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Wiener's tauberian theorem 
for spherical functions on the 

automorphism group of the unit disk 

Yaakov  B e n  N a t a n ,  Yoav  B e n y a m i n i ,  H s  H e d e n m a l m  a n d  Y i t z h a k  Wei t (1 )  

A b s t r a c t .  Our main result gives necessary and sufficient conditions, in terms of Fourier 
transforms, for an ideal in the convolution algebra of spherical integrable functions on the (con- 
formal) automorphism group of the unit disk to be dense, or to have as closure the closed ideal of 
functions with integral zero. This is then used to prove a generalization of Furstenberg's theorem, 
which characterizes harmonic functions on the unit disk by a mean value property, and a "two 
circles" Morera type theorem (earlier announced by AgranovskiY). 

I n t r o d u c t i o n  

If G is a locally compact abelian group, Wiener's tanberian theorem asserts 

that if the Fourier transforms of the elements of a closed ideal I of the convolution 

algebra LI(G) have no common zero, then I=LI(G). 

In the non-abelian case, the analog of Wiener's theorem for two-sided ideals 

holds for all connected nilpotent Lie groups, and all semi-direct products of abelian 

groups [27]. However, Wiener's theorem does not hold for any non-compact con- 

nected semisimple Lie group [15], [27]. 

In their seminal series of papers on harmonic analysis on the Lie group SU(I, i), 
Ehrenpreis and Mautner use the ideal structure on the disk algebra A(D) to show 

that the analog of Wiener's theorem fails even for the commutative subalgebra 

LI(G//K) of spherical functions ([15], see also [5]). They realized that in addition 

to the non-vanishing of the Fourier transforms, a condition on the rate of decay 

of the Fourier transforms at infinity is needed as well. For technical reasons, it 
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was necessary for them to impose various smoothness conditions on the Fourier 
transforms, in addition to the natural conditions of non-vanishing of the Fourier 
transforms and the "correct" rate of decay, in their analog of Wiener's theorem 
([14], see also [5]). 

It is known that  smoothness conditions make Wiener's theorem much easier. 
See, exempli gratia, [23], for a trivial proof that  if f e L l ( R ) ,  and its Fourier trans- 
form ] is slightly more regular than a general function in the Fourier image of 
L I(R) (its first and second derivatives should also belong to the Fourier image 
of LI(R))  and never vanishes, then the closure of the convolution ideal generated 
by f is all of L 1 (R). The main result of the present paper is a genuine analog 
of Wiener's theorem without any superfluous smoothness condition. We use the 
method of the resolvent transform, as developed by Gelfand, Beurling, and Carle- 
man [11]. Gelfand's approach was later rediscovered by Domar [13], and applied 
and extended by Hedenmalm and Borichev in the study of harmonic analysis on 
the real line, the half-line, and the first quadrant in the plane [20], [21], [9], [10]. 

As applications of the "correct" version of Wiener's theorem, we follow the ideas 
of [5], and give a generalization of a theorem of Furstenberg [16], [17] characterizing 
bounded harmonic functions in the unit disk as the bounded solutions of certain 
convolution equations (in other words, #-harmonic functions), and a "two circles" 
Morera type theorem characterizing holomorphic functions in the unit disk. 

The results of this article were announced in [4]. 

1. P r e l i m i n a r i e s  

The basic references for this section are [22], [25], [30], [5], [31], [14], [3]. 
Let G=SL(2, R), where SL(2, R) is the multiplicative group of all 2 • 2 real 

matrices with determinant 1. We identify G with SU(1, 1), the group of all complex 
matrices 

) with determinant 1, 
J 

so that  O--G/{+1} (the {+1} indicates that  we mod out with respect to the equiv- 
alence relation A,-~-A) coincides with the group of all conformal automorphisms 

az+~ g(z)= ~-~-~, z � 9  lal 2-1~12=1, 

of the unit disk D. The polar decomposition of G is G=KA+K, where K is the 
subgroup of all "rotations" in G=SU(1, 1), with typical element 

(o 0 ) 0 
k : e_io , 0 �9 R,  
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and A § is the set of matrices 

( cosh~ sinh~ 
a r  sinh~ c o s h ~ ] '  

r E R+, 

which we identify with the half-line R+--[0, +c~[. The associated K = K / { + I }  in 
is then the subgroup of all rotations of D. 

The left and right invariant Haar measure on G is normalized so that  dg= 
sinh2~dr where d~ is the Lebesgue measure on the positive real axis R+, 
and d~ and d0 both equal the Haar measure on the rotation subgroup K,  which we 
identify with the unit circle. 

The symmetric space G/K (which may be identified with G/K) is identified 
with the Poincard model of the hyperbolic plane n 2, that  is, with the unit disk. It 
carries the quotient measure sinh 2~ d~ d~ on G/K and the Riemannian structure 

U,V) <u'v>z-(l_lzl2)2' 
where u and v are any tangent vectors at z E D. This structure enables us to define 
the Riemannian metric and measure on G/K, and the Laplace-Beltrami operator 

A = (1 -x2-y2)2  (0-~2 + ff--~2 ) �9 

The space K\(G/K) is denoted by G//K. It is canonically identified with A +, with 
metric 

d(ao,ar tanh~)=~, ~ E R + ;  

the second d( . , .  ) above refers to the hyperbolic distance in the unit disk D. We 
may also think of it as the points on the radius [0, 1[. The Haar measure on G 
induces the measure sinh 2r d~ on G//K. If we parametrize the space G//K with 
the variable TE [1, +co[ instead, where r=cosh2~,  the induced "Haar" measure on 
G//K is simply �89 

In this paper we study Ll(G//K)--the convolution algebra of all integrable 
functions on G which are invariant under rotations from left and right. This is 
a commutative Banach algebra, and our main goal is Theorem 1.3, which gives a 
version of Wiener's tauberian theorem for this algebra. 

To give a precise formulation of our result we first need some notations: Let E 
be the strip 

E - - { s E C : 0 _ < R e s < I } .  
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The space of all maximal (modular) ideals of L 1 (G//K) is identified with the quo- 
tient of E modulo the equivalence relation s ~ l - s .  With this identification, the 
Gelfand transform f of f 6LI (G/ /K)  is given by 

(1-1) f ( s )  = / f ( g ) ~ g , s ) d g = ~ o + ~ f ( 4 ) ~ ( 4 ,  s)sinh24dr 
G 

where s E E, and 
2rr 

1 / "  _ s  
8) J(cosh  2r 24 cos e) de, s c C. 

0 

The terms Fourier transform and spherical transform are also used for this Gelfand 
transform. It naturally extends to the finite Borel measures on G//K (which we 
call the spherical measures on G), 

ft(s) = fa  ~(g, s) dp(g). 

The functions p ( . ,  s) are defined for all s E C  and are called the zonal spherical 
functions. They may be thought of as the normalized rotation invariant (that is, 
left K-invariant) eigenfunctions of the Laplace-Beltrami operator on G / K ~ D .  

The following two lemmas summarize the basic properties of the zonal spherical 
functions and of the Fourier transform, and we present them without proofs: 

L e m m a  1.1. Let ~( . ,  s) be a zonal spherical function. Then: 
(1) ~ ( r162  where Ps-1 is the Legendre function of the first 

kind. 
(2) The relations qo(r s)=~o(r 1-s)=qa(r  ~) hold for all CER +, sEC.  
(3) For each fixed { E R  +, qo({, s) is an entire function of the complex variable 

s, and it is of exponential type 24. 
(4) If sEE, then for all CER +, 

s)l < 1. 

(5) For each fixed r and every strip X={s:a<_ Re s<b}, ~(r s)-+O uniformly 
as Isl--,oc in X.  

For an fELl (G/ /K) ,  let us write f(~-)=f(r  where ~-=cosh2~, and ~ER+ is 
the standard parameter for G//K. Then 

(1-1') f(s)---- Ps-I(r) f(~-)ldT, sEF,, 

where P8-1 is the Legendre function of the first kind (see Section 2), because 
Ps-1 (r)=~o(r s), and because the measure sin 24 de transforms to �89 
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L e m m a  1.2. The following assertions are valid: 
(1) For each f E L l ( G / / K ) ,  its Fourier transform ] is continuous in the strip 

E and is analytic in the interior of E. If  f has a compact support, then ] is an 
entire function of finite exponential type. 

(2) I](s)l<_llfllL1 for all sEE and f E L l ( G / / K ) .  
(3) f ( s ) = f ( 1 - s )  for all sCE. 
(4) f(s)--*O when Isl--*~, sEE. In fact, ~(s)--*p({e}) for any spherical mea- 

sure # on G. 

The above-mentioned holomorphic behavior of the Fourier transforms of func- 
tions in LI(G/ /K)  is in sharp contrast with the L 2 situation: the Fourier image 
of L2(G//K) can be identified with a weighted L 2 space on the middle line � 8 9  
(subject to the symmetry condition f ( 1 -  s) = f(s)). 

For functions f E L l ( G / / K ) ,  we need quantitative measures of decay of the 
Fourier transforms at c~ and at 0 for fEL l (G / /K) :  

(1-2) 5~( f )  = - lim sup e -~t logl f ( l+i t )[ ,  
t---*+c~ 

(1-3) 5o(f) = - lim sup x log [](x) ]. 
x-*0 + 

Since f is a bounded analytic function on the interior of E, which is conformally 
equivalent to the unit disk, it has a canonical factorization into an inKer and an 
outer factor (unless of course f vanishes everywhere). The inner factor (regarded 
as a function on the disk) is the product of a Blaschke product and a singular 
inner function, and the quantities 5~( f )  and 5o(f) measure the atomic part of the 
positive Borel measure associated with the singular inner function at the points on 
the unit circle corresponding to �89 + ioc  and 0, respectively; since f ( s ) = f ( 1 - s ) ,  this 

1 also applies to the reflected points ~ - i o z  and 1. For a collection | of functions in 
LI(G//K) ,  we write 

5oo(| = i n f { 5 ~ ( f ) :  f �9 | 

50(6) = in f{50( f ) :  f �9 6} .  

Let L~(G//K) be the closed (convolution) ideal of LI(G/ /K)  of all functions 
with integral 0. In other words, L~(G//K) consists of those functions in LI(G/ /K)  
whose Fourier transforms vanish at 0 and hence, by symmetry, at 1. We now 
formulate the main result, an analog of Wiener's tauberian theorem for LI(G/ /K) .  

T h e o r e m  1.3. Let | be a family of functions in L 1 (G//K),  and let I(| be 
the smallest closed ideal in L 1 (G//K) containing 6 .  

(1) I ( |  1 (G//K) holds if and only if the Fourier transforms of elements of 
| have no common zeros in E, and 5oo(| 
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(2) I(~)=L~(G//K) holds if and only if the only common zeros in E of the 
Fourier trans/orms of elements of ~ are 0 and 1, and 5 ~ ( ~ ) = 5 o ( G ) = 0 .  

Remark. Part  (1) was conjectured in [5]. The 1 there instead of ~r in the 

definition of 5oo here was due to an oversight in the calculation. 

The usual proof of Wiener 's  theorem for L 1 (G) (with G a locally compact 
abelian group) uses localization. In our case the Fourier t ransforms are analytic 
functions, hence the Fourier image of LI(G//K) does not contain functions with 
compact  support,  and another approach is needed. We shall use the resolvent 
t ransform method. Here is a sketch of this method as it applies to our setup. 

Let L~(G//K) be the unitization of LI(G//K); the unit is identified with 5, 
the Dirac point mass at the unit e of the group G. We shall prove in Section 4 that  

for each ~E C \ E  there exists b:~ EL ~ (G//K), such that  

1 
(1-4) / ~ ( z ) =  z ( 1 - z ) - ) ~ ( 1 - ~ ) '  z E E ,  

and that  the set {b~ : A E C \ E }  spans a dense subspace of L~(G//K). The Laplace-  
Beltrami operator A acts on C 2 smooth functions in L ~ (G//K) (which form a dense 

subset of L ~ (G//K)) in the following way, 

A 

(A~)(z )=z(1-z )~(z ) ,  z E E ,  

so that  bA solves the equation 

Ab~ = A(1-  A)b~ +5. 

Hence b), is an eigenfunction of A on G\{e}. In Section 4 we shall show that  
b~ (() = 2QA_ 1 (cosh(2~)) for ~ > 0 and Re A > 1, where QA_ 1 is the Legendre function 
of the second kind. This function is holomorphic in A for Re A > 1. If we put 
bA=bl_A, as is consistent with (1-4), we see that  bA is holomorphic on ReA<0  as 

well. 
For a function g in L~ the dual Banach space to L~(G//K), we asso- 

ciate its resolvent transform 

(1-5) ~R[g](,k)=(b~,g}, )~E C \ E .  

Fix a point ~ E C \ E .  If we play around with (1-4), we get, for A E C \ E ,  

(1-6) =  dz), z E 
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This formula will be useful in the sequel when we a t tempt  to continue ~R[g] analyt- 

ically. 
The maximal ideal space of L~(G//K) is identified with the one-point com- 

pactification EU{cc} of E. For each closed ideal I in L~(G//K), we identify the 
maximal ideal space of the quotient algebra L~ (G//K)/I with the hull Zcr (I) of I ,  

in the standard way. Here, 

z ~ ( I )  = {z �9 x u { ~ } : / ( z )  = o for all / e I}.  

Later on, we shall also need the notation 

g(f) = {z e F,: ] (z )  --= 0}. 

Let | be a collection of functions in L 1 (G//K), and let I ( |  denote the closed ideal 
in L 1 (G//K) generated by | 

Recall that  ~ is a fixed point in C \ E .  Since b~(cc)=O and/~()~)=b~(s) if and 

only if ~ = s  or ~ = l - s ,  it follows that if ~ e C \ Z ~ ( I ( ~ ) )  then ~- /~(~) -q ,~  does 
not vanish on Z~(I(| Hence 5-t)~()O-lb~+I(| is invertible in the quotient 

algebra L ~ ( C / / K ) / I ( ~ ) .  Put 

(1-7) B), = ( 6 -  (A(1 - A) -~ (1  - ~))b~ + I ( e ) )  *-1 * (b~ + I ( e ) )  

as an element of LI(G//K)/I(| (here, the * is used to symbolize that  the product 
and inversion are taken in convolution sense, though modulo the ideal). Taking 
Fourier transforms, and comparing with (1-6), we see that  

(1-8) B~,=b~,+I(| )~ E C \ E .  

In particular, B~ does not depend on the point ~ that  we have chosen. Let us return 
to the function gEL~ and suppose it annihilates I( |  It follows that  g 
may be considered as a bounded linear functional on LI(G//K)/I(| By (1-8), 
the resolvent transform ~[g] of g, defined by (1-5), can also be represented by the 

formula 

By (1-7), B~ is defined for all AeC\Zo~( I ( |  as an element in LI(G//K)/I(| 
and it clearly depends analytically on ~. Thus the formula 

gives a holomorphic extension of ~t[g] to C \ Z ~ ( I ( |  
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From now on, we assume that the hull of 1(6)  is finite, say, 

= { s l  , . . . ,  s n ,  

(For our main result, Theorem 1.3, we have Z ~ ( I ( 6 ) ) = { o c }  in (1) and Z ~ ( I ( 6 ) ) =  
{0, 1, oc} in (2)). To prove Theorem 1.3, we shall later show, under appropriate 
conditions on 6 ,  that  

(1) The functions bA, with AEC\E ,  span a dense subspace of LI(G//K). 
(2) 91[g] is analytic at oc and it vanishes there. 
(3) The singularities of 9~[g](A) at S l , . . . ,  s~ are simple poles. 

Indeed, it follows from (2), (3) and the fact that  N[g] (A)=9~[g] (1-A) that  9~[g] has 
the form 

n 

j = l  

for some complex numbers a j .  Let my 
which corresponds to the point sj E E, 

aj 
sj(1-sj)-/~(1-/~)'  

be the complex homomorphism of L 1 (G//K) 
and form the functional 

m = L ozj mj. 
j = l  

Taking the resolvent transform of m, we see that  ~[m]=~[g] ,  and thus m - g  an- 
nihilates all the functions bx, with AEC\E .  By (1), g=m. This shows that if f E  
LltG//K) and f(sj)=0 for all j = l ,  ... , n, then it is annihilated by all g~L~(G//K) 
which annihilate I(G).  This finishes the proof of Theorem 1.3. 

To implement this sketch, and show that  9~[g] is indeed analytic at ec and has 
simple poles at the By'S, the method also requires estimates. To this end we shall 
need an explicit expression for the function ~R[g](A). We achieve this by finding 
representatives in L~(G//K) for the cosets B),EL~(G//K)/I(| Let E ~ denote 
the interior of E. In Section 5, we will show that  for every fELI(G//K) and )~eE ~ 
there exists T),fELI(G//K) such that  

A i(:~)-f(z) 
(1-9) T), f (z)-  z (1 - z ) - /~ (1 - ,~ ) '  z E E\{,~}. 

Note the identity 

T ~ ( z )  (1 -  D~ (A)-ID~ (z)) = f(1)D~ (z) - ](z)D~ (z), 

valid for fELI(G//K).  Suppose f E I ( |  apply the inverse Fourier transform to 
the above identity, and rood out I (6 ) ,  to get 

(/~r (;~) 6 -  be + 1 ( 6 ) ) ,  (T~f +1(6) )  = f()~)/~r (;~)(be + I ( 6 ) ) .  
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Together with (1-7), this shows that  for feI(|  and .keE~ 

T;~f /f(A) C B),, 

that  is, T),f/](A) is a representative of the coset B~. It follows that  

(1-10) ff~[g](A)_ (T~f,g)= , AEEO\Z(f). 
f(A) 

In Section 5 it will be shown that  T;~f is explicitly given by 

(1-11) T~,f(T)=Q:,_~(T) ~+~f(x)P~,_~(x)dx-Px_~(v) f~.+~f(x)Q~,_~(x)dx, 

where PA_ 1 (z) and Q~_I (z) are the Legendre functions of the first and second kind 
respectively, and ~-=cosh(2()E [1, +oc[. The explicit formulas (1-10) and (1-11) will 
be used to derive the necessary estimates for !Rig]. 

We now indicate the organization of the article. In Section 2, we gather facts 
on Legendre functions, and in Section 3, we use these facts to find b~ELI(G//K) 
such that  (1-4) holds, and we prove that  they span a dense subspace of L ~ (G//K). 
In Section 4, we find a concrete formula for the function T),fEL I(G//K) appearing 
in (1-9), and we estimate its norm. In Section 5, we supply results from the theory 
of holomorphic functions, which are applied in Section 6 to the resolvent transform 
iR[g] (A). We thus obtain the announced Wiener-type completeness theorem, both 
for LI(G//K) and L~(G//K). 

In Section 7 we follow [5], and use the completeness theorem to prove a gener- 
alization of Furstenberg's characterization of harmonic functions on the unit disk, 
and Agranovski~'s characterization of holomorphic functions on the unit disk. 

We shall use the letter C to denote a positive constant (it may depend on 
quantities that  are kept fixed), which may vary even within the same inequality. 

2. S o m e  fac t s  o n  L e g e n d r e  f u n c t i o n s  

In this section we list some facts on Legendre functions needed in the sequel. 
The standard references are [26], [28], [29], [18]. 

For complex numbers a, b, c, z, c not a negative integer or 0, the hypergeometric 
function of Gauss is given by 

( 2 - 1 )  2Fl(a,b;c;z)=~_g ~ (a)~(b)kzk, Iz]<l, 
k=0 (c)kk! 
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where 
(d)0=l ,  (d)k=d(d+l).....(d+k-1), k = 1 , 2 , . . . .  

It has the integral representation 

F(c) tb-l(1--t)c-b-l(1--tz) -a dr, 
( 2 - 2 )  2gl(a,b;c;Z)=r(b)r(c_b) 

Rec> Reb>0,  [z[<l.  

The ordinary differential equation 

d ( (1 -x2)  d~ )  + u ( u + l ) u  = 0 

has two linearly independent solutions P,  and Q,, which may be expressed in terms 
of the hypergeometric function, 

P~(x)=2Fl(-U,u+l;1;~ff-),  Ix- l [  < 2, 

v ~ r ( u + l )  
Q~(x) = 2~+2F (u+ 3) x-V 2F1 (�89 1, �89 (u+ 1); u+ 3; x-2), 

where in the last formula / E C \ ] - o c i l ] ,  Ixl>l. The functions P~ and Q~ are 
called Legendre functions of the first and second kind, respectively. In the definition 
of Q~, u + l  and u+ 3 are assumed not to be negative integers, or 0. The function 
Q~ extends analytically to C \ ] - c c ,  1], with a logarithmic branch point at 1. The 
function P~ extends analytically to C \ ] - c o , -  1], takes the value Pu (1)= 1, and en- 
joys the symmetry property P-u- l (X)= Pv (x). In the following we shall concentrate 
on the functions Pa-1 (x), Qa-1 (x), with particular interest in x E] 1, +c~[ and A E E. 
A formula for Qa-1 which is sometimes handy is 

(2-3) Ox:l(x)  - 2~F(A+ �89 ( l+x)  -~ 2/71 A, A; 2A; ~ , 

valid for x E C \ ] - o c ,  1] with [x+1[>2, and AEC\{0,-1, , -2, . . .} .  By (2-2) and 
(2-3), we have the integral formula 

2 _l(1+x)_ fx t~-11 t ~-1/" ~ 1  2t -~ Q~-l(X) = ( - )  , - = ,  dt 
(2-4) J0 \ •  

=2~-l f l t~- l (1- t )~- l ( l+x-2t ) -~dt ,  Rex > 1, 
a0 

for Re A>0, which immediately yields 

(2-5) [Qx-l(X)] <_Qaex-l(x), xE]l ,+cc[ ,  

for Re A>0. We need precise estimates of the function Qx(x), for x near I and +co. 
To this end, we produce the following lemma. 
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L e m m a  2.1. For (p, x)E]0, 1] • + ~ [ ,  

l<2Fl(P,#;2#;1-~x)<l-~ 2 
- -  - -  X--1 

Proof. 

(#+j)2 _ #2 

2#+j 2#+j 

for j=0 ,1 ,2 ,3 , . . . .  [] 

The desired estimate near +c~ follows. 

L e m m a  2.2. The estimate 

IQ--(x)l _< -ff~-~ ~ (I+x)- ReA 

holds for 0< ReA~I .  

Proof. 

This follows directly from (2-1) by using the estimate 

The proof is complete. 

We also need an estimate near the point 1. 

L e m m a  2.3. The estimate 

IQ~-l(x)l <__ +log x - l '  

holds for 0< Re A<I. 

1 
Fj_< j+~ ,  

x c [2, + ~ [ ,  

The assertion follows from (2-5), (2-3), Lemma 2.1, and the observation 

v ~ p F ( # )  < 4 
2.r(~+�89 5' 0<.<_1 

[] 

x e l l ,  2], 

Proof sketch. By (2-5) we can assume that A is real, so that 0<A_<I. By (2-4), 
we should estimate the (positive) integral 

Q~-I(X) = 2 ~ - 1 / 1  t ~-1 ( l - t )  ~-1 ( l + x -  2t) -~ dr. 

After the change of variables t = l - s  and x=l+2y, this becomes 

Q~_I(I+2y)-=-~ s~-l(1-s)~-l(s+y)-~ds, y e]0, + ~ [ .  
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By estimating the integral separately on ]0, 1] and [1,1], the assertion follows. [] 

The Legendre functions of the first and second kind are related by the identities 

(2-6) P~_ j_ (x) -- tan ATr (Qx_ 1 ( X )  - -  Q-A (x)), 
7T 

and 
(2-7) 
QA-1 (~r) P~_ 1 (x) - P~-I  (T)QA- 1 (x) - tan AT~ (Q_~ (T) Q~_ 1 (x) - Q~-I  (T) Q_~ (x)), 

7~ 

for ;kEC\�89 and x E C \ ] - o o ,  1]. We also have 

1 
(2-8)  QA_l(X)PA(x)-P)~_l(x)QA(x)=-X, x E C \ ] - o o ,  1], 

for those complex A, for which the left hand side is well-defined. 
We shall need the following formulee concerning integration from 1 to x: 

(2-9) PA_l(t)Ps_l(t)dt=(s(1-s)-/~(1-A))-l((1-A)P~_l(X)P~_2(x) 

- (1 - s)P~_~ (x)P,-2  (x) + (A-  s)xP~_~ (x)P,-i (x)), 

and 

(2-10) 

(t) dt ),))-1 

-(1-s)Q,X_l(X)Ps_2(x)+(A-s)xQ~_l(x)Ps_l(X)+l). 

They are verified by checking that the two sides have the same derivatives, and take 

the same values at z--1 (or as x-+l+). In the limit as x-++oc, (2-I0) becomes [18, 

p. 795], 

(2-11) 

~+c~ 1 
Q~-z(t)Ps-l(t) dt= ( A - s ) ( A + s - 1 )  

1 
s ( 1 - s ) - A ( 1 - A ) '  

ReA> i, s E E .  

3. T h e  f u n c t i o n s  b~ 

In Lemma 3.1, we find an element b~ELI(G//K) satisfying (1-4), and in 
Lemma 3.2, we prove the density of the linear span of the set {b~:AEC\E}.  
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L e m m a  3.1. For each A with R e A > I ,  define b~(~)=b~(~-)=2Q~_l(T)= 
2Q~-1 (cosh 2~), where T=cosh 2~; then 

(1) b~ e L 1 (G//K), 
1 

(2) 1);~(s) = s ( 1 - s ) - A ( 1 - A ) '  

1 
(3) IIb~llL~ _< ( R e A - 1 )  ReA'  

Proof. 

s E E ,  

By (2-5), (2-4), and changing the order of integration, we get 

f+~ f+~ IIb~llL~ =2 I@,-1(~-)1 ldT~ 2 QReA--I(T) ldT 

f /o 1 = 2 R ~  tae~-l(1-t)  R ~ - l ( l + r - 2 t )  -Re~ dt �89 
J 1  

I 1 - --ReA-11 l tR~X-ldt= ( R e A - 1 ) R e A "  

This proves (1) and (3). Relation (2) follows from (1-1') and (2-11). [] 

L e m m a  3.2. The functions bx, A E C \ E ,  span a dense subspace of Ll(G//K). 

Proof. Fix 5>0. By the Paley-Wiener theorem [22], the functions f whose 
Fourier transforms extend analytically to E s = { s E C : - 5 <  Res_<l+5},  and satisfy 
If(s)l=O(ls1-3) as Isl---~+oc within E6, are dense in LI(G//K). Thus, it suffices to 
show that each such f is in the closed subspace spanned by the b~, A E C \ E .  

Fix sEE. By Cauchy's formula and the conditions on f ,  we see that  

1 f~ ](z) 
] ( s )  = ~/~, l ( ~ ) + r ~ ( ~ )  z - s  dz, 

where F 1 ( ~ ) = l + 5 + i R  upward, and F~(5)=-5+iR downward. Substituting z--* 
1 - z  in the second integral, recalling that ](1-z )=/(z ) ,  and using the identity 

1 1 _ 1 - 2 z  = ( 2 z -  1)b~(s), 
z - s  1 - z - s  z ( 1 - z ) - s ( 1 - s )  

we see that 

1 fr  ](z) bz(s)(2z-1)dz. 

By Lemma 3.1 and the condition on ?, the LI(G//K) valued integral 

1 f~ /(z)(2z-1)bz dz 
2~ri ~ (5) 

converges, and the identity above shows that it converges to  f .  Thus, its Riemann 
sums, which are linear combinations of the b~'s, converge to f ,  as required. [] 
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4. R e p r e s e n t a t i v e s  for t h e  c o s e t s  B~+I(| 

Toward the end of Section 1, we showed that  for feI( |  )`eE ~ T~f/]()`) is 
a representative of the coset B~ +I ( |  This will later be important in estimating 
the extension of 9~[g] which was constructed using T~f. In this section we prove 
that  such T~fELI(G//K) exists by giving an explicit formula, and we estimate its 
L 1 norm. 

L e m m a  4.1. Let )`EE ~ For each f cLI (G/ /K) ,  put 

/7 /7 (4-1) T)~f(r)=Q),_l(r) f(x)P),_l(X)dx-P),_l(r) f(x)Q~_l(X)dx. 

Then if we think of'rE[i, +oe[ as a coordinatization of G/ /K (r is related to ~ via 
r=cosh(2~)),  T~,f belongs to LI(G//K), and 

(1) IIT~IIIL1 <-2501If IlL1 N()`,OE) -2, where d()`,OE) is the Euclidian distance 
of )` from t__hhe boundary OE of E, and 

(2) T~f(s)=(]()`)- /(s))(s(1-s)-)`(1-)`))  -1, seE\{)`} .  

Proof. To obtain (!), we should estimate the integral of IT~f(r)] on [1, +oc[. 
We split the domain of integration into [1, 2[ and [2, +oo[. 

We first estimate f}  IT~f(T)I dr. By (4-1), 

2 f2[ f+o~ 

-P )~ - I  (T) .~+o~ f(x)QA-I(:) dx dT 

+J1 ,J2 f(x)(Q~-l(~-)P~-l(x)-P~_l(~-)Qx_l(x))& d~-. 

We estimate the first integral using Lemmas 1.1 and 2.3: 

P~- l ( r)  f(x)O;~-l(*) dr<_ Re), If(x)[dxdr 

2 2 /. 
~ 4 )̂̀  IIIIIL1 2 1 2 - < +Jl '  l~ If(x)ldxdr 

_< (4/ae)`+2)llfllL1. 
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Similarly, 

~12 Q;~-I(T)~r  2 f(x)P),-l(x)dx d T  <_2Hf,IL1 ff'l 2 ,Q~_I(T)I d7 

1) 
<- IIfllL~ ~ - ~ + l o g  ~ d~- 

< (4/Re ~+2) llfl{~. 

The third integral is estimated using the fact that IP~_z (x)l _< 1 on [1, +c<)[, and in 
a second step, Lemmas 2.2 and 2.3: 

- .  -_ .f2 .~+~ f(x)(Q),-z (T)P),-1 (x)--P),-z (~-)Q),-z (x))dx d~- 

<_ fl  2 ~2 +~ ,f(x),(,Q),_l(X),+,Q),_l(~),)dxdT 

= If(x)l(IQ:~_l(x)l+l+2/ReA)dx 

< f + ~  I f (x) l ( l+6/ReA)dx 
J2  

= 2(I+6/ReA)IIf]IL, <_ R--4eA llf]]L,. 

In conclusion, we have 

(4-2) 

We now estimate 

fll IT),f('r)l -}d'r < 
7 

_ ~ - ~ { { I { { L 1 .  

~ +~ {Tz, f (T)[ dT. 

1 By (2-7), for AeE~ T:~f(r) may be written as 

tan ATtar (Q-~ (~- ) /+~f (x)Q) , -z (x)dx-Q) ,_ l (v)~+~f(x)Q_) , (x )dx) ,  T),f(T) -- - -  

SO that 

(4-3) ( IT~f(T)I- < I tan-A~rl IQ~-I(~-)I If(x)Q-~(x)ldx 
7T 

+ .Q- ;~ (T) , j!~.+~ , f ( x)Q ),- l (X) ] dx) . 
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B y  (2-5), we can assume that in the integrals on the right hand side of (4-3), A is 
real, that  is, Ae]0, 1[\{�89 To estimate the first term inside the brackets on the 
right hand side of (4-3), note that  by Lemma 2.2, for TE[2, +oc[, 

16 (1+~_~_ ~ IQ),-I(T)I f+~,f(x)O-:~(x)ldx< ~-~_~) , j f+~]f(x)]( l+x) )'-1 dx. 

Integrating with respect to ~-, and changing the order of integration, we get 

~+~ ,Q),-l(T), f+~,f(x)Q_),(x),dxdT 

< A(I-A) (1+~-)-~ If(x)l( l+m) ~-1 dxd~- 

16 f2+~ ff -- A(1-A) ]f(x)](l+x))'-i (l+~-)-)'dTdx 

16 j~2 + ~  32 
_< A(l_A) 2 If(x)l dx < A(l_A) 2 I{IllL1. 

Replacing A by l - A ,  we get 

IQ-:,0-)I If(x)Qa-l(X)l  dx d~- <_ A2(1 _)--------- ~ IIIIIL1. 

In conclusion, we get, for a general complex )~, A E E ~  { �89 }, 

161 tanA~r ] 
- 7~( Re~-( i  --Re A) 2 Ilf]lLl. 

Taking into account (4-2), we get 

f+~ IT~f(~-)l �89 16 I tan ATr]+zr/15 
- ~ -  ( Re ) , )2 (1 -  Re A) 2 IIf]]Ll" 

One shows that 

16 ]tanATri+Tr/15 _ 151+[A-1/2[  -1 , Eo ~},1 
-;~-(ReA)2(~-ReA)2 < d(A,0Z)2 Ac \{ 

and hence 

1 '+~ l + l A - 1 / 2 ]  -1 
(4-4) ]lTafllzl= [Taf(r)lid~-<15 d(A,0E)2 Ilf]lL~, A E E ~  

For fixed tE l l ,  +co[, the function Taf(~-) depends holomorphically on AEE ~ by 
inspection of (4-1) (and if needed, (2-5)). It follows that ]T),f(7)l is subharmonic 
in A E E ~ whence 

/2 ]IT:~I]]L~ = ITAI(7)] �89 A E E  ~ 
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is subharmonic. If we use the maximum principle for subharmonic functions, we 
1 can improve the estimate (4-4) near the point A=g (apply the principle to the disk 

IA-1I< ), 
IlZxfllL1 _< 25011fllL1 d(a, 0~) -2, a �9 ~o; 

part (1) of the lamina follows. 
For the proof of part (2), we use (4-1) and (1-1'): 

~ ( 8 ) :  fl+~ jfr+~176 ldT 

By changing the order of integration, we get 

r ~ ( 8 ) :  ~ll-I-~176 ~lXQA_I(T)Ps_I(7 ") ldT dx 

By (2-9), (2-10), and (2-8), we have 

T~f(s) = ( s ( 1 - s ) - A ( 1 - A ) )  -~ f(x)P~_l(X) l d x -  f (x)Ps-l(X)  �89 , 

which proves (2). [] 

We now summarize the properties of the resolvent transform that  we indicated 
in Section 1. 

T h e o r e m  4.2. Assume g �9176176  annihilates the closed ideal I in 
LI (G/ /K) ,  and fix any f � 9  

(1) The resolvent transform ~R[g](A) of g is defined for A � 9  and there, 
it is holomorphic in A. It is given by the formula 

(bx,g), A � 9  

m[g](a)= (Txf, g)/](,X), aer~~ 

(2) m[g](a)=m[gl(1-a), for all XcC\Z~(Z). 
(3) I~[g](.X)l<llgllL~/d(A, OE ), ,X�9 
(4) I(T~,f,g>l<_25011f]lL~llgllL~ d(A, 0Z) -2, A � 9  ~ 

Proof. Properties (1), (2), and (4) follow from Lemma 4.1 and the discussion 
in Section 1. The estimate (3) is a direct consequence of (1-5) and Lemma 3.1. [] 



216 Yaakov Ben Natan, Yoav Benyamini, Hs Hedenmalm and Yitzh~k Weit 

5. Results  from the theory of  holomorphic functions 

The reader may skip this section, and use it later as reference only. The 
following result is classical, and commonly referred to as the log log theorem. It has 
its roots in the work of Carleman, Levinson, Sjhberg, and Beurling. The  variant we 
use here can be found in Beurling's paper [7]. 

Theorem 5.1. Let Q be the rectangle ] -1 ,  1[•  1[, regarded as a subset of 
the complex plane. Let M:]0, 1]--+[e, +col be a continuous decreasing function, and 
let A(Q, M) be the set of holomorphic functions f on Q that satisfy 

]f(x+iy)i_< M(iyD, x + i y E Q \ R .  

Then A(Q, M) is a normal family on Q if and only if 

f0 1 log log M(y) dy < +oc. 

Based on Theorem 5.1, one can obtain the following statement about func- 
tions that  have properties shared by certain resolvent transforms of functions in 
L ~ (G//K)  (Theorem 4.2). Some notation is needed: given a nonidentically vanish- 
ing bounded holomorphic function f on the interior E ~ of E, we write, in analogy 
with (1-2) and (1-3), 

5 + (f) = - lim sup e -~t log[ f (�89 +it)[ ,  
t---++co 

5~ (f) = -- lim sup e -~t log I / (  �89 - it )l ' 
t---*+cxD 

50(f) = - lim sup x log If(x)[. 
x-*0+ 

Extend the notation to collections | of functions in H ~ (E ~ by taking infima, as in 
Section 1. For zEC,  d(z, OE) is the Euclidian distance from z to the boundary OE. 

Theorem 5.2. Let M:]0, 1]--~ [e, +co[ be a continuous decreasing function with 

9~01 log log M(t)  < +oc. dt 

Let G be a holomorphic function on C \ Z ,  where Z is a finite subset of F,. Suppose 
G satisfies, for some nonidentically vanishing function f E H ~ ( E ~  the estimates 

IC(z)l <M(d(z ,  OE)), z E C \ E ,  

If(z) a(z)l  _< M(d(z,  OF,)), z E E~ 
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Fix a bounded open neighborhood U of Z. Then, for each ~, 0<~, there is a positive 
constant C(e), such that 

C(g) 
la(z)l c(~) exp((g-l-5~(f))e-TrImz), 

z�9 
zeC_\U, 

where C+ and C_ are the open upper and lower half planes, respectively. 

The details of the proof can be found in [20], and they involve, in addition to 
the log-log theorem, the Paley-Wiener [24], [8] and Ahlfors-Heins theorems [2], as 
well as the Phragm~n-Lindelbf principle [8]. 

The following result is more to the point as regards what we need to prove 
the completeness theorem. Again, the proof is more or less carried out in [20]; the 
essential ingredient is the Ahlfors distortion theorem, which is applied to a bottle- 
type domain around the strip E. For the reader who wishes to look at the details, 
it should be mentioned that  it may be necessary to use instead of M a comparable, 
but smoother, function M, at the relevant places of the proof in [20]. 

T h e o r e m  5.3. Let M, Z, U, G, and f be as in Theorem 5.2, but now the 
function f may be any element of a collection | of functions in H ~ ( E ~  Suppose 
that 5 + ( | 1 7 4  Then C is bounded on C \U ,  and hence holomorphic on 
c u { ~ } \ z  

The next result treats the behavior near finite points. 

L e m m a  5.4. Let M, Z, G, and f be as in Theorem 5.2, and suppose OEZ. 
We also require that M satisfies logM(t)=o(t -1) as t-+O +. Fix a small bounded 
open neighborhood U of O, not containing any other point of Z. Then, for each ~, 
0<~, there is a positive constant C(~), such that 

IG(z)l ~ c (c )  exp((c+50(f) ) lz l -1) ,  z �9 u. 

Proof sketch. Consider the function H(z)=G(1/z) ,  which is holomorphic on a 
punctured neighborhood of oc. Let F be the entire function which approximates H 
near c~, in the sense that  F(z)-H(z)---~O as z-*oz.  You get F by considering the 
Laurent series expansion of H. Lemma 4.4 in [19] (which in many ways is similar 
to Theorem 5.2 here) applies to F after a rotation of the complex plane, and when 
the result is converted back into information about C, the assertion follows. [] 

L e m m a  5.5. Let M, Z, G, and f be as in Lamina 5.4, but now the function 
f may be any element of a collection | of functions in H ~ ( E ~  with 50(|  
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Suppose G also has the estimate 
C 

la(z)t_< d(z, OP, ' zeC\P,, 
for some positive constant C. Then G has a simple pole at O. 

Proof sketch. By Lemma 5.4, the function H(z)=G(1/z) ,  which is holomor- 
phic in a punctured neighborhood of oc, increases subexponentially near oc. The 
additional estimate on G in C\P,,  together with the Phragm6n Lindel6f principle, 
shows that  H increases at most polynomially near oo. Hence G has a pole at 0, 
which must be simple, again because of the estimate on G in C\P,.  [] 

6. T h e  p r o o f  o f  t h e  c o m p l e t e n e s s  theorem 

We now prove Theorem 1.3. Recall the setting, as presented in Section 1: 
gEL ~ (G//K) annihilates I( |  and 

Z o o ( I ( ~ ) ) :  {81,82 ,... ,Sn, O0}. 

It is assumed that  the points Sl ,... , sn are on the boundary cOP,, and that  

(6-1) 5 ~ ( ~ )  = 5sl (~)  . . . . .  58~ (G) = 0. 

The quantity 58j (G) is obtained from 5~j ( f )  by taking the infimum over all f E |  
and 

5~r ( f )  = - lira sup t log If(sj +t)l ,  
t---.0 + 

for sj on the imaginary axis (for the other part of 0P,, I + i R ,  the definition is 

analogous). By the symmetry f ( s ) = f ( 1 - s ) ,  we get 5 ~ ( ~ ) = 5 ~ ( G ) = 0  (notation 
as in Section 5). The symmetry also forces the points sl ,... , sn to lie symmetrically 
with respect to the mapping z~-*l-z.  

Condition (6-1) is necessary in order to have I ( |  coincide with the closed 
convolution ideal of functions in LI(G/ /K)  whose Fourier transforms vanish on 
{sl ,... , sn}, as is seen by an argument based on the Beurling-Rudin theorem char- 
acterizing the closed ideals in the disk algebra (for details, see [20], [5]). The difficult 
part of Theorem 1.3 is the sufficiency of (6-1). 

By Theorem 4.2, the resolvent transform 9l[g](z) is holomorphic throughout 
C \ { S l , . . . ,  sn}, and so the function H(z)=f(z)9l[g](z) is analytic throughout E ~ 
and has 

IH(z)l<_Cd(z, OP,) -2, z~P,  ~ 

By Theorem 5.3, N[g] is bounded in a neighborhood of oc, and by Theorem 4.2, 
N[g](oc)=0. Moreover, by Theorem 4.2 and Lemma 5.5, Pl[g] has simple poles at 
the points s l ,  ... , s~. Modulo the discussion in Section 1, the proof is complete. [] 
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7. C h a r a c t e r i z a t i o n  o f  h a r m o n i c  a n d  
h o l o m o r p h i c  f u n c t i o n s  in t h e  u n i t  d i sk  

Let f be a harmonic function on the unit disk D. For any gEG, the composition 
fog is also harmonic, and its value at zero is the average of its values on any circle 
centered at 0. Identifying points in D with elements of G/K and radial Borel 
measures on D with K-bi-invar~ant Borel measures on G, we obtain that  if # is a 
radial Borel measure on D with # ( D ) = I ,  then 

(7-1) /o f(gh) d#(h) = f(g) for all g E G, 

whenever fcL~(G/K) is harmonic on D; one says that  f is p-harmonic if (7-1) 
holds [16]. Conversely, one may ask under what conditions on a radial measure # 
the only p-harmonic functions f EL m (G/K) are harmonic. 

This question was treated by Furstenberg for measures and fimctions on G/I4 
where G is a semisimple Lie group with finite center, and K is a maximal  compact  

subgroup of G. He showed [17, Theorem 5, p. 370] that  when # is an absolutely 
continuous radial probabili ty measure on G/K, every f EL ~ (G/K) satisfying (7-1) 
is necessarily harmonic. As Furstenberg uses probabilistic methods, the assumption 
tha t  p is a probabili ty measure is essential to his method. 

The results of the previous section allow us to give some easy answers to these 
converse problems. 

Since # is radial, d#(g-1)=dp(g), so tha t  equation (7-1) becomes f*#=f. 
We need to specify how we compute the Fourier transform of a radial measure p. 

If  Tel1,  +cx~[ is the parameter  used earlier in this paper  for G//K (related to the 
more s tandard ~C[0, + ~ [  via T=cosh2~) ,  we may think of # as a Borel measure 

on [1, +eel,  so tha t  for continuous rotation invariant bounded functions f on G, 

fGf(g) d,(g) = f l,+ E 

where ](T)=f(~), as in Section 1. The Fourier transform of p is 

=f[1 Ps-l(T) dp(T), 8E~. ~(~) +~E 

For instance, the Fourier transform of the Dirac measure 5 at the origin (which 

corresponds to the Dirac measure at the unit eEG, and the unit point mass at 

z----l) is 5(s)=1.  
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T h e o r e m  7.1. Let # be a finite complex-valued radial Borel measure on D such 
that #(D)=I ,  #({0})51, /2(s)~l for sEE\{0,  1}, and lim supt__+0+ tlog 11-/2(x)l= 
O. Then every bounded p-harmonic function is harmonic. 

Proof. As in the proof of Theorem 3.1 in [5], it suffices to show that if fE  
L~176 is a radial solution of the equation f , p = f ,  then f is constant. 

Let I be the closed ideal in L~(G//K) generated by |  
Since/2(s)r for sEE\{0,  1}, the hull of this ideal is Zoo(I)={0, 1, oc}. By Lem- 
ma 1.2, B(�89 as I t l ~+oo ,  so that by the assumption #({0})51, G 
contains functions whose Fourier transforms decay arbitrarily slowly at co, so that 
5~( |  The condition of the theorem implies that 50(| We thus conclude 
by Theorem 1.3 that I=LI (G/ /K) .  But if f solves the convolution equation, then 
f* (#-5)*LI(G/ /K)={O};  thus I,LI(G//K)={O}, and f is constant. [] 

Corol la ry  7.2. If  # is a radial regular probability measure on D with 
p({0}) < 1, then every bounded p-harmonic function is harmonic. 

Proof. The formula 

1 f02~ P , _ l ( r ) = ~ 7  ( r +  rVz~--1 cosO)-*dO, TE[1,+oc[, 

together with Lemma 1.1, shows that 0 < P , - I ( T ) < I  for sE[0, 1]. It also follows 
that 

IP,_l(r)l _< PRe,_l(r)_< 1, sEE ,  

where the first inequality is strict unless r =  1 or s E [0, 1], and the second unless Re s 
is 0 or 1. Since not all the mass of # is concentrated to the origin, it follows that 

I s 1 6 3  sEE\{0 ,1} .  

For s=0, P, - I ( r )=P- I ( r )=I ;  let us see how P,_~(r) deviates from 1 for sE 
]0, 1] close to 0. We obtain 
(7-2) 

d 1 2~ 
P~-I(T) s=0 -- G ~ l~  dO 

1 2 = - 2 l o g ( ~ ( V / r + x / ' r  - l+V/r-rv/TgT-i- -1))<0,  rE[ l ,+oo[ .  

Fix a closed interval [a, b] in ]1, +oc[. Write 

1 2 
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and notice that  L(T)>O, with strict inequality for T e ] l , + ~ [ ,  and 1 - -P s - I (T )=  
n(T)s+O(s 2) as s--~O +, uniformly in ~-E[a, b]. It follows that  

1 - f i ( s )  = L-fl,+~[ ( 1 -  P8-1 (r))d#(r) >- F~:,b] ( 1 -  P s - l ( T ) ) d P ( r )  

= s [  n(r)dp(r)+O(s2), a s s - * 0  +. 
J[a ,b] 

Again since the probability measure p is not concentrated to the origin, we may 
pick [a, b] such that  f[a,b] L(7)d~->0. We find that  s log(1- t~(s) ) -~0 as s---~+c~, so 
that  the assertion follows from Theorem 7.1. [] 

Remark. A related result was obtained in the context of the whole complex 
plane, or more generally, R n, by Choquet and Deny [12]. 

The following "two circles" theorem was announced in [1]. The proof there is 
not complete, and a correct proof was given in [5] under certain additional assump- 
tions. By using Theorem 1.3 we are now able to give a proof of the theorem in its 
full generality. For this we fix two circles ~/1 and 72 centered at the origin in D, with 
radii r l  and r2, respectively, 0 < r l , r 2 < l .  For j = l , 2 ,  let Xj be the characteristic 
function of the disk [z]<rj ,  which we may regard as a function on G//K. The 
Fourier transform of Xy is 

~(s )  = P~_l(r) �89 = �89 gls_l(rj), s e E ,  

where ~-j = (1 + r])  / (1 - r~), and ~ _ 1  is the antiderivative of P~ _ 1, with ~ -1 (1) = O. 
The function gls-1 can be expressed in terms of the associated Legendre function 
P~-I 1. By Lemma 1.1, the functions ~1 and ~2 extend to entire functions of finite 
exponential type. 

T h e o r e m  7.3. Let f be a Borel measurable function on D with [ f (z ) [<  
C(1-[z]2) -1, zeD,  such that for j= l ,2  

fg f(z) dz=O, for almost all EG. g 
(~) 

Suppose the functions X1 and X2 have no common zero in the strip E. Then f 
coincides almost everywhere in D with a holomorphic function. 

This result should be compared with the two circle characterization of holo- 
morphic functions in [6]. That  result does not assume any growth conditions on 
the function, but has a strong assumption on the possible values of the radii of the 
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circles. The classical theory of mean periodic functions due to Laurent Schwartz is 
sufficient under these assumptions. In our Theorem 7.3, we impose growth condi- 
tions, but  make weaker assumptions on the radii, which necessitates different spec- 
tral analysis tools. The Wiener type theorem developed here provides the required 

tool. 

Proof. We use the same notation as in [1], [5]. Since the entire function 2j 
has finite exponential type, it cannot decay arbitrarily rapidly at oe; in particular, 
5~ (Xj )=0  ( j = l ,  2). Also, by assumption, 21 and 22 lack common zeros in E. By 
Theorem 1.3, the closed convolution ideal generated by ;gl and X2 is all of L 1 (G//K). 
As in the proof of Theorem 4.3 in [5], we consider the mollification Rc f  of f ,  
which has O R c f e L ~ ( D )  by the growth condition on f ;  here, c6=(1-1zl2) 2 0/05.  
Moreover, 

ORcf*xj=O, j = l , 2 ,  

holds, whence c6R4)f*r for all functions r in the closed ideal generated by X1 

and )42, that  is, 
c 6 R r 1 6 2  for all ~ ) c n l ( a / / / ( ) .  

This implies that ORef=O, that  is, R c f  is holomorphic. By letting r run through 
a smooth approximate convolution identity, R c f  converges to f in L~o c (D), and the 
conclusion that f is analytic on D follows. [] 
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