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1. Introduction

1.1. In recent years many papers have been concerned with pairs of extremal
problems which are conjugate in the sense that the extremal values are the same
[1, 5, 6, 7, 11, 12, 13, 16]. The conjugacy is usually related to the conjugacy of the
Lebesgue classes L, and L, where p !+ ¢ '=1; in the one problem one is maximizing
an L, norm, in the other minimizing an L, norm. It is now well known that the
conjugacy of such problems and the existence of extremals can be derived from the
Hahn-Banach Theorem and related results. In this process the following converse of
Cauchy’s Theorem is of great assistance: If W is a region whose boundary C consists

of a finite number of analytic Jordan curves, and if g is a bounded measurable func-

tion defined on C such that f gw=0 for all differentials w analytic in the closure of
C

W, then g represents p.p. the boundary values of a function analytic in W. A proof
of this theorem is given by Rudin [12] for the case of plane regions, and the theorem
can be extended to Riemann surfaces. In the present paper a rather more general
theorem of this type is proved for Riemann surfaces (Theorem 2.2 and its corollary),
enabling a greater variety of extremal problems to be handled.

In studying the conjugate extremal problems it is convenient to consider sepa-
rately the cases 1<p<co, p=1 and p= oo, The last two cases seem to have the
more direct significance on Riemann surfaces, but special difficulties are apt to arise
in their discussion. An account of the case in which the maximal problem is of type
p=1 has been given in [11]. The present paper deals with the case in which the

maximum problem is of type p= oo, but its results are of greater variety owing to
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the use of the more powerful form of the converse of Cauchy’s Theorem which is
referred to above.

1.2, We begin by introducing terminology and notation which will be used
throughout the paper. W is a region of a Riemann surface W,: the closure W of W
is compact, and its boundary consists of a finite number of analytic Jordan curves v;.
It is known that W is conformally equivalent to.the surface obtained by identifying
pairs of sides in a polygon
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in the complex plane, whose sides are analytic arcs [8]. To the sides z; there cor-
respond on W certain closed curves which we shall denote by «; (i=1 to p): to the
sides x; there correspond closed curves which whe shall denote by o4, (=1 to p):
and to the sides m; there correspond the boundary curves ;. It is easy to construct
a closed Riemann surface of genus p which contains W and for which the o« (=1
to 2p) form a canonical homology basis. It .therefore involves no further limitation
on W to assume from the start that W, is a closed Riemann surface of genus p.
We shall refer to curves «;, o, as conjugate members of the canonical homology basis.

In what follows it is fundamental that for each value of j (j=1 to ¢) there
exist (i) a region G; of W, containing y,, (ii) an annulus a<|z|<b in the complex
plane with a<1<b, (iii) a one-one conformal mapping of G; onto the annulus such
that y; is mapped on the circumference U of the unit circle. To show this we remark
that the standard theorems on the mapping of planar Riemann surfaces [8] ensure
that any planar region of W, containing y; can be mapped one-one conformally onto
a plane region. Such a mapping takes y; onto an analytic Jordan curve J in the
plane. The interior of J can now be mapped on the interior of the unit circle, and
since J is analytic this mapping can be extended across the boundary. Combining
the two mappings we obtain one which has all the required properties.

The region G; and the associated mapping are not in any way unique, but it will
be convenient to fix our attention on one such mapping in relation to each of the y;.
Taking 7 to be a variable point of G; we shall always denote this mapping by
7=X(2) and call it the jth annular mapping. We may clearly suppose that the
points of @; in W correspond to points inside rather than outside the circle U, and
that the curves «; do not intersect any of the G;. The region G; together with the
mapping 7=/,(2) define a local coordinate system valid on 7;. This will be referred
to as the j-th annular coordinate system, and G, will be called the j-th parametric
annulus.
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We shall describe a function g (r) defined on y as being of L-character on y if
for each of the annular mappings v =4 (z) the function g[A,(e'®)] belongs to the Le-
besgue class L (0, 27). Moreover g(r) will be said to have bounded variation on y if
each of the functions g[4,(¢'®)] has bounded variation over (0,2x): and g (r) will be
called absolutely continuous on p if each of the functions g[4,(e'®)] is absolutely
continuous in (0,2n). Given a function f(r) defined on W and a function ¢ (z) de-

fined on y; we shall say that f(r) takes the boundary values g(r) on y; if
lim f [ (r )] =g 4 (¢")]
r>l— .

for almost all § in (0,27). If this happens for all the y; we shall say that f(7) takes
the boundary values g (7) on y.
We recall that a function f(z) is said to belong to the class H, (0<p< oo) if

2n
it is analytic in |z|<1 and if [|f(re'®)[?d0 is bounded for 0<r<1: and that f(z) is
o

said to belong to the class H,, if it is bounded and analytic in |z|< 1. Now let f(7)
be a function defined on W. We shall say that f(r) belongs to the class H,(y,) if
f[A;(2)]=g(2)+h(z) where g(z) is analytic on U and h(z) € H,. It is to be observed
that in making this definition we are interested only in the behaviour of f near the
boundary y; and do not insist on analyticity throughout W. To that extent it is not
a direct generalization of the class H,. An equivalent formulation of the defining
property is that f[;(z)] is analytic in some annulus a<|z|<1 and

27
[Ifihyre®nlPa0-0()

as r—>1: for a function analytic in such an annulﬁs is, by Laurent’s Theorem, of
the form g¢(z)+h(z) where ¢(z) is analytic in |z|>a and h(z) in |z|<1, and the
equivalence follows from Minkowski’s and related inequalities ([15] p. 67). If f(z) € H, (y;)
for all j=1 to ¢ we shall say that f(v)€H,(y); and if in addition f is analytic in
W then we shall say that f€ H,(W).

We shall also say that a  differential dg, defined on W, belongs to the class
K, (y) if dg=Gdh, where dh is a differential analytic on y; and G € H,(y,). This is,
in fact, equivalent to saying that dg € K,(y;) if in terms of the jth annulus para-

meter
dg=[F(2)+G(z)]d=

where G'(z) is analytic on U and F(z)€ H,. If dg€K,(y;) for all j=1 to ¢ we shall
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say that dg€ K,(y). In the applications to Riemann surfaces considered in the present

paper we are concerned only with the cases p=1 and oo.

1.3. The following properties of functions f(z) belonging to H, are known or are
corollaries of known theorems (see, for instance, [15] pp. 157-163).

(i) lim f(re®) exists p.p. and is an integrable function of 6 over (0,2x). We
r=>1—

denote it by f(e®).
(ii) If f(z) €H, and f(e®) € L? where p<q< co then f(z)€ H,.

(iii) If f(¢¥) is of bounded variation and f(z)= > a,2" when |z|<1, then the
n=0

nd

real and imaginary parts of > a,e'™ are Fourier series of functions of bounded varia-

tion. Hence ([15] p. 158) f(¢®) is absolutely continuous.
2n 2n
(iv) lim [|f(re®)—f(e?)|’df=0 if 0<p<oco, and as a corollary jf(e“’)e”’d6=0
r->1- ¢ 0

if 1<p< oo (that is, we may use the boundary function f(e’) in applying Cauchy’s
Theorem).

(v) If p>=1, the function F(z)=
and f(e)=dF (®)/d ().
It is convenient also to quote here a criterion of Smirnoff [14] for a function
to belong to H,,.
. g (w)dw . o
(vi) I f(2)= arr— where ¢ is integrable on the unit circle U, then f(z)

U
belongs to H, for all p<1. (A proof of this result will be found in [10].)

The following properties of the classes H,(y,) are immediate consequences of (i),
(ii) and (iii). If f(r) € H,(y;) then

(vii) f(r) has boundary values on y; in the sense defined above, and the bound-

f(z)dz has continuous boundary values F (),

Oty

ary function is of L-character if p>1 (when 7 is on p; we shall use f(r) to denote
the boundary function);

(viil) if f(z) is bounded on v, then f(z) € Hy (;);

(ix) if f(z) is of bounded variation on p; then it is absolutely continuous on y;.

If df€K,(y;), then by definition df=Gdh where G€ H,(y,) and dh is analytic
on y. When 7 is on y; we shall use df(z) to denote G'(7)dh(zr) and call this the
boundary differential of df. We derive from (iv):

(x) if df€K,(y;) and p=1 then f df may be handled by Cauchy’s Theorem as

Yi
if df were analytic on ;.
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2. Boundary value theorems

2.1. In this section we prove the criterion, referred to in the Introduction, for
functions defined on y to represent the boundary values of analytic functions; and
we derive some more specialized results from it. The proofs depend on properties of
normal differentials of the third kind on closed Riemann surfaces, which we summa-
rize in the following statement (for more detailed information see [9]).

On the closed Riemann surface W, with the canonical homology basis « (¢=1
to 2p) let w,, be the differential of the third kind which is analytic except for
poles of residue 1, —1 at 7, 7, respectively and which has vanishing «;-periods

(=1 to p). Then the Principle of Exchange of Argument and Parameter states that

J'wm:fw,mo: and it follows that, in a region obtained from W, by making suitable
1

cuts, both sides of this equation represent a function of 7 which is analytic except
for logarithmic singularities at o, o,, The period of w,, around an arbitrary analytic
Jordan curve has a constant discontinuity across the curve but is otherwise analytic
as a function of 7. In particular the o«-period of w,, is a branch of an Abelian
integral of the first kind. Finally, suppose that in terms of a local coordinate system
Wer,=M (1,2)dz. Then for each value of z the function M (r,z) has a removable
singularity at 7, (where it is undefined) and a simple pole at the point with local
parameter z; it is otherwise analytic in the region obtained by cutting W, along
the «;: and d M (t,2) is an analytic differential in W, except for a pole of the sec-
ond order at z. In the applications of this section we take 7, to be a fixed point in

W,—W, and we denote by w, the differential ®,,, of the above summary.

2.2. THEOREM. Let C be the set of differentials analytic in W, except for poles
in Wo—W, and let f,, fs, ..., fx be linear functionals on C such that, for each i and j,
filw,) €H, (y) and f,(w,) jumps by a constant as T crosses y; normally. Let g be a

function of integrable character on y such that fgw=0 for all differentials w, analytic
]

in W, which satisfy fi(w)=0 for all i=1 to N. Then there exists a function H (t),
vanishing when 1€ Wy— W, which has the form

H(t)=h(r)+ 1_21 aq fi (), (2.2.1)

where the a; are constants and h(t) ts a member of H,(W) which decreases p.p. by ¢

as T crosses y in the direction of the outward normal from W.
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Proof. We first remark that there existe a differential Q, of the form
N
Q. =w,+ 421 fi(w,) Q, (2.2.2)

where (), belongs to ¢ and is independent of 7, such that f,(Q2,)=0 for all i=1 to
N when 7€ W,—W. It is clearly sufficient to prove this on the assumption that for
each value of j from 1 to N there is a differential w, € C' such that f(w,)+0 but
fx(w))=0 for all k=j; for otherwise the problem could be reduced to one with
fewer functionals. But then, if we take

Wy
Q= -7+ 2.2.3
‘ fi (i) ( )
the differential €, defined by (2.2.2) has the required property.
We next define H(r) by
1
H(r)=5— f gQ.. (2.2.4)

Y

It then follows from the hypothesis of the theorem that H(r)=0if t€ W,— W. Also

Y

Y

2t H (v)= [gw, + 21 ffi(wr)ggl
¥ Y

N
=J-gw1 + 121 Ii(wr)J.th
b4

Y

. 1
which is of the form (2.2.1) where the a, are constants and h(r)=-2;:fgw,.
Y

To prove that h(z) has the required properties let us first suppose that 7 ¢ y;.

Let g;(z) denote g¢g[4;(2)]. If ¢t is a local parameter for 7 then f g, is of the form
7j

| 9@t 2dz (2.2.5)

|z|=1

where f(t,z) is an analytic function of ¢ for each value of z and an analytic function
of z for each value of {. From this it follows by a theorem of Hartogs ([4] p. 119)
that f(t,2) is expressible as a double power series in ¢ and 2z and consequently that
it is a continuous function of ¢ and z and that it possesses partial derivatives which
are also analytic functions of ¢ and z. Under these circumstances differentiation under
the integral sign is justified and the integral (2.2.5) represents an analytic function
of t. Thus k(r) is analytic in W.
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When v is in the kth parametric annulus and j=+k it follows from the above

that J. gw, is an analytic function of . However fgw, is of the form
Yj 7k

1
f Jr (2) (z——iﬂ(t’ z)) dz

|z2]=1

where t=A2;'(r) and f(t, z) again represents an analytic function of both variables.
Thus in the ith parametric annulus %(z) is of the form

1 g (2)dz
% f 2___—t + G (1) (2.2.6)

lzj-1

where G(f) is analytic on |¢|=1. Now the jump in the value of the integral as ¢
crosses |t|=1 is known ([2] p. 116): in fact as t crosses the circle at the point e
in the direction of the outward normal, the value decreases by g, (¢'*) for almost
all . Thus % (r) decreases by g as t crosses ¥y from W into its complement.

Finally we deduce from 1.3 (vi) that A (), being of the form (2.2.6), belongs to
H,(y,) for all 0<p<1: and it then follows from 1.3 (ii) that in fact k(7)€ H, (y;).
Since this is true for all %, and since we have proved A(t) to be analytic in W,
therefore A (7) € H, (W).

CorOLLARY. If the functions fi(w,) are all analytic on y, then there exists a
function H(z) € H, (), with boundary values g on y, whick is analytic in every region
of W where all the fi{w,) are analytic.

2.3. DEFINITION. Let P and Z be finite (possibly empty) disjoint sets of
points which lie on W but not on any of the «;; let S be a subset of the integers
1 to 2p; and let T be a subset of the integers 1 to g—1. We shall say that w be-
longs to the class D (P, Z, S, T') if o satisfies the following conditions.

(i) o is the boundary form of a differential Q € K, (y).

(i) Q is analytic in W with the possible exception of simple poles at points of
the set P.

(iii) Q has zeros at the points of the set Z.

(iv) If ¢€8, the a«;-period of Q vanishes.

(v) If jET, the y;-period of Q vanishes.

Furthermore we shall say that a function g(z) defined on y belongs to the class
J(P, Z,8,T) if g(r) satisfies the following conditions.
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(i) There exists a function H (1) € H,(y) which on each contour y; differs p.p.
from g¢(t) by a constant c;.

(ii) H (v) vanishes at the points of P.

(i) At a point of Z, H(z) is analytic or has a simple pole. It is otherwise
analytic in the region obtained by cutting W along the «,: and dH (7) is analytic
in W provided that 7 ¢ Z.

(iv) If ¢S, dH(7) has zero period around the curve &, which is conjugate to «;.

(v) If ¢ T then ¢;=0.

2.4, Lemwma. If g€J(P, 2,8, T), w€D(P, Z, 8, T) and either g€ H,(y) or
w €K, (y), then J‘gw=0.
¥4

Proof. Let H be the analytic function which differs from g by a constant on

certain of the y,. Then f Ho= f g, since @ has zero periods around the curves y;
7 Y

on which H and g differ. We now apply Cauchy’s Theorem to the region obtained
by cutting W along the «. Ho has no singularities in the cut region, and hence

(compare [8] p. 174)

oo e [Jon [ o fon o]

% %+p %i+p
which is zero because in each product of two integrals one factor vanishes.

2.5. LEMMA. There exists a single-valued function which is analytic and non-
zero in W except for poles and zeros of prescribed orders at prescribed points.

Proof. There exists a differential of the third kind on W, whose only poles in
W are prescribed poles of residue +1. We cannot completely prescribe the periods.
However, there are differentials which are analytic in W and have their a-periods
and ¢—1 of their y-periods prescribed ([1] p. 110). Combining these results we see
that there are differentials which are analytic on W, except for prescribed simple
poles of residue +1, whose a-periods vanish and whose y-periods are multiples of
2ni. Let o be such a differential. Then the function exp (f w) is a rational function
on W with prescribed simple poles and zeros. The general case follows at once by

multiplication.

2.6. LemMA. (i) If 6 € W there exists a differential which is analytic in W ex-
cept for a simple pole of residue 1 at o, and vanishes at the points of Z.
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(i) If 1<k<2p there exists a function, analytic in W except on o, which van-
ishes at the points of P and whose differential is analytic in W with non-vanishing

period around the curve oy which is conjugate to oy.

Proof. (i) Let w be a differential which is analytic in W except for a pole of
residue 1 at o. Let the points of Z be denoted by o, (=1 to m). For each k=1
to m there is a single-valued analytic function which has zeros of the second order
at all the points g, with j+=% and a zero of only the first order at g,. A differential
with the required properties may be constructed by adding to « a suitable linear
combination of the differentials of these m functions.

(ii) Let the points of P be denoted by o; (j=1 to n). For each m=1 to n
there is a single-valued analytic function g, which has zeros at all the points g;
with j+m but which does not vanish at g,. Let w .be a differential which is ana-
lytic in W with vanishing y-periods and whose only non-vanishing «-period is its
oy-period. A function with the required properties may be constructed by adding to

an integral of this differential a suitable linear combination of the functions g,,.

2.7. THEOREM. If g 98 a function of L-character on <y such that fgw=0 for
all w€D (P, Z, 8, T) which are analytic on y, then g€J(P, Z, S, T).

Proof. We select the functionals f;(w) of Theorem 2.2 to be the following: the
ys-periods of w when j€T, the oy-periods of w when 5 €S, and the functionals L, (0)
where L,(z)dz is the form taken by w in a particular local coordinate system in
which z=0 corresponds to a point in Z. All the functions f,(w,) are then analytic
functions of 7 except on the curves y,(j€T) and o;(j€S), and at the points of Z
where there can be simple poles: while the differentials df;(w,) are analytic in W
except at the points of Z. If j€7T then fw, has a constant discontinuity across 7,

v
but is otherwise analytic on y; while the ]remaining functions f;(w,) are analytic on
the whole of y. It follows that H (z) defined by (2.2.4) has properties (i), (iii), (iv)
and (v) of the class J (P, Z, S, T).

To show that it also has property (ii) we choose w in D(P, Z, S, T) to be
analytic in W except for a simple pole of residue 1 at o € P (Lemma 2.6). The sum
of the residues of Hw in W is equal to f Hw: but fH 0= f g w, which vanishes by

hypothesis. Consequently H has a zero at o. Thus gEﬂ(P Z S, T).

2.8. THEOREM. If the differential w is integrable on y and if ffw=0 for all

y
fET(P, Z, 8, T) which are analytic cn y, then w €D (P, Z, 8, T).
2 — 583801. Acta mathematica. 100. Imprimé le 26 septembre 1958.
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Proof. Let ¢ be a differential analytic and non-zero in W except for simple
poles at the points of P and simple zeros at the points of Z. Such a differential
exists as the product of an arbitrary analytic differential with a suitable single-valued
function (Lemma 2.4). Then for every differential g analytic in W

[{5)r= (oo

since y/¢ is a single-valued function, analytic in W except for simple poles at the
points of Z and vanishing at the points of P, and hence belongs to J(P, Z, 8, T).
Thus, by Theorem 2.7, /¢ € H,(y) and w/¢ is a single-valued analytic function on
W. Therefore w € K,(y), o is analytic on W with the possible exception of simple
poles at the points of P, and  has zeros at the points of Z.

Suppose now that f€JT (P, Z, S, T). Let F be the corresponding analytic function
from which f differs by a constant on certain of the ;. Suppose j€T. We form a
function f, by adding a non-zero constant ¢ to f on ;. Then f,€TJ (P, Z, 8, T), and

ff1w=0 as well as ffw=0. Hence fcw=0, and so the y;-period of w is zero.
b4 v 7]

Next, there exists a function f vanishing at the points of P, whose differential is
analytic in W and has all its periods zero except for the period around the
curve «, which is conjugate to « (Lemma 2.6). If ¢€.S this function f belongs to
JP, 2,8, T), and so

o f1o- 3o o] [4]

% %ip % %+p
by applying Cauchy’s Theorem to W cut along the a,
= — f w fd f.
% %i+p

It follbws that the o -period of w is zero, and hence w €D (P, Z, S, T).

3. Existence of solutions to extremal problems

3.1. The methods of Rogosinski and Shapiro [13] can be applied, in conjunction
with the boundary-value theorems of the preceding section, to extremal problems on
Riemann surfaces. We require a number of properties of normed linear spaces, and
in particular of L and L™. A rather fuller summary than that which follows is to
be found in [13]: the basic results are proved in [3].
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(i) Let F be a normed linear space over the field of complex numbers, and let
G be a linear sub-space of F. Let I(g) be a bounded linear functional on G. Then
a bounded linear functional B on F is said to be an extension of I if B(g)=1(g)
for all g € G. Functionals which are extensions of the same functional on G will be
called G-equivalent.

(i) The norm of a bounded linear functional B on F, denoted by || Bl|s, is

sup |B(f)|, f€F.
lri<s

(iii) Consider the set of bounded linear functionals on a normed linear space F
which are extensions of a functional I on the linear subspace (. By the Hahn-Ba-
nach Theorem there exists in this set a functional with minimal norm on F, and
this minimal norm is equal to the norm of I on G.

(iv) Let (a,b) be a finite interval, We denote by L the class of complex-valued

functions integrable over (a,b): they form a normed vector space with norm defined
b

by lg@®)||=[|g®)|dt. And we denote by L* the class of all essentially bounded
a

measurable complex-valued functions in (a, b): they form a normed vector space with
norm defined by ||g|/=ess. sup |g|.

(v) Given any sequence {f,} in L*®(a,b) with ||f,|| <1, there exist a subsequence
{fs;} and a function €L with ||f||<1 such that

b b
lim ff,,gdt=ffgdt
for every g€ L.

(vi) The general linear functional B on L(a, b) is of the form

b
B(f)=[f(@)g(t)dt
a
where g € L*. Moreover || B||=ess. sup |g]|.
(vil) If C is the subspace of L*(a,b) consisting of continuous functions c(t),
then the general functional B on C is of the form

b

B(e)=[c(t)dm(t)

a

where the complex-valued function m(¢) is of bounded variation in (a, b). Moreover
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b
IBllc=[ldm )]
. a
(compare [3] pp. 61-65).
(viii} Let S,, 8, be the spaces of continuous functions on the intervals I, I,

respectively with the L norm, and let S, + S, denote their direct sum. Let a norm
on 8,+ 8, be defined by

Il (81, 85)|| = max (sup |s,|, sup |s,).
Then every bounded linear functional B on 8,+ 8, is of the form
B (sy, 55) == L (8)) + M (3,)

where L is a bounded linear functional on 8, and M is a bounded linear functional

on S, Moreover
1B (1, 89) | = | L (s0) || + [ 21 (52) |-

These results can be extended in the natural way to direct sums of more than two
spaces.

3.2. LEMmMA. Let dg, be a differential integrable on y. Then

sup “/dg1|<inff|dg| (3.2.1)
Y Y

where in taking the supremum we consider functions €T (P, Z, S, T) with ess. sup.
|fI<1 on y, and in taking the infimum we consider differentials dg with dg—dg,
€EDWP,Z,8,T).

This lemma is an immediate consequence of the fact (Lemma 2.4) that
| fda:|=|[ 1ag|<[|dg]
Y Y Y

for every function and differential in the classes considered. Later we shall be able

to assert strict equality in (3.2.1).

3.3. THEOREM. Let dg, be a differential integrable on y. Then among the func-

tions f€TF (P, Z, 8, T) which have ess.sup |f|<1 on y there s one which maximizes
|f/dgli'
e

Proof. The functions f which are of L-character and are essentially bounded
on y form a normed vector space with norm defined by ||f||..=ess. sup |f|, and it
is easy to justify the use of properties analogous to those of L (a,b). Let I be the
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linear functional on this vector space defined by

I1(h=[fdg,.

14

Then there exists a sequence {f,} in the subspace G of essentially bounded functions
belonging to J (P, Z, S, T') such that ||f,|l.=1 and

lim 7(,) = 7]l

because ||I||; is sup |I|. Hence, by the property analogous to 3.1 (v), there exists a
17=1

subsequence {f,.} and a function F with ess. sup |F|<1 such that
f far @9 — f Fdg
¥ ¥

for every dg integrable on y. In particular this holds for alldg €D (P, Z, S, T) ana-
Iytic on y. But in this case the left-hand side is zero for each n, by Lemma 2.4,

and it follows that deg=0 for every dg€D (P, Z, S, T) analytic on y. Hence, by
¥

Theorem 2.7, FEJ (P, Z, S, T). Also
sup |[ fdg,|=|lle=lim [, dg,=[ Fdg,
v >y Y

the supremum being taken over all f €@ with ||f||=1. This completes the proof.

3.4. TEEOREM. Let dg, be a differential integrable on y. Then among the dif-
ferentials dg such that dg—dg, €D (P, Z, S, T) there is ome which minimizes f |dg].
Moreover the minimizing differential dg has the property

[ldgl=sup |[fdg,| |fI<lony, feT(P, 2,8, 1)
Y Y

Proof. Let C be the space of continuous functions on 0 <0< 2zx. Let E be the space
of g-tuples with elements drawn from C, and let the norm of (¢, (), ¢5(0), ..., cg(6))
be defined as the greatest of the g quantities

sup |¢(0)], j=1 to ¢.

0<0<2n

Let A be the class of functions which belong to J (P, Z, S, T') and are continuous
on each of the 7, Corresponding to each member f of A we can form a member

(s fas ---5 fo) of E by setting f;(8) =f[4,(e"®)]. The g-tuples of this type form a linear
subspace I' of K.
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In terms of the jth annulus parameter z=7e® let dg, =k, (0)d6 on y; (j=1 to g).
Then dg, determines a bounded linear functional I on the space E, defined by

2n
I 0), s ca®1= 2, [ o(0)1,6)5.
0

Let B be any bounded linear functional on E which is I'-equivalent to I. Then,

being a functional on E, it is of the form
a 2n
Bllew s sl = 3, [ 60100
i1
where u,(0) is of bounded variation: and its norm on £ is
2n
Q
5 [1amol
j-1
0
We have here used 3.1 (vii) and 3.1 (viii).

Let f be a function analytic in W which vanishes at the points of P and at
the point ¢ in W. Then f€ A, and since B is I'-equivalent to I,

2n

2n
5 ff,w) am®=3 [ om0,
j=1 4 i=1 b
a 2n
that s, S f £,(0)dM,(0)=0

[}

where M; (0)=fh,(0)d0—y,(0). Integrating by parts we obtain
0

2n
3 [rom@a0- 3 houmen-mo)
0

Now let d¢ be a differential analytic in W with the possible exception of a simple
pole at o, and with y,-period equal to M,(27)— M,(0) for j=1 to g. In terms of
the jth annular coordinate system let d¢$ =k, (z)dz. Then

2n
i ff,(B)k,(e“’)ie“’d0=ffd¢=0
i=1

0 Y
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0
by Cauchy’s Theorem. Let K,(8)= [k (¢°)ie®df. Then integrating by parts,
0

2n
> [50x 00 3 [ OK DK O
) >
i 2n
Thus P [ 5 &0 xonas—o,
0
and so [vdf=0

where V is the function which takes the value ie *[K,(8)— M, ()] at the point of

y, with local parameter ¢. We have shown this to be true under the condition

that df is analytic in W, has zero periods and satisfies f df=0 for a set of arcs 8,
B

linking up ¢ and the points of P. Therefore, by Theorem 2.2, V€ H,(y). But
1e ®[K,(0)— M,(0)] is of bounded variation in (0, 2x), and so, by 1.3 (ix), V is
absolutely continuous on y. Hence u;(0) is absolutely continuous in (0, 27) for each
j=1 to ¢; and so, setting u;(0)=F;(6), we have F,(f)€ L and

2n
B, (0), ca(0), ..., cq(B)]= El fc,(e) F,(6)d6. (3.4.1)
o

Moreover the norm of B on E is
2n
A
3 |1m a0
?

But we know that among the bounded linear functionals on E that are I'-equi-
valent to I there is one with minimum norm, and that this minimum norm is equal
to the morm of I on I'. Now not only is it true, as we have proved, that every
such functional is of the form (3.4.1), but every functional of the form (3.4.1) is a
bounded linear functional on E. Thus we have proved that among the sets of func-
tions 'F,(O)GL(O, 27) such that

2x 2n
S [onma= 3 [Loned
=1 4 i=1 s

for all (f,(0), ..., f,(0)) ET there is one set which minimizes
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2n
q
>[Iz,
i=1 H

and that the minimal value is

sup

2n

q

3, f/,w)h,(e)d()], fea, |f]<1 on 5.
0

In other words, among the differentials dg such that
[tdg=]tag,
¥ ¥

for all f€A there is one which minimizes fldg|: moreover the minimizing differ-
b4

ential dg has the property
[lagl=sup |[ fdg,|, 1fI<1 on y, fEA.
Y Y

In view of Theorem 2.8 and Lemma 2.4 this is precisely what we seek to prove,
except that the above supremum is taken over a more restricted class of functions.
In reality we have proved a rather stronger form of the theorem than was stated.
The stated result follows immediately from the inequalities (Lemma 3.2)

sup |yf/d91|<§gg |yffd91|<inf£|d9|-

4. Boundary behaviour of the extremals

4.1. In the theorems of §3 the functions and differentials were not restricted
to be analytic on y itself. But in certain circumstances we can show that the ex-
tremal functions and differentials are in fact analytic on y and consequently that
they solve extremal problems in more restricted classes. We first prove three lemmas

on the classical H, classes.

4.2. LEMMA, If f(2)€H, and g(2) i3 analytic on the unit circumference U then
f(z)g(z)=F (2)+ G(2) where F(z)€EH, and G(z) is analytic on U.

Proof. The function f(z)g(z) is analytic in some annulus a<|z|<1 and is con-
sequently of the form F(z)+ G(z) where F(z) is analytic in |z|<1 and Q(z) is ana-
lytic in |z|>a. We now deduce from Minkowski’s and related inequalities that

2n
[|Fre?PPdo=0(1)
0

as r—>1-, and F(z) accordingly belongs to H,,.
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4.3. LEmma. If F(z)€H,, Q(2) ts analytic on U, and F(2)+Q(z) has real
boundary values on U, then F(z) can be continued as an analytic function on U.
Proof. By Lemma 4.2

F(z)+G()

2 =F,(2)+ G, (2)

where F,(z) € H, and G,(z) is analytic on U. Therefore by 1.3 (v) the function

z

: d
J [F(z)+G(z)]£,

with suitable precautions to ensure single-valuedness, is continuous on any arc of U.
But also this function is real on U. Thus it can be continued analytically across U,

and the same is consequently true of F(z).

4.4. LEMMA. Suppose that
(i) F(2)=G )+ K (z) where G(2)€H,,, K(z) is analytic on U;
(i) h(z)=g(z)+k(z) where g(z) € H,, k(z) 18 analytic on U;
(iii) almost everywhere on the part of U where h(z)+0, | F (z)] and arg F (z) kh(z)dz
are constant.
Then both F(z) and h(z) can be continued analytically across U.

Proof. We may clearly suppose that | F (z)|=1and F (z)k(z) d2>0. Then p.p. on U
| F(z)h(z)dz|=F(2)h(2)dz,
and consequently |k (z)| =12 F (2) h(2).
We deduce that the function
h(z)—2*[F ()] (2)
has real boundary values, and the function
h(z)+ 22 [F (2)F h(2)

has imaginary boundary values on U. It follows from Lemmas 4.2 and 4.3 that
both these functions can be continued as analytic functions across U. Therefore & (z)
and [F (z)*h(z) are analytic on U, and [F(2)]® is analytic on U except possibly for
poles at zeros of k(z). But the zeros of h(z) being finite in number, |F (2)[?=1 p.p.
and [F(z)]® is accordingly analytic and non-zero on U. Hence F(z), as well as A (z),
is analytic on U.
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45. TEEOREM. If F i3 an extremal function in Theorem 3.3 and df is an
extremal differential in Theorem 3.4, and if dg, € K, (p), then both F and df are ana-
lytic on .

Proof. By Theorem 3.4 and Lemma 2.4
[laf|=|] Fag,|=|[ Fay].
Y bd b4

But since ess.sup |[F|<1 on y equality is only possible if |F|=1 and arg Fdf
is constant p.p. on that part of y where df+0. We now express F and df in terms
of the jth annulus parameter as F(z) and k(z)dz. Since dg, € K, (y), therefore also
df€ K, (y), and it follows that F(z) and k(z) satisfy all the conditions of Lemma 4.4.
Consequently F and df are analytic on y.

The reasoning of this proof also shows that the extremal function in Theorem 3.3
is unique to the extent of an arbitrary constant multiple of absolute value one: for

it can be expressed in the form
|4/]
A T

where A is constant. The uniqueness is independent of the condition dg, € K, (y).

4.6. COROLLARY. Let dg, €K, (y). Then
(i) Among the differentials dg analytic on y such that dg—dg, €D (P, Z, S, T)

there is ome which minimizes | |dg|.
k4

(ii) Among the functions f€ T (P, Z, 8, T) which are analytic and of absolute value

not exceeding one on y there i3 ome which maximizes 'f/d91l~
Y
(i) The extrema in these two problems are equal.

4.7. The conjugate classes D (P, Z, S, T), T (P, Z, S, T) can clearly be general-
ized in a variety of ways to yield further conjugate extremal problems. For instance
we can allow the differentials of D to have poles of order higher than the first if
at the same time we restrict the functions of J to have zeros of correspondingly

higher order. Or, if B is an arc of W which does not meet the curves &, we can

restrict the differentials df of D by insisting that fdf should vanish. In the cor-
B

responding J.class we then have to allow the functions to have a discontinuity
across f and their differentials to have simple poles at the end-points of §. In these
cases the preceding theory applies with little modification.
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5. Applications

5.1. In Corollary 4.6 take dg, to be a differential analytic in W with «-period
equal to @ (i=1 to 2p). Take P, Z, T to be empty, and let S be the set of all
integers 1 to 2p. Then the differentials of D (P, Z, S, T') which are analytic on y are
precisely those which can be extended as differentials analytic in W with vanishing
a-periods. Corollary 4.6 therefore takes the following form.

(i) Among the differentials dg analytic in W with oy-period equal to a; (i=1

to 2p) there is one which minimizes [|dg|.
Y

(ii) Among the functions ¥, which are integrals of differentials analytic in w
with vanishing y,-periods, and whose absolute value on y does not exceed 1, there is

one which maximizes

2 (@ Pip— gy Pt)l

t=1

where P, is the period of d F around o

(iii) The extrema in these two problems are equal.

These are the problems studied in [10].

5.2. In Corollary 4.6 take dg, to be a differential analytic in W except for
simple poles at the fixed points o, o, in W. Take Z, S, T to be empty sets; and let
P contain just one point, namely o¢,. Then the differentials of D (P, Z, 8, T') which
are analytic on y are precisely those which can be extended as differentials analytic
in W with the possible exception of a simple pole at o,: and the functions of
J(P, Z, 8, T) which are analytic on y are precisely those which can be extended as
single-valued analytic functions in W vanishing at ¢,. Corollary 4.6 therefore takes
the following form.

(i) Among the differentials dg which are analytic in W apart from a simple

pole of residue 1/2x at o and a simple pole at o, there is one which minimizes

[lagl.
Y J—
(i) Among the analytic functions on W whose absolute value does not exceed

1 and which vanish at o, there is one whose absolute value at ¢ is a maximum.

(ili) The extrema in these two problems are equal.

These problems have been studied by Ahlfors [1].

5.3. In Corollary 4.6 take dg, to be a differential analytic in W. Take P, S
and 7 to be empty sets; and let Z contain just one point t,. Then the differentials
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of D(P, Z, 8, T) which are analytic on y are precisely those which are analytic in
W with zeros at 7,: and the functions of J (P, Z, S, T) which are analytic on p are
precisely those which are analytic in W with the possible exception of a simple pole
at 7. Corollary 4.6 therefore takes the following form.

(i) Among the differentials dg analytic in W, such that dg—dg, vanishes at 7,

there exists one which minimizes f [dg|.
Y

(ii) Among the functions f, analytic in W with the possible exception of a simple

pole at v, and with absolute value not exceeding 1 on p, there is one which maxi-
mizes ”fdgll.
Y
(ili) The extrema in these two problems are equal.

In the case when W is a plane region this statement can be further simplified
as follows.

(i) Among the functions % (z) analytic in W which take the value 1 at z, there

. N 1
is one which minimizes ;— J[h(z)|ds.
7
Y

(ii) Among the functions f(z) analytic in W with the possible exception of a
simple pole at z, and with absolute value not exceeding 1 on 7, there is one whose
residue at z, has maximum absolute value.

(iii) The extrema in these two problems are equal.

These problems should be compared with those studied in [6].

5.4. In Corollary 4.6 take dg, to be a differential analytic in W with a pole
of the second order at ¢. Take Z, S and 7T to be empty sets: and let P be the set
whose only member is 0. We restrict ourselves to the case in which W is a plane
region: we then require only a single parameter for the whole of W and we write A (z) dz
for dg, k,(z)dz for dg, and 2, for o. Corresponding to differentials of D (P, Z, S, T)
we have functions with a simple pole at z, and the functions of J (P, Z, 8, T) have

a zero at z,. If we suppose k,(z) to have the form

1
(z2—2p)?

hy(2)=

then Corollary 4.6 yields the following result.
(i) Among the functions %(z) analytic in W except at z, where k(z) has an

expansion of the form
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1 -
h(z)=(—;z—o)—2+(—z%;—)+ao+al(z—zo) + -

1
there is one which minimizes o f]h(z)]ds.
v

(ii) Among the functions F (z) analytic in W, satisfying | F (z)| <1 and with the

expansions
F(2)=PBr(z—2)) + b, (z— 25>+ -+

about z,, there is one which maximizes |fz|.

(ili) The extrema in these two problems are equal.

These problems have been studied in [5].

5.5. In Corollary 4.6 take W to be a plane region, and let P and 7 be empty
sets. Let dg,=h, (2)dz where h,(z) vanishes at the points of Z with the single ex-
ception of the point ¢ where it is to take the value 1. Corollary 4.6 then takes the
following form.

(i) Among the functions %(z), analytic in W, which vanish at the points of Z,
with the single exception of the point { where they take the value 1, there is one

. L 1
which minimizes ;- f|h(z)dz].
?

(i) Among the functions which are analytic in W except for simple poles at
the points of Z, and whose absolute value on y does not exceed one, there is one
whose residue at ¢ has maximum absolute value.

(ili) The extrema in these two problems are equal.

An equivalent statement of part (ii) of the above result is as follows.
(i)’ Among the functions analytic in W except for simple poles at the points

of Z, with residue 1 at ¢, there is one whose maximum absolute value on y is least.

Part (i) can also be expressed in various equivalent ways. Let G (z) be a func-
tion which. is analytic and non-zero in W except for a simple pole of residue —1 at ¢
and zeros elsewhere in Z. Then by setting k(z)=f(z)@(z) we obtain:

(i)’ Among the functions f(z), analytic in W, which vanish at ¢ and have

%J‘lf(z)G(z)dz[<l
¥

there is one which maximizes |f' (t)].
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Naturally we have equality between the extrema in (i) and (ii)’. In [12] Rudin
treats this problem in the special case when G(z) is P’(z) where Re P(z) is the

Green’s function of W with pole at ¢.
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