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1. Introduction

This paper deals with subsets of a finite-dimensional euclidean space E, a set being
called polyhedral or a polyhedron provided it is the intersection of a finite number of closed
halfspaces. Thus as the term is used here, a polyhedron is closed and convex but need not
be bounded. A set will be called boundedly polyhedral provided its intersection with each
bounded polyhedron is polyhedral. Our principal goal is to characterize polyhedra as
convex sets, certain of whose projections or sections are polyhedral. In connection with
this task, we are led to develop various properties of polyhedra and of boundedly poly-
hedral sets which seem to be available in the literature only for bounded polyhedra or
polyhedral cones. Some of our proofs could be simplified a bit by working in projective
space. However, since many of the results on unbounded convex subsets of the affine space
seem to be not so simply obtainable in this way, we have chosen to work entirely in the
affine space E.

Section 2 begins with a simple but useful theorem on the facial structure of an arbitrary
convex set, generalizing from the fact that a bounded closed convex set is the convex hull
of its set of extreme points. This theorem supplies one step in proving equivalence of the
following five conditions on a subset K of E: K is the intersection of a finite system of closed
halfspaces; K is a closed convex set with only finitely many faces; K is closed and is the
convex hull of a finite system of points and rays; K is the closed convex hull of the union
of a bounded polyhedron and a polyhedral cone; K is the linear sum of a bounded poly-
hedron and a polyhedral cone. Surely the equivalence is generally ‘“‘known”, but it

seems not to be available elsewhere in precisely this form. In the present paper, we
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have need of the equivalence and have included the proof in an effort to smooth the
reader’s path.

In § 3 we exploit some connections between polyhedra and convex cones, in prepara-
tion for the main results in § 4. These are as follows (rendering “if and only if” by “iff”).
Suppose K is'a convex subset of " and 2 <j <n — 1. Then (1) K is polyhedral iff all its
j-sections are polyhedral; (2) if K is bounded, K is polyhedral iff all its j-projections are
polyhedral; (3) if j >3, K has polyhedral closure iff all its j-projections have polyhedral
closure; (4) if K is a cone, K is polyhedral iff all its j-projections are closed. These theorems
are believed to be new, except that for j =2 and K closed; the result (4) was recently
given by Mirkil [7]. Our general procedure has much in common with his, and some of
our propositions amount to formalizations of steps in his proof. The results (1) and (2)
reduce trivially to the case j =2, but this does not appear to be true of (4).

Section 5 is devoted to some types of “nearly polyhedral” sets, characterizing them
in various ways, identifying their polars, etc. The results are applied in discussion of two
interesting examples in £, one a nonpolyhedral closed convex set all of whose 2-dimensional
projections are polyhedral, and the other a set which is nonpolyhedral even though it and
its polar are both boundedly polyhedral. In § 6 it is proved that every convex F, set is a
projection of some closed convex set, and the projections of boundedly polyhedral sets
are also characterized. Some approximation theorems are given which are valid for un-
bounded convex sets and reduce in the bounded case to the classical result on approxima-
tion by polyhedra.

In the concluding § 7, the term polyhedral is employed in its more customary sense to
describe a set which is the union of a finite number of geometric simplexes. There is con-
structed in E® a nonpolyhedral 3-cell all of whose 2-sections and 2-projections are poly-
hedral. Thus convexity seems essential for the results of § 4. ‘

For basic material on convex sets, including proofs of results used here without speeific
reference, the reader is referred to (1, 2, 3, 4], especially [4]. I am indebted to Professor
Fenchel for some helpful suggestions, especially in connection with § 2.

Notation and terminology. A j-flat is a j-dimensional affine subspace of E, and the term
subspace will be reserved hereafter for linear subspaces. A j-section of a set X < E is the
intersection of X with a j-flat, and a j-projection of X is the image of X under an affine
projection of E onto a j-flat. (Since such an affine projection can always be obtained as
the composition of a translation with a linear projection onto a j-subspace of E, conditions
on the j-projections of a set may be regarded equivalently in terms of linear projections.)

We denote the empty set by A, and the origin in E by ¢. Set-theoretic union, inter-
section, and difference will be denoted by U, N, and ~, the closure, interior, and convex
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hull of a set X by cl X, int X, and conv X. The smallest flat containing X will be denoted
by fl X and the interior of X relative to fl X by relint X (called the relative interior of X).
The relative boundary of X is the set X ~ relint X. Forzand y in E, [z, y] = {rz + (1 —)y:
O0<r<1} Je,y[={ra+(1—r)y:0<r<1}, etc. For X< B, Y E, e>0and A< R
(the real number field), X + Y ={zty:2€X,y €Y}, AX ={az:0€4, x€X}, and S(X, ¢)
is the union of the open ¢-neighborhoods of the points of X.

2. Facial structure, polarity, and polyhedra

We prove here a useful result on the facial structure of convex sets, review the notion
of polarity, and establish some basic properties of polyhedra which will be used later in the
paper. Fenchel’s book [4] may be mentioned as a basic reference for the methods employed
and for Proposition 2.2, Goldman’s paper [5] for the result 2.12 (v), and my paper [6] for
2.3. The remarks on polarity and at least special cases of the results on polyhedra have
appeared in print many times (see, for example, [2, 4, 5, 9]).

A convex set will be called reducible provided it is the convex hull of its relative boundary;
otherwise it is érreducible. By a face of a convex set K we shall mean a convex subset ¥ of
K such that whenever x and y are points of K for which F is intersected by the open seg-
ment Jz, y[, then € F and y € F. The convex set K is said to be generated by a family F
of sets provided K is the convex hull of the union of the members of F. (In using this term,
we shall not always distinguish carefully between a point p€ E and the corresponding set
{p}= B

2.1. THEOREM. Every convex set is generated by its irreducible faces.

Proof. As always in this paper, we are concerned only with finite-dimensional sets;
2.1 is trivial for those of dimension zero. Suppose it is known for all convex sets of dimension
<'nm, and consider an n-dimensional convex set K. Let D denote the relative boundary of
K. If K= conv D, then K itself is an irreducible face of K. If K = conv D, then by the
support theorem K must be generated by the sets H N D, where H is a hyperplane which
meets D but not relint K. But each face of a set H N D is easily seen to be a face of K,
and by the inductive hypothesis each set H N D is generated by its irreducible faces. This
completes the proof.

Theorem 2.1 is especially useful for closed convex sets, in view of the following.
2.2. PrRoPoSITION. The only irreducible closed convex sets are the flats and the half-flats.

Proof. Obviously all flats and half-flats are irreducible. Now consider an irreducible
closed convex set K and let D denote its relative boundary. Since conv D=+ K, we have

conv D D relint K, and by the separation theorem there must be an open halfspace @ in
6 — 593804. Acta mathematica. 102. Imprimé le 26 septembre 1959
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fl K which misses conv D but meets relint K. Since K is closed, it can be seen that
@ < relint K, and is then easy to verify that K =fl K or K is a closed halfspace in fl K.

2.3. COROLLARY. A closed convex set which contains no line is generated by its extreme
points and extreme rays.

Let us include a few more remarks on facial structure, even though they are not
needed for the sequel. A face of a convex set K will be called essential provided it lies in
some member of each generating family of faces of K, and strictly essential provided, in
addition, it is not contained in another essential face. We shall prove together the follow-

ing two results.

2.4. ProPoSITION. Every irreducible face is essential, and every strictly essential face

is trreducible. Thus the strictly essential faces are exactly the maximal irreducible faces.

2.5. PrRoPOSITION. Every convex set is generated by its family of strictly essential faces,
but not by any proper subfamily of that.

Proofs. We note: 1° a convex set is irreducible iff it is an essential face of itself; 2° if
X < K and Fis aface of K, then conv (X N F) = (conv X) N F; 3° if @ is an essential face of
F and F is a face of K, then G is an essential face of K. The assertion 1° is trivial. As for
2°, it is obvious that conv (X N F) < (conv X) N F. Now consider points x; of X and positive
numbers {;, whose sum is 1, such that > ¢,z, = pe F. Then for each j we have p =iz, +
(1 —t,)y;, where y;=2,;(1 —¢,)"" t,z,€ K. Since F is a face, it follows that z;€F. Thus
p€ conv (X N F) and 2° has been proved. Finally, suppose @ and F are as in 3° and & is
a generating family of faces of K. From 2° it follows that F is generated by its family of
faces, {J N F : J € &}, and thus G, being an essential face of F, must be in some set J N F.
This establishes 3°, and we are ready to prove 2.4 and 2.5.

That every irreducible face is essential follows from 1° and 3°. Now let § be the family
of all strictly essential faces of K. From finite-dimensionality it follows that every essential
face (and hence every irreducible face) lies in some strictly essential face, so from 2.1 it
follows that § generates K. Consider an arbitrary S€§ and let F be the family of all
proper faces of S. If K is generated by (§ ~ {S}) U ¥, then S, being essential, must lie in
some member of § ~ {S} or in some member of J. Since this is impossible, K is not generated
by § ~ {8} (completing the proof of 2.5) and S is not generated by 7, whence S is irreducible
and the proof of 2.4 is complete.

In the case of closed convex sets, a more complete picture of the facial structure can

be obtained from the following two remarks, whose proof will be left for the reader.

2.6. PrRoPoSITION. Suppose L and M are supplementary linear subspaces of E, J
s a convex subset of M, and n is the projection of E onto M whose kernel is L. Then if G is
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a face of the set J + L, nG is a face of J, and if F is a face of J, n2 F is a face of J + L.
The same assertion 18 valid for essential faces and for strictly essential faces.

2.7. ProPoSITION. Suppose K i3 a closed convex subset of E with ¢€K, and L =
{z : Rx<= K}, so that L is a linear subspace of E. Let M be a subspace supplementary to L.
Then K =L + (M 0 K) and the closed convex set M N K contains no lines.

It follows that the essential faces of K are exactly the sets g + L where g is an extreme
ray of M N K and the sets p + L where p is an extreme point of M N K. These are all strictly
essential except for the sets p + L where p is an endpoint of an extreme ray.

For a subset X of E, the polar X° of X is defined as the set of all linear functionals f
on E such that fz <1 for all x€X. Thus X° is a subset of the space E’ conjugate to E,
and the bipolar X% is a subset of £ under the usual identification of £ with the conjugate
space of E'.

The propositions 2.8-2.10 below summarize some well-known facts which will be used

freely in the sequel.

2.8. ProPosITION. For X < E, the polar X° is a closed convex set which includes
the origin ¢’ of E’, X°=[clconv (X U {¢}]° and X% =clconv (X U {¢}). Thus always
X000 = X0 phile X% = X iff X is closed and convex and € X.

2.9. PrROPOSITION. Suppose X is closed and convex with ¢ € X. Then X is a j-subspace
iff X0 is a (dim E — j)-subspace, X is a cone with vertex ¢ iff X° is a cone with vertex ¢', and
X is bounded iff ¢’ € int X°.

2.10. PRoPOSITION. For a family {X,:a€A} of subsets of E, (U X,)* =N X3 and
aed aed
(N X,)° =clconv U X2

aea aca
We shall prove together 2.11 and 2.12 below, supplying five useful characterizations
of polyhedra. Essential tools in the proof are 2.1, 2.2, and parts of 2.8 and 2.10.
2.11. TueorREM. If K is a closed convex set with ¢ €K, then K 1is polyhedral iff K° is
polyhedral.
2.12. THEOREM. For a subset K of E, the following five assertions are equivalent:
(i) K is the intersection of a finite system of closed halfspaces;
(if) K s closed, convex, and has only finitely many faces;
(iii) K is closed and is the convex hull of a finite system of points and rays;
(iv) K is the closed convex hull of the union of a bounded polyhedron and a polyhedral cone;
(v) K is the linear sum of a bounded polyhedron and a polyhedral cone.
Proofs. We show first that (i) implies (ii). Let G be a finite family of closed halfspaces

whose intersection is K, and for each &< § let V& be the intersection of the bounding
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hyperplanes of the members of &. There are only finitely many sets of the form K n V&,
and we shall show that each face of K has that form. Consider an arbitrary face F of K,
and let & be the set of all members of § whose bounding hyperplanes contain F; obviously
Fc KnVE&. Now for each GeG~S we may choose a point pe of F N int ¢. With

p denoting the centroid of the chosen points pg, it is evident that peU = int G.
Geg~-&

Consider an arbitrary point g€ K N V&. Clearly V& contains the entire line of points
Y, =p +r(p—q) (for & R), and since U is open we have y;€ U for some ¢ >0. Then y;€ K;
since F is a face and p€]q, y, it follows that ge F. Thus KN V& < F and we know that
(i) implies (ii).

That (ii) implies (iii) is a consequence of 2.1 and 2.2, for obviously condition (iii) is
satisfied by every flat and every half-flat.

We next establish

(1) Suppose $€K and K is the closed convex hull of a finite system of points and
rays. Then K is the closed convex hull of a finite system of points and of rays emanating
from ¢; further, the polar K9 is polyhedral.

Let gy, ..., 0 and Xy .1, ..., ¥, be the given rays and points. For each g, let x; be the
endpoint of g, and let g} be the ray g; — ;, emanating from ¢. Since always g, < cl conv
({z} U @%) and g} < cl conv ({$} U g)), it is evident that K is the closed convex hull of the
system of points x;(1 <i <n) and rays o} (1 <i <m). With y,€0i ~ {¢}, it follows from
2.10 that KO is the intersection of » halfspaces of the form {f : fx; <1} and m of the form
{f: fy; <0}, so K® is polyhedral.

Now consider a closed convex set K3¢. From (1), in conjunction with the fact that
2.12 (i) implies 2.12 (iii), it follows that if K is polyhedral, sois K°. But this implies that if
K9 is polyhedral, so is K% = K, and thus 2.11 has been proved. Now if K satisfies 2.12
(iii), then K is polyhedral by (1) and K is polyhedral by 2.11; thus 2.12 {iii) implies 2.12 (i).

We are now in a position to prove
2.13. COROLLARY. A4 set is a bounded polyhedron iff it is the convex hull of a finite sel.

2.14. COROLLARY. A set is a polyhedral cone with vertex z off 1t is the convex hull of
a finite system of rays emanating from z.

For closed sets, these characterizations come immediately from equivalence of condi-
‘tions (i) and (iii} in 2.12. From compactness of [0, 1] it follows readily that the convex hull
-of a finite set is compact, hence closed, and this completes the proof of 2.13. For 2.14, it
isuffices to show that if z,, ..., , are points of £ and C is the set of all linear combinations

-of the z;’s with non-negative coefficients, then C is closed. For k = 1, this is obvious. Sup-
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pose it is known for k ==» —1 and consider the case k =n. Let J = f;;ix,- :t;, 2 0}. Then
C =J +[0,00[x,, and J is closed by the induetive hypothesis. If 2, €.J, then C =J, so we
may assume z,¢J. Now consider an arbitrary point p€cl C. There are sequences f, in
[0,00[ and y, in J such that {,—>t€[0,0] and y, + t,x,—>p. If t= oo, then t; 'y, +x,—>¢
and thus =z, €J, a contradiction. If t€[0,cc[, then y,—>p —tx,, whence p ~tx, =y€J and
p€C. The proof of 2.14 is complete, and we may continue with the proof of 2.12.

Note that in the proof of (1) above we have

m
(*) K =cl conv (conv{w,;: 1 <i <n}U conv Ug}),
i1

so by using the characterizations 2.13 and 2.14 we see that (iii) implies (iv) in 2.12. On the
other hand, if K is the eclosed convex hull of the union of & bounded polyhedron and a
polyhedral cone with vertex ¢, it follows by 2.13 and 2.14 that K has the form (*), by (1)
that K° is polyhedral, and then by 2.11 that K is polyhedral. Thus (iv) implies (i) in
2.12, and it remains only to prove that (iv) and (v) are equivalent. To this end, we establish

(2) Suppose X is a compact convex set with ¢€X and Y is a closed convex cone with
vertex ¢. Then X + Y =clconv (X U Y).

With $e€X N Y, it is clear that X + ¥ > X U ¥, and then since X + Y is closed and
convex it follows that X + Y > clconv (X U Y). The reverse inclusion stems from the
fact that if #€ E and g is a ray emanating from ¢, then = + ¢ < ¢l conv ({z} U ).

Now suppose B is a bounded polyhedron and C is a polyhedral cone with vertex ¢.
Let B’ =conv (BU {¢}) and B" = B — b for some b€ B. From (2) wesee thatif K = B + C,
then K —b = B" + C =cl conv (B” U C). Thus (iv) is equivalent to (v) and the proof of 2.12

is complete.

2.15. CoROLLARY. If K is a polyhedron (a bounded polyhedron, a polyhedral cone),
then so is every affine image of K.

Proof. For bounded polyhedra and polyhedral cones, this is evident by 2.13 and 2.14.

Then use 2.12 (v) for the general case.

2.16. CorovrLrLARrY. If K, and K, are polyhedra (bounded polyhedra, polyhedral cones
with vertex ), then so are the sets K, + K, and cl conv (K, U K,).

Proof. From 2.13 it follows that if B, and B, are bounded polyhedra, then so are
B; + B, and conv (B, U B,). From 2.14 it follows that if C, and C, are polyhedral cones,
then C, + C, is a polyhedral cone, ag is conv (€, U ,) under the additional assumption
that C; and 0, have the same vertex. Thus if K, and K, are polyhedral (say K; = B, + C,,
so that K, + K, = (B, + B,) + (C; + C})), we deduce from 2.12 (v) that K, + K, is poly-
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hedral. Observe, finally, that when K, and K, are polyhedral it is evident from 2.12 (iii)
that the set K = cl conv (K, U K,) is the closed convex hull of a finite system of points and
rays; that K is polyhedral is then a consequence of (1) above in conjunction with 2.11.
The proof of 2.16 is complete.

In concluding this section, we mention two more notions which play an important role
in the sequel. A subset K of E is said to be boundedly polyhedral provided its intersection
with each bounded polyhedron in E is polyhedral, and to be polyhedral at a point pe K
provided some neighborhood of p relative to K is polyhedral.

2.17. PROPOSITION. A set is boundedly polyhedral iff it is closed, and convex, poly-
hedral at all its points.

Proof. Suppose K is closed, convex, and polyhedral at all its points, and consider a
bounded polyhedron B. Each point 2€ K admits a bounded polyhedral neighborhood N,
relative to K, and by compactness of B N K there must be a finite set X< K with BN K <

UN,. Let Z = conv U N,. Then Z is polyhedral, whence so is B 1 Z, and we have BN K <

reX zeX

Z < K. Tt follows that BN K = BN Z and K must be boundedly polyhedral.

3. Cones and polyhedra

For a point pe F and a set X < E, cone (p, X) will denote the set p +]0,00[(X — p),
the smallest cone which contains X and has vertex p. (Note that pe€cone (p, X) iff
p€X.) The present section consists largely of exploiting the connection between this
notion and polyhedra. We begin with a collection of elementary but useful facts about
convex cones, supplying some of the machinery to be employed in proving the main theo-
rems.

3.1. ProproSITION. Suppose C is a convex cone in E with vertex ¢, and let L denote
the lineality space of clC (L=clCN —¢clC). Then C is linear iff C < L. Suppose now
that C is not linear, so C& L. Then there is a linear functional f on E such that f =0 on L
and {>0on clC~ L. Witht >0, let Hy= {10 and H; = f-1¢. Then the following statements
are true:

(i) C=(H,N ) U0, o[(H,N O);

(i) H,NC>HNC)+H,NC) and C>(HgNC)+[0, co[(H,NCO), with equality
when ¢ €C (and also under certain other conditions);

(iii) if peH, N O, then cone (p, H, N C) =nC + p, where 7 is the projection of E onto
H¢y which is the identity on Hy and maps p onfo ¢;

(iv) if 8 is & subspace supplementary to L in Hy and 8, is « translate of S to H; then
8: 0N C is bounded,
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(V)if L<C, then HHNC =L +(8; N C) and C =L + [0, o=[(8: N O);
(vi) C 1s closed iff H, 0\ C s closed and L<C;
(vii) C is polyhedral iff H, N C is boundedly polyhedral and L < C.

Proof. The existence of f as described is well-known. Since f >0 on C ~ L, it is clear
that each point of C' ~ L has a positive multiple in H; N C, whence condition (i) holds. If
H,n C = A, the inclusions of (ii) hold trivially, for always A + X = A. Suppose on the other
hand that x€HyN € and yeH; N C. Then z +y¢€C (since C +C<C) and f(x +y) =0+,
80 z +y€H, N C. This justifies the first inclusion in (ii). For the second, we see from (i)
that C'>]0, co[(H; N C), whence C>]0, co[{(H,NC) + (H,NC)} = (HyN C) +]0,00[
(H N C). And, by (i), C> HynC=(HynC)+ {0}(H,nC), so the second inclusion of
{ii) is established. The assertions about equality in (ii) are easily verified.

Now to establish (iii), let K = (H, N C) — p, so that K< Hyand H,N C = K + p. Then

cone (p, H, N C) < cone (p, K +p) =p + 10, o[K
and
aC=n(H,NC)Unrl0, cc{(K + p) = (H,N C)=]0, oo[K.

From (ii) we see that K > (H, N C) + K, whence K > H, N C (sincep € K) and 10, co[ K 5]0,
co[(Hy N C)=Hy N C. It follows that 7 C =10, co[K and (iii) has been proved.

For (iv), observe that if S, N C is unbounded it must contain a ray and then the parallel
ray emanating from ¢ must lie in S N ¢l C, contradicting the fact that H, N el €' = L.

Now if L= C, then L + C < C and hence L + (8; N €)= H, N C. The reverse inclusion
follows from the fact that H, = L + §;, and then using (ii) we obtain

C =L +[0, so[{L + (SN C)} = L + [0, o [(8, 0 C),
so (v) is proved.

It is easy to verify that if H, N C is closed, so is [s, oo[(H; N C) for each s >0. And
since HyN cl C =L, it follows that C is closed when H,n C is closed and L < C. This
establishes (vi).

Now suppose H; N C is boundedly polyhedral and L < C. Since S, N C is bounded, it
is the intersection with H, N C of a bounded polyhedron in S;, and thus §; 0 C is polyhedral.
With ¥ denoting the set of all extreme points of S, €' and B a basis for L, it is clear that
C consists of all non-negative combinations of elements of BU —BU V, for C =L + [0,
oo[(8; N C) by (v). Thus C is polyhedral and the proof of 3.1 is complete.

. 3.2. ProOPOSITION. Suppose X and Y are convex subsets of B, pe X N Y, and ¥ < cone
(p, X). Then if Y is polyhedral, the set X N Y is a neighborhood of p relative to Y.
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Proof. Let L and 8, be asin 3.1, so that C =L + [0, oo[(8; N C). We assume without

loss of generality that p =¢. Now Y can be expressed as the intersection of closed half-
k
spaces @, ..., @, Qxi1, ..., @, such that de int Q,iff £ +1 <i<m. Let C =r11 @;. Then

Y = C<cone (p, X) and C is a polyhedral cone with vertex ¢. To prove 3.2 it suffices
to prove that X N C is a neighborhood of ¢ relative to €. Since S, 1 U is a bounded
polyhedron, there is a finite set V such that conv V = 8; N C, and then for each ve V there
exists r, > 0 such that [¢, r,v] = X. The number r =inf{r,: v€ V} is positive and [0,7] V < X,
whence [0, r](S; N C) < X. Observe also that ¢'is an inner point of 7' N X for each line 7"
through ¢ in I, and hence X N L is a neighborhood of ¢ relative to L. (We are using here
the well-known fact that 3.2 is valid when Y = L.) Now each point % of C has a unique
expression in the form » = w, + a,z, with w,eL, a,€[0, o[, and z,€8; N C. Clearly there
is a neighborhood N of ¢ such that w,€3(X N L) and a,€[0, 3 r]forallueN N ¥; we then

have
NNY<3XNL)+1[0,7](8;nC)yc conv X =X,

and the proof of 3.2 is complete.

3.3. CoroLLARY. 4 convex set K is polyhedral at a point peK iff cone (p, K) is
polyhedral.

Proof. If cone (p, K) is polyhedral, it follows from 3.2 that K is a neighborhood of
p relative to cone (p, K). But then p has a polyhedral neighborhood N in E such that
N ncone (p, K) =P< K, and P is a polyhedral neighborhood of p relative to K.

Conversely, if K is polyhedral at p there is a bounded polyhedral neighborhood J of
p relative to K. From convexity of K it is clear that cone (p, K) = cone (p, J), which is
obviously polyhedral.

3.4. CorOLLARY. The result 3.2 vs valid under the assumption that X is polyhedral
rather than Y.

Proof. If X is polyhedral, then cone (p, X) is polyhedral by 3.3, and it follows from
3.2 that X is a neighborhood of p relative to cone (p, X). With ¥ < cone (p, X), this is

sufficient.

3.5. CoroLLARY. If p is a point of a convex set K, then cone (p, K) is closed iff J N K
is polyhedral at p for each 2-flat J through p.

Proof. Use 3.3 in conjunction with the following two facts: a two-dimensional convex
cone is polyhedral iff it is closed; a convex set is closed iff all its 2-sections through a given
point are closed.



SOME CHARACTERIZATIONS OF CONVEX POLYHEDRA 89

We conclude this section with two basic lemmas which will be subsumed by the

theorems of § 4.

3.6. LEMMA. Suppose 2 <j < n and K is a convex subset of E* all of whose j-projections
are closed. Then if all 2-sections of ¢l K are boundedly polyhedral, K must be closed.

Proof. We may assume that ¢ € K, § < n, and let L denote the union of all lines through
¢ which lie in ¢l K, M a subspace supplementary to L in E. Then (by 2.7)cl K =L +
M n (el K}, where the set A =M n ¢l K contains no lines and thus by 2.3 4 =conv (ex
AV rex A), where ex 4 is the set of all extreme points of 4 and rex 4 the union of its
extreme rays. Clearly 4 inherits from ¢l K the property that all its 2-sections are boundedly
polyhedral, and we can show that K is closed by showing that L + ex 4 < K and L +rex
A< K.

We use the following two facts: (a) L +relint 4 < K; (b) if J = {p} for p€ex 4 or
J =cl g for some extreme ray g of A4, then 4 is supported by a hyperplane H in M such
that H n 4 =J. The assertion (a) follows from the readily verified facts that each finite-
dimensional convex set contains the interior of its closure, and L + relint 4 < relint cl K.
The assertion (b) is an easy consequence of 2.17, 3.5, and the existence of f as described in
3.1.

Congider first an extreme point p of 4. The assertion (b) guarantees the existence of a
supporting hyperplane U of K such that U N ¢l K = p + L. And if p + L ¢ K, there must be
a hyperplane V in U bounding an open halfspace W in U such that W misses (p +L)n K
but includes a point w of p + L. Let X be a (j — 2)-dimensional flat in ¥, x a point of X,
g€relint 4 and Y the j-dimensional flat containing X U {g, w}. Let & be an affine projection
of V onto X. Each point z€ E has a unique expression in the form

z2=x+ (2 —x) F2(w—x) tz(g —x) with z,€V, 2,€R, z; € R,
and for each z we define

ne=x+ (£z; —x) +25(w ~x) +2z5(¢ — x),

so that 7 is an affine projection of E onto Y. By hypothesis, K is closed. Nowifz€ K ~ U,
then z; >0 and nz==w; if 2 U N K, then 2z, <0 and 7z+ w. Thus wé¢n K. But nlw, q] =
Tw, gl = K, so it follows that wecl n K ~ 5 K, an impossibility. We conclude that p + L< K
for each peex A.

Now consider an extremal ray p of A—say g =p +10, co[(u — p) where u€p and p
is the endpoint of g. By (b), there is a supporting hyperplane U of K such that U n el K =
cl g + L. Since peex A, the result of the last paragraph shows that p + L < K, and it fol-
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lows easily that (9 +L) N K =¢ + L for some “initial segment” ¢ of 9. We wish to show
that o =p. Suppose not, and let weg ~ clo. It can be verified that U must contain a
hyperplane ¥ bounding an open halfspace W in U such that w e W but W misses (o +.L) n K.
A contradiction is reached as in the preceding paragraph, and the proof of 3.6 is complete.

3.7. LEMMA. Suppose 2 <§ <n, and C is a convex cone in E™ all of whose j-projections

are closed. Then all (n —j + 1)-sections of C are polyhedral.

Proof. Application of 3.1 (vii) shows that all r-sections of a convex cone C are polyhedral
iff M n C is polyhedral for every (r + 1)-flat M through the vertex of C. This equivalence
will be used in the present proof, and we refer to it as (**).

Now consider a fixed j > 2, and let N, denote the set of all integers n > j such that
each convex cone in E® which has all its j-projections closed must also haveallits (n —§ + 1)-
sections polyhedral. Clearly j€N;. Now suppose k¥ —1€XN,, and consider a convex cone ¢/
with vertex ¢ in E¥, all j-projections of C assumed to be closed. We wish to show that
all (k —j + 1)-sections of C are polyhedral, and observe that it suffices to do this for ¢l C,
for then it follows by 3.6 that C is closed.

Let L, Hy, and H; be as in 3.1. Consider an arbitrary point peH; ncl C, and let =
be as in 3.1 (iii). Then ¢l C is a convex cone in the (k¢ — 1)-dimensional space H, and all its
j-projections are closed (being j-projections of C), so from the inductive hypothesis it
follows that all (k — j)-sections of ;clC are polyhedral. Now 3.1 (iii) shows that welC is
merely a translate of cone (p, H; N ¢l C), so all (k — j)-sections of the latter are polyhedral.
Using (**) above we see that cone (p, J N ¢l O) is polyhedral for each (k —j + 1)-flat J
through p in H;. An application of 3.3 shows that for each (¢ —j + 1)-flat G, in H,, the
set Gy N ¢l C is polyhedral at each of its points, and hence by 2.17 must be boundedly
polyhedral. From 3.1 (vii) we conclude that the cone cl [0, oo [(G; N C) is polyhedral and
hence that G;n cl € is polyhedral. Since G; is an arbitrary (k —7 + 1)-flat in H,, it fol-
lows from 3.1 (vii) and (**) that all (¢ —j + 1)-sections of cl C' are polyhedral. Thus C is
closed by 3.6 and all (k¥ — §)-sections of C are polyhedral.

In the preceding two paragraphs we showed that if k —1€XN,, then ke N,. It follows by

mathematical induction that N; includes all integers >4, and 3.7 has been proved.

4. Projections and sections

We start with the fundamental

4.1. THEOREM. Suppose K is a convex subset of E*, peK, and 2 <j<n. Then K is
polyhedral at p iff n K is polyhedral at p whenever 7 is an affine projection of K onto o j-flat
through p.
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Proof. For each 7 as described, it is evident that cone (p, 7 K) =& cone (p, K). Then if
K is polyhedral at p, cone (p, K) is polyhedral by 3.3, whence of course 7 cone (p, K) is
polyhedral and a second application of 3.3 shows that m K is polyhedral at p. On the other
hand, if 7 K is polyhedral at p for each 7 as described, then all j-projections of cone (p, K)
are polyhedral, whence all 2-projections are polyhedral. It follows by 3.7 that all (n —1)-
sections of cone (p, K) are polyhedral, whence cone (p, K) is itself polyhedral by 3.1 (vii).
We conclude from 3.3 that K is polyhedral at p, and the proof of 4.1 is complete.

4.2. CoroLLARY. With 2 <j < n, a convex subset of E" is polyhedral at all its points
iff all its j-projections have this property.

4.3. CorOLLARY. With 2 <j < n, a closed convex subset of E" is boundedly polyhedral
iff all its §-projections are polyhedral at each point.

4.4. CorOLLARY. With 2<j<mn, if all j-projections of a convex subset of E" are
boundedly polyhedral, the set itself must be boundedly polyhedral. Conversely, each closed j-
projection of a boundedly polyhedral set in E" is boundedly polyhedral (but of course there

may be j-projections which are not closed).

4.5. CorROLLARY. With 2 <j <, a bounded convex subset of E™ is polyhedral iff all

its j-projections are polyhedral.

In § 5 we construct a nonpolyhedral convex set in E® all of whose 2-projections are
polyhedral. (The set is necessarily unbounded and boundedly polyhedral.) Thus for j =2,
the restriction to bounded sets is essential in 4.5, but we shall see below that for j > 3 the
restriction can be removed.

Since we know already that all j-projections and j-sections of a polyhedron are poly-
hedral, and all j-sections of a boundedly polyhedral set are boundedly polyhedral, the
remaining results of this section are most simply stated not in terms of a range of values
for j, but instead in terms of the “‘best” value for j.

We need the following

4.6. REMARK. Suppose K is a closed convex set in E with $€K, L is a subspace of H,
and 7 s a lnear projection of B’ whose kernel is L0. Then (LN K)* =L%+cl nK® =n!
(cl KDY).

Proof. Since L? is a subspace of E’ and 7 K° lies in the supplementary subspace  E’,
it is easy to check that

(L n K)® =cl conv (L*U KO = ¢l (L® + K?)
=cl(L+a K% =10+ cl n K®=m"1(cl n K).
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47. TasoreM. If K is convex and peint K, then K is polyhedral [resp. boundedly
polyhedral) iff all its 2-sections through p are polyhedral [resp. boundedly polyhedral].

Proof. Obviously K is closed and we may assume that p =¢, whence K =K% and
K° is bounded. Now consider a linear projection zz of B’ onto one of its 2-subspaces and
let M be the kernel of 7, L = M°. Then L® = M and we see from 4.6 that (LN K} =M +
cl wK°. But K° is compact, so 7 K° is closed, and thus if L N K is polyhedral it follows that
M +7K® is polyhedral, whence 7 K° is itself polyhedral. Thus if all of K’s 2-sections
through ¢ €int K are polyhedral, all 2-projections of K° are polyhedral. From 4.5 it follows
that K° is a polyhedron, and then by 2.11 that K is one. Thus 4.7 has been proved for
polyhedra, and it remains only to consider the case of boundedly polyhedral sets.

Suppose all 2-sections of K through peint K are boundedly polyhedral, and consider
an arbitrary bounded polyhedron B. There is a bounded polyhedron @ > B such that
p€int @; of course all 2-sections of @ N K through p are polyhedral and hence @ N K is
polyhedral by the result just established. But then BN X must be polyhedral, so K is
boundedly polyhedral and the proof of 4.7 is complete.

4.8. COROLLARY. If K is convex and g€ K, then K is polyhedral [resp. boundedly
polyhedral] iff all its sections by 3-flats through q are polyhedral [resp. boundedly polyhedral].

4.9. THEOREM. A convex set K < E™ (with n > 3) has polyhedral closure iff all its 3-

projections have polyhedral closure.

Proof. Assume ¢ € K. Then if all 3-projections of K have polyhedral closure, it follows
by 4.6 that all 3-sections of K° through ¢’ are polyhedral, whence K*® is polyhedral by
4.8 and the set ¢l K = K is polyhedral by 2.11.

4.10. COROLLARY. A convex set K < E" (with n > 3) is polyhedral iff all its 3-projec-
tions are polyhedral.

Proof. Use 4.9 and 3.6.

4.11. TarorEM. With 2 <j<n —1, a convex cone in E" is polyhedral iff all its §-

projections are closed.

Proof. Let C be the cone in question, g a vertex of C. If all j-projections of C are closed,
then all (r —j -+ 1)-sections of C' are polyhedral by 3.7, whence all 2-sections of C are
polyhedral. Each 3-section of C through g must then be polyhedral by 3.1 (vii), and from
4.8 we conclude that C is polyhedral.

We wish to deduce from 4.11 a result on the extension of positive linear functionals. The

connection between projections and extensions may be stated as follows:
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4.12. REMARK. Suppose C is a closed convex cone in E with vertex ¢, L is a subspace
of B, and 7 1is a linear projection of E' whose kernel is L0. Then 7 C? is closed iff every linear
functional on L which 1 =20 on LN C can be extended to a linear functional on E which
s =20 on C.

Proof. For each fe L', let &f be the restriction of f to L, so that & is a linear map of
E' onto L'. The extendability condition above is equivalent to the condition that £C% =
Z(L N 0), or, since L is the kernel of &, that L0 + C® = L8 + (L 0 C)°. But L0 + 0° = L9+ 7 (9,
and (L N C)® =L + ¢l x(C° by 4.6. Thus the desired conclusion follows.

The following consequence of 4.11 and 4.12 was proved by Mirkil [7] for j =2:

4.13. THEOREM. Suppose C is a closed convex cone with vertex ¢ in E", and let us say
that C has the property Py (for 0 <k <mn) iff every linear functional on a k-subspace L of
E" which is 20 on L 0 C can be extended to a linear functional on E™ which is >0 on C.
Then C must have the properties Py, Py, and P,; but for 2 <j<n—1, C has property P, iff
C is polyhedral.

5. Some examples and further results

This section contains a rather discursive treatment of material which was suggested
by the results and methods of earlier sections, but was not essential in dealing with the
principal theorems in § 4. We discuss primarily the sets which are boundedly polyhedral
and those which are polyhedral away from ¢ (a notion defined below), characterizing these
in various ways and describing their polar sets. We construct in E® a nonpolyhedral set
K>¢ such that both K and K° are boundedly polyhedral, and also a nonpolyhedral
convex set all of whose 2-projections are polyhedral.

In analogy with earlier definitions, a convex set K is said to be polyhedral at oo iff
each polyhedron (or, equivalently, each closed halfspace) in E has a translate whose
intersection with K is polyhedral, and K is said to be polyhedral away from the point
pecl K iff K has polyhedral intersection with each polyhedron in E ~ {p}. The following
two results should be compared with 2.17.

5.1. PROPOSITION. A convex set K is polyhedral iff it is closed and is polyhedral at
each point of K U {oo}.

Proof. Let F be a basis for the conjugate space E’. Then if K is polyhedral at oo,
there exists £ > 0 such that each of the sets Py =f-1] —co, —#]N K and @;=f1{f, =[N K
is polyhedral. And if K is closed and is polyhedral at each point of K, then K is boundedly
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polyhedral by 2.17 and hence its intersection with the set N /[ —¢, ¢] is a polyhedron B.
feF

But of course K =cl conv (BU (UP,) U (UQ))), and it follows by 2.16 that K is polyhedral.

feF JeF

5.2. COROLLARY. If K ts convex and p€cl K, then K is polyhedral away from p iff
cl K< K U {p} and K is polyhedral at each point of (K U {oo}) ~ {p}.

Proof. The ““only if”” part follows at once from the fact that each point of E ~ {p}
has a polyhedral neighborhood in E which misses p. For the “if” part, consider a poly-
hedron J in E ~ {p}. The hypotheses imply that J N K is closed and is polyhedral at each
point of (J N K) U {oo}, whence application of 5.1 completes the proof.

We see from 2.16 that the convex hull of the union of two polyhedra is polyhedral if

it is closed. In addition to the obvious result for bounded polyhedra, we note

5.3. ProposiTioN. If X and Y are polyhedral cones each of which contains a vertex
of the other, then conv (X U Y) is polyhedral.

Proof. Let p be a vertex of X in Y, ¢ a vertex of ¥ in X, and let the origin in E be so
chosen that ¢ = — p. Then there are finite subsets U and V of E such that —peU, peV,
X — p consists of all non-negative combinations of U, and Y — ¢ consists of all non-negative
combinations of V. But then it is easy to verify that conv (X U Y) consists of all non-

negative combinations of U U V.

The following result has some useful corollaries.

54. ProPoSITION. If x and z are points of a convex set K and y€lu,z[, then
cone (y, K) = conv [cone (z, K) U cone {z, K)].

Proof. We may assume that z = z and let J = conv [cone (z, K) U cone (z, K)]. Consider
a point u €cone (y, K), not collinear with [z, z]. There exists ve]u, y[ N K. It is easy to
verify that » lies on a segment joining the ray from z through v to the ray from z through
v, and we conclude that cone (y, K) < J.

Now consider a point welr, y[, and observe that [z, v]< K and Ju, w[ intersects
[z, v], so u€ cone (w, K). Thus cone (y, K) < cone (w, K). A similar argument establishes
the reverse inclusion, and we conclude that cone (s, K) is constant for s€]x, z[. Thus to
prove that J < cone (y, K) it suffices to show that if p€ cone (z, K), ¢€ cone (z, K), and
¢e=rp-+ (1 —7)q for r€]0, 1], then c€ cone (s, K) for some s€ ]z, z[. Under these condi-
tions there are positive numbers « and § such that « + [0, ] (p —x) < Kandz+ [0, Bl{qg —
z)< K. With m =min (, 8), p’ =x +m(p—=x), ¢ =2z +m(g —2), and s =rz + (1 —r)y, it
can be verified that ¢ =s +m-1[rp’ + (1 —r)¢’ —s], whence c€ cone (s, K) and the proof
of 5.4 is complete.
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5.5. COROLLARY. If K is convex and Y is the set of all points of K at which K is locally
polyhedrel, then Y 18 conver.

Proof. Use 3.3, 5.4, and 5.3.

5.6. CorROLLARY. If a nonpolyhedral closed convex set K is polyhedral away from
pEK, then p is an extreme point of K.

Proof. Use 5.2 and 5.5.

5.7. CorROLLARY. If K is a closed convex set and K = conv 8, then K is boundedly
polyhedral iff K is polyhedral at each point of S.

Proof. Use 2.17 and 5.5.
In connection with 5.7, we note

5.8. ProPosSITION. 4 closed convex set K is boundedly polyhedral iff cone (p, K) is
closed for each peK.

Proof. If cone (p, K} is closed for each peK, it follows from 3.5 and 5.7 that each
2-section of K is boundedly polyhedral, whence K must be boundedly polyhedral by 4.7.

Comparing 5.8 with 5.7, it is natural to ask whether a closed convex set K must be
boundedly polyhedral if cone (p, K) is closed for each point p of a set S such that conv
8§ =K. The answer is negative, as the following example shows. In E®, let J be a non-
polyhedral two-dimensional compact convex set which is polyhedral away from ¢ and let
S be a segment which has ¢ as an inner point and is not coplanar with J. Let K = conv
(S U J). Then cone (p, K) is closed except when p is an inner point of S.

The following is an analogue of 5.5.

5.9. ProrosiTION. Suppose K is a closed convex subset of B and F 1is the set of all
feE" such that f1[t, o[ N K is polyhedral for some t <oo, Then F is a convex cone with
vertex ¢'.

Proof. Clearly [0, co[F < F, and it remains to prove that F + Fc F. Consider f,
gEF, with h =f + g and r, s€ R such that the sets P = f-1[r, co[ N Kand Q@ = f~1[s, o[ N K
are both polyhedral. Then A 1[r + s, co[<f-1{r, co[ U g~1[s, oo[, and it follows that

h-i[r+s, o[ N K =h1r+s, o[ N clconv (P U Q).

But cl conv (P U Q) is polyhedral by 2.16 and the desired conclusion follows.
We wish next to describe the polars of boundedly polyhedral sets. In doing this we
employ the following proposition, which goes a bit beyond our immediate use for it,
5.10. ProrositioN. Suppose K is a closed convex set in E, pe K, K contains no line,
C={x:[0, o[z <= K — p}, and F is the set of all linear functionals f on E such that f >0



96 VICTOR KLEE

on C ~ {¢}. Then F is a nonempty open convex cone in E' with vertex ¢'. A closed halfspace
tn B has the form 1] — oo, r] for some f€ F and r € R iff each of its translates has bounded
tntersection with K. If C+ K — p there exists f€ F such that f~1] — oo, fp] N K has nonempty
interior relative to the smallest flat containing K.

Proof. Clearly C? is a closed convex cone with vertex ¢’, and since € contains no line C°
is not contained in any hyperplane in E. But then C® must have interior points, and it
is not hard to verify that F = — int C°, proving the first assertion of 5.10. Now if a half-
space in £ has the form f-1] — oo, r], then each of its translates has the form f] — oo, s},
and for fe F it is evident that the convex set f~1] — oo, s] N K contains no ray and hence is
bounded. On the other hand, if fe £’ ~ F then f-1] —co, fp] N K is easily seen to be un-
bounded. It remains to prove the last assertion of 5.10.

If C+ K — p there must be a point y€relint K ~ {p} such that K does not contain
the entire ray from p through y. We may assume without loss of genecrality that y =,
whence C = {xz: [0, co[x < K}. The choice of y assures that p¢ — C, so either peC or
RBp N C={¢$}. By a separation theorem for convex cones there exists f€ F' such that peC
or fp=0, and then from the fact that y¢relint K it follows rcadily that the interior
of f~1] — oo, fp] N K relative to fl K is nonempty.

5.11. ProrosiTION. For a closed convex set K < E with ¢ €K, the following assertions

are equivalent:

(1) K s boundedly polyhedral;

(ii) ¢f f is a lnear functional on E such that fxr >0 whenever [0, co[x < K but ] — oo,
O0lx ¢ K then f~1] — oo, 8] N K is polyhedral for each s€ R;

{1ii) there exists o linear funclional f on E such that 2] — oo, 8] N K is polyhedral for
each s€R;

(iv) ¢l conv (K° U N) is polyhedral for each polyhedral neighborhood N of ¢’ in E’;

(v) clconv (K° U [¢', —g]) is polyhedral for each g€ relint K¢

(vi) there exists f€ B’ such that cl conv (K° U [¢', tf]) is polyhedral for each t > 0.

Proof. It 18 evident that conditions (i} and (iv) are dual under polarity, and hence
equivalent by 2.8 and 2.11, as are (iii) and (vi). Now let L and M beasin2.7,so that K =
L+ (M nK)and M N K contains no line, and let C = {z: [0, oo[x = M N K}. It can be veri-
fied that f is as deseribed in condition (ii) above iff f > 0 on C' ~ {¢}, so it follows from 5.10
that (i) implies (ii). By further use of 5.10 we see that (ii) implies (iii) and that (ii) and (v)
are dual under polarity. Since obviously (iii) implies (i), the proof of 5.11 is complete.

The condition (vi) of 5.11 is much less restrictive than might at first be imagined.
Indeed, from 4.6 and our later result 6.2 on the projections of boundedly polyhedral sets,
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it follows that if ¥ <n and X is an arbitrary k-dimensional closed convex subset of K"
with ¢ €X, then there exists in E™ a closed convex set K 3¢ such that K° is boundedly
polyhedral and X is a k-section of K. The following example is also of interest in this con-

nection.

5.12. EXAMPLE. There is in E® a nonpolyhedral set K3¢ such that both K and K°
are boundedly polyhedral.

Proof. We shall construct a nonpolyhedral set W3 (— 1, 0, 0) such that W is boundedly
polyhedral and el conv ({(—1,0, —#)} U W) is polyhedral for each t>0. From 5.11 it
follows that the set K = W + (1, 0, 0) has the sta/ced properties.

Let f, g and h be sectionally linear positive convex functions on [—1, 0[, ]0, 1], and
10, 1] respectively such that f(—1) =0 =g]l, lim fs =co =lim ¢g¢,and lim At =0 =lim A'¢,

850 50 50 t-50

where A* is the right-hand derivative of k. (Thus f, g, and % are all nonpolygonal but are
polygonal away from 0.) Let 8’ = {(s, fs,0):8€[—1,0[} and T'={(¢, gt, ht) : £€]0, 1]}.
Let @ be the plane quadrant consisting of all x = (2!, 2%, 2°) € E® for which 2! =0 and
2220<2% and let S=8"+Q, T=T" +Q. It can be verified that both S and T are
boundedly polyhedral. For example, if m < oo, then the intersection of 7' with the half-
space {z : z* <m} is the closed convex hull of the union of the (finitely many) sets of the
form {z:a® <m} N ((t, gt, hv) + Q) for ¢ such that gt <m and t =1, gt =m, or g or & has
a corner at f.

Now let W=conv(SUT)=S8U conv (S’ UT). Then W N {x:a®>=0} is the non-
polyhedral set of all points (s, @, 0) for which s€[ — 1, 0] and a > fs, so it follows that W is
nonpolyhedral. To show that W is closed, we consider an arbitrary point weecl W. There
exist sequences A, in [0, 1], 8, in [ —1, O[, ¢, in ]O, 1], and p, and ¢, in @ such that (1 — 4,)
((Sas [ 822 0) + Pa) + Au((te, Gtas hte) + gu)—>w, Ae—>A€[O, 1], 8,—>s€[0, 1], and t,—>t€[0, 1].
Let z, = (1 — A)p, + 4,4,€Q. Now if s <0 <t, then fs,—fs, gt.—>gt, ht,—ht, and it follows
that z,—w — (1 — ) (s, fs, 0) — A(t, gt, ht). Denoting this limit by 2, we have z€@Q and

w=(1—21)((s, fs,0)+2) + A({, gt, ht) +2) e W.

If t =0, then gf,— oo; since always fs, >0, and fs,— oo if s =0, we conclude that A =0
and s <0. Now with g} = (0, g¢,, ht,) €@, the distance from g} to the point (¢, gt,, ht,) tends
to 0 as 1—oo, and it is easily verified that z, + A,gi—w — (s, fs, 0), whence we(s, fs, 0) +
Q< S< W. A similar argument applies when s =0, and we conclude that W is closed.

Now to complete the proof we must show W is boundedly polyhedral and cl conv
({(—1,0, —t)} U W) is polyhedral for each ¢ >0. In view of 2.17, 5.5, and the fact that

W is closed, it suffices for the former to show that W is polyhedral at each point of SU T,
7 —593804. Acta mathematica. 102. Imprimé le 28 septembre 1959



98 VICTOR KLEE

or equivalently that cone (p, W) is polyhedral for each p€S U 7. Consider an arbitrary
p€S. It can be verified that sup {2®: €T ~ cone (p, S)} < oo, whence follows the existence
of a bounded polyhedron B such that 7'~ cone (p, 8) < B +[0, oo [z< T, with 2= (0, 0,
1). Let U = cone (p, 8) and V = {p} U cone (p, B). We have

cone (p, W) = cone (p, conv (8 U T)) = conv [cone (p, S) U cone (p, T')]
=conv [U U cone (p, B +[0, oo [2)] =conv [U U (V + [0, o= [2)].

It can be verified that for any convex sets X and Y, and convex cone Z with vertex ¢,
conv [(X +Z)y YJU (Y +Z) =conv [X U (Y +Z)]U (X +2).
Applying this with X =U, Y =V, and Z = [0, oo [z, we conclude that
cone (p, W)U (U +[0, oo [2) =conv[(U + [0, co[2) U V] U (V + [0, oo [2).

Since evidently U + [0, oo [z = U < cone (p, W),

this reduces to
cone (p, W) =conv (U U V) U (V + [0, == [2).

Now V and V + [0, oo [z are polyhedral by 2.13, 2.14, and 2.16, and U is polyhedral because
p€S and § is boundedly polyhedral. But then conv (U U V) is polyhedral, for U and V
are polyhedral cones with common vertex p. Thus cone (p, W) is the union of two poly-
hedra and, being convex, must be polyhedral. It follows that W is polyhedral at each
point of S. The same argument with § and 7' interchanged shows that W is polyhedral
at each point of 7', and we conclude that W is boundedly polyhedral.

Now consider an arbitrary ¢ >0 and let ;= (—1,0, —¢). It can be verified that if
r is a sufficiently small positive number (depending on #) and J, =cl conv ({u;} U {z :
x€T, ' =r}), then inf {|2!|: z€(S U T) ~ J,} >0, whence there are polyhedra M and N
such that S~ J,c M and T ~ J, < N. We then have

el conv ({u;} U W) = el conv ({u;} US U T) =cl conv ({ux} UJ, U 4 U B),
which is of course polyhedral and the proof of 5.12 is complete.

5.13. PROPOSITION. For a closed convex set K < E with ¢ €K, the assertions (ii)-(iv)
below are equivalent, are implied by (i), and imply (i) when K is bounded. ’

(i) K is polyhedral away from ¢;
(ii) ol conv (K U [¢, — z]) is polyhedral for each x €K ~ {¢};
(iii) for each ye E ~ {¢}, sup y K® = oo or y~1[t, co[ N K s polyhedral for all te R;
(iv) ¢f A and B are “opposite” closed halfspaces in E having the same bounding hyper-
plane and K° lies in some translate of A, then B N K° is polyhedral.
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Proof. Tt is evident that (iii) and (iv) are equivalent and (ii) is dual to (iii). Now if
K is bounded and (ii) holds, then for each z€K ~ {¢} we have conv (K U [¢, —x]) =
cl conv (K U [¢, — z]), which is polyhedral by hypothesis, and

cone (z, K) = cone (z, conv (K U [¢, — z]),

whence cone (z, K) is polyhedral. But then K is polyhedral at each point of K ~ {¢}, and
with K bounded it follows by 5.2 that K is polyhedral away from ¢.

Now suppose (i) holds and €K ~ {¢}. We wish to show that cl conv (K U [¢, — z])
is polyhedral, and for this it suffices in view of 2.16 to show that cl conv (K U [¢, —y])
is polyhedral with y =1x. Let N be a bounded polyhedral neighborhood of y relative to
K and let M = conv ({—y} U N). Then of course M is polyhedral and ¢e M. Consider an
arbitrary point p€ K. Since [y, p] < K and N is a neighborhood of y relative to K, there
exists ¢€Jy, p[ such that [y, gJ< N. But then M must contain the segment [¢, 2] for
some z €], p[. Since M is polyhedral we conclude from 3.2 that M N K is a neighborhood
of ¢ relative to K.

Now let W =clconv (K ~ M). Then if $€W we have fcex W (for ¢cex K by
5.6) and hence ¢ € cl (K ~ M) by the result (3.5) of [6]. Since this is impossible, it follows
that $¢ W and there must be a closed halfspace J with W < J < E ~ {¢}. The set J N K
is polyhedral since K is polyhedral away from ¢, and we have

clconv (K U [¢, —y]) =clconv ((J N K)U M U [¢, — ),

which is polyhedral by 2.16. Thus (i) implies (ii).
I do not know whether conditions 5.13 (i) and 5.13 (ii) are equivalent even when K is
unbounded.
5.14. COROLLARY. If K is polyhedral away from ¢, K° is boundedly polyhedral.
Proof. Compare conditions 5.11 (v) and 5.13 (ii).

5.15. COROLLARY. The set K3 ¢ is polyhedral iff K and K° are both polyhedral away
from ¢.
We turn now to another example, promised earlier in connection with 4.5 and 5.10.

5.16. ExaAMPLE. There is in E® a nonpolyhedral convex set all of whose 2-projections
are polyhedral. (Such a set must be unbounded and boundedly polyhedral.)

Proof. Let E*={x€E®:2® =0}, and let P be a nonpolyhedral convex subset of E?
such that ¢ is interior to P in the relative topology of E* and P satisfies the condition
5.13 (iv) relative to E®. (For example, P may be taken as a boundedly polyhedral set in-
scribed in a parabola.) By 5.13, the polar @ of P in E* is a bounded nonpolyhedral set
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which is polyhedral away from ¢'. Let z = (0, 0, 1)€ E>. For notational convenience we
shall employ the usual identification of E® with its conjugate space E*, implying E* = E?,
(E® = Rz, P*=Q + Rz, etc., where the symbol © will denote the polarity between E*
and E*.

Now let K =cone(z,P)N{zr:2®*<0}, or equivalently, K ={(ip!, ip’,1—~41):
A >1, peP}. Then of course K is convex and it is easy to check that K is closed and non-
polyhedral. A function f = (1, f2, °) € E® is a member of K iff A(f'p! + £p*) <1+ (A - 1)f
for all 1 >1, peP, or equivalently iff f1p! + f2p* <inf (1, f*) for all peP. It follows that
K =[0,11(Q +2) U{Q +2) U (@ + [1, oo[z). (Compare this with the example immediately
following 5.8.) But then from the fact that @ is polyhedral away from ¢’ we conclude by
an easy argument that all 2-sections of K® through ¢’ are polyhedral, whence from 4.6 it
follows that all 2-projections of K have polyhedral closure. To complete the proof we
shall show that all 2-pr0jectidns of K are closed, or equivalently that K + L is closed for
each line L in K. ‘

If L is a line in E? through ¢, then K +L =zg1l(P +L)y+ (1 —2A)z That P+ L is

closed follows from the fact that P satisfies condition 5.13 (iv), and thus K + L must be
closed also. This handles the case of all lines in E? or parallel to B2 To deal with the
remaining lines, it suffices to prove the following: If X is a boundedly polyhedral subset
of a hyperplane H in E ~ {¢} and uweH, then [1, «o[X + Ru is closed. To prove this, let
f€E’ be such that H =f-'1 and consider a sequence {,x, +r,u converging to a point
ge B, where t, is a sequence in [1, oo with t,—>t€[l, co], z, is a sequence in X, and 7, is
a sequence in R with r,—>r €[ — oo, oo]. Note that ¢t = fq¢ —r. Now if ¢ <oo, thenre R and
2,—>t"1(q —ru) =x€X, whence q=tx +ru. If t=oco, then z, +r,t, 'u—>¢, and since
fle;, +rititu)y =1+ r87" it follows that r,f;'—>—1 whence z,~>u and u€X. But X is
boundedly polyhedral, hence polyhedral at u, so « admits a bounded polyhedral neigh-
borhood N relative to X. For all sufficiently large 7 we have
t; 2, +r,u€fl, o[N + Ruc<]l, oo[X + Ru;

since [1, co[N 4+ Ru is polyhedral by 2.16, and hence closed, the desired conclusion follows
and the proof of 5.16 is complete.

6. Projections and approximations
Before characterizing the projections of boundedly polyhedral sets, we perform the
same task for closed convex sets.

6.1. THEOREM. For a subset X of a proper subspace of E, the following assertions are

equivalent:
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(i) X s a convex F, sel;
(i) X is a projection of some closed convex set;

(iii) X s a projection of some convex F; set.

Proof. Obviously (ii) implies (iii). Now suppose (iii) holds, so there are an increasing
sequence U, of closed subsets of E and a linear projection & of E into E such that fijo U,is
convex and Jt(i:j U;)=X. For each i, let W, =conv {a: z€U,, ||z| <1i}. It can be verified
that each W, is compact (being the convex hull of a compact sét) and X =n tllo W,= loJ: aW,.

But 7 is linear and continuous, so W, is an increasing sequence of compact convex sets
and it follows that X is a convex F, set. Thus (iii) implies (i).

Now suppose (i) holds and let Y, be an increasing sequence of compact convex sets
such that X = q Y; and ||y] <¢ for all yeY,. Let L be a hyperplane through ¢ which
contains X and z a unit vector orthogonal to L, so each point w € £ has a unique expression
in the form w =w' +w"z with w' €L and w’' € R. Let K = conv lo.llo(Y,. +14%2), so X is the

image of K under the projection of E onto L whose kernel is Rz (i.e., which sends w to
w’). Note that since Y, is an increasing sequence, Y, -+ [i%, co[z < K for each 7, whence
K + [0, oo[z< K. To complete the proof of 6.1, we shall show that K is closed.

Consider a sequence p, in K converging to a point p€ E, and let d be the dimension
of E. For each j€ I (the set of positive integers) there are (d + 1)-tuples

. , d+1 )
{144, {n}451, and {gi}9*] such that the &’s are in 10, 1] with > ¢ =1, the n}’s are in
i=1
a+l | .

I, always yi€ Yn;'_ and p; =glt} (#} + (n})?2). We may assume that each sequence (n);;
(for 1 <4i<d +1) is either constant or strictly increasing. (If necessary, select the appro-
priate subsequences and change the notation to achieve this condition.) Note that (p; )jes

is bounded and always p; > min{n}}4], so at least one of the sequences (n});e; must be

m
constant. Let m be the largest constant value attained and J =conv U (Y, +4%2). We
1

shall prove that p€J + [0, oo[z, whence p€ K and K must be closed.
With the situation as described, it is easy to obtain a subsequence g, of p,, a convergent
sequence , of points of J (say u,—>u), 8 sequence A, in [0, 1] with 1,—0, and a sequence

v, such that v;€K;=conv U (Y, +14%2) and ¢;= (1 — A,)u, + A,v; for each j€I. Then of
7

course A,v—>p —u. Now (j||lw'|| —w")|weE is a convex function on E which is <0 on

Y, +i*z for all i > j, and hence <O on K,. Thus for all we K; we have



102 VICTOR KLEE

w' fllw] =[(lw' || Jw")?+1]7 > +1)7F
and hence
ll@;/llw;l) — 2| =2 — 2% [[lo;[| <2[1 — (> + 1)7P].

It follows that v,/|v,||—>z and hence that p —u€[0, o[z, completing the proof of 6.1.

6.2. THEOREM. For a subset X of a proper subspace of E, the following assertions are

equivalent:

(1) X s a convex set which is polyhedral at each of its points;
(ii) X is a projection of some boundedly polyhedral set;
(ili) X 4s a projection of some convex set which is polyhedral at each of its points;

Proof. Obviously (ii) implies (iii), and that (iii) implies (i) follows from 4.2. Now
suppose (i) holds, so for each p€X there is a bounded polyhedron N, which is a neighbor-
hood of p relative to X. Since X has the Lindel6f property, there is a sequence g, in X with

oo
X =UN, We wish to produce a sequence Y, of bounded polyhedra in X such that
1

for each jel, Y, Ny and Y, is interior to Y}, in the relative topology of X. Start with
Y, = N,. And having obtained Y, as required for all ¢ <k, observe that by compactness

of Y, , there must be a finite set G < Y,._; such that ¥,_, is interior to U N, relative to
peG

X; then let Y, =conv (N4 U U N,). Proceeding by mathematical induction, we obtain
peG
a sequence Y, of polyhedra in X such that X = U Y ; there exist sequences B, and ¢, in
1

10, oo[ such that for all j€I, Y, S({¢}, B,)and S(Y,, ;) N X< ¥ ,,. Itis easy to produce

an increasing sequence r, in 10, o] such that r,—>co and (By + B))(r; —r;) <& (7. —75)
whenever ¢ <j <k. Let L and z be as in the proof of 6.1 and K =conv UV, with V, =
1

Y, + r;z. It is evident that X is a projection of K and to complete the proof of 6.2 it suffices
to show that K is boundedly polyhedral.
Suppose ¢ <j <k, peV,, and g€ V,. Then of course p'€Y; and ||p' —¢'|| < B, + B,.
With
re—7 ry— 1
P et
we have ' €X, 4" =r;, and

lw —p'll=@;—r)(re—r)p — ¢l <e&.

Since S(Y,, &) N X< ¥,,, < Y, it follows that »'€ Y, and v € V,. Thus each segment from
V, to V, intersects V,. Now conv (V,U V;U V,) is the union of all segments [p, g] such
that g€V, and pe[v, w] for some veV, and weV,. For such p, ¢, v, and w, the segment
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[¢, v] must intersect V; at some point s and it is evident that [p, ] < conv {w, s, ¢} U conv
{w, s, v}. Thus :
conv (V,U V;UVy)=conv(V,UV;)Uconv(V,U V).

A straightforward application of this fact shows that K = U conv (V,; U V,.,), whence it
1

is clear that K is boundedly polyhedral and the proof of 6.2 is' complete.

Note that if NV, is a polyhedral neighborhood of p€X relative to the convex set X,
then cone (p, X) = cone (p, N,) = cone (p, ¢l X), where the last equality follows from
the fact that cone (p, N,) is polyhedral and hence closed. It then follows from 3.2 that
N, is a neighborhood of p relative to ¢l X. Thus if a convex set is polyhedral at all its

points, it must be relatively open in its closure.

6.3. THEOREM. Suppose K is a closed convex subsel of E, K contains no line, and u
is a continuous function on K to 10, oo[. Then there is a boundedly polyhedral set P such
that P< K < U S(z, ux).

zeP

Proof. We know by 5.10 that F admits a linear functional f such that f~] — o, r] nK
is bounded for each re R. Let m =inf fK >0 and for each r >m let K, =f1r N K and
d, =inf p K, > 0. From the fact that each set f~1[m, r] N K is compact it is easy to establish

the existence of an increasing sequence 7« in [m, co[ such that K < U S(K,, 1d,;). Let
1

F, be a finite set in relint K,, such that K,, = S(F,, 1d,,) and let B, =conv F,, so B,
is a polyhedron, B,c<relint K,,, and K,, < 8(B,, 3d,). With J,; = conv (B, U K,3),
observe that J,, is compact and J,, ~ K,; < relint K, whence J,3 N K,, < relint K,,. It
is thus possible to produce a polyhedron B, such that

J13 N K,y Bycrelint K,y K, ,< 8 (B,, § d,)-
Proceeding in this manner, we obtain a sequence B, of polyhedra such that for each » = 2,

(*) conv (Bp_1 U Ky n41)) N Kpn< B, crelint K, S (B, 1 dy).
L]
Let P =conv U B,. Then certainly P < K, and for each »n it is true that
1

S (Km ’% d)< 8 (Bn; drn)c lIJg S (x, 124 x),

whence K < U S(z, uz). Now for k>4 +2 it is evident from convexity of K that each
reK

segment from B, to B, intersects K;,s, and hence by (*) above intersects B;,;. From
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this it follows that whenever ¢ <j <k, every segment from B, to B; intersects B;, and we

conclude P is boundedly polyhedral. This completes the proof of 6.3.

6.4. CoroLLARY. If K is a closed convex subset of E and &> 0, there are boundedly
polyhedral sets P and Q such that P< K < S(P, ¢) and K < @ < 8(K, ¢).

Proof. In view of 2.7, it suffices to consider the case in which K contains no line, and
here the existence of P as stated in 6.4 is an immediate consequence of 6.3. Application of
this result to cl S(K, &) produces a boundedly polyhedral set @ such that @ < cl S(K, &) =
S(Q, 3¢), and it is easy to verify that K c @, so 6.4 is proved.

If ¢>0 and K is a bounded convex set in F with boundary /, then K can be ¢-ap-
proximated in the sense of 6.4 by polyhedra of the form conv Y for ¥ < J, and by poly-
hedra which are intersections of supporting halfspaces of J. But if K is unbounded,
boundedly polyhedral approximations of these special types may not exist, even when K
contains no line. For example, neither type of boundedly polyhedral approximation is
available for a circular cone. Though we have not done so, it might be of interest to study
this situation, seeking to characterize those convex sets which admit boundedly polyhedral
approximations of these special types, and searching for a weaker type of “‘uniform’ approxi-
mation (for example, in terms of uniform structures for £ other than the usual metric
uniformity) under which all convex sets admit such approximations.

The result 6.4 extends the classical theorem on approximation of compact convex
sets by means of polyhedra. In preparation for another such extension, we state the follow-
ing

6.5. PROPOSITION. Suppose X and Y are closed convex subsets of E, and Y is bounded.
Then for each extreme point z of X + Y there are unique points x, of X and y, of Y such
that z =z, +y,; further, {x,:2€ ex (X +Y)} =ex X and {y,:2€ex (X +Y)}<ex Y. 4
similar relationship holds among the extreme rays of X + Y, the extreme rays of X, and the
extreme points of Y.

Proof. We consider only the case of extreme points, for the other is similar. The
only assertions which may not be quite obvious are the uniqueness of z, and y,, and the
fact that each point of ex X appears as z, for some z€ ex (X + Y). For the uniqueness,
suppose we have * +y =u +v =2 with x, u€ X and y, v€Y. Then z =} (x +v) + 1 (u +y),
soif zeex (X + Y) we have x + v =u +y, whence x =u and y =v.

The assertion about ex X will be proved by induction on the dimension d of E, being
obvious when d = 1. Suppose it is known for d =k — 1, and consider the case of a k-dimen-
sional E. For z€ ex X, let @ be a closed halfspace with bounding hyperplane H such that
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¢€H and X < Q + z. Since Y is compact, there exists y€ Y for which ¥ < @ +y. It can be
verified that

HAz+yyn(X+Y)=H+2)nX+H+y)NY;
in conjunction with the inductive hypothesis and the fact that x is an extreme point of
the set (H + ) N X, this yields the desired conclusion.

6.6. CoroLLARY. Suppose X is a closed convex subset of E and Y is a bounded poly-
hedron in E. Then if X + Y is polyhedral, so is X.

Proof. If X contains no line, then neither does X + Y, and each set is the convex
hull of its extreme points together with its extreme rays. If X + Y is polyhedral, it has
only finitely many of these and from 6.5 it follows that the same is true of X, whence X
is polyhedral. If X contains a line, then use 2.7 in conjunction with the case just discussed.

Now the Hausdorff distance h(X, Y) between two sets X and Y in E is defined as the
greatest lower bound of numbers d such that X = §(Y, d) and Y < §(X, d). This may of

course be infinite when the sets are unbounded. Our approximation theorem is as follows:

6.7. THEOREM. If a closed convex. subset Q of E is a finite Hausdorff distance d from
some polyhedron P, then it is uniformly approximable by means of polyhedra. (1.e., for each
& > 0 there is a polyhedron P, with h(P, Q) <¢.)

Proof. We assume without loss of generality that d <1, and deal at first with the
case in which P contains the unit cell U of E. For each f € E’,let uf = sup fP and vf = sup Q.
Sinee U< P, uf = ||f!|. From the fact that A(P, @) = d it follows by an easy application. of
the separation theorem that whenever ||f|| =1, then |vf —uf| <d and thus (}): vf€[l — 4,
1 +d]uf whenever ||f|| =1. Let F be the set of all € E’ such that ||f|| =1 and uf <oo (or,
equivalently, »f < o), and for each convex K < E’ with ¢’'€K, let B K denote the set of
all fe B’ such that [0, 1{f< K and 11, co[f < E' ~ K. Then we have §P* = {(1/uf)f: fe F},
PO ={0, 118P% BQ°={(1)vf)f:feF}, @ =0, 1]8Q°. Since P? is a compact polyhedron,
BP? must be compact, and with the aid of () we see that $Q° is also compact. It follows
that sup y F =s < co, Note further that [0, co[8Q® =[0, 0[P and hence is a polyhedral
cone. Let ¥ = BQ° N rex [0, co[PO, v

Now let & be an arbitrary positive number. Since $¢° is compact, it must have a finite
subset Z> ¥ such that with M = conv (Z U {¢'}), then M is a polyhedron in E’ with
PM <[l —g/s,115Q° Now let P=M°< E, and for each fe B’ let { f =sup fP. e[l —¢/s,
1]vf. Since s =supy F, we see that |vf —(f| <& whenever |f|| =1, and it follows that
h(P,, @) < &. Thus the theorem is proved for the special case U < P.

In treating the general case, we employ the following result due to Ridstrém [81:
if A and B are closed convex subsets of £ and X is a bounded subset of E, then
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h(4, By=h(4A + X, B + X). Now consider a closed convex set @ and a polyhedron P with
h(P, Q) =d <1. Let X be a bounded polyhedron in £ such that P + X> U. Then A{P + X,
@ + X) =d, and the result above implies the existence of a polyhedron Y with 4(Y,@ + X)
<e LetZ={yeY:y+ X< Y}. Then Z is closed and convex and Z + X = ¥, so it follows
by Rédstrom’s theorem that %k(Z, @) <¢ and by 6.5 that Z is polyhedral. The proof of
6.7 is complete.

(Before I found the above proof, John Isbell supplied me with one which used the

projective space in an interesting way.)

7. Failure of the main theorems for nonconvex sets

In this section only, we employ the term polyhedral in its more general and customary
sense to describe & set in £ which is the union of a finite number of geometric simplexes.
To show that the theorems of § 4 do not apply to nonconvex sets, we construct in £° a
nonpolyhedral 3-cell of which all 2-sections and all 2-projections are polyhedral.

Let f be a continuous convex function on [0, oo[ and a, and b, sequences in 0, oo
such that the following conditions are satisfied: f0 = 0 and f¢ > 0 for all ¢ > 0; for each #,
b, =la,; a,—0, byla,—~0, a,|a, 11, and b, /b, ,1—1. (For example, take ft = *,a, = 1/n,
b, =1/n%) Let ¢, and d, be sequences in ]0,co[ such that b, /c,—>0 and always d, €10, c,[.
For each n, let u, denote the point (a,, b,, ¢,) € E® and v, the point (a,, b,, d,). Let P,

denote the “pyramid” conv {¢, u,, v,, n+1, ¥ns1} and T = UP,. Clearly T is not poly-
1

hedral, for its projection onto the xy-plane is not. It can be verified that 7' is a 3-cell
(ie., T is homeomorphic with the unit cell in E®). We shall prove that all 2-sections of 7'
are polyhedral, and to do this it suffices to show that each plane intersects P, ~ {¢} for
only finitely many values of n. This is evident for planes which miss ¢, for u,—¢ and
v,—>¢. And it is evident for planes containing the z-axis, for the xy-projection of such a
plane intersects the xy-projection of at most one set P, ~ {¢}. It remains to consider a
plane II whose equation has the form z =rx + sy.

If the plane II(z =rx +sy) intersects P, ~ {¢}, then it intersects at least two of the
segments [u,, v,], [4,, %,1), [0, ¥5ey), and [w,.,, v,.q]. I 1L intersects [u,, v,], there
exists A, €[0, 1] such that

Ay +(1 —4,)d, =ra, +sb,.

Since ¢,, d,, and b, are all o(a,), this cannot occur for infinitely many values of » unless
r = 0. But if » =0, note that ¢, and d, are both o(b,)}, so the equality cannot hold for in-

finitely many values of » unless s =0. Since the xy-plane misses T ~ {¢} entirely, we
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conclude that IT N [«,, v,] is empty for all but finitely many values of #. The cases of
It N [w,, #,,] and 11 0 (v, v,+,] can be handled by a similar argument, using the facts about
orders of convergence employed above and also the information that a,.: is O(a,) and
and b, is O(b,). It follows that all 2-sections of T are polyhedral.

Now in E?, let @ be a cube such that the “face” conv {¢, u,, v,} of T lies (relatively)
interior to some face of @ and the rest of T lies properly interior to @. Then the set Q ~ int 7'
is a nonpolyhedral 3-cell of which all 2-sections and all 2-projections are polyhedral.

Though we have not done so, it might be of interest to investigate in detail the inter-
relations of the following three conditions, as applied to a 3-cell J in E®: (i) J is polyhedral;
(ii) each 2-section of J is polyhedral; (iii) each maximal convex subset of J is polyhedral.
We know merely that (i) iraplies both (ii) and (iii) but is not implied by either of them.
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