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Introduction 

1. Definitions 

In  this paper  we shall deal with the theory  of "spherical"  summabi l i ty  of mul- 

tiple Fourier  series. 

Le t  / ( x ) = / ( x l ,  x2 .. .  xk) be a Lebesgue integrable funct ion defined on the funda- 

mental  cube Q~, - ~ < x i ~ < g ,  i = 1  . . . .  k, in Eucl idean k-space. We form the Fourier  

series of /(x) 
/ ( x ) =  ~ ane~'~x= ~ a .... . . . ,ke  t( .... "+"k%),  (1.1) 

where n = ( n  1 . . . . .  n k )  Lu a vector  with integral components,  n .  x = n 1 x 14- n2x~...  § n~xk,  

with 

a n = ( 2 : ~ ) - k  f [ ( x ) e  t'~'::dx, 
Qk 

and d x = d x l d X  2 .. .  d x  k. 

We next  form the spherical Ricsz means of order ~ of ] (x) 

~- (1 In 12~ e,n.z, = 
Inl<R - - ~ - )  an (1.2) 

where In I = (n~-t . . . .  + n l )  t. Unless s ta ted to the contrary,  We shall assume tha t  k>~ 2. 

The general problem of the theory  concerns itself with the val idi ty  (and mean- 

ing) of 
lim 8 ~ R ( x , / ) = / ( x ) ,  (1.3) 

R ~ - ~  

for  some appropr ia te  ~. 

(i) This research was supported by the United S~ate3 Air Force under Contract No. AF 49 (638)-42. 
monitored by the AF Office of Scientific Research of the Air Re,arch and Development Command. 
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2. Loca l iza t ion  

In  the  theory,  the so-called "critical exponent"  a ( a =  �89 ( k - 1 ) ) ,  plays a signi- 

f icant role. I f  0 > ~, the behaviour  of the  Riesz means S~R (x,/)  is "Fejdr - l ike" :  the 

relationship (1.3) holds almost  everywhere;  the convergence is bounded  if / ( x ) i s  

likewise bounded,  and is uniform if /(x) is cont inuous;  finally the val idi ty  of the 

relationship (1.3) depends only on the  values of /(x) in any  ne ighborhood of x. 

When  ~t ~< :e, the  above is no longer generally true. I n  the classical case, k= 1, an 

impor tan t  p roper ty  remains for (~ = ~. According to the  localization theorem of Rie- 

mann,  the existence of (1.3) (when k = l ,  (~=0) depends only on the values of /(x) 
in any  neighborhood of x. I t  is natural ,  therefore,  to  ask whether  the localization 

p roper ty  for (1.3) still holds for 5 = ~  when k~>2. Two results for the critical ex- 

ponent  a, which give a partial  answer to the above  question, are due to Bochner  [3]. 

First, there exists an  /(x) integrable over Qk, and  vanishing in a neighborhood 

of the origin for which 
lim sup S~ (0,/)  = + o~. 

R-~oO 

Thus the localization principle fails to  hold unrestr ic tedly at  the critical expo- 

nent, when k~>2. However,  by  another  result of Bochner,  the localization principle 

for (1.3), when (~= a, still holds if we restrict  ourselves to functions in L2(Qk). Thus 

the  natura l  question arose whether  localization still holds at  the  critical exponent  if 

we limit ourselves t o  functions of the class L v (Qk), 1 < p. 

I t  will be one of the purposes of this paper  to give an  a//irmative answer to 

the above  problem. In  fact, we shall show tha t  localization for ~ = a still holds if 

we restrict  ourselves to the class of functions for which 

f I/(x) l log + I/(x) (2.1) 
Qk 

Of course, the class of functions for which (2.1) holds includes every Lr(Qk) 
class, 1 < p. 

3. Pointwise and dominated summability 

If  we now consider the relationship (1.3) in the sense of "a lmos t  ewerywhere",  

and  no t  of individual points, we m a y  then obtain  results concerning its val idi ty for 

(~<~, or 5 = ~ ,  In  fact, ff /(x)ELV(Qk), 1 < p ~ < 2 ,  we shall show tha t  (1.3) will hold 

almost  everywhere whenever  (~ > a ( 2 / p -  1).(1) (The point  being t h a t  a(2/p-  1) < a, 

(1) For p = 2, this result is known, see [11]. It  is a consequence of the general theory of ortho- 
normal series, as developed in KXCZ•ARZ and STEt.'~AVS, [9], Chapt. V. 
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whenever  1 < p ~ 2). Thus  whenever  / (x) E L p (Q~), 1 < p, then (1.3) holds almost every- 

where for some d} below the  critical exponent .  We shall also show tha t  the relation- 

ship (1.3) will hold almost  everywhere  for  ~ = :r (~ = critical exponent  = �89 ( k -  1)), 

whenever  

f I1( )1 (log + It(x)I)'d < (3.1) 
Qk. 

These results will be consequences of results concerning domina ted  summabil i ty  

- -wh ich  results seem interesting on their  own right. For  this purpose we introduce 

the  following definition 

S~. (x) = S~, (x, [) = sup S~R (x,/)  I, (3.2) 
r  

if 

We shah prove 

�9 I )  ~l/p ( f  (S~.(x)) dx) <~A~.~(f /(x)l'dx) 1/', 
Qk Ok 

(3.3) 

5>a(2/p-  1), and l < p < 2 ;  ( a =  � 8 9  1)).( 1 ) 

We shall also show, 

f S$(x)dx<A f l/(x)l (log+ ]/(x)l)2dx+ B. 
QIc Ok 

(3.4) 

As a fur ther  consequence of (3.3) we shall obtain 

lira fls~(.,f)-t(x)l~d~=O, ifl(x)EL"(Q~), l<p~<2, and~>~(2/p-l). (3.5) 
R--~oo Qk 

For  the  analogue of (3.4) in terms of norm convergence, we shall obtain the 

following improvement  : 

lira f lS~(x,/)-l(x)ldx=O, if f[f(x)llog+lf(x)[dx<~. (3.6) 
R..-.oo Qk Qk 

4. Strong summability 

The problem is one of dealing with the val idi ty of the following: 

R 

lim 1 f i~ " n--,ooR [S~(x)-l(x) du=O. 
0 

(4.1) 

(1) W h e n  k = 1, (3.3) i s  a k n o w n  r e s u l t  of HARDy a n d  LITTLEWOOD, see [15], C h a p t .  X .  
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For  6 > a ,  (4.1) above is an  immediate  consequence of relation (1.3) (which, of 

course, holds almost  everywhere if ~ > ~, and ! (x) is integrable). Again, only the  case 

~} ~< ~ will interest us. 

Our results are two-fold. First, if 1 < p < 2, and ! (x) E L p (Qk), then  (4.1) holds 

almost  everywhere as long as ~ > a (2/p - 1) - 1/p', where 1/p' + 1/p = 1, (~ = �89 (k - 1)). 

Since for 1 < p~<2, a ( 2 / p - 1 ) - 1 / p ' <  a ( 2 / p - 1 ) ,  the relation (4.1) is not  implied by  

the results ment ioned in w 3. 

Secondly, if !(x)ELI(Qk) it is possible to  prove a more precise resul t :  The 

relation (4.1) holds almost  everywhere if 5 = ~. This is the strict  analogue of a theo- 

rem of Mareinkiewicz on the  s t rong-summabi l i ty  of Fourier  series when k= 1. We 

shall however  postpone the proof  of this to another  time, since the method  used 

differs in essence f rom tha t  of the rest of this paper. I t  should be poin ted  out  tha t  

Boehner  and Chandrasekharan [4] had shown tha t  if !(x)ELI(Qk) the relat ion (4.1) 

with 5 = ~  reflects only the  local behaviour  of !(x). 

5. S n m m a r y  o f  results  

For  the sake of convenience we shall briefly summarize our main results. They  

fall into two classes, and are listed according t o  self-explanatory no ta t ion :  

Results for LP(Qk), l<p~<2 

Assume tha t  / (x) E L ~ (Qk), 1 < p < 2, then we have : 

(L) 1] /(x) vanishes in a neighborhood o/ x 0, then 

]im S ~ ~(x o,/)=o. ( ~ - � 8 9  ( k -  1)). 
R"-~ O o  

(D) I/ S~, (x, I) = sup ] S~R (x, I)[, then 
R > 0  

r 

(A.E.) lim S~ (x, f) = ! (x), for almost every x, if 5 > o~ ( 2 / p -  1). 
R--~ O0 

(N) lim 

R 

(S) R-~cRlim 1 f l S~(x , / )_ f ( x )12du= 0 /or almost every x, i/ 5 > : r  
0 
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Results "near" L 1 (Q , )  

As always, a ~ � 8 9  ( k -  1) : 

(L*) I /  ] (x) vanishes in a neighborhood o/Xo, and f 1] (x)] log + [/(x)[ dx  is [inite, then 
Q 

lim S~ (x0, [) = 0. 
R-~cr  

(D*) f s~(x, l)dx<~A f I/(x)l (log + I /(x)l)2dx+ B. 
Ok Qk 

X (A.E.*) I /  f 1/(x)[ (log + ] [ (x)])2 dx  is finite, then lim SR ( , [) = [ (x), /or almost every x. 
Q k R--~ oo 

(N*) aim flS~(x,/)-/(x)ldx=O, i/, flf(x) llog +[[(x)]dx<~o.  
R--*.or Qk Qk 

R 

(S*) lira = ~ [ S~ (x,/) - ! (x) d u = O, /or almost any x, i/ / (x) e L 1 (QD. 

0 

6. Methods used 

Since our results deal with summability of order (~, ~ ~ a, we must in each case 

surmount the same initial difficulty--which we may describe as follows. 

Let  K~n (x) denote the function whose Fourier expansion is 

K ~ ( x ) =  Z '  1 i i "  ' " ' ~  ~.,<R - ~ ) e  . (6.1) 

Thus we may write 

S~R (x,/) = (2~) -k f K~ ( x -  y)/(y)  dy. (6.2) 
Qk 

When 5 >~,  (or 5 ~> 0, when /c= 1), we may obtain estimates for the kernel K~ (x) 

which are satisfactory for most purposes. (1) 

However, when (~ ~< ~, ]r 2, estimates for the kernel K~ (x) depend heavily on 

the distribution of lattice points in It-space--and this is a very subtle matter.  For 

this reason no estimates for K~ (x) when (~ ~ ~, satisfactory for general purposes, have 

been given. 

A novel approach to the problem is therefore needed. The idea of this method 

was contained in the proof of (N), which appeared earlier(2)--and this result pre- 

sents the simplest illustration of the method used. The general idea is as follows: 

(1) See, for example, (10], formula (7). 
(~) See [13]. 
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The expression ~ ( x , / )  defined in (1.2) for positive 6, is now extended to  com- 

plex values of (~, thus becoming an analytic function in 6. We then restrict our atten- 

tion to a suitable strip a ~< ~ ((~)~< b. The boundary line ~ ((~)= a is made to corre- 

spond to an L 2 result, and the line ~((~)---b is made to correspond to an L 1 result. 

The L ~ result on the line ~ ((~)= a is deduced via Parseval 's  relation, while for the 

L 1 result on ~((~)= b, rather  straightforward estimates are sufficient. 

We then use a "Phragmen-LindelSf" type argument  to  obtain an L ~ estimate 

on an intermediate line of the strip. This is done via an interpolation theorem 

for an analytic family of opera tors - -a  theorem which generalizes M. Riesz's well- 

known convexity theorem (Lemma 1). 

The above is the general procedure for proving the L ~ theorems (AE), (D), (N), 

and (S). The localization result, (L), is more difficult since the index (5 contained in 

the result is always fixed at  :r However, by introducing "fractional integration" 

into the problem, we may  again obtain a situation for which the interpolation method 

applies. The situation is described more fully in w 12. 

Once the L p results are obtained, the results "near"  L 1 (i.e (L*), (D*), (AE*) 

and (~I*)) are obtained by  certain limiting arguments from their corresponding L ~ 

results. 

A word should be added about  a general heuristic principle which makes the 

convexity property of analytic functions applicable to  our situation. I t  is this: If  (~ 

is complex, then the behaviour of S~ (x,/) is essentially reflected by  S~ (x,/), where 

a = ~ (6 ) .  

7. General remarks; convention 

We should point out here that ,  previously, results concerning summabil i ty of 

order 6, 5 ~< ~, had in general been obtained only at  the heavy price of making re- 

strictions on the smoothness of /(x) in the entire cube Qk. In  some circumstances 

these restrictions were incorporated into restrictions on the order of magnitude of the 

Fourier coefficients. To be sure, the results thus obtained held at  individual points. (1) 

The theorems stated in w 3-w 5 above show tha t  if we are content with behaviour 

almost everywhere, then we may  deal with summabil i ty  of order 6, 5 ~< ~ by  making 

much milder global restrictions on /(x). 

We thus have the interesting phenomenon tha t  a function in L ~, 1 < p has a 

Fourier series which is summable almost everywhere of some order ~, ~t< ~, while 

this summabiIi ty may  fail at  individual points where the function is very "smooth" .  

1 See, for example, [6], Chapter V. 
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Another phenomenon which seems novel for k>~2, is tha t  if [/(x)] (log + [/(x)[) 2 

is integrable, the Fourier series of ] (x) is summable almost everywhere for the critical 

exponent.  Such a result is unknown for k= 1, and its proof (or d i sp roof )would  

seem to be extremely difficult. 

Certain conjectures seem probable, but  for which we have no decisive evidence. 

(1) Tha t  the result (L*) cannot be improved. ( 2 ) T h a t  the result (A .E .* )can  be 

extended to functions for which ]/(x)[ log + ]/'(x)[ is integrable. 

I t  would be interesting to decide whether the results (D), (A.E.), and (N) are 

valid for any range of ~ for which ~ < ~ ( 2 / p - 1 ) .  What  seems to be needed here 

most are some good counter-examples. 

We wish now to make explicit a convention which we shall use consistently in 

this paper. 

(i) Bounds such as r Ap, B~, etc. will be used repeatedly to show tha t  the bounds 

depend on the indicated parameters.  These bounds, however, may  be different in 

different contexts. 

(ii) When an inequality is given with a bound depending on a parameter  (e.g. 

A~), the range of the parameter  will have the following meaning: The function ,4~ 

is bounded (independently of ~) for ~ in any  closed interval of the range of $. For  

example, an inequality with bound A~, for ~>~0, will mean tha t  A~ is bounded in 

every interval 0 ~ ~ ~< a < cr However, an inequality with bound A~, for ~ > 0, will 

mean tha t  ,4~ may  become infinite as ~ -+0 .  

C H A P T E R  I 

Basic Lemma$ 

This chapter contains the basic tools which are needed in the following chapters. 

8. Interpolation theorem 

Let M and N be two given measure spaces with measures d/x and dv respec- 

tively. We shall deal with a family of linear operators Tz (depending on the complex 

parameter  z). We shall assume tha t  the family T~ satisfies the following properties: 

(i) for each z, 0 4  ~ (z)< 1, Tz is a linear transformation of "simple" functions 

on M to measurable functions on N. 

(ii) If  ~ is a simple function on M, r a simple function on N, then 
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r fT~(~)r is analyt ic  in O < ~ ( z ) < l  

and  continuous on the  closed str ip 0 ~<~(z)~< 1. 

(iii) Sup sup log I (I) (x + i y) ] -< ~ ar - - ~ e  , a < Y ~ .  
l y l < ~ r  O~<x~<l 

A and a m a y  depend on ~, and  r  We then  have  the  following 

L E P T A  1. Let T~ be a /amily o/ operators satis/ying conditions (i), (ii), and (iii} 

above. Suppose that 1 < PI, P2, ql, q2 < ~ ,  and that l / p  = (1 - t ) /p t + t/p2, 1/q = (1 - t ) /q ,  + 

+ t/qz, where 0 <~ t <~ 1. 

Assume that whenever f is simple, the /oilowin9 two inequalities hold: 

II (1)I10,-< A0 (y)II/11 , (8.1) 

and II T,§ {/)]]r <~ At (Y)II/I}~. (8.2> 

Suppose further that 

logA~(y)-..<Ae ~l~l, a<Tt ,  for i = 0 ,  1. (8.3) 

Then we may conclude that /or any simple f, 

I[ Tt (r <- At I1111~, (84) 

-t-zo A-or 

where log At= f e o ( 1 - t , y )  l o g A 0 ( y ) d y +  f to(t,y) log A~(y )dy  
- oo  - o o  

t an  (�89 re t) �9 (8.5) 
with (o (1 -- t, y) = ~ . i tan 2 (�89 ~z t) + tan  h 2 (�89 ~t y)] cosh 2 (�89 zt YJ 

For  a proof, see [13]. 

9. Class L ( log + L) ". 

Again we shall be given two measure  spaces M and N with measures  d #  and 

dv respectively.  This t ime  we shall assume t h a t  the  total  measure  of M is finite, 

and  we shall denote  it by  # (M)- 

We recall the  s tandard  notat ion,  log+x :: log x, if x>~ 1, otherwise log ~ x =  0. W e  

denote  b y  L( log  + L) r the class of measurable  functions for  which 

f [/(x)[ (log + [/(x)I)' d/~ < ~ .  (9.1) 
M 



LOCALIZATION AND SUMMABILITY OF MULTIPLE FOURIER SERIES 101 

We shall say tha t  an operator T defined on simple functions on M to measur- 

able functions on N is sub-linear if 

(i) I T (~)1 -~- ~/)2) I < I T (~t)i) [ ~- I T (Vl) l 

whenever ~/)1 and v22 are simple, and 

(ii) I T (kwt) l = I k I I T (Vx)], for every scalar k. 

The following lemma has been used in a particular ease by Ti tehmarsh [14]. 

L~MMX 2. Let T be a sub-linear operator, de/incd on simple /unctions o/ M, 

( /z(M)< ~o) as above. Suppose that 

II T (t)II1 ~< A ( p -  1)-' I1/lip (9.2) 

]or every p, l < p ~ < 2 ,  every simple ], and some r, r>~O, with the constant A independ- 

ent of ] and p. Then we may conclude that 

II T (/)111 < K A [ f l/(x)] (log + I I (x)I)' d~ + 1], (9.3) 
M 

/or every simple /; A is the bound o/ (9.2) and K depends only on the total measure 

o/ the sl:ace M. 

Proo]. We write ] (x) = ~ / n  (x), 
n-0  

where /.  (x) = / (x), if 2"-*~<1/(x)l<2",  n>~l;  

/n(x) =0, otherwise, n~> 1; 

lo(X) =l(x), if II(x)l<a; 
/0 (x) = 0, otherwise. 

We let E , - - s e t  where /~ (x):r 0, /~ (E,) its measure. Since /(x) is simple, only a 

finite number  of terms appear in the above and following sums. 

Now, by properties (i) and (ii) above: 

IT(/)l<~ 2oIT(/.)l= ~ 2"1T(2-"/.)1. 
- n -0  

Therefore, f IT(f)[dt~<~ n-o~2nf IT(2-n/n)[dt~" (9.4) 
N N 

Now, by (9.2), f lT(2-~/ , ) Id t*<~A(p~- l ) - ' [12-n/ , I I ,n ,  (9.5) 
N 
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where the exponents p., may be chosen arbitrarily, subject to 1 < Pn ~< 2. We choose 

p. as follows : Po = 2, p~ = 1 + 1/n, n >~ 1. We notice that  12-"/~ I ~< l, and /,  vanishes 

outside E..  

We therefore have 

~n  p(~,j  , n>~ l. I 
H 1o ]12 ~< (/~ (M)) ~- ] (9.6) 

Combining (9.6), (9.5), and (9.4) gives 

t l T (1) I d~ _~ A (/~ (M)) t + ~ 2" n' (# (E~)) "~(~'). 
N 

(9.7) 

On each term of the infinite series appearing in (9.7) we shall apply the in- 

equality of Young: 
ab4aP/p+bq/q, 1/p+ 1/q= 1. 

We choose a=2"+lnr#(E,)nl("+l), b = 2  -I, p = l + l / n ,  q = n + l .  Thus 

~(n  + 1) (1 + 1/n)nr(1 + 1 / . )  

2" n'  (/z (E'))"'("+ 1' ~< ~ 1 + 1 / n  
n - 1  n ~ l  

#(E,) + ~ 2-n-~/n -4- 1. 
n - 1  

But as is easily verified, 

2(, + I) (1 + 1/,),l~r(1 + lln) 

~-1 1"4" ~1 

Combining these estimates with (9.7), we obtain 

f lT(J)Idv<~AK ~ 2 " n r # ( E n ) + A K .  
�9 n - I 
N 

(9.8) 

However, ,1~ 2nn r ju (E,)~< f [ / ( x ) l  (log+ If(x)[)r d#. (9.9) 
M 

Thus (9.9) and (9.8) together prove Lemma 2. 

10.  M a x i m a l  f u n c t i o n  

We introduce the spherical means of /(x) and of ]/(x)[, defined as follows: 

/ (x; 0 = ~ g '  f ! (x~ + t ~1, x2 + t ~2 . . . . .  x~ + t ~k) d E~, ( 10.1 ) 

](~; t)=~;,l f ll(x, +t~, ..... x~+t~)ldY.~. (10.2) 
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Here  Ok= 2 (n)�89 (�89 k), and E is the  uni t  sphere:  $ ~ + ~ : ~ . . - + $ ~ = 1 ;  dZe  its Euclid- 

ean measure.  

The  following l emma  is easily deduced f rom its well-known "non-per iodic"  ana-  

logue. (1) 

LEMMA 3. 

grable over the /undamental cube Qk. 

Let 
/ * ( x ) =  sup N-k  o ~ ' k  f [ [ ( x + y ) l d y  

oo>N>0 ]y[<~N 

= sup :r  t)tk-'dt, 
o r > N > 0  0 

Let ] (x )=/ (x  x ... xk) be o/ period 2ze in each variable x,, and inte- 

(10.3) 

Then /* (x) is [inite almost everywhere. Moreover, i//(x)ELV(Qk), 1 < p, so is [* (x), and, 

(;(/(~)) d~) ~(p/(p-1)).(fl/(~)l'dx)"', l < p .  (10.4) 
Ok O k 

Proo/. Le t  

g (x) = / (x), whenever  - 2 :z < x, ~< 2 :~, i = 1 . . . . .  k, 

= 0, otherwise. 

Fo rm g* (x), as in (10.3) above.  Then  by  the  non-periodic analogue of the  lemma,  

which we take  for granted,  (1) 

, p \ 1 / ~  ,, i P d x ) l l p ,  ( f (g (z))e~j  ~ ( ~ / ( ~ -  1))( f Ig(z). , 1< ~. (10.5) 
Ek E k 

Here  E k is the  Eucl idean  k-space. 

We nex t  note  t ha t  

1~ k(oklk f I g ( x + y ) l d y = N - k o o ; l k  f I / ( x + y ) l d y  , if xeQk, 0 < N ~ < ~ ,  (10.6) 
I~l<N lYKN 

and 

N - k  O)k I k 
lYI<N 0 

-<~, f I/(x)lex, 
Q~ 

I t  follows f rom (10.6) and (10.7) t h a t  

Qk 

N 

f ] ] ( x + y ) ] d y = N - k k . I ] ( x ; t ) t k - l d t  

if N ~> ~r. (10.7) 

if x E Qk- (10.8) 

(1) F o r  a p r o o f  of t h e  n e e d e d  m a x i m a l  t h e o r e m ,  see [12]. 
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By definition of g(x), however, 

flg( )l'd =2 (10.9) 
Ek Ok 

A combination of (10.9), (10.8), and (10.5) gives 

l ip (f(/*(x))~d~) ..~A(p/(p-1))(fl/(x)l~d~) ~, l<p ,  (10.10) 
Ok Qk 

which proves the lemma. 

Remark. The behaviour for p--> 1 of the bound A(p /p - l ) )appear ing  in (10.10), 

will be important for later purposes. 

11. Riesz means of complex order 

Let ~ a~ be a numerical series. We shall define the Riesz means of complex 
r  

order (~, ~ = a + i v ,  as follows. 

Let a = ~ ( 5 ) > -  1. Define S~, by 

( ' ;  s ~ =  5 ~ 1 -  ~,, (11.1) 

where, of course, the principal value is taken for the complex exponentials appearing 

in (11.1). Thus 
S~R=A~/R ~, where A ~ =  ~ (R2-v)~a,.  (11.2) 

v <  R I 

We note that  if ~ ( ~ ) > -  l /p ,  then S~R, as a function of R, is locally in L r. 

The relation between S~, for different complex 5's, is contained in the following. 

LEMMA 4. Let fl, 8, be complex numbers, ~( f l )>0 ,  ~((~)> - 1 ,  and ~ (fl-t-(~) >0.  

Then 
R 

A~,~ 2 1 ' ( 5 + f l + 1 )  t" = F--(6%-1- i F (fl i .  (R2 - t2)t~-I A~t d t, (11.3) 
0 

the. integral converging absolutely. 

Proo/. We recall that  SR is locally in L p, as long as ~ ( ( ~ ) > -  1/p. Now, since 

~ ( ( ~ ) > - 1 ,  ~ ( f l )>0 ,  and ~ ( f l + 5 ) > 0 ,  we can find exponents p, and q so that 

1//p+ l / q =  1, and both 
R R 

flA?.tl  t, llq t 
0 0 

converge. Thus the integral in (11.3) converges absolutely, by Hhlder's inequality. 
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Now, A~= ~ ( t~-v)Oa, .  Therefore to verify the identity (11.3) it is sufficient to 
v < t I 

verify that  
R 

2 P ( 8 + f l +  1) f (Rg - v)'~+~ - F (~ + 1) F (fl) (R~ - t~)~-I (t~ - v)~ t d t, 
v 

for ~(~)>0, ~(6)>-1, ~(~+8)>0. (11.4) 

We see first that  the integral in (11.4) converges absolutely, by the same argu- 

ment used to establish the absolute convergence of the integral (11.3). For fixed fl, 

this argument also shows that  the convergence is uniform in 8, whenever 8 is re- 

stricted to a closed bounded set lying in ~ ( 6 ) > -  1, and ~(fl  + ~t)>0. Thus for fixed 

fl, the right side of (11.4) is analytic in 6; when 8>0 ,  however, (11.4)is easily 

verified by the well-known equation of the Beta function. Since the left side of (11.4) 

is clearly analytic in 8, (11.4) is then demonstrated for all values of /5 and 8 in 

question. This concludes the proof of the lemma. 

Let now [ ( x ) = [ ( x l ,  x 2 . . . . .  xk) be of period 2~ in each x~, and let it be intc- 

grable over the fundamental cube Qk. We form the Fourier expansion of ](x) 

/ ( X ) "  ~. a n e  'n'=, (11.5) 

where a n = (2 ~)- k f / (x) e-'~~ d x. 
Qk 

If 8 is complex, , ~ ( 6 ) > -  1, we define S~n(x) by 

S ~ ( x ) = S ~ ( x , / ) =  2 1 -  { 2 a , e '~}  
v< R, Inp-p 

. . . .  a,  e t~.  (11.6) 
I n l < n  

n 2 - -  2 -  H e r e  I n 12 = t • nz •  + n~. We may now extend Bochner's representation theorem 

to summability of complex order. 

L X M~t A 5. Let  [ (x) be integrable over Q~, and  let ~ ( 8 ) > � 8 9  6 = a + i z .  Let  

S~  (x) be as de/ ined above. Then ,  

c o  

( x )  = clR*~-~f /(x; t) t ~-~-1 d~+j~ (tR) dr, 
0 

(11.7) 

where c I = 2 ~- t k + 1 F ( 8 + 1) { F (�89 k ) } - 1 ; the integral in (11.7) converges absolutely. 

8 -- 583801.  Aaa mathematica. 100. I m p r i m 6  le 25 o c t o b r e  1958. 
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Proof. We assume as known the ease where (~ is positive and di>�89 

Now for each fixed x and R, the left side of (11.7) is clearly analytic in (~. To prove 

the identity (11.7) it will therefore be sufficient to show that  the right side of (11.7) 

is analytic in (~, when ~ (5)> �89 ( k -  1). Thus the proof of the lemma will be concluded 

as soon as we show: 

(i) for each fixed x and R, the integral 

f f (x; t) t ~k-6-1 J~+t~ (t R) dt (11.8) 
0 

converges absolutely and uniformly in d}, whenever dt lies in a closed bounded set 

within ~ (d}) > �89 ( k -  1) ; 

(ii) the integral in (11.8) above is analytic in 5 for each fixed x, R > 0  and t > 0 .  

For this purpose we recall the following well-known facts in the theory of Bessel 

function. (2) 
1 

F(r189 ( l - u 2 )  ~-t cosu tdu ,  ~ ( ~ ) > - ~ .  (11.9) 

o 

[Jr t>~l, ~>~0. (11.10) 

]J~,,n(t)l<~Ar t>O, E>~0. (11.11) 

By (11.9) we see that  for each fixed x, R > 0 ,  and t>O, the integrand in (11.8) is 

analytic in 5. We also recall that  

U 

f l f ( x ; t )  l tk- ld t<~Au ~, if u>~u0>0. (11.12) 
0 

We now break up the range of integration for the integral of (11.8) into the 

intervals (0, l /R) ,  and (1/R, ~ ) .  We further break up the interval (I /R,  c~) into 

intervals of the form (2"/R, 2"+1/R). Thus we write (11.8) as 

I/R 2n+llR 
fb 

I '  (x; t),]k 6~-1 J•t ,k (' R) d t +  ~.. ..]1 / (x; t) t 'k- ~J-1 g~§ (t R) d, .  ( 1 1 . 3 )  
�9 n-o 
0 2nlR 

If we replace each integrand in (11.13) by its absolute value, the resulting sum 

may be estimated as follows. The first term in (11.13) may be estimated by (11.11), 

(1) The proof of this  case m a y  be found in [6], Chapter  V. 

(2) See the references in Lernma 8, below. 
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and each term in the infinite series may be estimated by (11.10). Combining these 

estimates, we obtain as an estimate for the absolute convergence of (11.8) the fol- 

lowing: 

l IR  2"  ~ l IR 

A;eV*lR "+~ [l(x;t) I tk-~dt-~-A" d'"'tR -t ~ 2 -(tk't+")" II(x;t)lt~-~dt, (11.14) 
n-- 0 

0 2n /R  

where 5 = a + i ~. 

By (11.12) the infinite sum appearing in (11.14) may be estimated as follows: 

A'ae't~l R -k+t ~ 2 -(~-�89 (11.15) 
.=0  

This last series converges when a > �89 ( k -  1); that  is, when ~ (6) > �89 (k - 1). There- 

fore the integral (11.8) converges absolutely when ~ ( 6 ) > � 8 9  ( k - I ) ,  and by the above 

estimates the convergence is uniform in any closed bounded set within ~ ( 6 ) >  �89 ( k - 1 ) .  

This concludes the proof of the lemma. 

CHAPTER II  

Local izat ion 

12. Outline of method 

Let ](x)=[(x x . . . . .  xk) be a periodic function, integrable over the fundamental 

cube Qk. Assume that  /(x) vanishes in the e-sphere, 

(Ixl =x + . . .  

We consider the spherical Riesz means of order �89 ( k -  1) of the Fourier expansion 

of /(x), evaluated at the origin: 

k~R(k-1) (0) = 8 ~  Ck- 1)(0;  f ) =  

where a , = ( 2 z )  -k f / ( x )e - i "Xdx .  
Qk 

~Z 1 -  c,~, (12.1) 
Inl<n 

The crux of the proof of the localization theorem for L p, 1 < p, (Theorem (L} 

in w 5) will consist in the proof of the following inequality: 

sup l<p.  (12.2> 
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Here /(x) is any function in L"(Q~,) which vanishes in the e-sphere, Ix I ~<e; 

A~.p is independent of ] (x). 

For this purpose, we introduce the operator U~ (0)= U~ (0, i t) defined by 

= ~ 1 -  In[~an, for ~ = ~ + i v ,  -�89189 (12.3) U ~  (0) o<l < 

We notice that  if ~=0 ,  then (12.3) reduces (except for the constant term) to 

(12.1). 

We then prove the following two "boundary-line" results 

sup I U~ (0){~< B,. ,  {] fl{~., if ~ (2) = a ~< O, (12.4) 
R~>0 

sup{U~(O){<C,. ,{ l l{{ ,  if ~(X)---a>0.  (12.5) 
R>~0 

B,.x and C,. z will be appropriate bounds; their estimates will be of importance later. 

Basic to the consideration of the above is the following "kernel": 

H(~ k) ([ x ]) = f e - 'xv (1 - ]y ]u)t(k-x'~a ly ]ady 1 dyz . . ,  dyk. (12.6) 
Ivl<~l 

Now (12.5) will follow rather easily from the fact tha t  the kernel H(~ k) (Ix I)will 

be integrable at infinity, when ~ ( ; t )>0 .  The deduction of (12.4)will be more subtle. 

Since it includes the result for )t = 0, it may be viewed as a variant of the localiza- 

tion result for L 2. Once (12.4) and (12.5) have been proved, then (12.2)can be 

deduced by the convexity-interpolation argument mentioned earlier (Lemma 1). 

In this chapter we shall adopt the following procedure. In w 13 we shall ob- 

tain an asymptotic estimate for the kernel H~ ~)({x{), ( ; t = a + i v ) ,  for large values of 

Ix], all values of v, and - �89189 In w 14 we shall derive the L 2 result (12.4). 

:Next, in w 15 we shall prove the L I result (12.5). We then obtain the general 

localization theorems in w 16. 

13. Aymptotie formula for Hx(~) (u) 

We consider the function H(~ ~) (u) defined by 

H i ~ ' ( I x l ) -  - f (1-lyl2)~(~-l)+~lYl~e-'X~dy,;t=a+iv, (13.1) 
[Yl<I 

the integral being taken over the solid unit sphere in k dimensional Euclidean space. 

As is well known, a Fourier transform of a radial function in k dimensions may be 

(1) The l imitat ion -~t < a ~< ~ is made  for the sake of convenience. 
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Thus we m a y  

LOCALIZATION A N D  S U M M A B I L I T Y  OF M U L T I P L E  F O U R I E R  S E R I E S  

writ ten as an appropr ia te  Fourier-Bessel t ransform, (see [5], p. 69.) 

write (13.1) as 
] 

H~ k) (u) = (2 ~)tk u-�89 f (1 - t2 )  � 8 9  ttk+aJt(k 2) (u t) dt. (13.2) 
0 

We shall prove the following.. 

T H E O a E M  1. Let 2 = a + i v ,  �89189 u>~l. Then 

Hik)(u)=A(~)u-~-~+A(~2)u-k-~cosu+A(~3)u -k ~ s i n u + R ( ) , u ) u  -~-~ ~, (13.3) 

I A(~')I <~ A e 2"M, i = l, 2, 3 with 

and also 

Ren~arks. 

I R (2, u)] ~< A e 2"M. (1) 

(i) The  dependence on k ( = n u m b e r  of dimensions) will not  be ex- 

hibited in the above constants,  and those entering in the proof. 

(ii) The funct ion H(~ k) (u) m a y  be t ransformed into a generalized hypergeometr ie  

function, (see [7] p. 178). For  2 fixed, an estimate like (13.3) follows from the theory  

of asympto t i c  expansions of these functions, such as in Fox  [8]. However ,  for our 

purposes it is necessary to exhibit  the dependence of the remainder  of the asymp-  

totic formula  on the  imaginary  par t  of ~t. An  a t t emp t  to adopt  the  t r ea tmen t  in 

[8] for our  case would seem very  prohibitive.  We shall therefore derive (13.3) from 

"scra tch" .  The proof will be great ly  simplified by  making use of certain identities 

in the theory  of Bessel functions.  

Proo[. We shall first p rove  a series of lemmas. 

oO 

L E ~ M A  6. Let ~p(u)=u-t(~ 2)fq~(Q)e~kJi(k_2)(~u)de, 
o 

and let A (4) = d2~ + (k__- 1) d__~r 
d~* ~ d~ 

Suppose that ~ has 2 q continuous derivatives .Let q be an integer so that 2 q ~ k-~ 2. 

in (0, c~), and that 

(1) The estimate A e 2nlv] contained in Theorem 1 is not the best possible (in v). Since Lemma 1 
allows for a very large growth in the imaginary parameter, we have not bothered to state more pre- 
cise estimates, especially since it would make the notation even more unwieldly. As a matter of fact 
the estimate can be sharpened to Ae ~lvl, for any e>0. The same remarks can be made for most 
similar estimates in this paper. 
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r 

0 

Here, A ~ (4') = A ( h  "-' (r  etc. 

Conclusion: [ ~ ( u ) [ < w k ( 2 n ) - i ~ M u  -k-2, i/ u>~l. 

and 

then  

Here, eok is the ( k - 1 )  dimensional volume o] the unit sphere. 

Proo] o/ the lemma. We shall make  use of the folJowing fact  (quoted  above): Let, 

/ (x~ . . . . .  x~) = r (q), o 2 = x~ + . . .  + ~, 

F ( y  1 . . . . .  yk)=(2Zt)-�89 f e '~ U / ( x  1 . . . . .  xk)dx,  
B k 

F (Yl . . . .  y~) = (I) (u), z ~ , U = Y l  -f- . - .  + y k -  

I t  is also well known tha t  A (r is the s tandard  k-dimensional laplacean of / (x x . . . . .  x~). 

Hence 

1~12~162 -~ f ~"~Ao(t)dx I 
Ek 

< ( 2 ~ )  - ~  f I •  
Bk 

oo  

0 

=eok ( 2 ~ ) - t k M .  

Therefore ,  I (b (u) ] ~< o)k (2 ~)-  �89 M u -2q ~< wk M (2 ~)-  tk u k-~, 

if u>~ 1. This concludes the proof  of the lemma. 

LEMMA 7. Let ~ = ~ + i z l ,  ~>~-�89 and u>~l. Then 

f e -~ t t ~  J~(k-z) (tu) dt = B;.  u- lk-c-1 + R~o (~, u) u-�89 
0 

(13.4) 

where ]Br �89 and ]R ( x ) ( $ , u ) l < A ~ e  "l''. 

Proo] o/ the lemma. We make use of the following known identities: 

f e - t t " J m ( t u ) d t = ( l + u  2) t("~x) F ( m + n + l ) p , m  ( ( l + u 2 ) - t ) ,  
0 

(13.5) 

and  
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2 0 
p~m (cos 0) F (m+�89  (27e) ~(sin 0)-m [cos (n+ �89 [cos ~ -  cos O]m-~'dv2, (13.6) 

0 
for 0<  0 < ~ .  

The first identity may be found in [2], p. 29, formula 6; the second may be 

found in [1], p. 159, formula 27. 

In the above formula we shall let n =  �89 and m=�89 (k -2 ) .  Now define 

Be by 
l)t(k-~) (13.7) B r  (k+ ~ ) , ~ + ~  (0). 

By choosing 0=  �89 in (13.6) we easily see that  

[Br t"tnt, $ = ~ + i ~ .  (13.8) 

By further inspection in (13.6), we may see that  

p~(~- ~) I F ( k + $ )  t~+r '(x)[ <<'Aet~t't, O<~x<<.�89 (13.9) 

(The dash indicates differentiation with respect to x.) 

For the choice of n and m made above, (13.5) becomes 

oo 
pt(2-k) t). / e-tt t~*~Jt(k_~)(tu)dt=(l+u~)-t(tk+r ~+r (( l+u2) - (13.10) 

0 

The asymptotic estimate of the right side can now be made as follows. First 

observe that  

[(l+u*)t(t*+r -(t~+~+2) forum>l ,  ~ = ~ + i ~ / .  (13.11) 

Next, by the mean-value theorem and (13.9), 

~�89 ((1+u9) - I~(k+~)PI(ki+{)(O)[<A$ei'l'lu -1, u>>-l. (13.12) 

A combination of (13.12) and (13.11) gives as asymptotic estimate for (13.10) 

F (k t ~ -k )  -�89 + ~) Pt(~§162 (O)u + R(1) (p., u) u --�89 -~-2, (13.13) 

where [/V x) (~-, u)] < A~ (1 + ]~/[) e i'l~l < A~ e "101. 

With the definition of Be made in (13.7) above, (13.13) is the desired asymp- 

totic formula. The estimate for Be in (13.8) completes the proof of the lemma. 
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L~MM.~ 8. Let ~ = ~ + i ~ ,  ~>~- �89  u>~l .  Then 

1 

f(1 - t2) ~(~-~§ t ~ J t (k -2 )  ( tU) d t  
0 

= (C~ sin u + D~ cos u) u -tk-~ 1 + R(2) (~, u) u -�89 -~ ~, (13.14) 

where ] Cr < A~ e t'lnl, [De[ < A~ e t'l'l, 

and ]R (~) ($, u) [ ~< As e "l'j. 

Proo/ o/ the lemma. We use the ident i ty  

1 

un-m Jm (u) 2 m-n-1 Y (m - n) = [ (1 - ~ ) ~ -  n-1 Jn (~o u) ~n+l d Q, 
0 

( m - n )  >0 ,  (n) > 0, (13.15) 

which m a y  be found in [2], p. 26. We also use the  asymptot ic  expansion 

J,+t,(u)= u - t c o s  u - ~ - ( # + z r ) ~  +R(3)(#+ir,  u), (13.16) 

where [R(S~(#+iv, u)]<~A,e'lVlu - t ,  if u>~l.  

This asymptot ic  formula m a y  be found in [1], p. 85. We then  take  m = k - ~ + ~ ,  

n = � 8 9  # = k - ~ + ~ ,  and ~=~1. A straight-forward combinat ion of (13.15) and 

(13.16) leads direct ly to  (13.14) and the  proof of the lemma. 

Proo[ o/ Theorem 1. Consider the  integral 

[1 

f (1 - t2) t(k-1)+~ t |k+~ Jt(k-e) (tU) d t, 
0 

~t = a +  i t .  (13.17) 

The  main  contributions to  its asymptot ic  expansion will be due to the "sin- 

gularit ies" of the expression (1-t~)l(k-1)+att~+~, a t  t = 0 ,  and t =  1. For  this reason 

we separate the  two contributions as follows. 

Le t  ~ (t) E C oo (0, 1), with ~o (0 = 1, if 0 ~< t ~< ~, and ~0 (t) = 0, if ~ ~< t ~< 1. Then  write 

1 

f (1 - t2) ~ (k -1 )+ j l  t ~k+~ Ji(*-~) (tu) d t = I 1 + 12, (13.18) 
0 

! 
where 11 = f (1 - t~) �89 t i~+a ~o (t) Jt(~-2) (t u) d t, (13.19) 

0 
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1 

and 12 = f (1 - t2) t(~-1)+~ t ~k+~ [1 - ~v (t)] Jt(k-2) (t U) d t, (13.20) 
t 

The integrand in (13.19) has now only one "singularity", at t=O.  In order to 

obtain an asymptotic expansion for it  we shall compare it with the integral in (13.4) 

which displays the same singularity. Similarly, (13.20) will be compared with (13.14). 

Consider (13.19) first. 

Let  q be the smallest integer so that  2 q~> k +  2. Define a polynomial P (t) of 

degree 2 q by the following properties: 

2q 

P (t) = 1 + ~ aj tJ; 
i -4 

if we set • (t) = e - t  P (t) - (1 - t~) t(k-1)+a ~p (t), (13.21) 

then 6(n~ (0)=0, O<~n<~2q. (13.22) 

I t  is clear that  the conditions (13.22) determine the coefficients aj completely. 

Because these conditions involve the derivatives up to order 2q of W ( t ) (1 -  t~) ~(~-l~+a, 

then 

l a~[~< A (1 + 12 I~q). (13.23) 

By Taylor's theorem with the remainder, (13.22), and (13.23) it also follows that  

IO,"'(t)l<A'(l+l,~l~)t ~-=, 0<n<2q,  0 < t < t .  (13.24) 

Moreover, using the fact that  v 2 (t) vanishes for t >  t ,  we also get 

I,~,",(t)l<A'(l+lXl~q)t~ -', 0<n<2q,  t>b. (13.25) 

Now consider A 1 (u) defined by 

A 1 (u)  = 1 1  -- f e - t  P (t) t�89 Jr(k_2 ) (tu) dt. (13.26) 
0 

By (13.21), and (13.19) we have 

- A 1 (u) = ~ (~ (t) t �89 a Jt(k-~) (t u) d t. 
0 

Because of (13.24) and (13.25), it is an easy m~tter to verify that  the function 

~b(t)=t~(t)t ~ satisfies the conditions of Lemma 6, with M = A ( I + ] 2 I ~ q ) .  Thus 
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[ A x ( u ) l ~ < A ' ( l + 1 2 [ 4 q ) u  -�89 u>~l .  (13.27) 

]R ~4) (2, u) I ~< A (1 +[214q) e "~TI ~< A e ~"1.1, 

[ Ba[ <~ A e ~-'M ~ A e "2.1, 

with ] t = a + i v ,  and - �89189 

A combina t ion  of (13.27) and  (13.28) gives us the  a sympto t i c  es t imate  for  11 

(because of (13.26)). We  thus  have  

I i  = Ba u-l~-a-l  + R (4~ (2, u) u -tk-a- 2, 2 = g + i v ,  (13.29) 

with [Ba [ ~< A e ~1~1, [R (n' (2, u)[ <~ A e 2"1"1, - �89 ~ (~ <~ .~, and u >/1. 

We now es t imate  I~ in a manne r  similar to  the  es t imate  for I r 

2q 

Le t  Q (s) = 1 + ~ bj s j be the  po lynomia l  of degree 2 q de te rmined  by  the  following 

conditions: If  we set 

~. (t)--= Q (1 - t 2) - t ~ (1 - ~0 (t)), (13.30) 

then  5~m (1) = 0, O<~n<~2q. (13.31) 

Reasoning as before it  follows t h a t  

[bj[~A (1 + ]~[2r (13.32) 

* t  We now redefine ~2 (t) b y  sett ing (~ ( ) = 6 2 ( t )  if 0~<t ~< 1, d~ ( t ) = 0  if t >  1. Be- 

cause of (13.31), this  modif ica t ion  does no t  des t roy the  cont inui ty  of der ivat ives  up  

to and including order 2q. 

Clearly therefore,  (13.33) 

[6~(")(t)l<<.A(l +];~]2q), �89 and O<<.n<<.2q. 

for u ~  1, where 

We m a y  now app ly  L e m m a  7, with Q=2 ,  2 + 1  . . . . .  ; t + 2 q .  We  thus  obta in  

~ e t p (t) t t k+a J t  (k- 2) (t u) d t = B~ u-  ~ k-~.- x + R{4} (2, U) U- ~ k a-2 
0 

(13.2s) 

o o  

f e - tP( t )  tik4aJtck_2)(tu)dt 
0 

2q o o  

= e-t t lk '~Jlc~_~)(tu)dt+ ~ a j f  e-tt�89 
0 i - I  0 
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We also recall t h a t  1 - ~p (t) = 0, for  0 ~< t ~< ~. 

T h u s  ($~(t)=52(t)=Q(1-t2) ,  for 0~<t~<],  

a n d  therefore f [A q ((~ (~)) I ~k 1 d ~) ~< A '  (1 + 1412q). (13.34) 
0 

Now consider A 2 (u) defined by  

1 

A 2 (u) = I a - f Q (1 - t ~) (1 - t~) i(~ 1)+~ Jt(k-2) (tu) d t. 
0 

(13.35) 

Because of the  definitions (13.20) and  (13.30) we have  

1 o9 

- A 2 (u) = f 52 (t) t ~ k j i ( ~ _  2) (t u) d t = f 5~' (t) t t k j t ( ~ _  ~) (t u)  d t. 
0 0 

(13.36) 

We  see by  (13.33) and  (13.34) (and the fact  t h a t  ~ (t) = 0  for t>~ 1) t h a t  ($~' (t) satisfies 

the  conditions of L e m m a  6, wi th  M = A  ( 1 +  1412~ Thus,  

[A 2 (u)I < A' (1 + ]4[ ~) u -~"3 ,  u>~ 1. (13.37) 

:Now 

1 

f Q (1 - t 2) (1 - t2) t(k 1)+4 tikjt(k_2) (tu) dt  
0 

1 2q 1 

= f (1 - t2) �89 ~ ~ t Ik Jt(k-2) (tu) dt  + ~ bj f (1 - t2) |(k-1)+2+! t tk Ji(k-2) (t u) d t. 
0 t - 1  0 

We m a y  now app ly  L e m m a  8, with ~ = 4 ,  ~t+ 1 . . . . .  4 + 2 q  to the  above.  A 

combina t ion  of this and (13.37) gives us an es t imate  for (13.35). I t  is 

12 = (C~ sin u + D~ cos u) u -t~-~-~ + R (s~ (4, u) u - t~-~-a,  (13.38) 

where  I Ca] < A e ~'~l, IDa [ < A e ~M, [R '~, (4, u) I < A e ~''j, 

4 = ( r + i %  - �89189 and u ~ l .  

I f  we combine (13.38) wi th  the  a sympto t i c  expansion for 11 in (13.29)we obta in  

the  a sympto t i c  expansion for (13.17). We  also not ice  t h a t  the  funct ion H(~ *) (u) (de- 

fined in (13.2)) differs f rom (13.17) only  by  a fac tor  (2~)~ku- i~+l ;  thus  the proof  of 

Theo rem 1 is complete.  
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�9 1 4 .  T h e  L 2 e s t i m a t e  

Le t  ] (x) be integrable  over  the fundamen ta l  cube Q = Qk, and let it be periodic. 

Define U~a (x ; / )  by  

U ~ ( x ; / ) =  E a ,  1--  I~l~, '~~, 2 = a + i v ,  --�89189 (14.1) 
O<lnl<n -R~-] 

The  a .  are the  Fourier  coefficients; a .  ~ (2 z~) -k f / (x) e -~ 'x  dx .  The main  resul t  
o 

of this section will be the  following: 

T ~ ~ 0 R ~ ~ 2. Let 1 >1 e >~ O, t /ixed. Let / (x) 6 L 2 (Q), and assume that / (x) 

vanishes in the sphere Ix I<<. e. Then 

sup I u%(o,/)l<B,.~lllll~, - � 8 9  (14.2) 
oo>R>O 

We also have the estimate 

IB~.,l<.B,.eS"l'l ,  2 = a + i v ,  (14.3) 

The  proof  of the  theorem will be the  consequence of several  lemmas.  The  fol- 

lowing l emma  m a y  be considered as a just i f icat ion of the  formal  relation: 

U~ (x , / )  = ok (2 :~)-k R~+~f H~ (R t) ] (x; t) t k - 1  d t. (1) 
0 

LEMMA9. Let / (x)  be a trigonometric polynomial, and suppose 

f / (xl, x~ . . . . .  xk) d x = O. 
Q 

Suppose that %0 (s) is continuous in 0 < a < s <~ b < oo ; then 

b 

f U~ (x , / )  %o (s) ds  = lim r (2 n ) - k  f e-nt H~ (t) 1 (x; t) t ~-1 dt, 
a t~--~O 0 

(14.4) 

where 
b 

H; (t) = f s ~§ H~ (st) ~o (s) as .  
a 

Proo/ o/ the lemma. W e  have  

lyl<l  

(1) See also Lemma 11, below. 
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Therefore by the Abel-summability of the Fourier inversion we have that  the 

following 

lim (2~) -k f H~(Ix[)e'~Ue-nl~'dx (14.5) 
~--~0 F~ k 

converges uniformly in y, if lullS>0; moreover, this limit is (1-]y]U)t(~-i)+alyla, 

if l y ] 4 l ,  zero otherwise. By a change of variable we then have, for each fixed y, 

lul>0, 
lira (2 z)-k" 8~+a f H~ (8 ]x [) e 'xu e -"lzl dx  (14.6) 
v--*0 Ek 

converging uniformly in 8, O<a<~s<b< oo, the limit being (1 - 1 y [ 2 ~ 2 )  ](k-1)+~l ly] jl, 

if [y]~<8, zero otherwise. Now in the above, let Ix]=! ,  and y = n ,  (where n is a 

vector with integral components, I n ! , 0 ) .  Because of the uniform convergence in 

(14.6) we may integrate the expression in a<.s<~b, after multiplying by ~p(s), and 

interchange limits. Thus we obtain (14.4) in the case ! ( x ) = e  ~~,  ] n ] * 0 .  A finite 

linear combination of such monomials will complete the proof of the lemma. 

L]~M~A 10. Given a !ixed e, l~>e>0;  assume that ! (x )eLa(Q)  and ! (x )=O i t 

I xl<~ s. Let q~ (8) be o/ class C a in the interval O<~s <~ 1. Define U *~ (x,/)  by 

(14.7) 

Assume /urther that f l ( x ) d x = O .  Then 
Q 

sup/U~a(0, [)l <--.A~e3"lTl ll/lla, , ~ = a  + i v ,  - �89 <~ ~r<~ o. (14.8) 
R>~I 

Proo! o/ the !emma. Define H~ (R, t) by 

H~.(R, t )= I §  (R+s)~+~cp(s)H~((R+s) t )ds .  
0 

(14.9) 

According to Lemma 9, then 

oo 
U~ ~ (0,/) = lira oJk (2 z) -  ~ f e-'~ H~ (R, t) / (0; t) t k- 1 d t, 

~--+0 0 
14.10) 

where 
(,ok 

y. 
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We shall first show that  if /(x) is an exponential polynomial and f / ( x )  d x = 0, then 
Q 

if R ) I ,  

IU*n~(O,/)l~o~l,(2~t)-~']fH'~(R,t)[(O,t)tk-ldt +A~e3"ITI[I[II, , (14.11) 
0 

with A,, independent of R. For this purpose, we break up the range of integration 

in (14.10) into the intervals (0, e) and (e, oo). I t  is therefore sufficient, to show tha t  

o o  

If (R, t) / (O, t)dr I<<. A, Ilfll,, 
t~ 

(14.12) 

where A~ is independent of R and ~. We first claim that  H~ (R, t) has the following 

asymptotic expansion 

I H~ (R, t )  - Ai 4) t-~-a I < A~ e ~t't t -~-~ ' ,  (14.13) 

if R>~I, t>~e, 2 - - a + i v ,  and with A~ ) depending on R, but I A~4)I~Ae ~t~L with A 

independent of R. 

In fact, according to Theorem 1, the first three terms of the asymptotic ex- 

pansion of H~ k) (u) are 

A(~t) u-k-). + A(~) u-k-), cos u + A(~) u k-~. sin u. 

Applying formula (14.9) to the first term above, we obtain 

1 

0 

(R+s)k+).~b(s)t -k ~(R +s) k ).ds 

1 
8~k~1~2). 

=A' l)t " f (i+ R) ~b,s)ds. 
0 

This last is the term A(x4)t -k-~" which appears in (14.13), with 

1 
8'~ k - - 1+22  

A (4)= A~ 1) ,[ (1 + ~)  ~(s) ds. 

0 

Going over to the second term of the asymptotic expansion, A~e)u '~ ). 

then the contribution in (14.9) is 

1 
8)k  -1+2) .  

A~)t-k-). f 1 + ~  (R+s)~+~'~(s)(R+s)-k~).cos[t(R+s)]ds.  
0 

COS U,  
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Making use of the fact tha t  ~ (s)E C 1, we integrate the above integral by parts  

and obtain tha t  it is 

0 (t -1) uniformly in R, R>~ 1. 

Thus the entire contribution of A~)u -k-a cos u is incorporated in the right-hand 

side of (14.13). 

A similar argument  is applied to the term A~ 3) u -k-a sin u. Finally, the remainder 

term, R 0,, u ) u  -k=a=l, of the asymptot ic  expansion is also directly incorporated in the 

right-hand side of {14.13). 

Hence (14.13) is demonstrated.  

Now it is easy to see tha t  

o o  

f t - k -~ - ' l / (O , t )  Itk-idt<-..A~ll/lll if - � 8 9  say. 
$ 

Thus in order to conclude the estimate (14.12), we must  estimate the quant i ty  

oO 

A~4.) f e -ntt -k-k ] (0, t)t k 1 dt. (14.14) 
e 

By changing back to the cartesian coordinates x=(x ,  . . . . .  x~) in Euclidean space 

k-space, we may  write (14.14) as 

Ai 4, (ok)-' f e -'lzl [x[-k-a/(x)dx.  (14.15) 

We recall tha t  /(x) is an exponential pol3rnomial , periodic over the fundamental  

cube Q, - z e < x ~ < g ,  i - - 1  . . . . .  k; and tha t  I ] (x )  d x = 0 "  

Let  now Q~ denote the t ranslat ion of the cube Q by the vector 2zen, where 

n = (n, . . . . .  n~), n, are integers. Thus Q~ = Q + 2 ~ n, and E k = U~ Q", where the union 

ranges over all integral component vectors. Thus except for the constant A~ 4) (oJk) -1, 

we may  rewrite (14.15) as 

f e-~l~[x[ k ~'/(x) dx+YY,, fe-":~[x['~a/(x)dx, (14.16) 
{[x[>~e}nQ Qn 

where Z '  indicates tha t  we sum over all n, with In[~:0.  Since f / ( x ) d x = O ,  then 
Qn 

/ [, I (14.17) 
Qn Qn 
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Now it is a n  easy matter  to verify tha t  if x E Q" then 

I~,~ ~ I~1 - ~ - ~  - ~ - , ~  Inl ~ ~1 ~<A [1 + I~1] Inl -~-~-~ 

0 < ~ < 1 ,  2=(~+iv ,  -�89 

Therefore by (14.17) 

I f ~-"'" I~1-~-~/(~)ax[ ~<A I~l ' lnl  - ~ - ' ~  f I/(~)1 a- ,  
Qn Q 

if I~1"0 ,  

since fl/(x)la~=fl/(~)la~. Thus the infinite sum appearing in (14.16) is esti- 
Q Qn 

mated by 

AI~I(X'Inl -k-l-~) flfldx. 
Q 

Since -�89 then certainly Z'[n[-k-1-~ The first member of (14.16)is 

clearly estimated by A, f I t (x) Idx .  Combining these two estimates, we obtain as an 
Q 

estimate for (14.16) 

A.(I+I~I) f lt(x)ldx. 
0 

We thus obtain the estimate for (14.15), and then via (14.14) we arrive at the 

estimate (14.12). (Here we used (1 + ]3  ])e 2~1"1 ~< es=l'l.) Hence the proof for (14.11) is com- 

pleted, when /(x) is an exponential polynomial, and f / ( x )  d x--0.  A simple limiting 
O 

argument (keeping R fixed) shows that  (14.11) still holds if /(x)f iLl(Q),  and 

f / ( x )  d x = 0 .  If we now assume that  /(x) vanishes if [x[~<e, then /(0, t ) = 0  if 
O 

0~<t~<e. Therefore (14.11) becomes 

I u *" (0,1)1.< A. ~3~r I11111 (14.18) 

with A, independent of R, and /(x) assumed to vanish for Ix[ ~ e. The above com- 

pletes the proof of the lemma. 

COROLLARY. The conclusion el Lemma 10 still holds i/ we drop the assumption 

that f / (x) d x = O. 
Q 

Proo/. Choose g (x) as a fixed periodic function of class C ~ with properties 

g(x)=O, for Ixl<l, and fg(x)dx=l. Apply Lemma 10 to the function 
0 

h (x)=/(~)-g(x) f/(x)d~. 
0 
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Then clearly ffx(x) d x = 0 ,  and itx(x)=0 if [x[~<e. 
Q 

Moreover,  U~  ~ (0, it1) = U?r (0, it) - ( f it (x) d ~) V *~ , -  n ~-, g)- 
Q 

rr*~ t o I t  is easy to verify that  ] ~n ~ , g) [ ~< A, by the absolute convergence of the Fourier 

expansion of g (x).  Thus 

] U~ (0, jt)[ < A~ e a'l'l ][ it [[1 + AII it Ih, 

and the corollary is proved. 

Proof oit Theorem 2. We fix the function ~ (s) appearing in (14.7) once and for 

all, as follows: Let ~0 (s) be the polynomial of degree 2 k - 1  which satisfies: 

1 1 

f c f(s)ds=l,  fq~(s)s'ds=O, l < i < 2 k - 1 .  (14.19) 
0 0 

With ~ (s) so defined, the proof of Theorem 2 will be concluded as soon as we 

show that  

I UaR (0, / ) -  U*n a (0, it)[< A e a"l'l [[ it l I,, R >/2, (~4.20) 

where it is any function in L 2 (Q), and A is independent of R. 

Write / (x) ,.. Z an e "~'z. Then 

Z ] a.  [' = (2 . )  -~ f I / (~) I' ~ -  
Q 

We recall that  the number of lattice points in the spherical shell contained be- 

tween spheres of radius R - 1 ,  and R +  1, is 0 (R~-I). Thus an application of Schwarz's 

inequality yields: 

i s  

be' written as 
1 

(R~-n~)J(~-a)+aln]aa.-f { ~ ((R+s)2-n2)t'~-x)+a[n[aa.}cp(s)ds. 
l~<ln[</~ 0 X~<ln]< tt+s 

9 - 583801 Acta mathemat/va.  I00. I m p r i m 6  le 25 octobre 1958. 

(14.21) 

For the proof of (14.20) it is sufficient to show that  

R k-1+2~ UaR (0, it) --  R k -i+2a U,~ (0,/) (14.22) 

bounded in absolute value by Rk-l+2".A.eS"l~l[[/[I2. The quantity in (14.22) can 

(14.23) 
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We shall write (14.22) (or 14.23) in the form S 1 + S z, where Sz involves all terms 

with R -  1 < i n I < R + 1, and S 1 the remaining terms of the sums. Now if R -  1 < In ], 

then clearly (R 2 - n  9)~<2R; and similarly (R+s)  ~ - n  z~<4R. Thus for S 2 we have 

the following estimate 

[S~[ ~< A R �89 

Because of (14.21), this becomes 

I ~ l ~ l ~ l  . (14.24) 
R-I~<[n l<R ~-1 

(14.25) 

( R  9" - nZ)  t ( k - 1 ) + ; t  - ((R + s) 2 - n 2 )  �89 = c I 8 ~- c 2 82 . . .  § C2k -1 82k 1 § 0 2 k ,  

I o~  [ < ~ [ sup [((R + ~)~- ~)~(~-1,+,.](~, [. where 
0<~s<l  

Then it is an easy matter to verify, if In [<  R - 1 ,  that  

Io~I<A[I+IvI~],~ -~-~+~", a=a+ iv , - � 89  

(14.26) 

Now by Taylor's expansion, if 0 ~< s~< 1, 

(14.27) 

Substituting (14.27) in (14.26), and using the orthogonality relation (14.19)we obtain 

Is l l -<A[ l+ l~ l  ~] 5 I ~ ] t ~ + 2 ~  �9 
l~<]n l<R-1  

If we now use Schwarz's inequality, and the fact that  - � 8 9  < a ~< 0, we obtain 

IS 1 [~<A [1 + [z[ ~k] (Z [an[2) ! ~<A e a~l'l [[/[[z~<A e s=l~l R k-l+2a [[][[2, R>~ 2. 

Combining this with (14.25) we obtain 

IS 1 + S 21 ~ A e s~l'' R ~-1+~" [I/l[2- 

Since SI+S 2 equals the quantity in (14.22), then the above proves (14.20). If we 

combine (14.20) and Lemma 10, corollary, then we obtuin, whenever [ (x)= 0 for [x[~< e, 

N o w  

1 
$1= ~ (R2-n2)t(~-l)+ainl~an-f { ~. ((R+s)Z-ng)~(~ t'+~'lnlaan}qJ(s)ds. 

l~<ln[< R 1 0 l~<[n]< R - 1  

1 

Remembering that  / ~  (s)ds = 1, we may rewrite the above as 
0 

1 

$1=o~ l<t~f<R-l~ [(R2--nZ)l(k-1)+~--((R+s)2--n~)t(k 1)+a]cf(s)inlaa"ds" 
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sup I v ~  (0 , / ) l  ~< A.  e ~*' II/11~ + A e ~''' II/11~ ~< A: e ~'*~ 11/112. 
R~>2 

Since the above inequality is trivial if 0 < R <  2, we have thus concluded the proof 

of Theorem 2. 

15.  The  L 1 es t imate  

LEMMA 11. Let / (x)  eLl(Qk),  and assume that � 89  then 

U~ (x, [) = cok (2 7t) - k R ~  ~ ~ H I  (R t) [ (x; t) t k- x d t, (15.1) 
0 

the integral converging absolutely. The quantity U~ (x, [) is de[ined in (14.1), and the 

kernel H~ (u) is de[ined in (13.1). 

Proof. Using the asymptotic estimate of Theorem 1, we see that  for fixed R, 

the kernel Rk+~H~ (R Ix I) is absolutely integrable over Ek, whenever R( ; t )>0 .  Thus 

we may convolve Rk§ with an arbitrary periodic integrable function /(x),  

and the usual multiplication formula for the Fourier coefficients holds. The Fourier 

transform of R~§ is immediately deduced from (13.1), and from this the 

proof of Lemma 11 is concluded. 

THEOREM 3. Let e be [ixed, e > 0 .  Assume that [ (x )ELI(Q)  and that / (x )=O,  

i/ Ix [ <~ e. Assume [urther that �89 >~ ~tl (,~) > O, ,~ = a + i 3. Then 

2~ r, 1 
sup I V~ (0, l) l ~< A,.  e " -"  II/Ih (15.2) 
R~>O O" 

Proo/. If we make use of (15.1) and the fact [(O;t)=O, if O~<t~<e, then we have 

r 

U~ (0,/) = wk (2 ze) -k R ~' " f  H~ (R t) [ (0, t) t k-1 d t. (15.3) 

If we use the asymptotic formul~ for H~ (u) of Theorem 1 we then see that  

I U~ (0,/)1 < A~ e 2~i'1 ~ t-~-"]/(0; t)[t k-1 d t, (15.4) 

where A~ is independent of R. Now we use the fact tha t  

1 

f I/(o; t)le-~at<~A II Ill:,. 
0 

9*  -- 583801  



124 ~.L~S M. STEm 

and 

Thus (15.4) becomes 

and therefore 

n + l  

f I / (o ; t ) l d t<AI I / Ih ,  n = l ,  2 . . . . .  
n 

[U~(O,/I<A:e ~t~'" ~ n-l-a I[/Ih 
\ n - I  / 

I u~ (o, l) l<A.e ~tr Illlh, 

with A, independent of R. This concludes the proof of Theorem 3. 

16. The localiT~ation theorems 

The main result is easily derivable from the following. 

THEOREM 4. Let /(x)ELP(Q), l < p ~ < 2 .  Assume that an e is given, l>~e>0 ,  

and that / (x)=O, i/ [xi <~e" Let 

[nl'i~(~-l)a. 

be the Riesz means o/ order �89 ( k - 1 )  evaluated at the on:gin. Then 

sup iS~(~-I'(O)[<<.(A~/(p-1))ii/II,, l < p ~ < 2 .  (16.1) 
R~>O 

Proo/. I t  is clearly sufficient to prove (16.1) for S~ (~-1) (0) in place of StR (k 1)(0), 

where 

S~ i(k-1) (0) = ~ a ,  e t'z 1 - 
0<lnl<R 

This follows from the observation tha t  

I s~ ~-I) (0)- sg ~`~-1, (o) l= l a0l < (2~)-~ f l /(x)ldx< (2~)-~'~ II/ll~. 
Q 

We shall prove the result for S~t(k-x)(0) by applying Lemma 1 to the operator 

U~n (0,/), as follows. Assume first tha t  1 < p < 2, since the case p = 2 is contained 

in Theorem 2, when X=0.  

We now define an analytic family of operators T z mapping simple functions of 

M to measurable functions of N as follows. For our fixed e, let M be set of points 

in the fundamental  cube Q complementary to the sphere Ix[ <e ;  define d #  to be the 

induced Lebesgue measure on it. 
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N, we pick an arbi trary positive Ro, and we identify N with the 

The family 

To define 

interval [0, Ro], giving the space N the standard Lebesgue measure. 

T z ( ' )  is now defined by  

Tz (/) (R) = U~ (0, f), (16.2) 

where 2 = 2 (z) = (p - 1)/2 - z .  p /4 .  (16.3) 

In defining U~(0 , / )  we have set / = 0 ,  for I x l < e .  Following the notation of 

Lemma 1, we shall let P1=1,  T2=2,  q t = q 2 = q = ~ 1 7 6  t will be the parameter  so tha t  

0 < t < l ,  and 1 / p = l - t + t / 2 .  

(We should point out here tha t  it will be important  tha t  estimates tha t  follow 

are made independently of R 0. At the conclusion of the proof we shall let Ro-->c~. ) 

I t  is an easy mat te r  to verify tha t  the family of operators T z is an analytic 

family in the sense of (i), (if), and (iii) of w 8. 

We shall also use the following notation, which should not lead to confusion: 

M Qfl{Izl > ~} 

where 

and 

We then claim the following bounds on T z (]): 

II T,~ (/)II,~ < Ao (y)II f l I .  

II TI§ (f)I1~ < A1 (y)li f]l~, 
A o (y) <. (A~/(p - 1)) e "r~l, 

A 1 (y) ~< A, e s'l*l/2. 

(16.4) 

(16.5) 

(16.6) 

(16.7) 

(16.4) and (16.6) follow from Theorem 3, since in this ease ) , = ~ ( i y ) = � 8 9  ( p - 1 ) -  

- i y p / 4  and � 8 9 1 8 9  while I ( 2 ) = - y p / 4 .  

(16.5) and (16.7) follow similarly from Theorem 2. I t  should be noted tha t  the 

bounds above do not depend on R 0. 

We may  then apply Lemma 1 to (16.4) and (16.5). The conclusion is 

where 

II T~ (f).ll~ ~ A, II/I1,,, (16.8) 

+ o o  -{-oo 

log A t = f log A 0 (y) eo (1 - t, y) d y + f log A 1 (y) o) (t, y) d y. 
- oo  -oo  

Now observe tha t  

T, (/) (R)= U~ ~, (0,/), and 2 ( t ) = � 8 9  

(16.9) 
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Since 1/p = 1 - t/2, then ~ (t) = 0. Thus 

T t (/) (R)= U ~ (0,/) = S~ (k ~) (0). 

Therefore (16.8) becomes 

sup I S~ +(k-l) (o) 1 < A~ II/II." 
O<R<~R, 

To calculate the bound A t we proceed as follows. 

+oe 

f +o(l-t,y)lYldy<A; 

where A is independent of t. 

We also note that  eo (t, y)/> 0 and 

f r e ( l - - t ,  y)dy~< 1; 

We note first that  

+ o o  

f ~(t,y)[yl~y<A, 

f to( t ,y)dy<~l .  
- o o  

(16.10) 

This last fact follows from the fact tha t  r (t, y) is the "Poisson kernel" for the 

strip 0~<t~<l, - o o < y < o o .  

Thus using (16.6) we obtain 

1 3st 
log A t < log ~ _ ~  + log A~ + st A + log A~ + --~ A. 

Therefore, At <~ A ~ / ( p -  1). (16.11) 

Combining (16.11) and (16.10) we get 

sup IS'nt(~-l)(O)l<~(A'/(p-1))ll/llp, l < p < 2 .  (16.12) 
0< R< R, 

We note that  the calculations made above for the bound A t where independent, 

of R0, and therefore A: in the above is independent of R 0. Letting R0-+oo we obtain 

sup i sh+(~ 1)(0)[ < (A:/(p--  1))[[/II~, 1 < p < 2, 
R~>0 

whenever / is simple. A standard limit argument, proves the above for general /E L p (Q). 

By  the remark made at  the beginning of the proof, this suffices for the proof of the 

theorem. 

As a consequence of the above theorem we obtain: 

THEOREM 5. Let l>~e>0;  then there exists a constant B+, so that whenever 

] ( x ) e L  log § L(Q), and / (x)=O /or [x]~<e, then 
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sup I (O) I B, f l / (x) I log  + I I (x) l d + B,. 
R>~0 Q 

(16.13) 

Proo/ .  If we fix R, then Theorem 4 implies that  for every simple [, vanishing 

(0)[< (AJ(v- 1)). 1 < v <  2. (16.14) 

A~ is independent of R, of course. 

Now apply Lemma 2 to the above, where T(/)=S~(k-1)(O); the space N con- 

sists of the single point with measure 1; and r= 1. Thus we obtain 

I S~ (k-l) (0)]< B~ ( f  I[ (x) l l~ + I[ (x) ldx  + 1), (16.15) 
O 

where Be is independent of R. This concludes the proof of the theorem in the case 

when /(x) is simple. The general case then follows by a standard limiting argument. 

We are now in a position to prove our main result. 

THEOR~.ra 6. Let / ( x ) e L  log + L(Q), and assume that [(z) vanishes in a neigh- 
borhood of the point x o. Then lira Sin(k-a) (Xo, ]) exists and is zero. 

R..-~ oO 

Proo/. We may, after translation, assume that  x o = 0, and that  our neighborhood 

contains the sphere Ix[ ~<e, for some e, 0 <  e ~< 1. 

I t  will be sufficient to show that  given any ~/>0, there exists an R o = R  0 (r/), 

so tha t  

[S~R(k 1)(0, / ) [ <  7 '  whenever R > R o (r/). 

Now for any ~, 0 < $ ,  (16.3) may be rewritten as 

n>~oSUp [S~(k-')(O)I~<B~ f l/(x) llog t [-~! dx+~eB~. 
Q 

(16.16) 

This follows by writing f(x)/~ instead of /(x) in (16.3). Now choose ~ no small 

tha t  ~ B , <  ~//3, and keep ~ fixed. 

Next write / (x) = [1 (x) +/2 (x) where [x (x) E C ~ and [1 (x) and /2 (x) vanishes in 

the e-neighborhood of 0; and 

B6 f [ / 2 ( x ) [  log + ([/-~x-)-[)dx<~/3. 
Q 

NOR' S~(k 1)(0, l) = S~ (k 1)(0, 11) + S~(k 1)(0, /2)" 
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Because fx is sufficiently smooth and / ( 0 ) = 0 ,  then S~(k-l'(0, /1)-->0, as R-->oo. Thus 

Is 'k if R>R0(~]). 

However, by applying (16.16) to ]2 (x) we obtain ISle (k 1)(0,/2)1 < 2 ~]/3. Combining 

these two, we get : ] S~ (k-~) (0, ])[ < ~], whenever R > R 0 0]). This concludes the proof 

of Theorem 6. 

CHAPTER I I I  

D o m i n a t e d  S n m m a b i l i t y  

17. An L 1 estimate for dominated snmmabi l i ty  

Wi th  Sa,(x , / )= ~n(1-LnR~')~a,,e'n~ , 

where a ,  = (2~) -k I f(x) e-~a'~dx, 

we define S~. (x, {) by S~. (x, f) -- sup I S~n (x, f)I- (17.1} 
R>O 

The result of this section is contained in the following: 

L ~ M ~ A 12. Let [ (x) E L 1 (Q), and let ~ (•) > �89 (k - 1). Also let ]* (x) be the maximal 

/undiou de/ined in Lemma 3. Then 

(a) ~,  (x, l) < Ao e "~'1 (a - �89 ( k -  1)) - 1 / *  (x), 

Ok Ok 

where A ,  is independent o/ R and /, and A ,  remains bounded as a - > � 8 9  

Proo]. According to Lemma 5 
oo 

fT$ (X,, /) = C a U ~k -r f / (z ;  ~) ~�89 Ja+ tk (t R) d t 
0 

with cl = 2 a tk+1F (5 + 1) /F  (�89 k). 

We break up the above integral into two integrals corresponding respectively to  

the intervals (0, l /R) ,  und ( l /R ,  oo). Using  the est imate (11.11) for the first integral,  

and (11.10) for the second integral, we then easily obtain 

(I) See footnote p. 109. 



L O C A L I Z A T I O N  A N D  S U M M A B I L I T Y  OF  M U L T I P L E  F O U R I E R  S E R I E S  129 

I/ R oo 

I~R(~,/)I<Aoe~M{R~fl/(~; t)lt~-Z dt + Rt(k-l'-~ fl/(~; t)lti(k-x'-~ ~ dt} �9 (17.2) 
0 I lR 

(We note here tha t  A~ remains bounded as long as a >/0, and a is restricted to some 

finite interval.) 

Now by definition of /* (x) given in (10.3), we have 
1/// 

R~f I/(x; 0 I~'-~dt</* (x) k -*. 
0 

Moreover, a simple argument of integration by parts gives 
oo 

R~'k-"-~f l/(~; t)lt~(~ x ' -~-*dt<A[(7- �89 for a > � 8 9  

If we combine these two estimates in (17.2) we obtain 

S~, (x,/) = sup I S~ (x, / ) l  < Ao e ~l~l [a - �89 (/r - 1)] -*/* (x), 
R 

with A, bounded as a--> �89 ( /c-1) .  This proves part  (a). 

In order to prove part  (b), we may rewrite (17.2) in terms of a convolution 

with an integrable kernel. 

In effect we have 

IS%(x, /)l<A.e='~' R k f ] / ( x - y ) l r  (17.3) 
E k 

where ~ ( u ) = l ,  if 0 4 u < l ,  and ~ ( u ) = u  -"-tk~l ,  if l~<u. 

Integrating (17.3) with respect to x and inverting the order of integration, we 

obtain 

f Is~ (~,/)ldx<Ao~""{ f I/(~)1 d~} ~ f r 
Qk Ok Ek 

o o  

However, R k fr162189 
E k 0 

Thus part (b) is also proved, and the proof of the lemma is complete. 

18. An L" estimate 

The result of this section is contained in the following theorem. 

THEOR]~M 7: Let /(x)EL2(Q); and ~=a+iv .  Then 

(a) (fl~,(=,/)l"d=)'<.Ao~""'(fl/(=)l'd=) ' /o,~>0, 
Q Q 

(b) (fls%(~,/)l~dx) '<.(f l / (~)rd~) ~, /or ~>~o. 
Q Q 
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Proo/. We introduce the following two auxiliary functions: 

D~(x' /)=(f l~(x' l)-~E'(x' l)P dR) 
0 

and A~(x' l)=sup { l  I [s~;l(x' . (18.2) 

0 

(18.1) 

The proof of the theorem will be a consequence of the following lemma. 

L ~ M ~ A  13. Let /(x)EL2(Q), ~(5)>~-,  ( 5 = a + i ~ ) .  Then D~(x, l) and Ao(x,l)  

are ]inite almost everywhere ; moreover 

(fEa~(z,l)l~x) ' .<Ao(f ii(~)l~dx) ' (18.3) 
Q Q 

and (.I [A~(x, 1)]~ dx) t ~ A(,d '1'' ( f I1 (~)1 ~ d~) ~. (18.4) 
Q Q 

Proo/ o/ the lemma: We consider ~ first. Since 

[ ~  (x , / ) ]2  = ~ 1 s %  (x,/) - 8% -1 (~,/) I s 
R -dR, 

0 

We integrate with respect to x and interchange the order of integration. Thus 

o r  

Q o Q 

(18.5) 

We now evaluate the inner integral by Parseval's formula. 

S6R(Z, / )  - -  S~R I (x ,  f ) =  nl~<R --  1 -  - - -  

= ~. 1 -  --R" 

Therefore, 

a n  e in  .x 

(2~)-k f I~R(x, f ) - -S~R-1  (X, l)rdx= 
Q 

(1 I~1~ ~-~lnl' p (18.6) 

Assume first that  (r>~ 1. Then by the above 

(2~) ~ .f 18% (~, l)-s~-l(~,l)l~d~R -~,~,<~ I~1'1~1 ~. 
Q 
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Substituting this in (18.5) we then have 

f [f2o(x, /)]2d 

oo 

{  .l l'lanl } 
0 

Inl 
< A  Z la~l 2. 

This gives f [f~o(x, /)]2dx<A f l/(x)l~dx, if a>~l, 
Q O 

and therefore (18.3) is proved in this case. 

Assume now a < 1. Then 

1- -~-) <A, 
Using (18.6) we obtain 

(2~)-~ f is~(~ '/)_~,-1(~,/)[~d~ 
Q 

~ A  ~" I n l  4 

Inl~<�89 / t  | R < I n I < R  

= ~ l +  ~2, say. 

if I=1 <R. 

1 
- --RZ ! 

By the argument of interchange of order of integration used above, we may 

see that  

f {~l}d-~-<~A ~ ]anlZ=A f l,(x) lZdx. (18.7) 
0 Q 

Now ~ = ~<lnl<R~ 1 - R2 ] R '  ' an 12 

<.R'-" ~" (R~-n~)2"-2[a,~[ ~ 
t R < [ n [ < B  

~< R2-~ E ( R -  ]n ])~_9. [a n ]3. 
�89 

oo o2 

Therefore, {22}~--~ R ~-~ 2 (~_lnl)~_~lanl~ d R  
t-n<lnl<~ R 

0 0 
2In! 

Inl 
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But  it is easy to check that  

21hi 

f R'-~(R-]nl)2~189 if o>�89 
Inl 

} {Z,} aR<m ~ I,,,,I'=A,, "~| II(~)l'a~. ~, > �89 (18.8) Hence 
�9 -R- 
o o 

A combination of (18.7) and (18.8) proves (18.3)when � 8 9  Thus (18.3)is 

completely proved. The finiteness almost everywhere of f~(x,  [) follows from (18.3), 

of course. 

We now consider A~. Let v= [�89 ( k -  1)]=greatest integer in �89  1). Then by 

Minkowski's inequality, 

R 

0 
R R 

{~ f , ~ '  (x, , ) -~+"  (x, ,)I'a~,}' + {lfl~':" (~, ,) I~ au} ' 
0 O 

= 11 + 12. (18.9) 

Since a = R ( 6 ) > � 8 9  then .R(6+~)>�89 and we may apply Lemma 12, part 

(a) to S~ +" (x, [). This gives 

I ,s';" (x, 1) 1 < A,, ~*' l* (x). 

Substituting this estimate in the second term of (18.9) gives 

12 ~< Aa e *11" (x). (18.10) 

Moreover, 

R 

, ,  
0 

oo 

0 

< ~,~ (x, 1) + ~+1 (x, 1) + " "  + ~,+, (x, I). (18.11) 

When we combine (18.9), (18.10) and (18.11) we obtain 

A~ (x,/) ~< ~0 (x, [) + . - .  + D~+, (x, f) + A, e ~l'l [* (x). (18.12) 
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To the above we apply (18.3) which we have already proved) successively to 

~, ~ + 1 . . . . .  5 + ~. To the term containing ]* (x) we apply Lemma 3. We therefore obtain 

( f  A,(x, 1)]'- d . ) '  < A~ e*' ( f  I1(.) I*d~) '. 
Q Q 

This completes the proof of Lemma 13. 

Proo/ o/ theorem 7. We consider (a) first. We shall make use of Lemma 4 (of 

w recalling that  R~E~a=A~. For ~, fl appearing in the statement of Lemma 4, 

we substitute �89 ( a -  1), �89 (a+  1)+ iv, respectively. We thus have: 

R 

2 F ( a + i T + I )  f t~)t(,_x)+~pt~, RUS~n=F(�89189 ). (R 2-  S~(~ (18.13) 
0 

If a >0,  the factor involving the r functions is certainly bounded by Aoe "1"1. 
Thus from {18.13) we obtain 

R 

I~(~, l)l <-A.e'l"tR-~'f (R2-t2)t(~-~)P'lS~(~ I) 1 at. 
0 

Applying now Schwarz's inequality tn the above we obtain 

R 

I ~'~ (~, / ) l~A,e* '  R-~lf (R~-t2)~ t {fls~(~ ' 
0 0 

Therefore, [S~R( x, l)] <~Ao e*l'l " B(R)" At(,+1)(x, 1), 

where 

We thus have 

R 

B (R) = R -~ '+ t  {f  (R  e - t2) "-x t l" dr} t 
0 

1 

= {f (1-t')"-'t~dz} t 
0 

<~A/a=Aa, if a > 0 .  

S~. (x, 1) = sup I~R (x, t) 1 < Ao e*' A t (, ~1)(x, 1). 
R 

Finally then 

f IS, (x, /)]2dx~A~e~i'lf [A�89 A~e 2.1 f It(x)pdx, 
Q Q Q 

(18.14) 

by applying (18.4) of Lemma 13 (to the case �89  since ] ( a + l ) > � 8 9  when 

a>O). 
1 0 -  583801. Acta  mathemat&~a. 100. Imprim~t le 25 octobre  1958. 
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This proves par t  (a) of Theorem 7. 

Par t  (b) is proved by observing when ~(0)~>0, tha t  S~n(x,/) multiplies the 

Fourier coefficients of ](x) by constants of absolute value not exceeding one. 

19. Proof of dominated, pointwise, and norm summability 

(a) Pool of T h e o r e m  (D), (see w for statement).  

The idea of the proof is as follows. We notice that  the case which corresponds 

to p= 2 has already been disposed of in Theorem 7, part  (a), of w 18. We should like 

to have an analogous result for p= 1, and then interpolate between indices p =  2, 

and p =  1. However, Theorem (D) fails when p=. l ,  so tha t  we must  content our- 

selves with a weaker substitute. Such a substitute result, satisfactory for our pur- 

poses, is contained in Lemma 12, par t  (a), of w 17. 

Now to the proof. Let  p and 0 be the indices given in Theorem (D). Assume 

tha t  1 < p <  2, since the ease p = 2 is contained in Theorem 7. Let  Pl be an exponent 

(to be determined later) which satisfies 1 < pl < p. Thus we may  write 

1 1 
, 0 < ~ / <  I - -  �9 (19.1)  P l =  I --~1 p 

Choose two further parameters,  e0, and ~1 (to be determined later) subject pres- 

ently only to the conditions 

0 < ~ 0 < ~ o ,  and 0 < e l < o o .  

Define P0, by P0= 2. Thus Pl < P <  P0, and we may  therefore write 

1 / p  = (1 - t ) / po  + t / p , ,  o < t < 1. 

Using (19.1) we obtain after a simple calculation 

Now define 5 (z) by 

t = ( ~ - 1 ) ( 1 - 2 ~ 7 )  -1. (19.2) 

5 (z) = e 0 (1 - z) + (�89 (k - 1) + ~1) Z. (19.3) 

We show now tha t  our arbi trary parameters ~, e0, Q can be chosen so tha t  

5 (t) = 5, (19.4) 

(where 5 is the index given in the s tatement  of the theorem). In  fact, using (19.2), 

we may  write 
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l_~+~lt+e0(1-t) 
k -  1 E' ~-E" = ( - - ~ - )  ( ~ -  1) + E(~)) + (el)- (e0). 

However, by assumption, 8 > ( � 8 9  Thus we may find an ~1 small 

enough so that  still 5>(�89 We fix such an ~. This determines 

Pl (by (19.1)), and t, (by (19.2)). However, 0 < t <  1, thus we may find ~0, and el so that  

5 ( t ) = ~ -  ( 2 -  l) + E OT) + E' (~) + E" (eo). 

This proves (19.4), and we proceed with the parameters ~7, e0, ~1 fixed in this 

manner. 

Let  R(x) be a measurable function defined on Qk subject only to the conditions 

that  : 
O<~R(x) ~<Ro< ~ .  (19.5) 

With the aid of (~(t) and R(x) we now define an analytic family of transforma- 

tions, Tz(" ), as follows: 
T~ (/)(x) = r (x, f), (19.6) R,,x) 

and we verify that  the family satisfies the conditions of Lemma 1 of w 8. That  the 

conditions {i), (if) and (iii) are satisfied follows easily when one makes use of the 

restriction (19.5). We next claim that  T~(-)  satisfies the following bounds 

I[ T,y (/)I1~, ~< a0 (y)II ! lip., / (19.7) 
lJ T. , y  (/)]l~, < A, (y)II fl[,,, 

where A~(y)<A~e~il~ I, i = 0 ,  1. (19.8) 

and where the A~ and a~ do not depend on the function R(x) and R 0. 

In fact, by (19.6) it follows immediately tha t :  

(19.9) 

Now 5(iy)=eo(1 - i y ) +  (�89 (It- 1) + el) iy.  

Thus ,~(gt(iy))= s0>0.  We may therefore apply Theorem 7, part  (a) and obtain 

I}T,~(/)[[~.=IIT,y(f)J[2<IIS~'~)(z, l)lJ~<Ao~Y~llfII2:Aoe~.f~'[IfI[~ o, (19.10) 
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where a o = ~  [ ~ ( k -  1 )+e  1 --Col. 

(The constant A o clearly does not depend on R(x) or Ro. ) Next, 

(8 (1 + i y)) = - to (i y) + (�89 ( k -  1) + e,) (1 + i y). 

Hence, ~ (~ (1 + iy)) = ~ (k - 1) + ex > �89 (k - 1). 

We may thus use Lemma 12, part (a), and obtain 

II T,+,~ (I)II,, < II s~ +'~) (/)I1~, < A ~o,,,, II l* I1,,, 

where a, = ~g I �89 (]g - -  1) -~- ~1 - -  ~0 [" 

Since 1 < Pl, we may apply Lemma 3 of w 10. Therefore, 

II TI+'y (t)Ik < A1 ea'iY[ Illll~,. (19.11) 

(The constant A 1 again clearly does not depend on R(x) and Re. ) This establishes 

(19.7) and (19.8). 

Using the interpolation lemma, we thus obtain 

II T, (I)II~ < A, II 111~- (19.12) 

Now by (8.5) of Lemma 1 the constant A I appearing in (19.12) depends only 

on the Aj(y) of (19.7). Since these latter are independent of R(x) and R0, the same 

holds for A v However, (19.12) may be rewritten as 

p xllv ( fl .~`',..(~,(~,I) d~) -~A,( fl/(~)l'dx)'" (19 .13)  
Ok Ok 

and  by (19.4) 5 ( 0 = 5 .  

�9 we have ( f l~ . , . , (~ , l ) l 'd~) l"<~A,( f  
Qk Ok 

with R (x) subject only to the condition 0 ~ R (x) 

of R(x) and R o. By an appropriate choice of R(x) 

\ l i p  ~<~ 
( f (o22g~. l~ (x ,  l)l)'ex2 ~A, 

Now since the integrand of the left-hand side 

I t (~) l~dx) ''~ 

R 0 < ~ ,  and with At independent 

we deduce 

( f I I (x)[ ')". 
Qk 

increases w i t h  R o, we ob ta in  

o<~<= f I/(x)l~dx)l'~ (!( sup I (x, l),) 

This concludes the proof of Theorem (D). 
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(b) Proof  o! Theorem (D*) (see w for statement). 

Theorem (D*) will be a consequence of the following lemma. 

LEMMA 14. Let /(x) EL~(Qk), l<p~<2.  Then, 

_ p x l / p  ( ftsl(k- '( fl/( )l , (19.14) 
Ok Ok 

where A does not depend on p or /. 

Proo/. This lemma is already contained implicitly in the proof of Theorem (D) 

above. In fact, for our given p, l<p~<2,  fix the index Pl, l < p ~ < p ,  by 

1 - - - = - 1  1 ( 1  _ 1)  . (19.15) 
p~ 2 

Thus if 1/p= ( 1 - t ) / p 0 + t / p  o, (p0=2), then 

t = 2 - p ,  and 1 - t = p - 1 .  
Now define J (z) by 

As is easily verified, 
k - 1  

~(t)= 2 

Next define the family T~(-), as before, by 

and 

(19.16) 

z) T,  (1)(x) = 8 ( , )  (x, l)- 

R(x) is again an arbitrary measurable function limited only by 

O < ~ R ( x ) ~ R o <  oo. 

We then show that T~ obey bounds as in (19.7) with 

A o (y) < A e ~l~t 

A 1 (y) ~<A e al~l. (p - 1) -~. 

A and a do not depend on R(x), Re, or p. First, 

6(iy)=~ ( k 2  1 2 4 P ) ( 1 - i y ) + ( k - ~ l + p ~ 4 1 ) i y .  

(19.18) 

(19.20) 

(19.21} 

(19.22) 
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Thus 9~(r k -1  2 - p > k - 1  1>1, 
2 4 2 4 4: 

since k ~> 2. Therefore, 

II T,~ (f)I1~ ~ II ~ ' ~ '  (x,/)  I1~ ~ h ~a,~, II fl[~, (19.23) 

with a =  �89 by Theorem 7, part (a). 

Secondly, d ( i + i p ) =  (k~  1 2 ~ P ) ( - i y ) + ( ~ + P - ~ - l - ) ( l + i y ) .  

k - 1  p - 1  k - 1  
Hence, } I t ( ~ ( l + i y ) ) = - - ~ - +  4 > ' - 2 -  

Then by Lemma 12, part (a), 

II T,+,~ (I)I1,~, < II ~'+'~' (x, 1)I1,, ~< A ~o,~, (p -  1 ) '  II I* I1,, 

with a =  �89 While by Lemma 3 of w 10, 

III*II~, <A(p, -1) - ' I I I I I , .<A' (p-1)  111111,,., 

(since (Pl-1)-*~<2(p-1)  -1 by (19.15)). 

Combining the estimate we obtain: 

[I TI'~ (/)[Iv, <~ A e alul ( p  - 1)-2 [I/ll~,. 

Therefore the estimates (19.21) and (19.22) are established. Again, as in the 

proof of Theorem D above, we now apply the interpolation argument (Lemma 1). 

Following a similar argument, the result is 

(.f [s~." "(~, 1)], dx) "~ ~< A,( f I/(~)l '~ dx) ''~, (19.24) 
Ok Ok 

where the A t is given by 

logAt= f ~o(1- t ,y)  logA0(y)dy+ f w(t,y) logA,(y)dy. 
- - ~  - - o o  

We then use the fact (see w 16) that og(t, y)>/0, 

f og(t,y)dy<~l, and f og( , ,y) lylay~<a- 
- - ~  - - 0 0  
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We therefore have (using (19.21) and (19.22)) 

log A te<B+2  log ( p ~ l  1) ; 

therefore, At ~< e s (p - 1)-~. 

Applying this estimate in (19.24), completes the proof of Lemma 14. 

Now HSlder's inequality applied to (19.14) gives 

fl,~i.,~-l,(z, l)ldx<A(2~)',,l-,,,,,(p_l)-2( fll(~)l, dx)", 1<p<2. 
Qk Qk 

We then apply the case r = 2 .  of Lemma 2 of w 10 to the above inequality. The 

result is 

f ~.(~.-1,(~,/)dx<B f I/(x) l ( log  + I/(z) b'd~+ B, 
Qk Qk 

which proves Theorem (D*). 

(c) P r o o f  of T h e o r e m  ( ~ . )  (see w for statement). 

Let l(x)E L'(Qk). Then we must show that  given any s >0,  there exists a posi- 

tive number R~, and a set E~cQ~ so that  m(Ee)<e, and so that  

IS~R(x, /)-/(x)l<s,  if R>R~, and x~E~. 

Let  us first fix the constant Ar.~ which occurs in the statement of Theorem (D) 

Write 
/ (x) =/1 (x) +/s (x), 

where [~ (x) is periodic and in C a,  and II/2 (x)lip< 7, ~) to be determined momentarily. 

Now by the inequality of Theorem (D) we obtain 

IIs~, (x, I~)11~-<< A~.~.~.  

Hence we may choose ~ so small so that  the set where either I f2(x)l~E, or 

S.  (x,/2) ~> ~ e is of measure less than s. Write 

(~, l) - I (x) = { ~  ( x , / , )  - f, (x)} + {~'~ (x, Is) - Is (~)}. 

Thus, IS~( x, 1)-1(~)1 <1~'~(~, ll)-A(x)l+l*~(x,/,)1 + Ils(~)l. (19.25) 

Since ]~ (x) is C ~ and periodic, then Sn (x,/1) -->/1 (x) uniformly. Therefore 

l ~ ( x ,  f~)-f,(x)l<�89 if R>~R,. Since 
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I ~  (~, 13) 1 + I I~ (~)1 -< s~, (~, 1,) + I1~ (x)I, 

then I ,r (x, 1~,)1 + I1., (~)1 .-, ~ - ,  

except in a set E~ with m (E~)< e. 

Combining this with (19.25) concludes the proof of the theorem. 

(d) Proof  of T h e o r e m  (AE*) (see w 5 for statement). 

If /E  L (log L) 2, then according to Theorem (D*) we have 

f S~(k-~'(x, [)dz<~A f [ / ( x ) I  (log + [/(x)l)2dx+ B. 
Qk Qk 

Using the above for /(x)/~, instead of /(x), we obtain 

f S~.("-1)(x,/)dx<A f ,(x) (log+[/~ )2dx+ ~B. (19.26) 
Qk Q~ 

Now choose ~ so small so that  ~ B <  e~/12, and keep ~ fixed. Since /(x)EL(log L) 2, 

we may write / (x )= /1  (x)+/~ (x), where h (x) is periodic and C ~, 

Qk 

and if E1 is the set where Is (x) l > ~ e, then m (EL) > �89 e. Choose now 7, so that  

A < e~/12. Then by (19.26) applied to [~(x) instead of ](x), 

f ~" e ' B - l ~ "  St,(k-1)(x, ]~)dx<~A.f2 A- I + B . i~  

Thus if E 2 is the set where St,<k-1)(x, [2) > �89 then re(E2)< ~e. Now 

~< I s l  (~-~) (~,/~)- h (~)1+ i s,~<~-~, (x,/~)1 +l/~ (~)l 
<.]Sta(k-~)(x, /~)--/~(x)I+~e+~, if x~E~UE 2. 

However, S~(k-l)(x, ]1) converges uniformly to ]l(x) as R-->c~. Thus there exists an 

R~ so that  [S~(~'-~)(x, / ) - / l ( x ) l < ~ ,  whenever R>~R~. Hence, 

I S~ (~- ~) (x, /)  - / (x) [ < s, if R >/Re, and x {~ E 1 U E 2. 

However, m(E 1 U E2)<e,  and this concludes the proof of Theorem (AE*). 
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P r o o f  of T h e o r e m  ( N )  (see w 5). 

Theorem (N) is an immedia te  consequence of Theorems (D), (AE) ,  and the  

Lebesgue-dominated convergence theorem. 

(f) P roof  of T h e o r e m  (N*) (see w 5). 

We prove first 

LEMMA 15. Let ](x)ELP(Qk), l<p~<2 ,  then 

II s~ (~ -1)(X, /)lip < A (p -  1) -1 II/(~;) lip, 

where A does not depend on R,  p, or !. I t ! ( x ) E L  log + L, then 

f I,s~'~-~)(x, !)ldx<<.A f l!(x)l log + I!(x)l d~+B, 
qk ~k 

where A and B do not depend on R or ]. 

Proof: We prove (19.27) first. Let  p be a fixed index, l<p~<2 .  Thus we 

may write 

1 1 - t  t 
p 2 + i '  

A simple calculation yields 

Now define (~ (z), by 

O~<t<l.  

(19.27) 

(19.28) 

2 2 
1, l - t = 2 - - .  (19.29) 

P P 

6 (z)= (~-~) (1-z) + ( k +12 

Then one may verify that  

~) z. (19.30) 

k - 1  
(t) = 2 (19.31) 

Fix R. Define the family of operators {T~ (-)}, by 

T; (/) = ~ ' )  (z,/). 

and 

II T,~, (1)I1~ < II/11~ 

11 T,+,y ( /) Ih < A (p - 1)-1 e�89 I I / I I .  

We will verify tha t  

(19.32) 

(19.33) 

(19.34) 
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Since ~(8(iy))=k+�89 (k~>2), we apply Theorem 7, part (b), of w 18, 

and we obtain (12.33). 

We next observe that  

k + l  1 k - 1  1 
~R (5 (1 + iy)) 2 P ~ + l - - ; p  

hence ~ ( 8 ( l + i y ) )  k - 1  l _ : > p - l l  
2 p 2 

Moreover, Y ~(~(1 + i y ) ) = ~ .  

We then apply part (b) of Lemma 12, w 17, and obtain 

where Ay.r<<.A[~(cS(l+iy)) k 2 1 ] - '  ~ , _ _ _  e n i d (  (l+ty))l 

< A  ( p -  1) let' l~t .  

Thus we have established (12.34). We now apply again Lemma 1 of w 8, and 

we obtain 

II T, (1)II, = II ~A *, (x, 1)II~ < A, II t II~- 

We also have the estimate (see Lemma 1) 

-+-co 
log At < f e o  (t, y) log [A ( p -  1) -I e �89 dy 

-oo 

1 
~< log ~_~_ I + B .  

The last estimate is obtained by recalling that  

+o0 +o0 

eo(t,y)>~O, f o~(t,y)dy<~l, and f w(t,y) lYldy<~A. 

Hence A t ~< e s [p - 1] -I. 

If we recall (12.31), we see that  we have therefore established 

[I Sk(k--1)(X, f)lip = II ~.q~t)(X, f)[[1~ ~ A [p - 1] -1 I[ / I[, 1 < p ~ 2. 
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We have therefore proved (19.27) of Lemma 15. We then apply the case r = l  of 

Lemma 2 of w 10 to the inequality in (19.27). The result is (19.28), and thus the 

proof of Lemma 15 is complete. 

Theorem (N*) now follows from (19.28) by standard arguments.  (We have al- 

ready given a very similar argument  in (d), above.) 

C H A P T E R  I V  

Strong Summability 

20. The interpolation argument 

Recalling the definition 

R > o R  I~-~(x,l) d ~  , 

we notice tha t  in Lemma 13 of w 18 we have already shown tha t  

IIA~(x, /)II,.<-A~IIIII,, if 6>�89 (2o.1) 

As we shall presently see, Lemma 3 of w 10, and 12 of w 17 allow us to prove 

rather  easily tha t  

ItA~(x,t)ll~<A~.~lllll,, 1 < p < 2 ,  ~ > ~ ( k + l ) .  (20.2) 

We then take p arbitrarily close to 1 in the above and interpolate between 

(20.1) and (20.2). The results are contained in the following theorem. 

T ~ E O R E M  8. Let /(x)ELr(Q), 1 < p ~ 2 ,  and let 5 > k / p + � 8 9  Then 

II ~ (x, / )  I1,, < A~. ,, II / I1,,. (20.3) 

Proo[. We make some remarks first. Most of the proof of this theorem follows 

the pat tern  of the proofs given in w 19 above, with one difference. The operator 

A~ is not linear as it stands, and we thus need to introduce a "linearization" of the 

operator in order to apply the interpolation argument of Lemma 1 of w 8. 

We therefore proceed as follows. Let  R (x) be a strictly positive, bounded, and 

measurable function on Q. Except  for these restrictions R (x) is arbitrary.  Next  let 

~p (x, u) be a measurable function which satisfies the condition: 
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R(x) 

1 f l v ( x , . ) l ' a - < l ,  all xeO.  R(x) .  
0 

(20.4) 

Keeping the functions R (x) and ~ (x, u) momentarily fixed, we define the family 

of operators V~, by 
R (x) , f  V,) (f) = ~ . ~ - 1  (x, [) yJ (x, u) du .  (20.5) 
0 

We notice now that  V~ are linear operators. However, Schwarz's inequality (and 

(20.4)) show that  

] V6 ([) (x) I ~< A~ (x, t)- (20.6) 

Moreover, by using the converse of Schwarz's inequality, it is not difficult to 

verify that  for any p 

i i ~  (~,/) If= = s.p II v~ (#)(=)I1~. (20.7) 

Here, the supremum is taken over all functions R (x) and ~p (x, u) of the type 

described above. 

We next recall that  by Lemma 13 

Now by Lemma 12 of w 17 it follows that  

A~ (x,/) < ~ - i  (x,/) < Bo e "i'i/* (x), 

where r  a > � 8 9  However, by Lemma 12 of w 7, we have 

IIt* (x)li,<-<A=ll#ll~, if l < v. 

Combining the above yields 

II~(~,  /)II~<<.A~.or ~, ~>�89  p > l .  

:Let p and (5 be the indices given in the statement of the theorem. 

we may find a p~, so that  l < p ~ < p .  We let P0=2. 

0 < t < l ,  so that  

1 1 - t  t 
- ~ - - - .  

P P0 Pl 

(20.8) 

(20.9) 

Since 1 < p, 

We then can determine a t, 

We define ~ (z), by 

6 (z) = (% + �89 (1 - z) + (�89 (R + 1) + el) z, (20.10) 
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where e 0 >0,  and e 1 >0.  Proceeding as in the proof of Theorem (D), we may choose 

Ps suitably close to 1, also e0, and e 1 appropriately so that  

(~ (t) = ~ > ~ +  �9 (20.11) 

(We omit the elementary but  painful calculation.) 

We now define our analytic family of operators by 

T~ (1)= Vo(~)(1), (20.12) 

where Vo is defined in (20.5). 

Using (20.6), (20.8), and (20.9) we see easily that: 

and 

II T,y (l)II, < A ~=,y, II 111~, 

II Tl+/y (1) I1,,, < A ~~ II Ill,,,- (20.13) 

I t  is impo1~ant to notice that  the bounds A and a, which appear in the above, 

obtain 

II T, (1)II, < A, II I I1,,. (2o.14) 

Because of (20.11) and (20.12) this is 

We now use (20.7) 

We therefore obtain: 

II v. (~, l)I1~ < A, II Ilia. (20.15) 

and the fact tha t  A t did not depend on R(x) or y)(x, u). 

II A,, (~, 1)I1,, < A, II 111,,, 

which concludes the proof of the theorem. 

21. Proof of theorem (S) (see w S). 

We first observe that  whenever P (x) is a trigonometric polynomial 

P ( x ) =  ~ b,e t' 'x, 
Inl<~N 

R 

then Is'u-' (x, P)-P(x)l~du-,-O, lira 

O 

uniformly in x, when ~ > �89 

(21.1) 

do not depend on R (x) or ~p (x, u), since the right side of (20.6) does not  depend 

on R(x)  and ~ (x ,u ) .  Applying the interpolation lemma of w 8 to the above we 
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Now if /(x)fiLP(Q), then / ( x ) - P ( x )  can be made arbi trar i ly small in L v norm 

by  an appropr ia te  choice of P (x). Theorem 8 tells us, however, tha t  

R 

R > O  R , p 
0 

k 1 - k  
~< v II ! (x) - P (x)[Iv, i f  6 > - + - - - -  (21.2) 

p 2 

We can now combine (21.1) and (21.2) by  the use of a s tandard  a r g u m e n t - - a  

very  similar a rgument  was used in the proof of Theorem (AE) in w 19 - - and  obta in  

R 

. f  ~ k 1 -  k 
lim 1 I S ~ ( l ( x , / ) - / ( x ) I 2 d u = O ,  almost  every x, if 6 > - + - - .  
R - ~  R p 2 

0 

This m a y  be wri t ten as 

R 

lim 1 f R-~ i r  Is~ (x, 1 ) -1  (x)12du~O, 
0 

almost  every x, > k + l - k _  1 
if 6 P 2 " 

The last condit ion is clearly 

1 

where 
1 1 

- ~ + - =  1. 
P P 

This concludes the proof of Theorem (S). 
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