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t .  I n t roduc t i on .  The rearrangement set of a series ~um is the set of the sums 

of all convergent rearrangements of this series. I f  instead of ordinary convergence some 

other convergence concept, A-summability, is used in this definition, we obtain the 

A-rearra~jement set of the series. Thus, the well-known theorem of Riemann expresses 

the fact that  the rearrangement set of a series of real terms is either empty, or consists 

of one point, or is the real line. Steinitz characterized rearrangement sets of series 

of complex terms. In  a paper overlooked by reviewing journals, Mazur [6] found 

Cl-rearrangement sets of the form 

( ~ + 3 J ) ,  j = 0 ,  _1 ,  -4-2 . . . . .  (I) 

and Bagemihl and ErdSs [I] proved that all C1-rearrangement sets of real series are 

either of the form (I) or are given by Riemann's theorem (see section 17 for further 

details and remarks). 

In the present paper we characterize rearrangement sets obtained by arbitrary 

matrix methods A (in series-to-series form or sequence-to-sequence form, see section 

2 and section 16). We restrict ourselves to series and matrices with real terms, which 

makes simpler some considerations and quotations. The results, however, can be ex- 

tended to series and matrices with complex terms (or even terms of more general 

nature), as mentioned in the remarks to our theorems. Every A-rearrangement set 

is an analytic set (Theorem l; for the definition of analytic sets see section 3). The 

proof depends on a general theorem on ranges of Baire functions. Conversely, every 

analytic set is the A-rearrangement set of a certain series for a regular method A 
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(Theorem 2). The  construct ion of A is quite laborious, ideas underlying it are ex 

plained in section 5. I n  the last sections we indicate some fur ther  results and  prob-  

lems connected with rearrangement  sets. 

I.  R e a r r a n g e m e n t  sets  are  a n a l y t i c  se ts  

2. S , ,~a rnab i l i t y  m e t h o d s .  I n  I and I I  we consider m e t h o d s  A based on ma- 

tr ix t ransforms A applied to  series. For  our rearrangement  problems, methods  of 

this type  are easier to handle than  methods based on t ransforms of sequences, which 

we t rea t  in section 16. The A-summabi l i ty  of a series u = ~ um to the value a means 

tha t  the numbers  

v , =  ~ a n ~ u m  ( n = l ,  2 . . . .  ) (2) 
rn-1 

exist and form a convergent  series v = ~ v. with sum a. This series is caned the  

A- t ransform of u and denoted v = A u. A method  A is called regular if it sums each 

convergent  series to its ordinary sum. I t  is easy to see t h a t  the following simple 

conditions ensure the  regular i ty of A: 

>_[, anm= 1 ( m =  1, 2 . . . .  ), (3) 
n - 1  

Y lanai< oo, (4) 
m = l  n . n  m 

where nm is a sequence of integers  depending on A. We shall apply  this criterion 

in the  following way.  F o r  an a rb i t ra ry  matr ix  C we pu t  

II ll= levi.  (5) 
n - 1  m - 1  

I f  now a matr ix  B satisfies I I I - B I I  < co (where I is the ident i ty  matrix) and all 

column sums ~ bum of B are equal to  one, then  B defines a regular method  of t ype  

(2). The regulari ty still remains if we alter B by  inserting into B as new rows all 

the rows of a matr ix  D for which IIDII < oo and  all column sums are equal to  zero. 

For  fur ther  use in section 9 we remark  tha t  the  norm defined in (5) has the proper ty  

IIBClI<IIBII IlCll (6) 

and tha t  the  matr ix  t ransform t =  C s (if it exists) satisfies 

sup It, l<llcll  sup I, 1- (7) 



SERIES REARRANGEMENTS AND ANALYTIC SETS 151 

3. Ana ly t ic  se ts .  We give the definition of analytic sets (or Suslin sets) and 

describe some of their properties (compare the books of Hahn [2], Hausdorff [3], Kura- 

towski [4]). Given a system ~ of subsets S of an arbitrary space we get the system 

~ of analytic sets generated by  ~ in the following way: We form a "Suslin scheme" 

(Sk,, Sk, k . . . . . .  S~, k , . .% . . . .  }, (8) 

with the sets S taken from 6 .  In the scheme the indices kj run through all posi- 

t ive integers. The sets with p subscripts, i.e. the sets Sk ...... ~ are said to be in 

the pth layer of the scheme. The scheme defines a set T by 

T =  [.J ~'l Sj,,...k~, (9) 
( k , , k z ,  �9 . . )  ~-I 

where the union is taken over all possible sequences kl, k s . . . . .  Hence in every inter- 

section in (9) exactly one set from each layer appears, however not in an arbi t rary 

way: The sets taken from the pth and the ( p + l ) s t  layer must be related in the 

sense that  their first p subscripts are identical. (We can say that  the sets of the 

scheme form a tree.) The system ~ consists of all sets T which can be obtained 

in this way. One shows easily tha t  (~)A =~A ([2, p. 344]; [3, p. 92]). 

Analytic sets of a topological space are by definition the analytic sets generated 

by the system of open sets. Every Borel set is ana.lytic; but  generally the converse 

does not  hold. If the space is the real line (with the usual topology} then all ana- 

lytic sets are already generated by the system of closed intervals. This follows from 

the relation ( ~ ) A =  ~ ,  if one takes into account tha t  all open sets are among the 

analytic sets generated by closed intervals. Similarly we see that  an analytic set on 

the real line which does not contain the point 0 is generated by closed intervals not  

containing this point. In  what follows, analytic sets will always mean analytic sets 

of the real line (or, in some remarks, of the complex plane}. 

4. R e a r r a n g e m e n t  s e t s  a r e  ana ly t i c  se ts .  We state the first theorem an- 

nounced in the introduction. 

THEOREM 1. I~ A is an arbitrary real matrix method o~ type (2) and ~um is 

an arbitrary series with real terms, then the A-rearrangement set o/ ~ urn is a~ ana- 

l ~  se~. 

Remark. The method A is not  necessarily regular. The theorem can be extended 

to matrices and series with complex terms (or even terms of a more general nature), 
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if we use a t  the end of the proof Theorem X I I I  in [3, p. 269] instead of Theo- 

rem IX.  

Proof. Let  N be the set whose points x=  (m~} are sequences of distinct posi- 

t ive integers. For  x = {ink), y = (nk} we define 

1 
~ ( x , y ) = ~  if mk=nk for k < l  and m~*n~. (10) 

This makes  N a metric space and one sees easily tha t  N is complete and separable. 

We show tha t  ~ ,  the set of x EN  such tha t  the mk take all positive integral 

values, is a Betel  subset of N. Let  

N (a 1 . . . . .  al_l; p) (11) 

be the set of x with mk=a k (k< l )  and ms=p .  Then 

Np= 5 [.J N (a 1 . . . . .  al_l; p) (12) 
l - 1  a j ,  �9 . . ,  a l _  1 

is the set of x such tha t  mk = p  for some k. Finally 

2~= N N v. (13) 

Since the set (11) is an open ball in N, the set /~ is a Borel subset of the space N.  

Now for the method A and the series ~ um in question we put  for each x GN 

l 

fnt (X)= ~. aracUmk. (14) 
k - 1  

Clearly fm is a continuous function on IV. Hence (see for example [3, p. 270]), the 

set Cn of the points x of the existence of the limit 

f .  (z) = lim fm (x) (15) 

is a Borel set of N. Again, fn (x) are Baire functions in the metric space C =  17 C, 

(which is a Bore1 subset of N). As Baire functions the fn have the proper ty  tha t  

the sets of points x where fn (x )>  a or /> ac (for a fixed n) are Bore] sets [3, p. 260]. 

Therefore the set C* of the points x of the existence of 

f (x) = ~ f. (x) 
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is a Borel subset of C (see [3, p. 272]) and hence a Borel subset of N. The Baire 

function f, defined in the metric space C*, maps the set C*N ~ exactly into the 

A-rearrangement set R of ~ Urn. Now C*N N i s  a Borel set and hence also an ana- 

lytic set in the metric space C*. But  C*(~/f~ is also a Borel set and hence an ana- 

lytic set in the complete space N. Therefore C*N N is an absolutely analytic set 

in the sense of tIausdorff [3, p. 121 and p. 208]. Since C* N N is separable, we 

can apply [3, p. 266, Theorem IX] and obtain that  R is analytic. This completes 

the proof. 

II.  Analytic  sets are rearrangement sets 

5. S t a t e m e n t  of the  t h e o r e m  and out l ine  of the  proof .  In our considers- 

tions we use the following series 

elZ + 0 + e 2! + 0 + e s! + . - . .  (16) 

At a later place (section 15) we indicate a rather general class of series containing 

(16) for which all our arguments remain valid. 

T H E 0 R E M 2. Given any analytic set T of the real line, there exists a regular 

matrix  method of type (2) such that T is the A-rearrangement set of the series (16). 

Outline of the proof. We sketch the main ideas of our construction by  con- 

sidering first the case where T is a finite closed interval, denoting the matr ix as in 

the actual proof by ~ .  Let  q = ~ qm be the subseries of (16) consisting of all non-zero 

terms. We break q up into countably many subseries q(S) = ~q~). The matr ix ~ will have 

the property that  in an ./I-summable rearrangement of (16) each q(S) can appear essenti- 

ally on two places (each "place" is an infinite sequence of columns of tI). At one 

place it causes an ~-sum ~2J-1, at  the other the sum ~2~. The matr ix /I  is so con- 

structed that  the sums caused by different q(;) are just added. Hence the ~-sum 

of a rearrangement of (16) is of the form ~as,  where each at is either ~2J-1 or ~ .  

With proper choice of the Qj we get the desired interval. 

We now explain why each q(J) has essentially only two places to go. There are 

certain matrices /~ used in the construction of ~ which are coarse, i.e. have the 

property that  they sum essentially only one (or certain specified subseries) of (16) 

(see section 8). The reason that  we can work rather independently with the q(J) is 

due to the fact tha t  ~ is constructed from matrices ~ in a special way called mixing 

(see section 6): the columns of ~ are the columns of all -4j, diluted by zeros, and 

similarly for rows. For  some special series y connected with (16), ~-summabil i ty is 
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equivalent to the assumption tha t  for every ~ the subseries of y "belonging" to .4j 

is summed by  the ]atter method. 

The full proof of the theorem will consist  of three steps, which we distinguish 

by  the sets T which can be obtained a t  each step: one point sets (matrices are de- 

noted by .4 . . . .  ; section 9), intervals (matrices ~ . . . .  ; section 10), general analytic 

sets (matrices A . . . .  ; s ec t i on  13). To construct the matrices A at  each step we 

define matrices B, C, D, E; their rows will be combined to form A. In  the case of 

an interval, /] has the task to restrict the possible rearrangements and C will pro- 

vide the proper .~-sums, while the matrices i5 and E are used only for the last step 

(analytic sets): D provides additional relations for subseries of (16) summable by  ~ ;  

and E is responsible for connections between the sums assigned to such subseries by  

the matrices ~ j  used in the construction of A, connections which are similar to those 

appearing in the Suslin scheme. Finally we have to remark th.at on the first two 

steps (one point sets and intervals) we have to work with rather  general subseries 

of (16) rather  than with (16) itself. 

In  sections 6-8 we first introduce notations: mixing, special series, coarse ma- 

trices. Sections 9-13 are then devoted to the actual construction of the matr ix  A. 

6. l~ iT ing  o f  s e r i e s  a n d  m a t r i c e s .  Let  u = ~. um be a series; by N we denote 

the set of all positive integers. Let  P ~- {pp P2 . . . .  ) be an infinite subset of N (where 

Pl < pg. < ...). The project/on u P of u onto P will be the series 

u P= ~ u , n = u p , + u p , +  . . . .  (17) 
m E P  

In  other words, this is a series obtained by omission from u of all terms for which 

m does not  belong to P; the remaining terms retain their relative order. Conversely, 

let u* u* = ~ m be a series. I t s  injection onto P is the series u =  ~ u~ such tha t  

u~k=u* ( I t = l ,  2 . . . .  ), urn=0 otherwise. (18) 

We shall also consider the corresponding notions for matrices. The projection of a 

matr ix  A onto P is the matr ix  A p with the elements 

~" (n, m =  1, 2 . . . .  ). (19) a n  m = a p  a n,n 

The injection of a matr ix  A* onto P is the matrix A with elements 

arz ~k = a~k (l, k =.1, 2 . . . .  ), a m  = 0 otherwise. (20) 
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Next  we define mixtures of series and  matrices. I n  the  following considerations we 

always use a fixed par t i t ion  of N into disjoint sets P f  

N =  Pt  u P2 U ... ; P,= {P,x, Pn . . . .  }. (21) 

For  example, we can take 

Px = {1, 3, 5, 7 . . . .  }, P2 = {2, 6, 10, 14, ...}, Pa = {4, 12, 20, 28 . . . .  } . . . . .  (22) 

The  mixture o t the series u<J)=~ u~ ~ (~= 1, 2 . . . .  ) is the  series u=~J~(u a), u ~) . . . .  ) 

with the  terms 

u~ -- u~ ~. ff m = Pjk. (23) 

I n  other  words: u is the  termwise sum of the injections of the u a) onto P~. Similarly 

we define the mixture of matrices At ( j = l ,  2 . . . .  ) to  be the  matr ix  A =~J~(A 1, A 2 . . . .  ) 

with the  elements 

_ .o) if n = Pn, m = p~; a.m = 0 otherwise. (24) a,m - ~ l k  

Again A is the termwise sum of the injections of the Aj onto Pj, and  the project ion 

of A onto  Pj  is At. For  an  a rb i t ra ry  mat r ix  A (not necessarily of the  type  (24)) 

we often write for the project ion A ~  shorter  A f  similarly for series, u (s) instead 

of u ~j. 

As a simple example of the result of mixing we ment ion 

( z , / ,  ...) = 1. (25) 

Fur the r  we have I I~ (Ax ,  A,  . . . .  )II=IIA, II+IIA II+ . . . .  

I t  follows t h a t  if Bj = I - B ~ ,  then 

~(8,, B~ . . . .  ) - ~ Z - B * ,  w h e r e  I IB*I I - -Yl IB~ ' I I .  

(26) 

(27) 

I n  particular,  ff the B s define regular summabi l i ty  methods (see section 2 ) a n d  

~ I I B ~ I I <  0% then also ~J~(B1, B~ . . . .  ) is a regular method.  

Suppose t h a t  A is the  mix tu re  of matrices Aj, and  tha t  u Pj = u r are the pro- 

jections of a series u. Then  the  t ransform v = A u consists of all the terms of the 

t ransforms v(JJ=Aju (j~. I f  now u is A-summable ,  then necessarily for  every j the 

series v (s) has terms tending to  zero, and  only finitely m a n y  series v (j) contain large 

terms: 

l~nvff)=o ( i = 1 , 2  . . . .  ); sup lvg ) l< l  (i>i0). (28) 
n 
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On the  other hand, if ~ ~ I v 'l < oo, (20) 
t n 

then  u is A-summable .  

We also use modifications of the  mixing process. The matr ix  A is called the 

column-mixture of the  matr ices Aj (j = 1, 2 . . . .  ). if the columns of A arc the unal tered 

columns of the Aj arranged in a wa y  prescribed by  the  sets Pj: 

a _ . ( t )  if m=ptk .  (30) n m  - -  ~ n k  

I t  amounts  to the same to say tha t  the n th  row of A, considered as a series, is the  

mixture  of the  n t h  rows of the  Aj (considered as series). Similarly we define row- 

mixtures of matrices Aj (] = l, 2 . . . .  ). The row mixture  of matrices A 1 . . . . .  AT, 0, 0 . . . .  

is also called the  row-mixture  of A 1 . . . . .  AT. (For our  purposes we could as well 

omit  the zero rows and define the row-mixture  of A 1 . . . . .  A r as a matr ix  A which 

is formed by  the  rows of the  A 1 . . . . .  Ar in such a way  t h a t  every row of each 

A 1 . . . . .  Ar appears  in A exact ly once.) 

7. S p e c i a l  se r i es .  I t  will be convenient  to in t roduce special notat ions for sub- 

series of our fundamenta l  series (see also (16)) 

e 1! + 0 + e 2~ + 0 + e sz + . . . .  (31) 

We shall denote by  y =  ~ y~ (32) 
m - 1  

of a subseries of (31); in section 13, however, y shall mean  a any  rearrangement  

rear rangement  of (31) itself. B y  q =  ~qm we denote special subscries with terms 

qnz=e ~m! ( 0 < k l < k 2 < ' - . )  (33) 

or, in section 13, with terms q z = e  m'. 

Two series u =  ~ um and u ' =  ~. u~ will be called equivalent, if 

u z =  u~ for almost  all m. (34) 

Abou t  series y, q of types  (32), (33) we note  the following. 

L E M ~ A  1. I /  yn- -2q~ ( n = l ,  2 . . . .  ) is bounded /or some constant 2, then 2 = 0  

or ~ = 1  and y n - 2 q ~ = O  /or all large n; and i/ l Y . - 2 q ~ l  <<-2, ( n = l ,  2 . . . .  ), then 

y .  - ~ q. = 0 /or all n. 

For  the proof we note  t h a t  2 = lim (y~/q.), and this can only be 0 or 1. Then  

y . - ~  q. is y .  or y . - q ~ ,  and  these expressions are bounded only if they  vanish for 
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all large n. The last pa r t  of the lemma follows from the fact tha t  the difference 

of any two terms of (31) is either 0 or greater than  2 in absolute value. 

8. Goarse  m a t r i c e s .  For each matr ix  B we consider the set B �9 of all series 

of type  (32) orthogonal to B, i.e. with the proper ty  tha t  the B-transform exists and 

is identically zero. Hence 

uEB•  means: u is of type (32) and B u = O  (35) 

(where 0 stands for the series ~. 0). Note tha t  B 1 by definition contains only series 

of form (32). 

A matr ix  B is called coarse (with respect to the series (31)) if it has the fol- 

lowing properties : 

I f  a series y (of type (32)) has a transform z = B y  with sup Izn l<r  

then it is B-summable and equivalent to a series from B • I f  it satisfies 

sup [z , [<  1, then it is in B • (36) 

LEMMA 2. The series Y = ~ Y m  (o/ type (32)) summable by a mixture B o/regular, 

coarse matrices Br are exactly the series y which are equivalent to a series belonging 

to B*. 

Proo]. By z ~ we denote the Br t ransform of the projection yO) of y onto Pj. 

I f  y is B-summable, we have by  (28) 

sup lz~' l< ~ ( j=  l, 2 . . . .  ); sup Iz~ ' l<  1 (J>J0). (37) 
7l 

From the definition (36) it follows then tha t  y is equivalent to a series in B • The 

converse of this is trivial, since by the regularity assumption all columns is B form 

convergent series. 

9. O a e - p o i n t  sets .  Basic for our construction are the matrices of the fol- 

lowing type 

1 0 0  ... 0 

0 1 0 ... 0 

0 0 1  ... 0 

0 0 0  ... 1 

0 

0 

f12 0 0 . . .  

/~s o o .. .  

f14 0 0 . . .  

t~  0 o . . .  

0 0 ... 0 1-f12 . . . . .  flk flk+l 0 ... 

0 0 ... 0 0 1 - -  [ ~ k + l  ~k+2 "'" 

Their main properties are described in the following lemma. 

( 3 8 )  
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L~cMMA 3. For each series q=~q,~  (o1 type (33)) and each e > 0  there exists a 

coarse matrix B such that 

II x -  ~ II < ~ (39) 

and that B• consists o/ the series q and O. (40) 

Proo[. We select the coefficients fl~ inductively in such a way that  q is orthogo- 

nal to B, in other words in such a way that  

q~+ fl~+l qk = 0 

(1 - ~ . . . . .  fib) q~ + fl~+, q~+, = 0, 

(1 -- fl,,) qm + fl,,+t qm+l=O 

(m=l . . . . .  k- l ) ,  ] 

( r e = k +  1, k + 2  . . . .  ) .]  

(41) 

Then each series u with B u = 0 is of the form 

u=] tq  (i.e. Um=~.qm, m =  1, 2 . . . .  ). (42) 

In  ease u is of type (32) we have  )L= 0 or ~ = 1 by Lemma 1. 

By taking k sufficiently large we can achieve (39). 

I t  remains to prove that  /~ is coarse. We may assume e<�89 

has an inverse 

B - I =  I + ( I -  B) + ( I -  B)~ + ... , 

and (compare (6)) 

1 
= < 2 .  I I B - ' I I <  1 + ~ + : + " "  1 - ~  

Hence (40) is true. 

The matrix B 

(43) 

( 4 4 )  

If now a series y (of type (32)) is such that  

sup [z, [< oo, then it has a decomposition 

Ym=Wm+Um with w = B  - l z  

its /~-transform z = B y  satisfies 

and /~ u = 0. (45) 

Hence by (41) (see also (7)) and the same consideration as in (42) we have 

y,,=wm+]~q,, with sup ]win[< co. (46) 

Applying Lemma 1 we see that  wm= 0 for m >/m 0 and the first part  of (36) is proved. 

The second part  follows similarly, observing that  sup [ z~ [ < 1 implies sup [w~[ < 2 

in (46). 

The matrix /~ sums q to 0. I t  is very easy to make this sum an arbitrary 

number Q by inserting some additional rows into ~.  Pu t  
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0 ... 0 71 0 . . . . . . . . .  

= 0 ... 0 - 7 1  0 ... 0 72 0 . . . . . .  

0 ... 0 0 0 ... 0 - 7 2  0 ... 0 :Ys 0 ... 
(47) 

We define the  ~k b y  the  condit ion t h a t  the  series r = C9 satisfies 

r l =  ~, r . = 0  ( n > l ) .  (48) 

Taking  the  non-zero columns in C sufficiently fa r  to the r ight  we can achieve 

I[ Oil < e. (49) 

Our r emark  abou t  the  value of the  sum of q m a y  be then  justif ied as follows. 

Le t  A be the row-mix ture  of /~ and  C (see section 6). The  ma t r ix  me thod  ,4  is 

regular  (see (3), (4); note  t h a t  the  column sums of /~ arc 1 and those of C- are zero). 

I t  sums among  the  series y (of type  (32)) exac t ly  those equivalent  to q or to 0. 

Because A sums q to  the  value ~ and  is regular,  t h e  .4- rear rangement  set  of q con- 
sists exac t ly  of the  point  ~. I t  is easy  to  modi fy  A so t h a t  the  s u m m e d  series is 

(31) ins tead of q; this provides  a proof  of Theorem 2 in the  simple case of a one-point  set. 

We omit  the  details because this case will be covered by  our more  general  construct ion.  

~.0. I n t e r v a l s .  Let 

[~,  f l] ,  - o o < ~ < / ~ <  ~ (50)  

be a closed interval .  We consider a f ixed series q (of t ype  (33)) and  a n u m b e r  ~ > 0. 

The  project ions q(J) of q onto  Pj  are again  series of t ype  (33). For  each ] =  l ,  2 . . . .  

we select a real n u m b e r  Qj, for the  m o m e n t  a rb i t ra ry ,  and  a n u m b e r  ej > 0 such t h a t  

2 ~ ej < e. The matr ices  /~ , -1  =/~2J will denote  the  m a t r i x / ~  of section 9 corresponding 

to the  series q(J) and  the bound e, in (39). The  matr ices  C-~j_x, Cg.j are the matr ices  

of section 9 corresponding to the  series q(J), the  bound  ej in (49) and  the  sum values 

~2J-1 and ~ j ,  respect ively.  Le t  

/~=~)~ (/~1, B2 . . . .  ), O=~J~(C 1, 0~ . . . .  ) (51) 

be the  mix tures  of these matr ices  as described in section 6. The  ma t r ix  /~ has the 

p rope r ty  s ta ted  in L e m m a  2. I n  addi t ion we can easily describe the  set  B• This  

set  consists of all  series y (of t ype  (32)) such t ha t  the  project ions y(J) onto  Pj  for 

each ~ = 1, 2 . . . .  sa t isfy 
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either y<Sj-1)=q(j) and y(SJ)=0 ] 

or y(2j-l> = 0 and yCSJ) = qr I (52) 

or y(~j-x) = yCZ~) = O. 

We now specify the numbers ~r by putt ing 

ql = q~ = a; q~J-1 = 2 -t+1 (fl -- a) e2J = 0 (/" > 1). (53) 

The C2i_l-transform of the series q<J) is the series o e j _ l + 0 + 0 + - - - ,  while its C~F 

transform is o 2 j + 0 + 0 + . . . .  The C-transform of a y E B  • is the mixture of these 

series; and the resulting (mixed) series is convergent because Y. lqj l< oo. The possible 

sum-values of the C-transform are 

= ~ a j ,  where at=~2j-1 or 0. (54) 

They form the union of the two intervals [a, fl] and [0, f l -  a]. If  however y 6/~• is 

a rearrangement of 

ql + 0 + q, + 0 + qs + " '" ,  (55) 

then the last case mentioned in (52) cannot happen, and the possible sum-values give 

exactly the interval [a, fl]. 

We are now in the imsition to prove Theorem 2 in the case where the set T 

is an interval. Again we omit  details because this case is covered by our general 

construction in section 13. Let  A '  be the row-mixture of B and C (see section 6). 

The summabil i ty method A'  is regular by (3), (4) and (26). Among the rearrange- 

ments of the series (55) this method will sum by Lemma 2 exactly those equivalent 

to a series in /~• We can therefore (by the regularity of ~ ' )  restrict ourselves to 

the consideration of series in /]• From the preceding paragraph it follows tha t  the 

interval [~, fl] is the rearrangement set of the series (55) with respect to ~ ' .  With 

a trivial choice of the qz the series (55) will be identical to (31), hence the special 

case of the theorem is proved. 

t t .  T h e  a~T~liary m a t r i c e s  D.  The matrix ~ '  just defined has the following 

disadvantage for the further construction: I t  sums certain series y E/~ • which are 

neither 0 nor a rearrangement of q (namely series where the last case mentioned in 

(52) happens for some but not all i). To prevent this we insert further rows into 

the matrix ~ ' .  

Given a series q =  ~ q~ (of type (33)) we can determine a matr ix  (compare 

in (47)) 
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0 ... 0 61 0 . . . . . .  "~ 

0 ... 0 - ~ 1  0 . . . . . .  

0 ... 0 0 0 ... 0 (~ 0 ... 

. . . . . .  0 - ~  0 ... 

(56) 

such t h a t  r = J g q  is the  series 1 - 1 + 1 - 1 + . . . :  

D:q = ~. ( - 1) m+' (57) 

and  t h a t  l] ~]]  < e. (58) 

Le t  1)1 =Z)2 be matr ices  of t y p e  (56) corresponding to the  series qa~, where q(J) has 

the  same meaning  as in section 10; and  let /)a = / ) a  be matr ices  of this t ype  for the  

series q(2). The  column-mixture  /)* of the  matr ices  /)1, D2, - / ) 3 ,  - / ) a ,  0, 0 . . . .  has  

the  p rope r ty  t h a t  for each y G B ~ 

z = / ) *  y = 0 holds if ei ther  yO) = 0 (] = 1 . . . . .  4) 

or the  last  case in (52) does not  happen  for ] =  1, 2; 

otherwise lira I z.  [ = 1. (59) 

(We see t h a t  for instance in ease yr q(1), y(3)= q(3) the contr ibut ions f r o m / ) 1  a n d / ) s  

cancel out.) 

Similar ly we get  matr ices  which have  the  corresponding p rope r ty  for the  quad-  

ruple (3, 4, 5, 6) ins tead of (1, 2, 3, 4), and  so on. The  row-mix ture  D (see section 6) 

of all these matr ices  /)* has the  p rope r ty  t h a t  for each y E/~ x 

z = / )  y = 0 holds if either y = 0 

or the  last  case in (52) does no t  happen  for a n y  j; 

otherwise lira I zn] = 1. 

W e  can fmhe more achieve  II II < 

We now form the row-mix ture  .~ of the  matr ices  / I '  and  /~. 

ment ioned in section 

satisfy 

I f  

(60) 

(61) 

Besides the  proper t ies  

10 for ~ '  (regularity,  r ea r rangement  set) the  new -~ will also 

yEBX and  zn-->0 (for z=Jly), 
then  either y = 0 

or y is a r ea r rangement  of the  series (55). (62) 
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t2 .  Tho  a u x i l i a r y  m a t r i c e s  E .  The matr ix  D serves to restrict the projections 

of A-summable series. For  the construction in section 13 based on a Suslin scheme 

we need further matrices E providing relations among the sums which the projections 

Aj of the matr ix  A assign to the projections u (j) of a series u. For a given series 

q (of type (33)) and a number  e >O we form the matr ix  

- O  

0 

0 

0 

, . .  0 

. . .  O 

~ 1 7 6  

. . ~  

~ 1  0 . . . . . .  

- -  ~ 1  0 . . . . . .  

... 0 ~ 0 ... 

... O - ~ 2  O ... 

where the ~ and their column numbers are the same as in C (see (47)). 

transforms q into the series 

(63) 

Hence 

0 - Q + Q - Q +  . . . ,  (64) 

where Q is the sum assigned to q by  ~ .  

Based on ~ we construct a matr ix  J~ which has an analogous proper ty  for inter- 

vals instead .of one-point sets. Let  E2J-1, E~s be matrices (63) corresponding to the 

series q(J) and the sum-values Q~J-1, ~ J  respectively (where q(S) and ~j have the same 

meaning as in section 10). The column-mixture of the matrices Er (see section 6) 

is row-infinite and has the property:  

I f  y E/] l  is C-summable to the value ~, 

then the E-transform of y is the series ~ - i f +  ~ - ~  + .--.  (65) 

Further,  all column-sums in J~ are zero and we can achieve 

II < (66) 

Using the E in a similar way as the 1) in section 11 we shall enforce tha t  certain 

sums of the type mentioned in the first paragraph of this section are equal (see 

section 13). 

We represent an arbi t rary analytic set T by  a Suslin scheme t3 .  Ana ly t i c  s e t s .  

of closed intervals: 

T =  (] [~ Sk,,...,%. (67) 
(k~, ks, - �9 ") p ~ l  
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In case 0~ T we may assume that  none of the intervals Sk ...... zp contains 0 (see 

section 3). To abbreviate writing, we consider a fixed one-to-one correspondence 

je-~(~ 1 . . . . .  ~p) (68) 

between the set of all subscripts (k 1 . . . . .  k~) and the set of all positive integers j; 

we shall use the index j instead of (k I . . . . .  kp), and say tha t  this j belongs to the 

level p. 

By y we denote a rearrangement of the series (31) and by q the subseries of 

positive terms of (31) (given by k , , = m  in (33)). 

We decompose q into eountably many subseries q(P). Each qW) will be assigned 

to t he  p-th layer (see section 3) of the scheme (67). For each j ~ ( k  1 . . . . .  /cp) we 

define according to sections 10-12 matrices B~, Cj, D s, J~j, ~ corresponding to the 

series q(~, the intervals Sj and the numbers ej > 0  with 

~j < ~ .  (69) 

By mixing the /~j and the /)j we get matrices B and D respectively; by mixing 

the matrices 

, /Cj  if ) '~(kl )  , (70) 

C~ = ~ 0 otherwise 

we get a matrix C. Let  j**-*(k~ . . . . .  k*) be an arbitrary subscript. We put  

Ej if j~(kT, . . . .  1r 

/~; = - $ j  if j ~ ( k 7  . . . . .  k*, k), (71) 

0 otherwise. 

The column-mixture 

H E,  I1 < e,, and then 

of the matrices E ~ = ~  (j*) is called Et,. We can arrange 

(72) 

The main property of the matrices Ej is the following. Let  

j ~ ( k l  . . . .  , k~), j ' ~ ( k l  . . . . .  k, ,  k). (73) 

We consider a rearrangement y of the series (31) which belongs to B • If  y is Ej- 

summable, then the Cj-sum of the projection y(J)of y i s  equal to the sum (over k) 

of the Cr-sums of y(r), and conversely. 
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We define the matrix E to be the row-mixture (see section 6) of the Ej. 

~# = a~ (y) denote 

h a v e  then: 

Let  

the Crsum (if it exists) of the projection y(S) of a series y. We 

A series y EB • is E-summable if and only if 

for arbitrary j, j '  connected by  (73), a j=  ~ at .  (74) 
k 

Now we define the matrix A as the row-mixture of B, C, D, E.  The matrix 

A determines a regular summability method (2) since it  satisfies (3), (4) because of 

the condi t ions  imposed- on  t h e  column-sums and norms of the matrices from which 

A is constructed. We have to show that  T is the A-rearrangement set of the 

series (31). 

Assume first that  a rearrangement y of the series (31) is  A-summable to ~. 

We wish to prove that  ~ET.  As a mixture of the /~j the matrix B is also a mix- 

ture of matrices /~ and has therefore the property stated in Lemma 2. Hence we 

can restrict our considerations to the case y E B  • By (62) we see that  the projec- 

tions yU), j~(]cl  . . . . .  kp) of y have the property 

Either y(i)= 0 or y(J) is a rearrangement of q(r). (75) 

Since the subseries q(r) are disjoint, we see that  for each level p there is exactly 

one j = Jr of this level with 

y(J~ =q(P) for J= J2,, y(J) = 0 for all other j of this level. (76) 

Because the A-sum Q of y is determined only by the Cj with j~-*(kl) , we see that  

Q E 5 Sk,. (77) 

Finally the matrix E is responsible for the fact tha t  even QET. If jz~(k~), we see 

from (76) tha t  Q=aj, and QESk;.  We now distinguish the cases Q * 0  and ~ = 0 .  

First let ~ *  0. Since y(J') is ~j-summable to the value ~ = aj,, y(J) is Cj-summable 

to 0 for all j * j ~  of the second leve], and y(J') is Cj-summable to aj,, we see from 

k2), and that  aj, = Q* 0. Hence by the (74) tha t  j~ must be of the form j ~ ( k ~ ,  * 

properties of Cj,, Q ~ S~  k;. Continuing we find 

Ep01 Sk. ..... k~ c T. (78) 

Next  let Q=0. From ~ESk r we deduce that  0ES~, and hence 0 E T  (because we 

agreed to take intervals S with 0 ~S if 0~T ) .  
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A short argument  follows to show tha t  if v E T, then there is a rearrangement 

y summable to v. Since T E T, for proper subscripts k[,/r . . . .  we have 

TE N S~. ..... ~;. (79) 

We choose now a rearrangement y of the series (31) such tha t  the projections yO) 

satisfy 

y(J) is a rearrangement of qw) if ~ ( k ~  . . . . .  k*),] 
(80) 

J y~J) = 0 otherwise. 

By  section 10 and the definition of the Oj we can select the rearrangement y(/) in 

such a way tha t  

Cj (y(J)) = T + 0 + 0 + - . . .  (81) 

By (70), y is C-summable to v; by  (81), (74) and (60) we see tha t  the E- and D- 

transforms of y are identically zero. We also have y EB• hence y is A-summable 

to v. This completes the proof of Theorem 2. 

Remark. Theorem 2 remains true for analytic sets T of the complex plane. 

We have only to select the ~t in section 10 so as to obtain a complex (two-dimen- 

sional) interval S instead of a real interval. 

HI. Additional remarks 

l~ .  Mod i f i ca t ions  of the  cons t ruc t ion .  The construction leading to the matr ix  

A of Theorem 2 can be modified in several ways. We mention two possibilities. 

The auxiliary matr ix  D served the following purpose. I f  a rearrangement y of 

the series (31) is A-summable, then among the matrices ~ j  belonging to the layer 

p one gets essentially the full series qW), while zeros appear  in the columns reserved 

for the other ~ ,  of this level (see (76)). The same result can be achieved in a dif- 

ferent way without the use of an auxiliary matrix.  The breaking up of series q(~ 

into subseries (section 10) is modified: for each p and each j ~ ( k  1 . . . . .  k~) we break 

up q(P) into subseries q(~)(j, k), k = l ,  2 . . . . .  in a manner  essentially different for 

each ~ of a level p. This means tha t  for j *3,  the series q~) (~, k) and qW) (j, ~) have 

infinitely many  terms in common. 

The second modification avoids the exceptional role played by  the point 0 in 

the proof of Theorem 2 at  the cost of introducing another  auxiliary matrix,  similar 

to E, which - -  regardless of the sums involved - -  enforces a connection between the 

places where the non-zero terms of an A.summable rearrangement of (31) may appear.  

12 - 583802. AcLa m a $ ~ a a ~ c a .  100. I m p r i m 6  le 31 d6cembre  1958. 
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i5 .  E x t e n s i o n s  of t h e  c o n s t r u c t i o n .  As we have mentioned in section 5, more 

general series than (16) can be used in Theorem 2. Examining the proof of this 

theorem (see in particular Lemma 1) we see tha t  it more generally applies to a series 

u l  + O + u ~ + O + u a + . . .  . (82) 

with the properties 

0 < U l ~ U 2 ~  . . ' ;  Un+I/Un-"~c<3; ( 8 3 )  

without loss of generality we can then assume u 1 >2 ,  U n + l - u , ~ > 2 ,  ( n =  1, 2 . . . .  ). 

We cannot work, however, with an arbi t rary divergent series. I f  the method A is 

regular, then for some divergent series u = ~ Um we easily recognize certain restrictions 

of the possible A-rearrangement sets of u (compare section 17). 

The constructed matr ix  A is rather pathological. Already the matrices B have 

rather  peculiar properties (Einfolgenverfahren, see [7]). 

Perhaps it is possible to replace the Dj in the construction of A by  matrices 

of the type 

0 
F =  

0 

0 

0 0 0 0 

� 8 9  
� 8 9  
o ~ o  
o o ~  

.~176 

~176176 

~  

. . ~  

The matr ix  F has quite acceptable properties from the general point of view (per- 

fectness, see [7]) and is also related to known special methods (weighted arithmetic 

means, Zweierverfahren [7]). I t  sums the series 2 ! - 2 ! + 3 ! - 3 ! + ... and the F-  

rearrangement set consists exactly of the two points 1 and - 1 .  Matrices like F 

make one expect tha t  even in case of "smooth"  methods like Abel 's or Borel's rather  

complicated rearrangement sets are possible. 

i6 .  S e q u e n c e  t r a n s f o r m a t i o n s .  The summabil i ty  methods of Theorem 2 have 

been based on transforms (2) of series ~ u  m into series ~ vn. I t  is natural  to  con- 

sider transforms of the sequence s k = u  1 + . . .  + u k  of the partial  sums of ~. um into a 

series ~vn:  

* ( k = 1 , 2  . . . .  ) ,  (85) Vn = ank 8k 
Ir 

which also define summabil i ty methods. From (85) we easily derive an equivalent 

transform of the s~ into the t z = v l +  . . .  +v~. However, the equivalence problem of 
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(2) and (85) is not trivial. One would expect that  with a*,k=a,k--an.k+l, (2) and 

(85) define the same summability method. However, this is not generally true if A 

is row-infinite, since the equation 

an,nu,,= ~ a*~sk (86) 
m - 1  k - I  

does not always hold (compare [5]). Nevertheless, from Theorem 2 we can derive: 

There is a sequenve-to-series (or a sequence-to-sequence) meShod (85) which has the 

properties described by Theorem 2. 

For the proof we consider the validity of (86). This relation is certainly true 

if A is row-finite, and more generally if the series ~ a,,,u,, has only finitely many 

non-vanishing terms for each A-summable u. The matrices B, C, D of Theorem 2 

are row-finite; we shall show that  a slight change of the matrix E achieves our 

requirement. 

For  each ~4-summable rearrangement y of (31) we see from (76) that  in the 

Ej. transform of u actually appear (see (71)) only at most two of the infinitely many 

matrices Ej. We replace the Ej by row-finite matrices in such a way that  the pro- 

perry (74) is preserved. 

Replacing some elements of each row by zeros, we obtain for each (~ > 0  from 

the matrix E of section 12 a row-finite matrix F which instead of (65) has the 

property: 

If yE/~ • is C-summable to ~, then the F-transform of y is a series 

~I-Vl-t-T~-v~+ ... with ] r m - ~ l < 2 - m ~  (so that  ~m-->~). (87) 

Replacing in (71) the Ej by _Fj corresponding to ~ j>0  with ~ j <  oo, we obtain 

instead of E a matrix F such that  a series y6B"  is E-summable if and only if it 

is F-summable, and that  (74) is still true. The row-mixture of B, C, D, F defines 

then a method A with the property that  A* contains A if we restrict ourselves to 

rearrangements of the series (31). 

On the other hand, this construction can be so arranged that  in each row of 

.4, non-zero elements are separated by zeros. Then we have A ' c A  for arbi trary 

series. This follows from the fact that  the series ~ a*k s~ is obtained from ~ a ~  um 

simply by replacing each term by two, namely by - a , ~  s~_ 1 and a ~  s~. Hence the 

convergence of the second series is implied by that  of the first. This completes 

the proof. 

Actually even more is true. We can choose the matrix .4 in Theorem 2 to be 

row-finite. The proof requires some computations and estimates, and we outline it 
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only. Using the matrices F described above, we can construct (modified) Fj in such 

a way tha t  under the circumstances described in section 13, the transform for the 

series which we want  to exclude is N1 - ~1 + N2-  Nz + " '" ,  where ~/k-+as ~ with some 

~j=~0, while for the series which we want  to preserve, ~,  converges rapidly to zero 

and satisfies [~n [~< ~j Q. I f  we insert the rows of the (modified) matrices F~ into A 

in such a way tha t  also in the A-transform N, and - N n  are consecutive terms, if 

we further choose the aj small enough, then the matr ix  F will destroy A-summabil i ty  

of exactly the "undesirable" series, so tha t  the set T will again be the A-rearrange- 

ment  set of (31), but  now with a row-finite matr ix  A. 

17. T h e  p a p e r s  of M a z u r  a n d  B a g e , ~ i h l - E r d S s .  The proofs of Mazur [6] 

and Bagemihl-ErdSs [1] of the existence of Cl-rearrangement sets of type (1) depend 

on a gap theorem for C 1. The method can he used to show tha t  for most  summa- 

bility methods, A-rearrangement  sets of type  (1) appear.  

Mazur also showed tha t  for series ~ um with bounded real terms the C 1- and 

the Abel.rearrangement sets are the same as in Riemann 's  theorem. The two main 

steps in Mazur's proof are: Trea tment  of special series 9, + ~ + 9, + ~ + . . . ;  dilution of 

the series ~ um to u I + 0 + u S + 0 + . . .  (which does not  change Cl-summabili ty ). Ins tead 

of this the AK-proper ty  of 01 (see [7]) could be used. For general regular methods 

A one can only prove tha t  the A-rearrangement set of the series 9' + ~ + 9, + ~ + "'" 

(and of similar series) contains with a point ~ also the points ~ + k (9 , -~)  (k=  _ 1, 

+ 2  . . . .  ). 

The most  difficult pa r t  of the proof of the theorem of Bagemihl and Erd6s, the 

characterization of all Cl.rearrangement sets, depends on the estimate sk= o (k)which 

is valid for a C,-summable sequence sk. This ensures small changes of the Cl-trans- 

form if the series is rearranged cautiously. This estimate is connected with the pro- 

pe r ty  of C I known as the "mean value theorem" or "Abschnittskonvergenz '} [7]. 

For  matrices with this and some additional smoothness properties the considerations 

of Bagemihl and ErdSs can still be carried through. Unfortunately such matrices 

define rather  weak summabil i ty methods. The question remains open w h a t  happens 

in the case of stronger methods like C~ (a > 1), Abel and Bore1 methods. 
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