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Extension of smooth CR mappings between 
non-essentially finite hypersurfaces in C 3 

Henri-Michel Maire and Prancine Meylan(1) 

0. In troduct ion  

Let M be a real analytic hypersurface in C 3 containing 0 and let M ~ be the 
algebraic hypersurface in C 3 defined by 

(o.1) Imw'=lz~12+Rew' lz~l  2, ( z ~ , z ~ , w ' ) c C  3. 

For any b '<0,  the function ( z ' ,w ' )~ -* l / (w ' - ib ' )  is holomorphic in C3\{w'=ib'}D_ 
M~; therefore its restriction to M ~ is a CR function which does not extend holo- 
morphically around (0, 0, ibm). A classical argument using Baire's category theorem 

(see [HT, p. 125]) guarantees the existence of a CR function on M '  which does not 
extend to a full neighborhood of 0 E C  3. In contrast, for CR mappings we have the 
following result. 

T h e o r e m  1. I f  h: M- -*M ~ is a smooth CR local diffeomorphism at 0 with 
h(O) =0, then h extends to a holomorphic mapping in a full neighborhood of 0 in C 3. 

As we shall see in Corollary 1.2, if h satisfies the hypothesis of the theorem 
(more generally i fh  is of finite multiplicity) then M is of finite type. After Trepreau's  
theorem we know that  any CR function on M extends holomorphically to one side 
of M; therefore Theorem 1 is equivalent to a reflection principle (cf. Baouendi and 
Rothschild [BR3]). Because we do not assume M to be algebraic, and because M ~ is 
not essentially finite, Theorem 1 does not follow from the recent results of Baouendi, 
Huang and Rothschild [BHR] nor from those of Baouendi and Rothschild [BR2]. 
Notice tha t  M ~ is holomorphically non-degenerate in the sense of Stanton [S]. 

Theorem 1 may be generalized as follows. 

(1) The second author was partially supported by the Swiss NSF Grant 2000-042054.94/1. 
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T h e o r e m  2. Suppose h: M--~ M ~ is a smooth CR mapping of finite multiplicity 
at 0 with h(O)=0 and the Levi form of M has a nonzero eigenvalue at O. Then h 
extends to a holomorphic mapping in a full neighborhood of 0 in C 3. 

Remark. We do not know whether the conclusion still holds without the hy- 
pothesis of non-degeneracy of the Levi form of M. 

In order to relax the finite multiplicity condition, let us be precise with some 
notions. After a local holomorphic change of coordinates, we may assume that  M 
is locally given by 

(0.2) Im w -- ~(z, 2, Re w) 

where ~ is a real analytic function in a neighborhood of 0E Cu• R satisfying the 
identity ~(z, 0, w)=0.  Such coordinates (z ,w) are called normal coordinates. Let 
h: M--~M' be a smooth CR mapping such that  h(0) =0; we will denote by (F1,/72, G) 
the holomorphic formal Taylor series of h at 0 (cf. [BR1]) and write 

Fl (Z, W) = E Flj(z)wJ, F2(z, w) = E F2j(z)wJ. 
j=o j=o 

Denote by 1 the least element of NU{oe} such that  Fll or F~t is not constant. 

Definition. (Cf. [M2]) We say that h is tangentially finite at 0 if 1 is finite and 

(0.3) d ime C[[z]]/(Fll(z)-Fll(O), F2z(z)-F21(O)) < co. 

It is called transversally submersivc [resp. transversally non-fiat] at 0 if 

(0.4) OG 0-~ (0) # 0 [resp. G # 0]. 

Note that  because h(O)=O, h is tangentially finite with l=0  if, and only if, h is 
of finite multiplicity. The above definition as well as the integer 1 are independent 
of the choice of normal coordinates if h is transversally submersive (see [M3]). 

We may now state the two other extension results we prove in this paper. 

T h e o r e m  3. Let M be a real analytic hypersurface in C 3 non-fiat at 0 and 
let M ~ be defined by 

(0.5) I m w ' = ( R e w ' ) m '  (Iz~12+Rew'[z~l~), ( z ~ , z ~ , w ' ) e C  3, m ' e N * .  

Suppose h: M--~M t is a smooth tangentially finite and transversaUy non-fiat CR 
mapping with h(O)=O. If h extends holomorphically to one side of M near O, then 
h extends to a holomorphic mapping in a full neighborhood of 0 in C 3. 

When m~=0, the corresponding statement requires more hypotheses. 
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T h e o r e m  4. Let M be a non-fiat real analytic hypersurface in C a of infinite 
type and let M' be defined by (0.1). Suppose h: M--+M' is a smooth tangentially 
finite and transversaUy submersive CR mapping with h(0)=0. If h extends holo- 
morphicaUy to one side of M near O, then it extends holomorphically to a full 
neighborhood of 0 in C a. 

Remark. Theorems 1-4 have obvious generalizations to the case where M is 
a real analytic hypersurface in C p+q+l and M'  is the algebraic hypersurface in 
C p+q+x defined by 

(0.6) I m w ' =  (Rew')'~'(Iz~12+...+lZpl2+Rew'([z'p+ll2+...+lz'p+ql2)). 

Some of the results presented here have been announced in Meylan [M1]. 

Acknowledgment. We thank the referee for his careful reading of the manuscript 
and for some valuable suggestions. 

1. T h e  basic  re la t ion  a nd  its  c o n s e q u e n c e s  

The following notation will be used throughout: 

M = { (z, w) e C 3 I Im w = V(z, 2, Re w) }, 

with V reM analytic at 0; (F1, F2, G) denotes the holomorphic formal Taylor series 
of h at 0, with h(z, s+iv(z, 2, s))=(fx ,  f2, g)(z, 2, s). 

L e m m a  1.1. Let h: M--* M' be a smooth CR mapping with M' defined by (0.1). 
Then 

(1.1) 

Proof. 

V(z'2'O)( oG ) ~(o)+O(Izl) =lFx(Z,0)[ 2, z e C  2. 

On the formal power series level, we have for (z, w)EM: 

(1.2) G(z, w)-G(2,  ~) = 2iF1 (z, w)F1 (2, ~)+i(G(z, w)+G(2, ~))F2(z, w)ff2 (2, ~). 

Replacing w by iv(z , 2, 0) in (1.2), we get an identity for formal power series in z, 2; 
putting 2=0 and using V(Z,0,O)-=0, we get G(z, 0)=0, that  is G(z,w)=wG(z,w) 
for some formal power series G. Replacing now w by iv(z, 2, 0) in (1.2), we obtain 

v(z, ~, 0)(Re ~(0)+O(Iz l ) )  = IFa (z, iv(z, 2, 0))1 ~ = [Fa(z, O)+iv(z, ~, 0)R(z, 2)12 

= IF~(z, o)? +v(~,  2, o)o(Izl) 
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where R is some formal power series. The lemma will be proved as soon as we know 
that  G(0) is real. This general fact is quickly verified below. 

Because G is the Taylor series of the third component of h at 0, the Taylor 
series of g at 0 is G(z, s+i~(z, 2, s)) and hence 

(1.3) ~ ( 0 )  o a  = ~ (0) 

When we differentiate the relation 

g - 8  = 2i f l f l  +i(g+~) f2]2 

with respect to s, we get (O/Os)(g-~)(O)=O and hence (Og/Os)(O)eR. [] 

C o r o l l a r y  1.2. Let h: M---~ M t be a smooth CR mapping of finite multiplicity 
at 0 with M I defined by (0.1). Then M is of finite type at O. 

Proof. Because M / is of finite type, this result is a consequence of [BR2, p. 486], 
but we give a direct short proof in our case. 

Suppose M is not of finite type at 0. Then ~(z, 2, 0)=0 and hence, after (1.1), 
F1 (z, 0 ) -0 .  Therefore dim C[[z]]/(FI (z, 0), F2 (z, 0))= oc which means that  h is not 
of finite multiplicity. [] 

C o r o l l a r y  1.3. Suppose M, M ~ and h satisfy the hypotheses of Theorem 2. 
Then VzFI(0)~0 and the Levi form of M at 0 has a unique nonzero eigenvalue 
whose sign is that of (Og/Os)(O). 

Proof. We may find a linear change of coordinates in C 2 such that  

~(z, .~, O)= Allzx 12 +.X2]z212 +O(Izl3), z - ~ 0 e C  2 

with some A1, A2ER. If we also expand Fl(z, 0): 

FI (z, 0) = a~z~ +a2z2 +O(IzJ 2) 

we get after (1.1) 

(~l I~l 12 +~21~212) ~ (0) = lal 12 I~ 12 + ala2~1~2 + ala2~l z: + la212 Iz: 12 +O(izl3). 

Therefore 

0C 0C "0) 
(1.4) Al~ww(0)=lall2, A2~ww( =la2[ 2, i f a l a2 - -0 .  

Because M '  is of finite type and h has finite multiplicity, we know that  (OG/Ow) (0) 
is nonzero (see [BR2, Theorem 1]). Hence (1.4)implies A1A2=0. Because (hi, A2)~0 
we get (al, a2)~0 that  is VzFI(0)#0.  The last assertion follows from (1.3). [] 
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C o r o l l a r y  1.4. Suppose M, M ~ and h satisfy the hypothesis of Theorem 1. 
Then the Levi form of M at 0 is nonzero. As a consequence, Theorem 2 implies 
Theorem 1. 

Proof. The local diffeomorphism assumption implies VzFI(O)~O and hence 
Fl(z,  0) has a nonzero linear term. After (1.1), it follows that  ~(z ,2 ,0)  has a 
nonzero quadratic term. [] 

Remark 1.5. Because the rank of the Levi form is a CR invariant and since M 
and M I are CR equivalent, it follows from general theory that  the Levi form of M 
has one zero and one nonzero eigenvalue. 

2. First properties of the tangential components 

Proposition 2.1. Suppose M, M I and h satisfy the hypotheses of Theorem 2. 
Then h extends to a neighborhood of OC C 3 intersected with the following component 
of C 3 \ M :  

(2.1) { ( I m w - ~ ( z ,  2, Rew))(Og/Os)(O) > 0}. 

Proof. From general theory [H, p. 51], if A is a nonzero eigenvalue of the Levi 
form of M at 0, then every CR-function on M extends to a neighborhood of 0 EC 3 
intersected with the following component of C 3 \ M :  { ( I m w - p ( z ,  2, Re w))A>0}. 
Because of Corollary 1.3, this component is identical with (2.1). [] 

Remark 2.2. Because ~ is analytic, the map 

(2.2) (z, s+it), ) (z, s+it+i~(z ,  2, s+it)) 

is well defined in a neighborhood of 0EC 3. It is a local diffeomorphism at 0 since 
(O~/Os)(O)=O in normal coordinates; the side { t>0} is mapped into the following 
side { I m w - ~ ( z ,  2, Rew)>0}  of M. 

Definition 2.3. We will say that  a germ u: (C 2 x R, 0)-~(C,  0) of a smooth 
function extends up [resp. down] if there exist e > 0 and a smooth function 

u:{(z,s+it)ec311zl<c, Is+itl< } 

holomorphic with respect to s+it  for t > 0  [resp. t<0] which extends u. 

Recall the following standard notation. Write 

0 - i  ~ J  0 
(2.3) Lj -- c92j 1+i~8 0-~' j = 1, 2, 
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for the vector fields in C 2 • R corresponding to the antiholomorphic tangent vector 
fields to M and put 

(2�9 D = det(Ljs 

P r o p o s i t i o n  2.4. Let h: M--~ M I be a smooth CR mapping where M ~ is defined 
by (0.1) with components fl ,  f2 and g extending up. Then 

D fx and D 5 g f2 extend down. 
l+if2f2 (1+if2f2) 2 

Proof. Since h(M)C_M l, we have 

(2.5) O=g 2ifl f l  g 2if2f2 
1+if2f2 l+if2f2 

Applying L1 and L2 to both sides of (2.5), we obtain 

-2if1 { 2flf:L 2if: hT 
L j ~ - l + i f z ~ L j L -  ~(i~) 2 ~-9 (l+if2----f2)2)~iJ2, j = 1 , 2 .  

(2.6) 

Hence 

(2.7) fl i 
- ~(LI~L2f2-L2~Llf2) --: kl. 

Dl+if2f2  

Because f l ,  f2 and g extend up, we know that  kl is a smooth function which extends 
down�9 This proves the first part. 

The same argument also shows that  

( -2f, f211 -2if2 (2.8) 

extends down. Multiplying (2.7) by D and applying Lj yields 

_iD 2 fl f2 Ljf2 = - 2 D L j D  f l ~-Lj(Dkl); 
(I+iI L): l+if L 

hence D3(flf2/(l+if2f2) 2) extends down. This information and (2.8) show that  

(2.9) 0 3 gf2 and 0 3 f l  .=D3f l ( l+i f2 f2)  D 3 iflf2f2 
(l+if2f2) 2 (l+if2f2) 2 (l+if2f2) 2 (l+if2f2) 2 

extend down. Applying Lj to (2.9), we get, again by the same type of arguments, 
that  the functions 

D 5 fl f2 and D 5 9f~ 
(1+ i f~f2)3 (1+ i f2f2) 3 

�9 - -  2 

extend down. This and (2.5) multiplied by f2/(l+zf2f2) finally proves that the 

function Dh~f2/(l+if2f2): extends down. [] 
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3. Propert ies  of  the  source hypersurface  

P r o p o s i t i o n  3.1. Let h, M and M' satisfy the hypotheses of Theorem 2. Then 
M contains a one-dimensional complex submanifold. 

Proof. As h is of finite multiplicity and M'  is not essentially finite, it follows 
from [BR2, Theorem 4] that  M is not essentially finite. Therefore, by Proposition 
4.1 in [BJT], the hypersurface M contains a holomorphic one-dimensional subvariety 
passing through 0. The curve selection lemma (cf. [L]), guarantees the existence of 
a non-constant holomorphic curve c: U-*M, defined in a neighborhood U of OEC, 
such that c(0)=0. Because we work in normal coordinates we have 

(3.1) = (o) ~3k , ~ =0 ,  f o r a l l k ,  l E N ,  j = 1 , 2 ;  

the chain-rule applied to 

c3--c3 = 2iqP(Cl, el,  c2, c2, (c3 +c3 ) /2 )  

shows that  (Okc3/Otk)(O)=O, for all k, hence c3=0. Because c is holomorphic and 
h is CR, hoc is a holomorphie curve in M'  passing through 0. The above argument 
using (3.1) is also valid for hoc and gives goc=0, hence floc=O. After a linear 
change of coordinates, we may suppose (OF1/Ozl)(O)r (cf. Corollary 1.3) and 
reparametrizing c we may write 

(3.2) c(t)=(cl(t),t'~,O), with m e N * .  

On the formal power series level, we have Fl(cl(t), t m, 0)=-0; the formal implicit 
function theorem applies and gives cl (t)=C1 (tin), for some formal power series C1. 
Because cl is convergent, C1 is convergent too. The image of the complex curve 

(3.3) s, , (Cl(s), s,0) 

is a complex submanifold contained in M. [] 

C o r o l l a r y  3.2. Let h, M and M' satisfy the hypotheses of Theorem 2. Then 
there exists a local holomorphic change of coordinates at 0 such that ~ given by 
(0.2) satisfies 

(3.4) ~(z,  ~,, 0) = IZ112~(z, z), 
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where ~ is real analytic at 0 and ~(0)~0  has the sign of (Og/Os)(O). 

Proof. Without loss of generality, we may suppose that  M contains the curve 
(3.3). Let us make the following holomorphic change of coordinates Z1 = Z l - C 1  (z2), 
Z~=z2, W=w. Then the complex line {(0, Z2,0)]Z2EC} lies in M and therefore 

z ,0, 22,0) --0. 

After (1.1), we get FI(0, Z2, 0 ) - 0  and hence Fx(ZI,Z2,0)=Z~F~(Z1, Z2) for some 
power series F1. Introducing this into (1.1) and using (OG/Ow)(O)r we obtain 
(3.4). The question of sign follows from Corollary 1.3 because ~(0) is the nonzero 
eigenvalue of the Levi form of M at 0. [] 

4. E s t i m a t e s  for  t h e  t r a n s v e r s a l  c o m p o n e n t  

In this paragraph we assume that  h, M and M p satisfy the hypotheses of The- 
orem 2. We also assume (without loss of generality) that  

(4.1) and ~ ( 0 ) > 0  

(cf. Corollary 3.2). After Remark 2.2 and Proposition 2.1, we know that  h has 
a C a extension ~ to a neighborhood ft of 0EC 3 which is holomorphic in f~N 
{Imw>~(z,2,  Rew)}. Denote by 6 the third or transversal component of 7-/ and 
let 

g(z, z, s+it) = ~(z, 2, s+it+i~(z, 2, s+it)). 

P r o p o s i t i o n  4.1. Let h, M, M ~, G and 9 be as above. Then the following 
estimates hold(2): 

(4.2) G(z,w)=o(lzl[2)+W~w (Ol+o([wI), (z,w)---*o, 

(4.3) 
10g 

[g(z, 2, s+it)[ >_ ~ ~s (O)ls+~t[ for t >_ 0 and [(z, s+it)[ small. 

Proof. For any a , /~EN 2 and any j, k c N  with ~ 5 0  or k~0,  we have by con- 
a ~ j k __ tinuity 0 z O~ O~O~G[M--O. Therefore, using (0, z2, 0 ) c M  for z2 small, we see that  

the functions 

(4.4) z2, , 0z ~ G(0, z2,0) 

(2) As  usua l ,  u(z, w)=o(v(z ,  w) ) m e a n s  t h a t  u(z, w) /v(z ,  w)-.-*O , as (z, w)---*O. 
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are holomorphic. As already mentioned, at the formal power series level, we may 
factorize w in G and obtain 0~0~6(0)=0 for all c~,/3EN 2. Together with (4.4), this 
implies 

(4.5) 0~6(0, z2, 0) -- 0. 

Taylor's theorem for zl~-+6(zl, z2, O) at 0 shows that for m_>3, mEN,  

oF _ 06 
6(Zl,  Z2,0) : 6(0,  Z2,0) --}-Z 1 ~ Z  1 (0, Z2, 0) q-Z 1 ~ (0, Z2,0) --}-... q-O( IZI I m) 

=o(Iq12), z-+0. 
For the same reasons, (OG/O~)(zl, z2, 0)=o([z112), z-+0. Finally, Taylor's theorem 
for 6 at (zl, z2,0) yields 

2 06  'z 6(Zl,Z> W)=o(lzal )+w-6--www k 1,z2,O)+~o(lzl[2)+O(lwl 2) 

= o(1~1 ~ ) +w~176176 (~,w)--o. 

This proves (4.2). Because Iw(OG/Ow)(O)+o(IwL)l>�89 for I(z,w)l 
small, to prove (4.3), it is enough to verify 

(4.6) [s+it+i~o(z, 2, s+ i t ) [>  ~(Is+itl+jzilU~(O)) for t_>0. 

Using (4.1) and (O~/Os)(0)=0, we get after using Taylor's theorem: 

~o(z, 2, s+it) = ~o(z, 2, O)+o(]s+it]) = Iza IZ(~(0)+o(1))+o(Is+itl).  

Hence 
[s+it +iqo(z, 2, s+it)l = I(s+it)(1+o(1)) +ilzl12(~(O) +o(1))1, 

as (z, s +it ) -~ 0 and t > 0. The following elementary inequality 

1 (is+itl+r) forr ,  t > O  [s+it +irl > --~ 

may be perturbed to give 

I(s+it)(a+ib)+ir(c+id)[ >_ ~(]s+itl+r ) for r,t>_0 

where a+ib and c+id are sufficiently close to 1. The proof of (4.6) follows. [] 

C o r o l l a r y  4.2. Under the hypotheses of Theorem 2 with the choice (4.1), the 
function D5 f2/(1+ilf2[2) 2 extends down. 

Proof. After Proposition 2.1 and Remark 2.2, we know that  f l ,  f2 and g extend 
up. Therefore Proposition 2.4 applies and shows that  D5~f2/(l+i]f2t2) 2 extends 
down. Of course, D5f2/(l+i[f212) 2 is C ~ at 0EC 2 •  Because ~ extends down 
and is bounded below by (4.3), we may apply Lemma 4.5 of [BR3] to conclude that  
DSf2/(1+ilf2[2)2=(1/~)DSOf2/(1+ilf212) 2 extends down. [] 
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5. P r o o f  of  T h e o r e m  2 

Let us assume that  h: M--~M I satisfy hypotheses of Theorem 2. The finite 
multiplicity assumption guarantees (cf. [BR1, (3.18)]) the existence of a multi-index 
TEN 2 such that  

(5.1) L'YD(O) # 0 

where L and D are defined by (2.3) and (2.4). If we take care to choose 7 minimal 
with respect to the following lexicographic order on N2: 

(5.2) a -~ 3 

then we also have 

al+a2 <fll+fl2 or OLl-~-ol 2 =31+32 and a l  <31 

(5.3) L5"~D5 (0) r 0. 

Indeed, the order (5.2) satisfies 

a, f l E N  2, a + / 3 = 2 7  

and Leibniz' formula gives 

L2~D2(0) = E 
a+j3=2~ 

Using now 

a % 7 o r f l ~ 7 ;  

we see that  

a, j3EN 2, a+~3-~27 

a \ L~ ,  1 - L ~ " k  (L~D)fl = ~ ( a , ) (  ( +if2f2))( 1) 

Applying L ~, for a EN 2, to both sides gives 

(5.4) D f z = ( l + i f2f2 )kl. 

By iteration, we get (5.3). 
Go back to Proposition 2.4 and rewrite (2.7) as 

LSD2(0)=0 for 5-<27. 
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and hence, at 0, 

0 =  E (c~ ~LC,,(l+if2f2)(O)LC~,,kz(O). \c~ t ] 

By induction on a and using (1+if2 f2 ) (0 ) r  0 we get L ~ k l (0)= 0 for all a G N 2. This 
implies 

(5.5) L~(f2kl)(O)=O for all a c N  2. 

Application of L ~ to both sides of (5.4) may also be written as 

That  is, after (5.1) 

(5.6) 

(L~D)fl = L~kl +if2L ~ (f2kl) 

fl+ f2ul+vl = 0  

with ul=-iL~(f2kl)/L~D , vl=-L~kl/L~D extending down and from (5.5) we 
have ul (0) =0. 

Using L 5~, Corollary 4.2 and (5.3), we prove in the same manner that  f2 
satisfies an algebraic relation 

(5.7) f2+ f2u2+ f~u3+v2 =0 

with u2, u3, v2 extending down and u2(0)--0. The implicit function theorem enables 
us to solve the system (5.6)-(5.7) and show that fl and f2 extend down. From (2.5), 

we deduce that g also extends down. From Lemma 2.2 of [BJT] it follows that h 

has a holomorphic extension near 0 in C 3. The proof of Theorem 2 is complete. 

L e m m a  6.1. 

(6.1) 

Then 

6. P r o o f s  o f  T h e o r e m s  3 a n d  4 

Let wEC{Xl,X2,y} be defined by 

~ - - \  2 ] Xl+ x2, m~>l. 

m ! cJ(Xl,X2,y)=y+y E A~(y)x?lx~ ~, A ~ e C { y } ,  
~cN2\{0} 



196 H e n r i - M i c h e l  M a i r e  a n d  P r a n c i n e  M e y l a n  

where Al,o=-2i  and Ao,1 =-2iy. 
Proof. After the implicit function theorem, we may write 

E B "~alxC~'J 02 ~ c~,J~l 2 tJ �9 

~ c N  2, j E N  

For x=0 in (6.1), we have ~j  Bo,jyJ=y, and hence 

OL 1 O~ 2 w = y +  E B~(y)xl x2 ' with B ~ ( Y ) = E B ~ , j y J .  
I~1>o J 

Let us insert this expression into (6.1); we get 
(6.2) 

m t 

1 ( 1 ) ( 1 E B~(y)x~;'+lx2. 
I~l>o I~f>o 

When y=0, this implies that B~(O)=O for all c~. Because the right hand side of 
(6.2) has a factor y'~', each B~ is divisible by ym'. The expressions for Al,o and 
Ao,1 follow directly. [] 

Proof of Theorem 3. Without loss of generality, we may suppose that fl ,  f2 
and g extend up. Because h(M)CM ~, Lemma 6.1 yields 

- _}_ m 1 (6.3) g=g g ~ A~(g)]flJ2"l[f2[ 2"~. 
c~cN2\{0}  

Applying Lj, for j = l ,  2, gives 

LJ ~=g'~' E A~(g)(alf~l]'2~2f~l-l f~LJL +(~2f~l f~2]~l f~2-iLJf2) 
I~l>o 

= gin' ( -2 i f l  +$1 (fl, f2, g, J~, j~))nj fl  +gm' (--2i9f2 +$2 (fl, f2, g, fl,  f2))Ljf2 

with S1, $2 being convergent power series such that 

o s j  - o s j  0 , Sy(O,O,g, fl,s ,0, g,/1 f2)-=0. 

Hence, with D=LlflL2f2-L2flLlf2: 

Dg m' ( -2 i f l  +S1 (f~, f2, g, fl, L)) = kt, 
(6.4) 

Dg "~' ( -2 igf~  +S~ (fl ,  f~, 9, f~, f~)) = k~, 
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where ks and k2 are functions which extend down. 
Under the non-flatness condition (0.4), we may use Lemma 3.12 of [M2], a 

detailed proof of which is given in [M3]. Therefore g is divisible by s k for some k: 

g(z, 2, s) = skg] (z, 2, s), with gl (0) # 0. 

Division by 9 in the class of functions which extend down is then possible because 
Corollary 4.8 of [BR3] applies. Conjugation of (6.3) gives 

(6.5) =9 l+g "~-i 

I~1>0 

and hence g '~ '=9"V(l+. . . )  where the dots do not contain constant terms. From 
(6.4) we get 

(6.6) 
D(I1 + T~ (f~, f~, g, A ,  ]2)) = vl, 

D(gf2 +T2 (fl, f2, g, f l ,  f2)) = v~, 

where T], T2 have no linear terms in f and vl, v2 extend down. 
From the tangential finiteness assumption, Proposition 3.1 of [M2] asserts that  

LZD(z, 2, s) = s21D~(z, 2, s) for all ~ G N 2 

and there exists a such that  D~(0)~0.  
Applying L ~ to both sides of (6.6), we get 

s~tD~fl+s2~Rl(fl , f2,u)=L~vl,  

s2ZD~gf2+s2tR2(fl,f2,u)=L~v2, 

where u is a finite set of functions extending down and R1, R2 do not contain linear 
terms in f .  After dividing by s 2l and use of the implicit function theorem we obtain 
that  f l  and g f2 extend down. Hence with the same trick as above, f l  and f2 extend 
down. Finally (6.5) shows that  g extends down. [] 

Proof of Theorem 4. Because M is assumed to be of infinite type and h is 
transversally submersive, it follows from [M3] that  

g(z,z,8)=Sgl(Z,~,8 ) with g l ( 0 ) # 0 .  

Therefore we may divide by 9 in the class of functions which extend down. 
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Proposition 2.4 applies and with the above remark asserts that 

D fl and DSf2 
l+if~f2 1+if2f2 

extend down. 
The proof of Theorem 2 in Paragraph 5 may be reproduced with adjunction of 

a factor s 2t, where l comes from (0.3), in each formula from (5.1) to (5.5). Indeed, 
the following observations are used: 

(1) If M is of infinite type, v is smooth and p e N  then L~(sPv)=sPv~, with v~ 

smooth. 
(2) D(z,5, s)=s2tDo(z,2, s) (see [M3I). [] 
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