes every L*(Q,)

class, 1<p.

3. Pointwise and dominated summability

If we now consider the relationship (1.3) in the sense of ‘“almost ewerywhere”,
and not of individual points, we may then obtain results concerning its validity for
d<ea, or d=u, In fact, if f(z)€EL"(Q), 1<p<2, we shall show that (1.3) will hold
almost everywhere whenever § >« (2/p—1).(1) (The point being that «(2/p—1)<a,

(*) For p=2, this result is known, see [11]. It is a consequence of the general theory of ortho-
normal sgeries, as developed in Kaczmarz and STEINHAUS, [9], Chapt. V.
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whenever 1< p<2). Thus whenever f(z)€L”(Q;), 1 <p, then (1.3) holds almost every-
where for some § below the critical exponent. We shall also show that the relation-
ship (1.3) will hold almost everywhere for é=«, («=ecritical exponent =} (k—1)),

whenever
Qf |f(@)] (log* |f(2)|)?dz< oo. (3.1)

These results will be consequences of results concerning dominated summability
—which results seem interesting on their own right. For this purpose we introduce

the following definition

Si(@) =Sk f)=_sup |8k )] (3-2)
We shall prove
([ (Sh@)rdz)""< 4,4 ([|f @) d2)"”, (3.3)
QU Qe
if 8>a(2/p—1), and 1<p<2; (x=3}(k~1)).()
We shall also show,
[Si@)dz<A[|f@)] (log*|f(x)])*dz+B. (3.4)
Qi Qi

As a further consequence of (3.3) we shall obtain

}lzim “S‘;(x,f)—f(x)l"dz=0,iff(x)GL"(Q,‘), l<p<2,and §>a(2/p—1). (3.5)
—»ocok

For the analogue of (3.4) in terms of norm convergence, we shall obtain the

following improvement :

lim [|8%(z, f)—f(z)|dz=0, if [|f(2)|log"|f@)|da<co. (3.6)
R—»ooqk O

4. Strong summability

The problem is one of dealing with the validity of the following:

lim %f!s"u(x)—/(x) [Pdu=0. (4.1)
1]

(*) When £=1, (3.3) is a known result of HARDY and LITTLEWOOD, sec [15], Chapt. X.
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For §>«, (4.1) above is an immediate consequence of relation (1.3) (which, of
course, holds almost everywhere if 6 >«, and f(z) is integrable). Again, only the case
0<o will interest us.

Our results are two-fold. First, if 1<p<2, and f(z)€L"(Q,), then (4.1) holds
almost everywhere as long as 6>a (2/p—1)—1/p’, where 1/p'+1/p=1, (a=%(k—1)).
Since for 1<p<2, a(2/p—1)—1/p'<a(2/p—1), the relation (4.1) is not implied by
the results mentioned in § 3.

Secondly, if f(x)€L'(Q,) it is possible to prove a more precise result: The
relation (4.1) holds almost everywhere if d=a. This is the strict analogue of a theo-
rem of Marcinkiewicz on the strong-summability of Fourier series when k=1. We
shall however postpone the proof of this to another time, since the method used
differs in essence from that of the rest of this paper. It should be pointed out that
Bochner and Chandrasekharan [4] had shown that if f(z)€L'(Q,) the relation (4.1)
with d =« reflects only the local behaviour of f(x).

5. Summary of results

For the sake of convenience we shall bricfly summarize our main results. They

fall into two classes, and are listed according to self-explanatory notation:

Results for LP(Q), 1<p<2
Assume that f(x)€L”(Q,), 1<p<2, then we have:
(LY If f(x) vanishes in a neighborhood of x, then

Jim 8% (2, f) = 0. (x==4 (k—1)).
(D) If Siiz,f=sup|Sa(z, )], then

|8, Hlo<dpsllf@ s i 6>« (2/p—1).

(A.E.) lim 8% (x, f)={f(x), for almost every z, if 6>« (2/p—1).

Ry

M) Jlim || 8% (2, /)~ f @)l =0, if é>a(@/p=1).

R
(S) . girg%fls‘,’l(x, H—f@)|Pdu=0 for almost every x, if 6>x(2/p—1)—1/p".
0
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Results “near” L!(Qx)
As always, a=1(k—1):
(L*) 1If f(x) vanishes in a neighborhood of z,, and J'|f(a:)| log* |f (x)|dx is finite, then

Q
lim 8% (zy, f)=0.
R0

(D*) [ S3(x, Hde<A[|f(@)|(og" |f(@)|)2dz+B.
Qx

Qx

(AEY If f|f(x)| (log* | f(x)|)*dx is finite, then}}im 8% (z, /)= f (x), for almost every x.
@ 00

(N*) lim [|Sk(e, f)—f(@)|dz=0, if, [|f(x)|log*|f(x)|da< co.
R—»och Q

R
(S%) 1lzim %flSﬁi (., )—f(@)[Pdu=0, for almost any x, if f(x)€L'(Q,).
0

6. Methods used

Since our results deal with summability of order §, d <«, we must in each case
surmount the same initial difficully—which we may describe as follows.

Let K%(x) denote the function whose Fourier expansion is

2\ 8
K5 (x)=|nlz<'3 (1 - %) ene, (6.1)
Thus we may write
Sk (@, f=2n)* [ KR (x—y) f(y) dy. (6.2)
Qk

When é>a, (or >0, when k=1), we may obtain estimates for the kernel K& (z)
which are satisfactory for most purposes. (!)

However, when 8<a, k>2, estimates for the kernel K% (x) depend heavily on
the distribution of lattice points in k-space—and this is a very subtle matter. For
this reason no estimates for K% (x) when & <a, satisfactory for general purposes, have
been given.

A novel approach to the problem is therefore needed. The idea of this method
was contained in the proof of (N), which appeared earlier (2)—and this result pre-

sents the simplest illustration of the method used. The general idea is as follows:

(*) See, for example, (10}, formula (7).
(%) See [13].
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The expression 8%(x, f) defined in (1.2) for positive ¢, is now extended to com-
plex values of §, thus becoming an analytic function in §. We then restrict our atten-
tion to a suitable strip a <M (6)<b. The boundary line R()=a is made to corre-
spohd to an L* result, and the line M (6)=0> is made to correspond to an L' result.
The L? result on the line M (6)=a is deduced via Parseval’s relation, while for the
L' result on R (§)=>5, rather straightforward estimates are sufficient.

We then use a ‘“Phragmen-Lindelof” type argument to obtain an L” estimate
on an intermediate line of the strip. This is done via an interpolation theorem
for an analytic family of operators—a theorem which generalizes M. Riesz’s well-
known convexity theorem (Lemma 1).

The above is the general procedure for proving the L? theorems (AE), (D), (N),
and (8). The localization result, (L), is more difficult since the index § contained in
the result is always fixed at «. However, by introducing “fractional integration”
into the problem, we may again obtain a situation for which the interpolation method
applies. The situation is described more fully in §12.

Once the L” results are obtained, the results “near” L' (i.e (L*), (D*), (AE¥)
and (N*)) are obtained by certain limiting arguments from their corresponding L?
results.

A word should be added about a general heuristic principle which makes the
convexity property of analytic functions applicable to our situation. It is this: If
is complex, then the behaviour of 8% (x, f) is essentially reflected by S%(x, f), where

a=R ().
7. General remarks; convention

We should point out here that, previously, results concerning summability of
order §, 6 <«, had in general been obtained only at the heavy price of making re-
strictions on the smoothness of f(x) in the entire cube @,. In some circumstances
these restrictions were incorporated into restrictions on the order of magnitude of the
Fourier coefficients. To be sure, the results thus obtained held at individual points. (})
The theorems stated in §3-§5 above show that if we are content with behaviour
almost everywhere, then we may deal with summability of order §, <« by making
much milder global restrictions on f(z).

We thus have the interesting phenomenon that a function in L?, 1<p has a
Fourier series which is summable almost everywhere of some order 8, 6 <a, while

this summability may fail at individual points where the function is very ‘‘smooth”.

! See, for example, [6], Chapter V.
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Another phenomenon which seems novel for k>2, is that if |f(z)| (log* |f(=)|)®
is integrable, the Fourier series of f(x) is summable almost everywhere for the critical
exponent. Such a result is unknown for k=1, and its proof (or disproof) would
seem to be extremely difficult.

Certain conjectures seem probable, but for which we have no decisive evidence.
(1) That the result (L*) cannot be improved. (2) That the result (A.E.*) can be
extended to functions for which |f(x)| log* |f(x)| is integrable.

It would be interesting to decide whether the results (D), (A.E.), and (N) are
valid for any range of & for which 6<a(2/p—1). What seems to be needed here
most are some good counter-examples.

We wish now to make explicit a convention which we shall use consistently in
this paper.

(i) Bounds such as 4, 4,, B,, etc. will be used repeatedly to show that the bounds
depend on the indicated parameters. These bounds, however, may be different in
different contexts.

(ii) When an inequality is given with a bound depending on a parameter (e.g.
4;), the range of the parameter will have the following meaning: The function A,
is bounded (independently of &) for & in any closed interval of the range of £. For
example, an inequality with bound A4,, for £>0, will mean that A4, is bounded in
every interval 0<&<a< co. However, an inequality with bound 4., for £>0, will

mean that A4; may become infinite as £ — 0.

CHAPTER I

Basic Lemmas

This chapter contains the basic tools which are needed in the following chapters.

8. Interpolation theorem

Let M and N be two given measure spaces with measures du and dv respec-
tively. We shall deal with a family of linear operators T', (depending on the complex
parameter z). We shall assume that the family 7, satisfies the following properties:

(i) for each z, 0<NR(2)<1, T, is a linear transformation of ‘“‘simple” functions
on M to measurable functions on N.

(ii) If y is a simple function on M, ¢ a simple function on N, then
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b (z)= sz(qp)(ﬁdv is analytic in 0<% (z)<1

and continuous on the closed strip 0< R (z) < 1.

(iii) Sup supllog |O(x+iy)|<Ade”, a<n.

yl<r 0<z<

4 and a may depend on p, and ¢. We then have the following

LemMMmA 1. Let T, be a family of operators satisfying conditions (i), (ii), and (iii}
above. Suppose that 1< p,, p,, q;, ¢, < o0, and that 1/p=(1—1)/p,+1t/py, 1/q=(1-t)/q, +
+1/q, where 0<t<1.

Assume that whenever f is simple, the following two inequalities hold:

[Ty (Do, < 4o @) || 1, (8.1)

and I Ty (D e < Ay ) || ]} (8.2)
Suppose further that

log A, ()< A, a<am, for i=0, 1. (8.3}

Then we may conclude that for any simple f,

” Tt (f) ”a < At ” f”m (8'4)'
+ o0 + o
where log 4= [ w(1—t,y)log 4,(y)dy+ [ w(t y)log 4,() dy
tan (3mt)

with @AY =4 (e (e + tanh® (3 7y)] coshE Gy

For a proof, see [13].

9. Class L (log* L) .

Again we shall be given two measure spaces M and N with measures du and
dv respectively. This time we shall assume that the total measure of M is finite,
and we shall denote it by u(M)-

We recall the standard notation, log* 2:=log , if x> 1, otherwise log* =0. We

denote by L (log* L)" the class of measurable functions for which

L{lf(x)l (log* |f(@)]) du< oo. (9.1)
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We shall say that an operator 7' defined on simple functions on M to measur-

able functions on N is sub-linear if
(i) |7 (s + ) [ <] T (90) [+ T ()]
whenever yp, and y, are simple, and
(ii) | T (ky)|=|k| |T ()], for every scalar k.
The following lemma has been used in a particular case by Titchmarsh [14].

Lremma 2. Let T be a sub-linear operator, defined on simple functions of M,
(u (M) < o) as above. Suppose that

lrhlh<d@e-17" s (9.2)

for every p, 1<p<2, every simple f, and some r, r=0, with the constant 4 independ-
ent of f and p. Then we may conclude that

Nrhlh<k4]| J | ()] (tog* | f (=) du+1], (9.3)

for every simple f; A 18 the bound of (9.2) and K depends only on the total measure
of the space M.

Proof. We write f(z)= gofn (x),
where fo(@)=f(x), if 2"71<|f(x)|<2", n=21;

f.(x) =0, otherwise, n>1;

fo(@) =f(a), if |f(=)|<1;

fo(z) =0, otherwise.

We let E,=set where f,(x)=0, u(E,) its measure. Since f(x) is simple, only a
finite number of terms appear in the above and following sums.

Now, by properties (i) and (ii) above:

[T(l< S17¢)|= 5 27T @ "),
Therefore, f|T(j)|dy< §2nf|T(2_nfn)ld[u. (9.4)
n=0
N N

Now, by (9.2), [TE ) du< A~ 17" 127" fallo (9.5)

N
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where the exponents p,, may be chosen arbitrarily, subject to 1< p,<2. We choose
p, as follows: py=2, p,=1+1/n, n>1. We notice that |27 "f,|<1, and f, vanishes
outside E,.

We therefore have

@a— D127 fulls, <0 p (B)VP, m>10)

(9.6)
Il olla < (e (21))3. J
Combining (9.6), (9.5), and (9.4) gives
f|T(f)|d#§f1(/l(M))*+n§12""’(ll(En))"’("”’- 9.7)

N

On each term of the infinite series appearing in (9.7) we shall apply the in-
equality of Young:
ab<a®/p+b'/q, 1/p+1/g=1
We choose a =2""'n" u(E,)""*P, b==27"1, p=1+1/n, g=n+1. Thus
) f(n+1)(1+1/n)nr(1+1/n)

<
~1 l+l/n

2 20 (p (B < pBY+ 2277 mt 1
n= n n=

But as is easily verified,
o0 2(n+1)(1+1/n)nr(1+lln)

,21 1+l/n

n(EN<B -21 2" n" u (E,).

Combining these estimates with (9.7), we obtain

[IT([)|dv<AK § 270" u(E,) + AK. (9.8)

o n=1

However, nzl 2°n" w(E,) < | [f(=)] Qog* |f(x)]) dp. 9.9)
M

Thus (9.9) and (9.8) together prove Lemma 2.

10. Maximal function

We introduce the spherical means of f(x) and of |f(x)|, defined as follows:
f(x; t) = wlzlj.f(z1+t£1’ x2+t£2’ ey xk'1_t§k) dzé) (10'1)

f@:ty=wi' [|f @+t .., m+1&)|dZ, (10.2)
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Here w,=2(n)**/T'(3k), and % is the unit sphere: £+ & - +£E=1; d 3, its Euclid-
ean measure.
The following lemma is easily deduced from its well-known ‘“‘non-periodic”’ ana-

logue. (1)

LeMMA 3. Let f(x)=f(x,...x,) be of period 27 in each variable z, and inte-
grable over the fundamental cube Q.
Let

f @)= sup N wi'k [ |fx+y)|dy

ow>N>0 lvi<N

N
= sup Nk [ f(x; t)e¥1de, (10.3)
1]

oo >N>0
Then f*(x) is finite almost everywhere. Moreover, if f(x) € LP(Q,), 1< p, so is {* (x), and,

(df (f* @)y da) "< A(p/(p—1))- (J lf(@)Pd2)"", 1<p. (10.4)
k k

Proof. Let
g(x)=f(x), whenever —2n<x,<2mx, i=1,...,k,

=90, otherwige.

Form g¢*(z), as in (10.3) above. Then by the non-periodic analogue of the lemma,
which we take for granted, (1)

(Ef (@ @P) dz)"" <A@/~ 1) ( [|g@ [ d2)"”, 1<p. (10.5)

Here E, is the Euclidean k-space.
We next note that

N *wi'k [ lg@+y)|dy=N"wi'k [ |f+y)|dy, if z€Q, O<N<=, (10.6)

fvlsN lvlsN
and
N
N *wi'k fl/(z+y)]dy=N"‘k_ff(x;t)t""ldt
lvl<N 0
<o [|f(@)|dz, if N>am (10.7)
Qi
It follows from (10.6) and (10.7) that
fF@<g@+a( [[f@Pdz)", i z€Q. (10.8)

Q

(") For a proof of the needed maximal theorem, see [12].
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By definition of g(z), however,

[lg@Pdz=2* [|f@=)|da. (10.9)
E), Qe

A combination of (10.9), (10.8), and (10.5) gives

(Qf (@) d=)""<A@p/(p—1) (Qf lf@)Pd=)", 1<, (10.10)

which proves the lemma.

Remark. The behaviour for p— 1 of the bound A4 (p/p— 1)) appearing in (10.10),

will be important for later purposes.

11. Riesz means of complex order
Let > a@,, be a numerical series. We shall define the Riesz means of complex
»-0

order 8, 6=0+17, as follows.
Let o=%R(8) > —1. Define 8%, by

Sh=3 (1—1)611,, (11.1)

r< R* R2

where, of course, the principal value is taken for the complex exponentials appearing

in (11.1). Thus
Sh=A%/R%, where A%= > (R*—v)a,. (11.2)

v< R?

We note that if R(8)> —1/p, then 8%, as a function of R, is locally in L.

The relation between 8%, for different complex 4’s, is contained in the following.
Lemma 4. Let 8, 8, be complex numbers, R(B) >0, R(6) > —1, and R (8+ ) >0.
Then

R
2I'(6+5+1) | B
603_______'_,7‘ 2 2\f-1 46

the integral converging absolutely.

Proof. We recall that Sy is locally in L, as long as R (d)> —1/p. Now, since
R)>—-1, R(B)>0, and R(B+8)>0, we can find exponents p, and ¢ so that
1/p+1/g=1, and both

R R
[142-¢2de, [l(R2—e3 1|2 dt
0 0

converge. Thus the integral in (11.3) converges absolutely, by Holder’s inequality.
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Now, Ai= > (t*—»)°a,. Therefore to verify the identity (11.3) it is sufficient to

r<t®

verify that

o op_2T0+B+1) f PV
B = =T+ ) F O E - rdt
for R(B) >0, R(6) > —1, R(B+38)>0. (11.4)

We see first that the integral in (11.4) converges absolutely, by the same argu-
ment used to establish the absolute convergence of the integral (11.3). For fixed S,
this argument also shows that the convergence is uniform in &, whenever § is re-
stricted to a closed bounded set lying in R (8)> —1, and R (B + ) >0. Thus for fixed
B, the right side of (11.4) is analytic in 4; when §>0, however, (11.4) is easily
verified by the well-known equation of the Beta function. Since the left side of (11.4)
is clearly analytic in §, (11.4) is then demonstrated for all values of § and ¢ in
question. This concludes the proof of the lemma.

Let now f(x)=f(xy, %y, ..., %) be of period 2x in each z;, and let it be inte-
grable over the fundamental cube @,. We form the Fourier expahsion of f(x)

fl@y~ 2 aze™?, (11.5)

where a,,=(2n)""ff(x) e " da.
QU

If § is complex, R(8) > ~1, we define S%(z) by

[
8% (2) = 8% (2, f)=y<zm(1_.f_) (S aem

R% ynii-,

]
=m21( _F') a, & (11.6)

Here |n |2 =ni4+ni+ - +ni. We may now extend Bochner’s representation theorem

to summability of complex order.

LEMMA 5. Let f(x) be integrable over Q,, and let R(6)>4(k—1), =0+ 7. Let
S% () be as defined above. Then,

S‘;’;(x)=clR*"'dff(z; £) 01 Iy, (ER) A, (11.7)
0

where ¢, =281 (5+ 1) {T(3k)}'; the integral in (11.7) converges absolutely.
8 — 583801. Acts mathematica. 100. Imprimé le 25 octobre 1958.
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Proof. We assume as known the case where d is positive and 6> (k—1).(%)
Now for each fixed x and R, the left side of (11.7) is clearly analytic in 4. To prove
the identity (11.7) it will therefore be sufficient to show that the right side of (11.7)
is analytic in §, when R (8) >} (k—1). Thus the proof of the lemma will be concluded

ag soon as we show:

(i) for each fixed r and R, the integral

[ fa; )01 g, L (¢ R) dt (11.8)
0

converges absolutely and uniformly in 4, whenever 4 lies in a closed bounded set
within R(6) >3 (k—1);

(ii) the integral in (11.8) above is analytic in é for each fixed #, R>0 and > 0.
For this purpose we recall the following well-known facts in the theory of Bessel

function. (?)
1

2 "
J t=~-———J 1—u?* ¥ cos utdu, R(E)>—4%. 11.9
¢ (t) ﬂF(C+%)o( )y te (4] 3 (11.9)
| Jerig(t) | < Age™-t™, t21, £20. (11.10)
| Jeatg (8)| < Aget™l -5 £>0, £20. (11.11)

By (11.9) we see that for each fixed z, R>0, and {>0, the integrand in (11.8) is
analytic in §. We also recall that

u
[Tf@; |t rde< Au®, if u>uy>0. (11.12)
0

We now break up the range of integration for the integral of (11.8) into the
intervals (0, 1/R), and (1/R, o). We further break up the interval (1/R, o) into
intervals of the form (2"/R, 2"*!/R). Thus we write (11.8) as

1R gntl/p

[/(x; etk Mg (R dE+ D f fa; &) ¥ s e (ER) dt. (11.8)
. n=0

0 2™ /R .

If we replace each integrand in (11.13) by its absolute value, the resulting sum
may be estimated as follows. The first term in (11.13) may be estimated by (11.11),

(*) The proof of this case may be found in [6], Chapter V.
(2) See tho references in Lemma 8, below.
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and each term in the infinite series may be estimated by (11.10). Combining these
estimates, we obtain as an estimate for the absolute convergence of (11.8) the fol-

lowing:

1R 27‘:1/}2
A;e*"lﬂRﬁ*kj |f (2 )| t* 3 dt 4 AL e RF S 2 (k1 deom f If (0| 1dt,  (11.14)
n=~q
0 2%/ R

where d=6+1t1.

By (11.12) the infinite sum appearing in (11.14) may be estimated as follows:

A;en|1| R-¥+t g 9-(@-kk-yn (11.15)

n=0

This last series converges when o >4 (k—1); that is, when R (6) >} (k—1). There-
fore the integral (11.8) converges absolutely when R (6)>4 (k—1), and by the above
estimates the convergence is uniform in any closed bounded set within R (d) > 1 (£ —1).
This concludes the proof of the lemma.

CaarTER 11
Localization
12. Outline of method

Let f(z)=f(zy, ..., ;) bea periodic function, integrable over the fundamental
cube @,. Assume that f(x) vanishes in the e-sphere,

S 6 > P=aftaf+ e+ xp).
[z]<e, £>0, (|2f?=af+ 2§+ - +2F)

We consider the spherical Riesz means of order } (k—1) of the Fourier expansion

of f(x), evaluated at the origin:

. ln|2 dk-1)
st -k o= 3 (-5 e (12.1)

where a,=(27x) ¥ f/(a:) e ™ da.
(g%

The crux of the proof of the localization theorem for LP, 1< p, (Theorem (L}

in § 5) will consist in the proof of the following inequality:

sup | S5* 0 0)[ < Aus [l 1<p. (12.2)
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Here f(z) is any function in L®(Q,) which vanishes in the &-sphere, |z|<e¢;
4,,, is independent of f(x).
For this purpose, we introduce the operator Uk (0)= U% (0, f) defined by
o e .
0= > (1———) |nlta,, for i=oc+it, —}<o<i.(}) (123)

2
O<|n|<R R

We notice that if 1=0, then (12.3) reduces (except for the constant term) to
(12.1).

We then prove the following two ‘‘boundary-line” results

sup | U% (0)| < Beallflles it R(A)=0<0, (12.4)
sup [Tk <Callfll, if R(A)=0>0. (12.5)

B, 1 and C, ; will be appropriate bounds; their estimates will be of importance later.

Basic to the consideration of the above is the following “kernel’:

HP (|z))= [ =7 (1= |yt* >y dy, dy, ... dy,. (12.6)
lvi<1

Now (12.5) will follow rather easily from the fact that the kernel H{ (jz|) will
be integrable at infinity, when % (1) >0. The deduction of (12.4) will be more subtle.
Since it includes the result for A=0, it may be viewed as a variant of the localiza-
tion result for L?®. Once (12.4) and (12.5) have been proved, then (12.2) can be
deduced by the convexity-interpolation argument mentioned earlier (Lemma 1).

In this chapter we shall adopt the following procedure. In § 13 we shall ob-
tain an asymptotic estimate for the kernel H{’ (|z|), (A=0+it), for large values of
|z], all values of 7, and —4<o0<3}. In § 14 we shall derive the L* result (12.4).
Next, in § 15 we shall prove the L' result (12.5). We then obtain the general

localization theorems in § 16.

13. Aymptotic formula for H® (u)

We consider the function H{ (u) defined by

HP (|z]) = f (1—|yPyr*ED 2 yle ™ vdy, A=0+iT, (13.1)

lyl<1

the integral being taken over the solid unit sphere in ¥ dimensional Euclidean space.

As is well known, a Fourier transform of a radial function in % dimensions may be

(1) The limitation —} <o <% is made for the sake of convenience.
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written as an appropriate Fourier-Bessel transform, (see [5], p. 69.) Thus we may
write (13.1) as

1
HP (u) = (27) =102 [ (1 — 2)pd-Drighied g o (ut) dt, (13.2)
0

We shall prove the following.

TeEoREM 1. Let A=c+it, 202 —3, u=1. Then
HP @) =APu * *+ APu *  cos ut+ AP u* *sinu+ R(A, wyu "1,  (13.3)

with 4P| <4, i=1,2,3
and also | R4, u)| <4

Remarks. (i) The dependence on k (=number of dimensions) will not be ex-

hibited in the above constants, and those entering in the proof.

(i) The function HY" (z) may be transformed into a generalized hypergeometric
function, (see [7] p. 178). For A fixed, an estimate like (13.3) follows from the theory
of asymptotic expansions of these functions, such as in Fox [8]. However, for our
purposes it is necessary to exhibit the dependence of the remainder of the asymp-
totic formula on the imaginary part of 1. An attempt to adopt the treatment in
[8] for our case would seem very prohibitive. We shall therefore derive (13.3) from
“scratch’”’. The proof will be greatly simplified by making use of certain identities
in the theory of Bessel functions.

Proof. We shall first prove a series of lemmas.
LEMMA 6. Let D (w)=u" 12 [ 4 (0) 0* Ty s, (0 ) d,
0

@¢ (k-1)dg
and let A()=—%+ —"L L.
V=Tt T
Let q be an integer so that 2q>k+2. Suppose that ¢ has 2q continuous derivatives
n (0, ), and that

(!) The estimate 4 ¢2**l contained in Theorem 1 is not the best possible (in 7). Since Lemma 1
allows for a very large growth in the imaginary parameter, we have not bothered to state more pre-
cise estimates, especially since it would make the notation even more unwieldly. As a matter of fact
the estimate can be sharpened to Ae®*l, for any &>0. The same remarks can bo made for most
similar estimates in this paper.
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[1A°(@)|o* T do< M < oo.
0

Here, A% (d)=A (AT (4)), etc.
Conclusion.: [®(u) | <o, 2n) ¥ Mu* 2 dif uxl.

Here, w, 13 the (k— 1) dimensional volume of the unit sphere.

Proof of the lemma. We shall make use of the foliowing fact (quoted above): Let

f@, ..., z)=¢@), o*=25+ - +2i

and Fly o, p)=@m) [ e "V f(z, ..., 2)dz,
Eg
then Flyy, ... yp)=P(w), ul=4i+..+yk
It is also well known that A (¢) is the standard k-dimensional laplacean of f(x;, ..., ).
Hence
|u|2°(l)(u)|=l(2n)'” f e TV Al (]‘)dzl
Ep
<@m)7* [|A%(f)|d=
Ey
=w; (2m) ¥ [ [A*($)[ 0" de
0
=we (27) Y M.
Therefore, |® )| < @n) ¥ Mu2<w, M (2m) ¥Fu*2

if w>1. This concludes the proof of the lemma.

Lemma 7. Let [=¢+in, &= —4%, and uz1. Then
[ et 1998 Jy s, (tu) dt = By w64 ROV (2, ) w4602, (13.4)
0

where | B;|<Aer™, and |BRM (£, u)| < Age™,

Proof of the lemma. We make use of the following known identities:

et " Ty (tuydt=(1+u?) 3"V (m+n+ 1) Po"™ (1+a?)7), (13.5)

o3

and
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]
[cos (n+3)y[cosyp—cos O™ dy, (13.6)

(i

—m — ,._—.2_,_— —— 1 —-m
P,™ (cos 0) = ( DA (sin )
for 0<f<m.

The first identity may be found in [2], p. 29, formula 6; the second may be
found in [1], p. 159, formula 27.
In the above formula we shall let n=4k+{, and m=}(k—2). Now define
B; by
B;=T (k+ ) P} (0). (13.7)

By choosing 8=}z in (13.6) we easily see that
| Be|< Aget™, ¢=¢+in. (13.8)

By further inspection in (13.6), we may see that
|T (k+8) PY2 2 (x)| < et 0<z<}. (13.9)

(The dash indicates differentiation with respect to z.)

For the choice of » and m made above, (13.5) becomes

e T o (bu)dt= (1 +ud) HEH D (b ) PRGIR (1 127, (18.10)

o3

The asymptotic estimate of the right side can now be made as follows, First
observe that

| (14 u?) FARAED =GR TD | < 4 (14 | u 354D for u>1, (=E+in. (13.11)
Next, by the mean-value theorem and (13.9),
[T (k+0) Py (1 +u?) Y —T (k+ ) PIE P (0)| < dget™Mu™, w>1. (13.12)
A combination of (13.12) and (13.11) gives as asymptotic estimate for (13.10)
T (k+¢) P (0)u 1o i1 RO (&, w) o~ ¥% 472 (13.13)
where | RV, u) | < g (1+]|n]) et < A, ™l

With the definition of B; made in (13.7) above, (13.13) is the desired asymp-
totic formula. The estimate for B; in (13.8) completes the proof of the lemma.
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LeMMa 8. Let [=&+in, &2 —3%, u=1l. Then

1
JA—@EDrE i gy o (tu) dt
0

=(C;sinu+ Dy cosu)u 8 14 R (L, u)u 502, (13.14)
aers (Cel <Ay, (D)< 4,
and | R® (L, u)| < Agemn.

Proof of the lemma. We use the identity

1
wr ™ J, (u) gm—n=17 (m — n) _ " (1 _ 92)m-n—1 J" (Q u) Qn+1 dQ,
0

Rim—n)>0, Rxn)>0, (13.15)

which may be found in [2], p. 26. We also use the asymptotic expansion
2 i Y JT . T 3) .
Justs (W) =1{—} u™* cos u—‘—i——(‘u+w)-2< +R® (u+1v, u), (13.16)
4

where [R® (u+iv,u)| <A e™u™d if ux1.

This asymptotic formula may be found in [1], p. 85. We then take m=k—3§+(,
n=3%(k—2), p=k~3+¢& and v=7. A straight-forward combination of (13.15) and
(13.16) leads directly to (13.14) and the proof of the lemma.

Proof of Theorem 1. Consider the integral

(1
[Q—@)ik-Draghed g o (tu)dt, A=o+irT. (13.17)
0
The main contributions to its asymptotic expansion will be due to the “‘sin-
gularities” of the expression (1 —2)¥*-b+4dk+1 4t -0, and ¢=1. For this reason
we separate the two contributions as follows.
Let y (t)€C™(0,1), with p(t)=1, if 0<t<}, and y (¢) =0, if §<¢<1. Then write

1
[ —gy-Dragdisd g o (tu)dt =1+ 1, (13.18)
0

3
where L= [ (1 -3 e-DrAgdesdy, () Jy s, (tu) di, (13.19)
0
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and (1 — ) EDHEEA ] ) ()] T gk, (Ew) dE, (13.20)

[
-—

The integrand in (13.19) has now only one “singularity”, at t=0. In order to
obtain an asymptotic expansion for it we shall compare it with the integral in (13.4)
which displays the same singularity. Similarly, (13.20) will be compared with (13.14).
Consider (13.19) first.

Let ¢ be the smallest integer so that 2¢>k+ 2. Define a polynomial P (t) of
degree 2¢q by the following properties:

2q

Pty=1+ Y at
j-1

if we set S (t)=et P ()~ (1 —)3k-Driy (y), (18.21)
then o™ (0)=0, 0<n<2q. (13.22)

It is clear that the conditions (13.22) determine the coefficients a; completely.
Because these conditions involve the derivatives up to order 2g of y (t) (1 — t2)¥* "D+
then

[ay| < 4 (1+]|A[). (13.23)
By Taylor’s theorem with the remainder, (13.22), and (13.23) it also follows that
|6 ()| <dA’ QA+ |AP) ", 0<n<2q, 0<i<}. (13.24)

Moreover, using the fact that ¢ (f) vanishes for ¢>§, we also get
[0 @) <A A+|Af) e, 0<n<2q, t>3. (13.25)

Now consider A, (u) defined by
Ay (w)=1,— 7 et P () A T oo (Eu) dE. (13.26)
0
By (13.21), and (13.19) we have
1(u)=}°6(t) A T ko (Pu) dt.
1]

Because of (13.24) and (13.25), it is an easy matter to verify that the function
¢ (t)=0 (t) " satisfies the conditions of Lemma 6, with M =A4 (1+]|1[*). Thus
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[A )| <4’ L+ |APYw P u>1, {13.27)
Now

e_‘P (t) t“HlJ!(k_z) (tu)dt

o3

2q o )
e A Ty (bu)dit+ 3 a,f e T Ty (tw) d.
j=1 0

ot g

We may now apply Lemma 7, with p=4, 1+1,..., A+2¢. We thus obtain

S—8

e PP YA T oo (bu) dt=Biu et 1L R@ (4 ) A2 (13.28)

for u>1, where
[RW (A, u)| <A (1+]1]%) ™ < 4 1%,
| B:| < A et < 4 7,

with A =0+, and —}<o<}.
A combination of (13.27) and (13.28) gives us the asymptotic estimate for I,
(because of (13.26)). We thus have

IL=Bu ¥ 1L RO (2 u)u 22 J=g1ir, (13.29)
with | Bi| <A, |R® (4, u)|<d e, —1<g<}, and u>1.

We now estimate I, in & manner similar to the estimate for I,.

29
Let @(s)=1+ 3 bss’ be the polynomial of degree 2 ¢ determined by the following

i=1
conditions: If we set

6 ()=Q (1~ —t'(1—p @), (13.30)

then &V (1)=0, 0<n<2q. (13.31)
Reasoning as before it follows that

|b <A (1+]|A%). (13.32)

We now redefine d, () by setting 3 (£) =4, () if 0<t<1, 83 (t)=0 if t>1. Be-

cause of (13.31), this modification does not destroy the continuity of derivatives up

to and including order 2q.
Clearly therefore, (13.33)

[ezm (<A (1+]if9), 1<t and 0<n<2q.
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We also recall that 1-y@)=0, for 0<t< 4.
Thus 0 (B)=0,()=Q(1—¢t¥), for 0<t<},
3
and therefore [1A7(82 ()| o* *do< A4’ (1+]|A]). (13.34)
0

Now consider A, (u) defined by

1
Ay (u)=T,— [ Q(1—t3) (1 —2)}* V*Ay, o (tu)dt. (13.35)
0
Because of the definitions (13.20) and (13.30) we have

1 o0
— Ay (u)= [ 8y (8) 4 T gy (tw) dt= [ 8F () 11* Ty, (L) dit. (13.36)
0 0

We see by (13.33) and (13.34) (and the fact that 83 (£) =0 for £>>1) that 63 () satisfies
the conditions of Lemma 6, with M =4 (1+|4[*). Thus,

Ay ()| <A (L+][APYw %3 u>1. (13.37)
Now

1
[ Q- (1—g)¥k DAk, o (tu) dt
0

O =

2¢ 1
(1= DA T g (bu)dt+ 3 by [ (1 — DI e T o (tu) dt.
=1 0

We may now apply Lemma 8, with (=4, A+1, ..., A+2¢ to the above. A
combination of this and (13.37) gives us an estimate for (13.35). It is

I,=(Cisinu+ D; cosu)u Y41 L RO (] u)u ¥*-4-2 (13.38)
where |Cil<d ™, | Di|<d4e®™, |R® (4, w)| <4 e,
A=o+it, —}4<0<}, and u>1.

If we combine (13.38) with the asymptotic expansion for I, in (13.29) we obtain
the asymptotic expansion for (13.17). We also notice that the function HY (u) (de-
fined in (13.2)) differs from (13.17) only by a factor (27)!*» #**1; thus the proof of

Theorem 1 is complete.
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.14. The L2 estimate

Let f(x) be integrable over the fundamental cube @=@,, and let it be periodic.
Define Uk (z; f) by

|n|2 dk-1)+A
) |nlletn-1‘, A=g+i‘[’ —%<O’<é. (14-1)

Uk = 3 a’n( gy

0<|n|<R

The a, are the Fourier coefficients; a,=(2 7)™ * f f(x)e " *dz. The main result

Q
of this section will be the following:

THEOREM 2. Let 12e>0, £ fived. Let f(x)€L*(Q), and assume that f(x)
vanishes in the sphere |z|<e. Then

_sup |UR(0, A|<Busllfll, —2<R@<0. (14.2)
We also have the estimate
|B.i| <B,-e*", A=0+irt, (14.3)

The proof of the theorem will be the consequence of several lemmas. The fol-

lowing lemma may be considered as a justification of the formal relation:
Uk (=, f) = an (27) " R*** [ HE (RY) f (x; t)t* 7" dt. ¢
0

LemMa 9. Let f(z) be a trigonometric polynomial, and suppose

J‘f(xb Loy weny zk)dx=0.
Q

Suppose that y (s) s continuous in 0<a<s<b< oo; then

b 0o
[ Uz fyp(s)ds= li_rgwk(Zn)"‘f e " HY () f (x; t) t* "1 dt, (14.4)
7 0

b
where H} (t)=_fs"‘”1 Hi (styp (s)ds.

Proof of the lemma. We have

Y (2= [ (1—|yi*>% [yl e =V dy.

lyl<1

() See also Lemma 11, below.
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Therefore by the Abel-summability of the Fourier inversion we have that the
following

lim 22)™* [ Hf(z|)e* Y e da (14.5)
n—>0 E;

converges uniformly in g, if |y|>6>0; moreover, this limit is (1—|y[})¥* D]yl
if |y|<1, zero otherwise. By a change of variable we then have, for each fixed y,
ly|>o,

lim (27) % s*** [ Hf (s|a]) e ¥ e da (14.6)
70 E

converging uniformly in s, 0<a<s<b< oo, the limit being (1~ |y[2/s)¥* D+ |y,
if |y|<s, zero otherwise. Now in the above, let |z|=¢, and y=mn, (where » is a
vector with integral components, |[n|=+0). Because of the uniform convergence in
(14.6) we may integrate the expression in a<s<b, after multiplying by v (s), and
interchange limits. Thus we obtain (14.4) in the case f(z)=¢€"7, |n|=0. A finite

linear combination of such monomials will complete the proof of the lemma.

LEmMma 10. Given a fized &, 12£>0; assume that f(x)€L! (Q) and f(x)=0 if
|z|<e. Let @(s) be of class C' in the interval 0<s<1. Define Uy (,[) by

1 g\ k-1+2d
U (z, h=] (1+§) @ (8) Ukss (2, ) ds. (14.7)
0
Assume further that f f(@)dx=0. Then
Q

sup |UR (0, )| < de || fll), A=o+i7, —4<o<0. (14.8)
R>1

Proof of the lemma. Define Hj (R, t) by

1 k-1+24
Hj (R, t)=f (1+%) (R+s8) g (s) H (R+s)t)ds. (14.9)
0

According to Lemma 9, then

UR (0, f)=lim w, (22) 7 [ e H} (R, t) { (0; t) £ dt, (14.10)
n—0 0

where f(0; t)=a~f ff(tsl, LEy, ... th) A,
k
b
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We shall first show that if f(z) is an exponential polynomial and J- f () dx=0, then
@
if R>1,
| U 0, )] < @)% [ BE (R, 0)£(0, ) £** dit|+ A, | 1], (14.11)
0

with A,, independent of R. For this purpose, we break up the range of integration
in (14.10) into the intervals (0, &} and (e, o). It is therefore sufficient to show that

|[ et HE (R, )1 (0, ydt| <A, e 1], (14.12)

where 4, is independent of R and 7. We first claim that H} (R, t) has the following
asymptotic expansion

|HY (R, t) — APt * | <A ek 1, (14.13)

if R>1, t>¢, A=0o+it, and with 4{ depending on R, but | AP |< A& with 4
independent of R.
In fact, according to Theorem 1, the first three terms of the asymptotic ex-

pansion of H{" (u) are
AP 4 AP * cosu+ AP w ¥ sin .

Applying formula (14.9) to the first term above, we obtain
1
8 k-1+22
AP ((1+»}—2) (R+8)**p(s)t™* *(R+s) " *ds

0
s k-1121
=A§11)t"“‘f (1 + R) é(s)ds.

This last is the term A%t *"* which appears in (14.13), with
! 8 k--1+24
AP — AP [(1+§) ¢ (s) ds.
0

Going over to the second term of the asymptotic expansion, AP u * * cos u,
then the contribution in (14.9) is

1

k-1+24

AP gt ( (1 +I%) (R+8)** ¢ (s) (R+s) % *cos [t (R+s)]ds.
o
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Making use of the fact that ¢ (s) €C", we integrate the above integral by parts
and obtain that it is
O (t"Y) uniformly in B, R>1.
Thus the entire contribution of 4% % ** cos u is incorporated in the right-hand

side of (14.13).

A similar argument is applied to the term A« *~* sin u. Finally, the remainder
term, R (A, u)u "1, of the asymptotic expansion is also directly incorporated in the
right-hand side of (14.13).

Hence (14.13) is demonstrated.

Now it is easy to see that

[rEe @ glede< Al if —3<0<0, say.
Thus in order to conclude the estimate (14.12), we must estimate the quantity
AP [ et A f(0, )¢ 1de. (14.14)

By changing back to the Cartesian coordinates z=(a, ..., ;) in Euclidean space
k-space, we may write (14.14) as

AP ()t [ el 2] P () do (14.15)

lzlze

We recall that f{x) is an exponential polynomial, periodic over the fundamental

cube @, —n<x;<m, 1=1, .., k; and that 'l.f(x)dx=0.

Q
Let now Q" denote the translation of the cube @ by the vector 2:n, where
n=(ny, ..., ng), 7y are integers. Thus Q"=Q+2xnn, and E,=U, Q", where the union

ranges over all integral component vectors. Thus except for the constant 4% (cw;)™!

we may rewrite (14.15) as

1

el | ¥ P (x)dx+ 2 fe—nm |z] ¥ f(x)dz, (14.16)
lzf>anQ o

where X' indicates that we sum over all », with |»|=+=0. Since f f(x)dx=0, then
Qﬂ

Jem ] * @)y da= [[e W |z|*—e " 0| *Hf(2)d. (14.17)
Qn Q"
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Now it is an easy matter to verify that if x€Q" then
|e"""]xl"‘"‘—e""""|n|_k_‘|<A[1+|1]]|n|"‘_1_”,
0<n<l, A=o+ir, —}<o<0.

Therefore by (14.17)

| [ e @) da|<4|r|-[n[ 7 [If@@)]|da, i |n]=0,
Q* ¢

since f|/(x)]dx=f|f(x)[dz. Thus the infinite sum appearing in (14.16) is esti-
Q" ¢
mated by
Alt|(Z 0|10 [|flda.
Q

Since —3}<0<0, then certainly T'[n|* 1" °<A. The first member of (14.16) is

clearly estimated by A, f |f(x)|dz. Combining these two estimates, we obtain as an
Q

estimate for (14.16)
4.1 +]z) [|f(@)|d=.
Q

We thus obtain the estimate for (14.15), and then via (14.14) we arrive at the
estimate (14.12). (Here we used (1 +|7]) €#™™ < ¢*".) Hence the proof for (14.11) is com-

pleted, when f(x) is an exponential polynomial, and f f(z)dx=0. A simple limiting
argument (keeping R fixed) shows that (14.11) s:ill holds if f(x)€L'(Q), and
ff(x)dx=0. If we now assume that f(x) vanishes if |z|<e, then f(0,¢)=0 if
3<t<e. Therefore (14.11) becomes _

TR0, Hl< 4. ], (14.18)

with A, independent of R, and f(x) assumed to vanish for |z|<e. The above com-

pletes the proof of the lemma.

CoROLLARY. The conclusion of Lemma 10 still holds if we drop the assumption

that [ f(x)dz=0.
Q

Proof. Choose ¢(xr) as a fixed periodic function of class C* with properties

g(x)=0, for |z|<1, and fg(x)dx=1. Apply Lemma 10 to the function
Q .

f (I)=f(9€)—g(-’c)‘!f(x)dx.
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Then clearly _|'/1 (x)dz=0, and f (x)=0 if |z|<e.
Q
Moreover, UR 0, {)=UR 0, )~ ([f(2)dz) U¥ (0, 9).
3

It is easy to verify that |U% (0,9)|<A, by the absolute convergence of the Fourier
expansion of ¢ (x). Thus

| U, )| < 4. | ]|+ A £,
and the corollary is proved.

Proof of Theorem 2. We fix the function ¢ (s) appearing in (14.7) once and for
all, as follows: Let ¢ (s) be the polynomial of degree 2%—1 which satisfies:

1 1
[o@)ds=1, [@(s)s'ds=0, 1<j<2k-1. (14.19)
] 0

With @ (s) so defined, the proof of Theorem 2 will be concluded as soon as we
show that

|U% 0, H— U, Hl< A f]l,, R>2, (14.20)

where f is any function in L*(Q), and A is independent of R.
Write f(x)~Za,e'"*. Then

Z|an|2=(2n)_"f|f(z)|2d:c.
Q

We recall that the number of lattice points in the spherical shell contained be-
tween spheres of radius R—1, and R+1, is O (R*"). Thus an application of Schwarz’s
inequality yields:

> |n]*|a,|< A RY*-Dro|f]l,, A=0+i. (14.21)

R-1<|nl< R+1
For the proof of (14.20) it is sufficient to show that
R TL(0, ) — B UR(O, f) (14.22)

is bounded in absolute value by R*"1*27.4.¢%"||f|,. The quantity in (14.22) can

be written as
1
(R2—n? ¢ D g —[{ 5 (R+a—n?)t* D pla g (s)ds.  (14.23)
nj<R+s

1<n)j< R h 1<)

90— 583801 Acta mathematica. 100. Imprimé le 28 octobre 1958.
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We shall write (14.22) (or 14.23) in the form 8, + S,, where S, involves all terms
with R—1<|n|<R+1, and 8, the remaining terms of the sums. Now if R—1<|n]|,
then clearly (R*—2%)<2R; and similarly (R+s)?—7*<4R. Thus for S, we have

the following estimate

| 8y| < A RY*-Dte —1<|an ||| an- (14.24)

R <R+1

Because of (14.21), this becomes

[8a| <A B2 f]l,. (14.25)
Now _
1
S= 3 (B-aE 0 afe,—[{ 3 (R+sF-a P alla} g (s)ds.
1g|nj<R 1 o 1I<Ini<R-1

1
Remembering that f @ (8)ds=1, we may rewrite the above as
0

> [(RE—ni)¥EDH_ (R4 s —nd)lE Vg (5)|n]|ta,ds.  (14.26)
|Inj<R-1

1
8 = J g
Now by Taylor’s expansion, if 0<s<1,

(RE—n?) ¢ DR _(Rys)2 —p2)dE- Dt gt 8o+ 018 1+ 0n,  (14.27)

where |02k|<"l‘ | sup [((R+ 8)2_n2)}(k—1)+).](2k)|'
<1

2Fk! o<
Then it is an easy matter to verify, if |n|<R—1, that
|Og| <A1+ |2 f¥]n 444420 J=0g+i7, —}<0<0.
Substituting (14.27) in (14.26), and using the orthogonality relation (14.19) we obtain

-3k-§+2¢
L | @l

18,|<4 [1+|T|2k]1
If we now use Schwarz’s inequality, and the fact that —}<o<0, we obtain
|81 < A1+ |x[*](Baq ) <4 || fll, <4 ST RE2f,, R>2.
Combining this with (14.25) we obtain
| 8y + 8| < A &1 RF122 | £],.

Since 8§;+ 8, equals the quantity in (14.22), then the above proves (14.20). If we

combine (14.20) and Lemma 10, corollary, then we obtain. whenever f (x)=0 for |z|<e,
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sup | T% (0, )] < Ae e | ll + 4 7| < 4257

Since the above inequality is trivial if 0 < R<2, we have thus concluded the proof
of Theorem 2.

15. The L' estimate

LeMma 11. Let f(x)€L'(Q), and assume that }>o=R(1)>0, then
Uk (%, f) = e (27) * R¥'* [ HE (Rt) f (w; 1) % dt, (15.1)
V]

the integral comverging absolutely. The quantity Uk (x,f) is defined in (14.1), and the
kernel Hj (u) is defined in (13.1).

Proof. Using the asymptotic estimate of Theorem 1, we see that for fixed R,
the kernel R***H} (R|z|) is absolutely integrable over E,, whenever R (4)>0. Thus
we may convolve R***H} (R|z|) with an arbitrary periodic integrable function f (),
and the usual multiplication formula for the Fourier coefficients holds. The Fourier
transform of R***H (R|z|) is immediately deduced from (13.1), and from this the

proof of Lemma 11 is concluded.

THEOREM 3. Let ¢ be fized, £>0. Assume that f(x)€ L' (Q) and that f (x)=0,
if |z|<e. Assume further that 1=>R(1)>0, A=c+iv. Then

sup | U% (0, /)] < 4, - > -1-||/||1. (15.2)
R>0 o
Proof. 1f we make use of (15.1) and the fact f (0;¢)=0, if 0 <<t <¢, then we have
Uk (0, f) =, (27) F R*'*[ HY (R)f(0,t)¢* " dt. (15.3)
If we use the asymptotic formula for Hf (u) of Theorem 1 we then see that
| U% (0, pl< A [ 47570| £ (05 )| £ dt, (15.4)

where A, is independent of R. Now we use the fact that

1
[lrospferae<al|fll,

0

9* — 583801
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n+l

and [lfon|dt<Alfll, n=1,2, ...

Thus (15.4) becomes |U% (0, fl< A, ( Eln““") 71l

and therefore |UR 0, )| < 4, '(l"”f“v

with 4, independent of R. This concludes the proof of Theorem 3.

16. The localization theorems

The main result is easily derivable from the following.

THEOREM 4. Let f(x)ELP(Q), 1<p<2. Assume that an & i3 given, 1>¢>0,
and that f(x)=0, if |z|<e. Let
| [’

S*‘k‘l’(0)= Z (___)i(k-l)a
R Rz n

In|<R
be the Riesz means of order % (k—1) evaluated at the origin. Then

sup | S O)|<(4o/tp= D) Il 1<p<2. (16.1)

Proof. It is clearly sufficient to prove (16.1) for S#%* (0) in place of S¥* »(0),

where

|n|2 Hk-1)
SFEDWO)y= 5 a,em™ (1 - ) .
O<|n|<R R

This follows from the observation that

| s¥Eb (0)— S~ )| =|ao|<@m)7* [|f (@)|dz<2m) "2 | f]],.
Q

We shall prove the result for S#% " (0) by applying Lemma 1 to the operator
U%(0,f), as follows. Assume first that 1<p<2, since the case p=2 is contained
in Theorem 2, when A=0.

We now define an analytic family of operators T, mapping simple functions of
M to measurable functions of N as follows. For our fixed & let M be set of points
in the fundamental cube @ complementary to the sphere |z|<e; define du to be the

induced Lebesgue measure on it.
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To define N, we pick an arbitrary positive R,, and we identify N with the
interval [0, R], giving the space N the standard Lebesgue measure. The family
T,(-) is now defined by

T, (f) (B)= Uk (0, f), (16.2)
where A=AR)=(p—1)/2—2-p/4. (16.3)

In defining U%(0,f) we have set f=0, for |z|<e. Following the notation of
Lemma 1, we shall let p,=1, p,=2, ¢=¢,=q=-co. t will be the parameter so that
O<t<l, and 1/p=1—¢t+1¢/2.
(We should point out here that it will be important that estimates that follow
are made independently of R, At the conclusion of the proof we shall let Bj—co.)
It is an easy matter to verify that the family of operators T, is an analytic
family in the sense of (i), (ii), and (iii) of § 8.

We shall also use the following notation, which should not lead to confusion:

Ilfllp=(b£|f<x)|"du)"”=( [ lf@Pdz).

enilz>&

We then claim the following bounds on T, (f):

I Tew (Hllee < Ao @) || £l (16.4)

| T1si () lleo < Ay (&) [|#]]2» (16.5)

where A, (1)< (4./(p—1)) ¥, (16.6)
and A, (y)< A, M2 (16.7)

(16.4) and (16.6) follow from Theorem 3, since in this case A=A(iy)=3(p—1)—
—iyp/4 and }>R(A)=%(p—1)>0, while I ()= —yp/4.

(16.5) and (16.7) follow similarly from Theorem 2. It should be noted that the
bounds above do not depend on R,.

We may ‘then apply Lemma 1 to (16.4) and (16.5). The conclusion is

NT: (Dl < A £l (16.8)
+ 00 +o0
where log 4,= [ log Ag(y)w(1—t,y)dy+ [ log 4, (v)w (¢, y)dy. (16.9)

Now observe that

T.(y (R)=U¥?(0,f), and A(t)=}(p—1)—t -p/4.
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Since 1/p=1-1¢/2, then A(t)=0. Thus
T, (f) (B)=U% (0, /)= SZ* P (0).
Therefore (16.8) becomes
sup | SR (0)[< A, [|f]o- (16.10)

O0<R<R,

To calculate the bound A, we proceed as follows. We note first that

+o¢ + o0
[ oa-tylyldy<d; [ oty|yldy<4,

where A is independent of t.
We also note that w (¢, %) >0 and

+ o0 + o0
[ od-t ydy<1; [ ot ydy<1.

This last fact follows from the fact that w (¢, %) is the “Poisson kernel” for the
strip 0<t<1, —oo<y< oo.

Thus using (16.6) we obtain
1 3x
log 4,< log 1)——i+ log A, +7 A+ logAE+——2— A.

Therefore, A, <A4./(p—1). (16.11)
Combining (16.11) and (16.10) we get

sup |SH* P 0)|<(4:/(p—-|Ifll» 1<p<2. (16.12)

O0<R<R,

We note that the calculations made above for the bound 4, where independent

of R,, and therefore 4, in the above is independent of R,. Letting R,— oo we obtain

sup | S22 (0)| < (4e/(p= ) Ifll 1<p<2,

whenever f is simple. A standard limit argument proves the above for general f € L” (Q).
By the remark made at the beginning of the proof, this suffices for the proof of the
theorem.

As a consequence of the above theorem we obtain:

THEOREM 5. Let 1>¢e>0; then there exists a constant B,, so that whenever
f@)€Llog™ L(Q), and f(x)=0 for |z]|<e, then
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sup | Sk* (0)|> B, [ |f (x)| log* |f(2)|dx + B.. (16.13)
R>0 Q
Proof. 1f we fix R, then Theorem 4 implies that for every simple f, vanishing
in |z|<e,
| K2 <(Ae/tp=1)-[Ifll T<p<2. (16.14)

A, is independent of R, of course.
Now apply Lemma 2 to the above, where T (f)=8%* "V (0); the space N con-

sists of the single point with measure 1; and r=1. Thus we obtain

| 8542 0)| < B, ([ | ()| log* |f(=)|dz+1), (16.15)
Q

where B, is independent of R. This concludes the proof of the theorem in the case
when f(z) is simple. The general case then follows by a standard limiting argument.

We are now in a position to prove our main result.

TEREOREM 6. Let f(x)€EL log* L(Q), and assume that f(x) vanishes in a neigh-
borhood of the point xy. Then lim S¥*~P (x,, f) exists and is zero.
R0

Proof. We may, after translation, assume that z,=0, and that our neighborhood
contains the sphere |z|<e, for some ¢, O<e<]1.

It will be sufficient to show that given any 7 >0, there exists an R,=E,(n),
so that

[S%{f‘ b0, fil<n, whenever R> Ry ().
Now for any &, 0<§&, (16.3) may be rewritten as

f‘_;) dz+&B,. (16.16)

R>0

sup | S¥*-Y (0)| < B, f |f (x)| log*
Q

This follows by writing f(z)/& instead of f(z) in (16.3). Now choose & no small
that & B,<#/3, and keep & fixed.

Next write f(x)=f,(x)+f,(x) where f, (x) EC™ and f, (x) and f, (z) vanishes in
the e-neighborhood of 0; and

B I 1og? ('—’?éﬂ-') dz<n/s.
Q

Now SEE D0, fy=8K* (0, f,) + SK* P (0, fy).
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Because f; is sufficiently smooth and f(0)=0, then §4*~% (0, f,) >0, as R—>oo. Thus
| SK*-D(0, f)|<7/3, if R>R,(n).

However, by applying (16.16) to f,(x) we obtain |St* (0, f,)| < 2%/3. Combining
these two, we get: |S¥* (0, f)|<#, whenever R> Ry(5). This concludes the proof
of Theorem 6.

CHAPTER III

Dominated Summability

17. An L' estimate for dominated summability

- In]2)\?
With Sunp= 3 (1-) aes
In|]<R R
where a,=(2m)* ff(x) e T,
Qe
we define S (x, f) by 8% (x, fy=sup | Sk (z, Hl. (17.1)
R>0

The result of this section is contained in the following:

LemMa 12. Let f(x)€ L (Q), and let R(5) > % (k—1). Also let f* (2) be the maximal

function defined in Lemma 3. Then
(@) Si(@ H<d,e™ (o—3(k—1)7 f*(2),
(b) [[Sk(z, fldz<A, e (oc—3(k—1)7"[|f@@)|dz (3=0+iT),
Qx Qi

where A, is independent of R and f, and A, remains bounded as o->}(k—1).(%)
Proof. According to Lemma 5

Sh(o, )= 6, B [ flo; 171 Ty, (R) dt
0

with ¢ =20 ¥1T 5+ 1)/T (k).

We break up the above integral into two integrals corresponding respectively to
the intervals (0, 1/R), and (1/R, o). Using the estimate (11.11) for the first integral,
and (11.10) for the second integral, we then easily obtain

(1) See footnote p. 109,
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1/R

| 8% (@, N < 4o e (BR[| (z; )| 7  de+ RO [ |f(z; g)[e¥* Do tde).  (17.2)
Q 1/R

(We note here that A, remains bounded as long as ¢>0, and ¢ is restricted to some
finite interval.)

Now by definition of f*(z) given in (10.3), we have
1R

R"j [f(z; )| 1 de<f* () k7N
0
Moreover, a simple argument of integration by parts gives
RW“”"’J' [f(z; )| ¥* P tgi<Afo—} (k—1)]f*(z) for o>} (k—1).
1/R

If we combine these two cstimates in (17.2) we obtain

8i (z, f)=sup [8%(x, N <d4,e™ [c—3(k— 1] f* (@),

with 4, bounded as ¢ — 4§ (k—1). This proves part (a).
In order to prove part (b), we may rewrite (17.2) in terms of a convolution
with an integrable kernel.

In effect we have

[8% (@, <A, e™ B [ |f(z—y)|$(R|y|) dy, (17.3)
Ey

where ¢ (u)=1, if 0<u<]1, and ¢(u)=u“"'*’”', if 1<u.

Integrating (17.3) with respect to z and inverting the order of integration, we
obtain

Qflsw, Hldz<d e | [|f(z)|dz) B[ $(R|y|)dy.
k Q Ey

k

However, B[Ryl dy=an [ ()" dt<Ad[o—}(k—1)] .
Ep 0
Thus part (b) is also proved, and the proof of the lemma is complete.

18. An L? estimate
The result of this section is contained in the following theorem.
THEOREM 7: Let f(z)EL*(Q); and d=c+it. Then
(a) (J. | 8% (=, f)[zdx)*<A,,e""| ('”f(x)lzdx)* for ¢>0,

Q Q

(b) (“S';z(x,/)|2dx)‘<(f|f(x)l2dx)}, for ¢=0.
Q Q
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Proof. We introduce the following two auxiliary functions:

Qs (z, f)=(J | S (2 )= S(;’ = N dR) (18.1)
0

and As(x, /)—qup{ f|S" (x, f)]zdu}*. (18.2)

The proof of the theorem will be a consequence of the following lemma.

LeMMa 13. Let f(z)€L*(Q), R()>3%, (6=0+i1). Then Qs(x, f) and As(z, f)

are finite almost everywhere ; moreover

([ Q@ P da)' <4, ([ |t @) da)* (18.3)
Q Q
and ([[As(z, NPdx) <4, e ([|f(x)Fdz). (18.4)
Q Q

Proof of the lemma: We consider (2, first. Since

(D0, = f Sl e @Dl g

0

We integrate with respect to x and interchange the order of integration. Thus

{ iR
[ 10 prae- f{fl? @)% @ ) s (18.5)
Q o Q
We now evaluate the inner integral by Parseval’s formula.
5 e f)— &z, f) = 12 _ (1= T, gne
S};(I, f) S"H (x7 f)_lnéﬂ[(l RZ) 1 R2 ane
~ |n[2\* [n
_|n|§<zn(1 R R? an "
Therefore,
. n 2\ 27 -2 n 4
zm"‘fIS‘}e(m, h— Sk, f)lzdx=|nlzﬂ(1 'Rlz) ot gl (186)
Q

Assume first that ¢>1. Then by the above

em = [18he D- S @ pPde<R S [nllal
_Q <
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Substituting this in (18.5) we then have

[ < dR
f[ﬂo(x, Prdz<(2a) f { o nl‘lanlz}—k—s
a 0
5 fo Pt [ 4)
In}
<A 7 |a,
This gives f[Qa(x, /)]2dx<Af|f(x)|2dx, if 0>1,
) )
and therefore (18.3) is proved in this case.
Assume now o< 1. Then
|n 2)20—2 ) R
—_— < L—-
( i) <4, it fnf <
Using (18.6) we obtain
(2m)7% f|S‘};(x, H—8% (=, Hltdx
Q
2l [ P\* 2 [n]*)
< vy —Tpz o1 1@
A|n|<Z§R R4 |an| +}R<%:||<R(l Rz) .R4 Ia l

=21+22: say.

By the argument of interchange of order of integration used above, we may
see that

{ _.dR
[enti<asiar-afl@Pras 8.7
0 é
|z 20— 2|n|“
Now §R<inl<R(1 &Y |an[*
<R4 40 Z (R ,n)?a 2|a |2
R<n|<R
<R¥¥ 3 (R—|n|)* %|a,|%
}R<IB|<R
Therefore, f{zg}@<J Rz”"z{ > (R—=|n|)*?|a, |2:d—R
R J 1R<RI<R R
2|n]

=S lagl-| [ R R=[n -2 ar)

In|
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But it is easy to check that

2|n|
[B*% (R—|n|*2dR<A(c—} =4, if o>}

n

Hence (o |a,,|2=Auf|f(x) Pdz, o>} (18.8)
[} q

A combination of (18.7) and (18.8) proves (18.3) when 3 <o<1. Thus (18.3) is
completely proved. The finiteness almost everywhere of Q;(z, f) follows from (18.3),
of course. '

We now consider Aj;. Let v=[}(k—1)]=greatest integer in }(k—1). Then by
Minkowski’s inequality,

1 ESG—I 2d ¥
{Ef] u (x,f)l u}
0 R R
1 Sd—l +v 2 } 1 S‘H" 2 !
<{§fl @ - S (x,f)ldu} +{§fl W7 (@l d“}
H 0

=I,+1, (18.9)

Since o=R(3)>4}, then R(6+)>4(k—1), and we may apply Lemma 12, part
(a) to 85" (z, f). This gives

| 8% (@, | <A, f* ().

Substituting this estimate in the second term of (18.9) gives

I, <A, e f*(2). (18.10)
¢ i
Moreover, I,= {%f (8 (=, fy— 8% (=x, HI? du}
]
T 185 @ -84 @ P )*
(fren-swnr,,
<Qd(x, f)+Qa;1(x, f)+ ---+Qa+,(x, f) (18'11)

When we combine (18.9), (18.10) and (18.11) we obtain

As(@, NS Qu(@, i+ - + Qaus (@, ) + A, f* (2). (18.12)
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To the above we apply (18.3) which we have already proved) successively to
8,8+1,...,6+» To the term containing f*(x) we apply Lemma 3. We therefore obtain

(] Aot T da) <, ([11 )P aa).

This completes the proof of Lemma 13.

Proof of theorem 7. We consider (a) first. We shall make use of Lemma 4 (of
§11), recalling that R*8%=A4%. For 8, B appearing in the statement of Lemma 4,
we substitute 4 (0—1), 4(6+ 1)+ i1, respectively. We thus have:

R

2ot iwt ) (RE— g3t Db 2o gio~D gy (18.13)

TG+1)TGe+1)+ir) )

R® 8% =

If ¢>0, the factor involving the I" functions is certainly bounded by A4,e™".
Thus from (18.13) we obtain :

R
|8% (2, )] < Az e R [ (B — )} D% | 8}~ D (g, )| dt.
1]
Applying now Schwarz’s inequality tn the above we obtain
¢ ] ¢ ¥
|k D<A B[ (B =)t eoa* {[|SFeD @ ey
[}
Therefore, | 8% (2, )| <4, B(R)- Ayoiny (2, f),

R
where B(R)= R %+t {f (Rz—tz)"‘lt‘“’dt]*
0
1

- “‘ (l—tz)"_lt“’dt}*
0
<d/oc=A4, it ¢>0.
We thus have
S3(@, fi=sup | Sh(z, N|<4s ™ Ay (@, f)- (18.14)
Finally then

J 18, (@, P de< A2 [ Ay (2, NEdz< AL [|f(2)Pd,
Q Q Q
by applying (18.4) of Lemma 13 (to the case }(o+1), since }(o+1)>4%, when

o >0).
10 — 583801, Acta mathematica. 100. Imprimsé le 25 octobre 1958.
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This proves part (a) of Theorem 7.
Part (b) is proved by observing when %(8)>0, that S%(x, f) multiplies the

Fourier coefficients of f(x) by constants of absolute value not exceeding one.

19. Proof of dominated, pointwise, and norm summability
(a) Poot of Theorem (D), (see §5, for statement).

The idea of the proof is as follows. We notice that the case which corresponds
to p=2 has already been disposed of in Theorem 7, part (a), of §18. We should like
to have an analogous result for p=1, and then interpolate between indices p=2,
and p=1. However, Theorem (D) fails when p=.1, so that we must content our-
selves with a weaker substitute. Such a substitute result, satisfactory for our pur-
poses, is contained in Lemma 12, part (a), of §17.

Now to the proof. Let p and § be the indices given in Theorem (D). Assume
that 1<p<2, since the case p=2 is contained in Theorem 7. Let p, be an exponent

(to be determined later) which satisfies 1< p,<p. Thus we may write

1 1
-, 0<p<l-—-- (19.1)

Choose two further parameters, ¢, and & (to be determined later) subject pres-

ently only to the conditions

O<gg<oo, and O<g < oo,
Define p,, by p,=2. Thus p, <p<p, and we may therefore write

1/p=(1-1t)/py+t/p, O0<t<l.

Using (19.1) we obtain after a simple calculation

t= (;— 1) (1-29)7L (19.2)
Now define d(z) by
d(2)=¢ga(1—2)+ (3 (k—1)+¢)z (19.3)

We show now that our arbitrary parameters 7, &, & can be chosen so that
o(t)=9, (19.4)

(where § is the index given in the statement of the theorem). In fact, using (19.2),

we may write
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k—1)\ /2 k—1)\ /2 2
00-(55) 1)+ (%) G2 235w

k—1) /2
:( 5 )(;)-1)+E(17)+E’(el)+E'”(so).

&

However, by assumption, 6> (3 (k—1))(2/p—1). Thus we may find an 7 small
enough so that still §> (}(k—1))(2/p—1)+ E (). We fix such an 7. This determines
P, (by (19.1)), and ¢, (by (19.2)). However, 0< ¢ <1, thus we may find g,, and ¢ so that

E—1 (2
o) = 5 (;}— 1) +E )+ E (&) +E" (g).

This proves (19.4), and we proceed with the parameters 7, &, & fixed in this
manner.

Let R(x) be a measurable function defined on &, subject only to the conditions

that:
0<R(z)<R,< oo. (19.5)

With the aid of 4(t) and R(x) we now define an analytic family of transforma-
tions, T,(-), as follows:

T.(f) (x) =852 (=, f), (19.6)

and we verify that the family satisfies the conditions of Lemma 1 of §8. That the
conditions (i), (i) and (ili) are satisfied follows easily when one makes use of the

restriction (19.5). We next claim that 7,(-) satisfies the following bounds

” Ty (f) “v.< A,(y) “ f”p.’

(19.7)
” Ty (f) ”p. <4,y “ f“p.v
where A(y)s 4, e, =0, 1. (19.8)
and where the 4, and a; do not depend on the function R(x) and R,.
In fact, by (19.6) it follows immediately that:
[T (1) ()| < 8% (=, f). (19.9)

Now 0(y)=¢(1—iy)+(3(k—1)+e)iy.
Thus R(6(1y))=e,>0. We may therefore apply Theorem 7, part (a) and obtain

70 D llos = T (Ml <NSF2 (2 Hlla < Age™ M | fll, = Ao ™ |l (19.10)
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where ay=m|k(k—1)+e —&l
(The constant A4, clearly does not depend on R(x) or E,.) Next,
RO(1+1y)= —& @y + G (k—1)+5) (1+13).
Hence, ROA+iy)=%(k—1)+¢e>3(k—1).
We may thus use Lemma 12, part (a), and obtain
| Tyow (Dl <ISET2 D) [l < 4 e[ £l
where a,=n|}(k—1)+¢& — g
Since 1< p;,, we may apply Lemma 3 of §10. Therefore,

[ T (Dlls, < 4y eI £, (19.11)

(The constant A4, again clearly does not depend on R(x) and R,.) This establishes
(19.7) and (19.8).

Using the interpolation lemma, we thus obtain

N T (P o< A £]]- (19.12)

Now by (8.5) of Lemma 1 the constant A4, appearing in (19.12) depends only
on the A,(y) of (19.7). Since these latter are independent of R(z) and R,, the same
holds for 4,. However, (19.12) may be rewritten as

(185 @ nPda)" <4 ( [If@)Pda)” (19.13)
Qx Qi
and by (19.4) o(t)=20.
‘Thus we have ( _f]S‘};(,)(x, f)l"dx)”p<A, ( f|f(x)|"dx)1/p
Qe Q

with R (z) subject only to the condition 0< R(z)< Ry< co, and with A, independent
of R(z) and R,. By an appropriate choice of R(x) we deduce

(J (oup, 18 Nrde)” <A ( [1 @)™
Qp Ushshe g,

Now since the integrand of the left-hand side increases with R,, we obtain
1
([ sup |S%(z N d2)"" <4 ( [|f @) dz)".
Q. O<R<oo Qe

This concludes the proof of Theorem (D).
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(b) Proof of Theorem (D¥*) (see §5 for statement).

Theorem (D*) will be a consequence of the following lemma.

LeMma 14, Let f(x)€ELP(Q,), 1<p<2. Then,

(Qf (81 (@, HPda) "< A (- 172 ( [|f@)[da)", (19.14)
k

Qi
where A does not depend on p or f.

Proof. This lemma is already contained implicitly in the proof of Theorem (D)
above. In fact, for our given p, 1<p<2, fix the index p,, 1<p, <p, by

l_lzl(l_l). (19.15)
pn 2 P

Thus if 1/p=(1—¢t)/pe+t/Dy (Py=2), then

t=2—-p, and 1—-t=p-1. (19.16)
Now define §(z) by

5(2) = (’-‘—;-1 - (2%”)) -2+ ("-;—1 i (”_;—1)) 5 (19.17)

As is easily verified, 6(t)=%1- (19.18)
Next define the family 7',(-), as before, by
T, () (z) = 852, (=, f)- (19.20)
R (x) is again an arbitrary measurable function limited only by
O0<R(z)< Ry< oo.
We then show that 7', obey bounds as in (19.7) with
Ay (y)< d et (19.21)
and A, ()<de™-(p—1)"2 (19.22)

4 and a do not depend on R(z), R,, or p. First,

. k-1 2- . k-1 -1\ .
6(zy)=—-(7——p)(l~zy)+(—2—~+p )zy.

4 4
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Thus m(é(i?/))=k; - —‘i?

since k> 2. Therefore,

1T Dl < S¥ (@, Hlla< 4 e Lo, (19.23)

with a=4x, by Theorem 7, part (a).

Secondly, d(l+ip)= (k—;}—-g—‘i—z—)) (—iy) + (k—21+—i) (I+:y).

p—1_ k-1
i 2

Hence, m(5(1+*?/))" S
Then by Lemma 12, part (a),
I Trosy (Dln NS (@, Hlln <A (=17 [|5,
with a=4xn. While by Lemma 3 of §10,
1o < 4@ =) I fllo.<4"(2=1) *[[f]los

(since (p,—1)7'<2(p—1)"! by (19.15)).

Combining the estimate we obtain:

T4 /)”m<Aeam -1 _2”/”12.

Therefore the estimates (19.21) and (19.22) are established. Again, as in the
proof of Theorem D above, we now apply the interpolation argument (Lemma 1).

Following a similar argument, the result is

([I88 (@, HPda)" < ,(Qf [f(@)[? dz)™, (19.24)
Qp k

where the 4, is given by

+o00 +o0
log 4= [ w(1—t,y)log do(y)dy+ [ ot y)log 4,(y)dy.

We then use the fact (see §16) that w(t, y) >0,

-+ o + o0

J. o y)dy<l, and f o y)ly|dy<Ad.

— o0 —oe
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We therefore have (using (19.21) and (19.22))

1
< T}
log 4, <B+2log ( 1) ;

therefore, Ad;<eP(p—1)2

Applying this estimate in (19.24), completes the proof of Lemma 14.
Now Hoélder’s inequality applied to (19.14) gives

JI8¥ Pz, f)ldz<A @) VP (p—1)2( | lf@)Pda)”, 1<p<2.
Q ’ @

We then apply the case r=2-of Lemma 2 of §10 to the above inequality. The

result is
[ 84 (2, dz<B [|f(x)| (log* |f(x))*d=+ B,
Qe QU

which proves Theorem (D*).

(¢} Proof of Theorem (AE.) (see §5 for statement).

Let f(z) € L?(Q,). Then we must show that given any >0, there exists a posi-
tive number R, and a set E,< (@, so that m(E,) <e, and so that

| Sk(z, )—f(x)|<e, if R>R,, and z¢E..

Let us first fix the constant A4,, which occurs in the statement of Theorem (D)
Write
H@)=fi (@) + [y (),

where f, (z) is periodic and in €%, and ||f,(z)||,<7, 5 to be determined momentarily.
Now by the inequality of Theorem (D) we obtain

” S?' (.’E, fz) ”D < Ap.d /B

Hence we may choose 7 so small so that the set where either |[f,(2)|>1%e, or
S,(, fa)=%e is of measure less than ¢. Write

S%(z, /)—f(:t)= {S‘;;(z, fl)—fl (I)}+{S(;i (x, fz)—fz(x)}-
Thus, [Sk(x, H—f@)|<|S%(z f)— f (@) +|8% @, f)| +]f ()] (19.25)

Since f,(x) is C* and periodic, then Sg(z, f,)—f, (x) uniformly. Therefore
|8% (@, f,)—f(x)|<4e if R>R,. Since
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IS'};(:C, f2)|+|fg(x)|<Si (=, f2)+lfz(1')|’

2
then |85 @ f)l + [ @] <T

except in a set E, with m(E,)<e.

Combining this with (19.25) concludes the proof of the theorem.

(d) Proot of Theorem (AE*) (see §5 for statement).

If f€L (log L)?, then according to Theorem (D*) we have

[ 8§V, fldz< A4 [|f ()] (log™ |f(2)))2da~+ B.
Qx Qg .

Using the above for f(x)/&, instead of f(z), we obtain
f(z)

; )2dx+ EB. (19.26)

J‘S’t(k—l) (x, lde< 4 J.f(x) (1°8+
Q

k

Now choose £ so small so that £ B<¢?/12, and keep & fixed. Since f(x) € L(log L),
we may write f(x)=f,(x)+ f,(x), where f (z) is periodic and C%,

f f2(x) (log+ |f2(2) fzéz)-l)z dz<m,
Qk

and if E, is the set where |f,(x)|>1}e, then m(E;)>}e. Choose now 7, so that
A< ¢*/12. Then by (19.26) applied to f,(z) instead of f(z),

fs“"-h fdx<A-8—2-A"1+B-»‘iB-‘<é-
| 53 faxs Ay 127 S

Qe
Thus if E, is the set where Si*V(z, f,) >4, then m(E,)< }&. Now
| 8K (2, f)— f(2)]
<|8K* Pz, fy) — f@)|+] 8K (=, fo) | +]fa ()]
<|SK* (@, f)—h@)|+ |81V (@, fo) | +]fa @)
<| 84 Dz, f)—fi ()| +ie+de, if x¢E,UE,.

However, S¥*~V(z, f,) converges uniformly to f,(x) as R—>co. Thus there exists an
R, so that [S¥* "V (2, f)—f,(x)|<}e, whenever R> R.. Hence,

| @ N-f@<e, if R>R, and 2¢E U B,

However, m(E, U E,)<¢, and this concludes the proof of Theorem (AE*).
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(e) Proof of Theorem (N) (see § 5).

Theorem (N) is an immediate consequence of Theorems (D), (AE), and the

Lebesgue-dominated convergence theorem.

(f) Proof of Theorem (N*) (see § 5).
We prove first
LEemMa 15. Let f(x)ELP(Qy), 1<p<2, then
184 (@, Hll,< 4 @= 17 1 @, (19.27)
where A does not depend on R, p, or f. If f(x)€L'log" L, then

[18% 2, flde<A4 [|f(2)| log* |f(z)| dz+ B, (19.28)
Qr Q .
where A and B do not depend on R or f.

Proof: We prove (19.27) first. Let p be a fixed index, 1<p<2. Thus we

may write

t=g——1, 1—‘t=2—g- (19.29)
r P
Now define §(z), by
6(z)=(§—%)(l—z)+ (1“;—1—;) 2. (19.30)
Then one may verify that
6(t)=k—;—l (19.31)
Fix R. Define the family of operators {T,(-)}, by
T, (f)= 8% (=, f). (19.32)
We will verify that 1Ty D lla<|Iflle (19.33)

and 7oy (D<A (- 1) e 1], (19.34)
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Since R(6(iy))=k+31—2/p=0, (k>2), we apply Theorem 7, part (b), of § 18,
and we obtain (12.33).

We next observe that

. k+1 k—1 1
m(6(1+zy))——————2 +—1—5,
. k-1 1 _p-—1
hence ?R(é(1+@y))—-T—-l p> 3
Moreover, - G (1+ @'y)):‘g.

We then apply part (b) of Lemma 12, § 17, and obtain

” Ti1y (f) ”1 = “S%Hm (=, 1) ”1 <4y, “f”l’

—11 .
where A, ,<A [?R Q1 +iy))—’—c2—1] £I3eA+H
<d(p—1) et

Thus we have established (12.34). We now apply again Lemma 1 of § 8, and

we obtain

1T (Dllo =115 @, Hllo< Aell £l

We also have the estimate (see Lemma 1)

+ 00
log 4,< J. ot y) log[Ad(p—1)Tet"V]dy
1
< log ——5+B.

The last estimate is obtained by recalling that

-+ oo + o0
oty>0, [ ot ydy<l, and [ wity)|y|ldy<A.

-0 -0

Hence A, <eB[p—177L

If we recall (12.31), we see that we have therefore established

I SE*P (@, Hll=15% (= Hll<Alp-17 If]l, 1<p<2.
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We have therefore proved (19.27) of Lemma 15. We then apply the case r=1 of
Lemma 2 of § 10 to the inequality in (19.27). The result is (19.28), and thus the
proof of Lemma 15 is complete.

Theorem (N*) now follows from (19.28) by standard arguments. (We have al-

ready given a very similar argument in (d), above.)

CuAPTER IV
Strong Summability

20. The interpolation argument

‘Recalling the definition
1(F :
As (=, )= Z‘:I())I_i{({ |84 (@ NP du

we notice that in Lemma 13 of § 18 we have already shown that
[ As (@, Dle< 4o llflles i 6>4. (20.1)

As we shall presently see, Lemma 3 of § 10, and 12 of § 17 allow us to prove
rather easily that

fAs(z Hll,<ds oIl 1<p<2 6>} (k+1) (20.2)

We then take p arbitrarily close to 1 in the above and interpolate between
(20.1) and (20.2). The results are contained in the following theorem.

THEOREM 8. Let f(z)EL(Q), 1<p<2, and let 6>k/p+4(1—k). Then

| As @, Hlo< 4s. 5| fl- (20.3)

Proof. We make some remarks first. Most of the proof of this theorem follows
the pattern of the proofs given in § 19 above, with one difference. The operator
As is not linear as it stands, and we thus need to introduce a “‘linearization” of the
operator in order to apply the interpolation argument of Lemma 1 of § 8.

We therefore proceed as follows. Let R(x) be a strictly positive, bounded, and
measurable function on ¢. Except for these restrictions R (z) is arbitrary. Next let

9 (z, u) be a measurable function which satisfies the condition:
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R()
(|¢(z,u)|2du<1, all z€Q. (20.4)

b

1
R(z)

Keeping the functions R (z) and y (2, ) momentarily fixed, we define the family
of operators V,, by

R(x)
1

o= g [ 8 (2 )y (a, w) du. (20.5)
0

We notice now that Vs are linear operators. However, Schwarz’s inequality (and
(20.4)) show that
[ Vs (f) ()| < Ao (=, ). (20.6)

Moreover, by using the converse of Schwarz’s inequality, it is not difficult to

verify that for any p
[l As (. ) ll,= sup || Vi (f) @) - (20.7)

Here, the supremum is taken over all functions R(z) and y (z, ) of the type
described above.
We next recall that by Lemma 13

|As(z, Hlls<Ase™ || fll, 6=0+iT, o>1. (20.8)
Now by Lemma 12 of § 17 it follows that
As (z, ) <871 (z, < Boe™ f* (),
where d=o+1t¢1, 6>%(k+1). However, by Lemma 12 of § 7, we have
I @l< 4l fll» i 1<p.
Combining the above yields
1 As (2, Nlls< 45,0 || fll;, 0>3(k—1), p>1. (20.9)

Let p and & be the indices given in the statement of the theorem. Since 1<p,
we may find a p;, so that 1<p, <p. We let p,=2. We then can determine a ¢,
0<t<], so that

1 1—-¢t ¢

4.
P P M

We define 6 (z), by
d(2)=(g,+ 3 (1—2)+F (R+1)+¢)z, (20.10)
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where ¢,>0, and ¢ >0. Proceeding as in the proof of Theorem (D), we may choose
p, suitably close to 1, also &, and & appropriately so that

6(t)=6(>;—:+ 1—;—’3) (20.11)

{We omit the elementary but painful calculation.)

We now define our analytic family of operators by

T.(H=Voa (), (20.12)
where ¥V, is defined in (20.5).
Using (20.6), (20.8), and (20.9) we see easily that:
Ty () o< 4 e[ £
and | Trsis (D1l < A 1| £]- (20.13)

It is important to notice that the bounds A and a, which appear in the above,
do not depend on R (z) or y(z,u), since the right side of (20.6) does not depend
on R(z) and y(z,u). Applying the interpolation lemma of § 8 to the above we
obtain

17 Ol < 4| Hly- (20.14)
Because of (20.11) and (20.12) this is
| Vs, Hllo< 4.l f]],- (20.15)

We now use (20.7) and the fact that A4, did not depend on R(x) or y (x, u).
We therefore obtain:

l|As (2, ) llo < 4]l ]I,

which concludes the proof of the theorem.

21. Proof of theorem (S) (see § 5).
We first observe that whenever P (z) is a trigonometric polynomial

P (x) = 2 bue™

ni<N

then .1
lim

R
Rfls:’,"(x, P)—P(z)Pdu—0, (21.1)
R—oo
0

uniformly in z, when §>}§.
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Now if f(x)€L”(Q), then f(x)— P(x) can be made arbitrarily small in L* norm
by an appropriate choice of P (x). Theorem 8 tells us, however, that

R

1 [Saﬁl L 2,
{supl—z | 8% (2, /)~ 8% (x, P)[Pdw
°

F

Wk 1k
<ds o || f (@)= P @), lfa>§+~2—- (21.2)

We can now combine (21.1) and (21.2) by the use of a standard argument—a

very similar argument was used in the proof of Theorem (AE) in § 19—and obtain

R
‘ E 1-Fk
lim 1 f|S‘;{1(x, H—f@)|*du=0, almost every z, if 6>+ .
Rw R, p 2
0
This may be written as
R
1 [ , Lk 1k
lim = | |8% (%, f)—f (x)|*du—0, almost every x, if 6>-+———1.
Row B, p 2
b

The last condition is clearly

where 5+ -=1.

This concludes the proof of Theorem (S).
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