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1. Introduction

The theory of almost periodic functions on groups can be completely reduced to
the study of continuous functions on compact topological groups by the introduction
of the almost periodic compactification (see [1] or [14]). There are many possible
constructions of the compactification; one of these is the following. If A4 is the space
of almost periodic functions on a group @, and B(A4) is the space of bounded linear
operators on A, the compactification can' be taken to be the closure in B (4), in the
strong operator topology, of the group of right translates of 4 by elements of G.

This type of construction is of a very general nature and is peculiar neither to
the strong operator topology nor to groups of operators. The purpose of this paper
is to exhibit some extensions of this construction and applications of the resulting
compactifications.

For example, in the above construction, if 4 is taken to be the space of weakly
almost periodic functions (in the sense of [7]) on @&, the closure in the weak operator
topology of the right translates of G' on 4 yields a compactification that is in general
no longer a group but is a compact semigroup in which multiplication is separately
continuous. This allows us to reduce, in a manner completely analogous to the almost
periodic case, the theory of weakly almost periodic functions on groups to the study
of continuous functions on such compact semigroups. As a consequence of the ideal
structure for these semigroups (ef. Section 2), we indicate in Section 5 how the Eberlein
theory of weakly almost periodic functions on locally compact abelian groups can be
extended to a large class of groups and semigroups. In particular we show when and
how a mean, and thus the possibility of Fourier analysis, arises for weakly almost

periodic functions.
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The first compactification that we study occurs in a more general situation, If
8 is a semigroup of operators on a Banach space B, and each element of B has
weakly conditionally compact () orbit, the closure § of § in the weak operator topo-
logy will be a compact semigroup with separately continuous multiplication. Know-
ledge of the ideal structure of such semigroups allows us in Section 4 to extend the
results of Jacobs in [12] and [13); the simplest of these results is the following. If 8
is {T":n=0,1,...} then B is the direct sum of the closed linear subspace spanned
by eigenvectors of 7' having eigenvalues of modulus 1 and a closed invariant linear
subspace formed by all elements having O in the weak closure of their orbit.

In Section 6 the analogues of the results of Section 5 for almost periodic func-
tions are indicated. Section 7 is concerned with applications to ergodic theory and
Section 8 with other applications.

The results in this paper were announced in part in [6].

2. Structure of Compact Semigroups

This section is devoted to establishing the basic facfs concerning topological semi-
groups that will be applied in what follows. '

A semigroup is a set supplied with an associative binary composition that will
be referred to as multiplication. If S is a semigroup that is at the same time a
topological space, multiplication in 8 is said to be separately continuous, if for each
o in S the maps 7 —>o7 and 770 of § into itself are continuous. The multiplica-
tion in 8 is said to be jointly continuous if the map (o,7)—>o7 of S8 into § is
continuous.

An identity element of a semigroup S is an element e that satisfies ce=ecg=0¢
for all ¢ in 8. A topological semigroup is a semigroup with identity which is a
Hausdorff topological space in which the multiplication is separately continuous. There
is considerable literature on topological semigroups in which the multiplication is as-
sumed to be jointly continuous; see in particular [18]. It is necessary for us to con-
sider semigroups satisfying the weaker hypothesis of separate continuity, since multi-
plication of operators on a Banach space is only separately continuous in the weak
operator topology.

A topological group is a group supplied with a Hausdorif topology in which mul-
tiplication is jointly continuous and furthermore inversion is continuous, i.e., the map

1

6—¢~ " is continuous. A topological semigroup that is also a group need not be a

(*) We shall call a set conditionally compact if it has compact closure.
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topological group since the multiplication may fail to be jointly continuous. Ne--
vertheless we have the following theorem of Ellis (it is a special case of the main
result of [9]) which is basic to our work in this paper. (We present a quite different
proof of this theorem in the appendix based on a criterion for weak compactness in
C (X) due to Grothendieck.)

TareorEM 2.1. A compact topological semigroup that is a group must be a topolo-
gical group.

If 8 is a semigroup with subsets D and E, we shall use the standard notation

DE={otr:0€D, T€E}
cE={ctr:7€E}
Dr={s7:0€D}.

A non-empty subset D of S is called a subsemigroup of 8 if DD < D; D is called
a left ideal if SD< D, a right ideal if DS < D, and a two-sided ideal if it is both.
A minimal left ideal of 8 is a left ideal of S containing no other left ideal of S.
Minimal right is defined similarly. We shall denote by L (S) and R (S) respectively
the collections of all minimal left and all minimal right ideals of S. In general these
may be empty collections, but if § is a compact topological semigroup minimal left

and minimal right ideals exist.

Lemma 2.2. Let 8 be a compact topological semigroup. Then each left ideal of S
contains at least one minimal left ideal of S and each minimal left ideal is closed. The

same holds for right ideals.

Proof. We shall prove only the assertion concerning left ideals. Let I be any
left ideal of § and let Q@ be the collection of all closed left ideals of S contained
in the given left ideal I. @ is a partially ordered set under the ordering of inclusion
and is non-void since if ¢ €1, So is a closed left ideal contained in I. Let Q" be

a subcollection of @ that is linearly ordered. Then ) J is non-empty by the
Je@’

compactness of § and so is an ideal in @ that is contained in each J in @'. Thus
each linearly ordered subset of @ has a lower bound, and Zorn’s lemma assures the
existence of a minimal J, in @. We shall show that J, is actually a minimal left
ideal. Let J, be a left ideal contained in J, and let ¢ be an element in J;. Then
8¢ is a closed left ideal of S. Furthermore, So < J,<J, and since J, was minimal
in @, So=J, so J, must be J,. Thus J, is a minimal left deal. It remains to show

that any minimal left ideal J of § is closed. If ¢ is in J, then S is a closed left
5—60173047. Acta mathematica 105. Imprimé le 13 mars 1961
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ideal contained in J, which by the minimality of J must equal J. This completes
the proof of Lemma 2.2.

If S is a semigroup, the intersection of all the two-sided ideals of S is called
the kernel of S and denoted by K (S). If K (S) is non-empty, it is clearly the smallest
two-sided ideal of 8. The algebraic structure of K (S) is known (see [3]) in the case
that § has minimal right and minimal left ideals, and thus by Lemma 2.2 if Sisa
compact topological semigroup. Structure Theorem 2.3 and its corollaries which are
established below are the basic results on topological semigroups for the applications
made in the following sections. Almost all of Theorem 2.3 is contained in [3}; we
include a proof for the sake of completeness.

An element e of a semigroup is called an idempotent if ee=e. If D is a subset

of a semigroup, we shall denote by & (D) the set of idempotents in D.

TrEOREM 2.3 (Structure theorem for the kernel.) Let S be a compact topological
semigroup. Then K (S) is non-empty and

(1) LS)={Se:e€cEK(8))} and R(S)={eS:e€E (K (9))}.

() If J, and J, are both in L£(S) or both in R(S), and J, N J, is non-empty
then J,=J,.

(iiiy If J is in L£(S), then Jo=J for all ¢ n J. If J is in R(S), then 6 J=J
for all ¢ in J.

(ivy X(S)=U I=U I

IeC(S) IeR(S)
(v) If J, is in L£(S) and J, is in R(S), then J, NJ, contains a unique idem-
potent. If that idempotent is e, J, NJy=eSe, and with e as identity J, NJ, is a com-
pact topological group.

Proof. (ii) and (iii). If J, and J, are in L£(S), JynJ, is a left ideal, so
Jy=JinNJy=J,. If ¢ is in J;, J,0 is a left ideal contained in J,, so J,o=J,. The
same argument works for right ideals

(iv) If I'is in £(S) and 7 is in S, then [7 is also in £(S). For if J were a
left ideal properly contained in Iz, In{o:07€J} would be a left ideal properly

contained in I. Thus U It is a union of ideals in £(S) and is a two-sided ideal.
TeS

If I, is any two-sided ideal of 8, and I is in L£(S), then I=1I,I< I,, so I, contains
U It which must by definition be the kernel K (S). Also any I, in £(S) must be

7€S
contained in K (S), since K (S) is a two-sided ideal, so by (ii), I, must be one of
the I'7z. Thus K(S)= U I. The same argument applies to right ideals.

Tec(S)
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(i) and (v). By (ii) and (iv), we have the disjoint union

K(®)= U InJ.
feg(S)
JeR(S)

Choose I€L£(S), JER(S). Then INJ contains JI so is non-empty, and if o €1,

T €.J, then
IndHe=Ind, tInd)y=Ind. (2.1)

For it is clear that (InJ)o<InJ, and if the inclusion were proper for some

JE€R(S), then
Ie= U (InJ)ai Udnd)y=I=I¢
TeR(S) TeR(S)

is a contradiction. The second equality in (2.1) follows similarly. We shall now nse
(2.1) to show that InJ is a group. It is clearly a subsemigroup so it suffices to
show that it has a left identity and left inverses. If ¢ €INnJ, by (2.1) there is an
element e in INJ with ec=0, and also by (2.1), s (INJ)=INnJ, so e is a left
identity. Since (I NJ)o=InJ for each ¢ in InJ by (2.1), left inverses exist. Thus
InJ is a group with ¢ as identity element. Clearly 7=Se¢ and J=¢8 so {i) holds.

Also
InJ=8eneSoeSe=cloe(dnd)=InJ

so InJ=eSe. That InJ is a compaet topological group now follows from Lemma
2.2 and Theorem 2.1.

More detailed information concerning the structure of K (S) can be found in [19].

COoROLLARY 24. Let S be a compact topological semigroup. Then the following
are equivalent:
(i} 8 has a unique minimal left (resp. right) ideal J.
(i) e, ey,=ey, (resp. e, e,=1¢,) for all e, and e, in E (K (8)).
If (i) and (ii) hold, then
J=K(S)= U eS8 (or= U Se),

ees(K(S) ee£(E(S)
where the eS8 (resp. Se) are disjoint minimal right (resp. left) ideals of S that are com-
pact topological groups.
Proof. (i) implies (ii). If § has a unique minimal left ideal J, by Theorem 2.3,
J=K(8)= U eS8,

ecE(K(S)

where each e S has the properties claimed. If e, and e, are in € (K (S)), e,e,€¢, S.



68 K. DELEEUW AND I. GLICKSBERG

e, is the identity of the group ¢, 8 and thus commutes with e; e, s0 (e, ;) (¢ €5)
=e¢, (¢; ¢;) €, =¢,; €;, which must be e, since a group contains a unique idempotent.
(ii) implies (i). By Theorem 2.3 each minimal left ideal of § contains some ¢ in
E (K (S)), and the minimal left ideals are disjoint. But if (ii) holds a left ideal con-
taining one element of & (K (S)) contains all of £ (K (8)). The proofs of the paren-

thetical insertions are completely analogous.

COROLLARY 2.5. Let 8 be a compact topological semigroup that has a unigue
minimal left ideal J,, and a unique minimal right ideal J, (¢f S is a commulative, this

must always be the case). Then J,=J,=K (8S) which is a compact topological group.

Proof. The only point needing proof is the parenthetical insertion. If § is com-
mutative, and J, and J, are minimal ideals, J, NJ, is non-empty since it contains

J,J,. Thus by (ii) of Theorem 2.3, J,=J,, so S has a unique minimal ideal.

CoROLLARY 2.6. Let 8 be a topological semigroup, S’ a subsemigroup that is

compact. Then S8’ contains at least one idempotent. If S is a group 8’ is a subgroup.

Proof. Let 8" =8"U {e}, where e is the identity element of S. 8" is a compact
topological semigroup. §' is a left ideal of 8, which by Lemma 2.2 contains a
minimal left ideal, which by Theorem 2.3 contains an idempotent. Suppose now that
S is a group with identity e. By the first part of the corollary S’ contains an
idempotent which must be e. To show that 8’ is a group it suffices to show that
xS’ =48 for all x in §'. By the first part of the corollary applied to x.8’, there is
an idempotent in x8’. Thus e is in «8" and 8’ =eS8 <z 8. Since z€S’, 8 <8’
and =8 =8 follows.

If S is a topological semigroup, we shall denote by C'(S) the Banach space of

all complex valued bounded continuous functions on §, supplied the norm defined by
7]l = sup|f (o).
cEeS

For each ¢ in S the translation maps R, and L, of C(S) into itself are defined by
R, f(zr)=f(t0), Lef(r)=f(o7), all 7 in S.

Our next result will be of fundamental importance in the following sections. In
part it is a consequence of the result of Grothendieck [10] that weak compactness
and compactness in the topology of pointwise convergence agree on bounded subsets
of a C(X) for X compact.
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THEOREM 2.7. Let 8 be a topological semigrowp, f a function in C(S), and
O(f)={R;f:0€8}. Then

(i) If S is compact, O (f) is weakly compact in C(8S).

(i) If S is compact and its multiplication is jointly continuous, O (f) is strongly
compact in C (S).

i) If O(f) is strongly (resp. weakly) conditionally compact then o — R, f is strongly

(resp. weakly) continuous.

Proof. (i) Separate continuity of multiplication insures the continuity of ¢ — R, f
when C(8) is taken in the topology of pointwise convergence. Thus O (f) is compact
in this topology as the continuous image of our compact §, and by the result of
Grothendieck mentioned above, O (f) is weakly compact.

(ii) We shall show first that o— R,f is strongly continuous. The function F
defined by ¥ (v,¢)=f(ro) is continuous so that, for a fixed ¢, €S, for each 7 €S8
there is a neighborhood V.x W, of (7,0,) in X8 on which F varies by less than e.

Covering 8 by finitely many V., say V., ..., ¥V, , we see that if g isin W= W, , then
H i=1 £

|f(zo)—f(zvo,)|<e, all 7 in S.

This is precisely the continuity desired at ¢,. Thus O (f) is strongly compact as the
strongly continuous image of S.

(iii) (strong case). Let {o,} be a net in § converging to o. Then B, f— R, f
pointwise, so the net {R"v f} has at most the one strongly adherent point R,f. By
the compactness of the closure of O (f) this net must converge to R, f, and continuity
follows. The same proof applies to the weak case.

Let D be a linear subspace of C(S). Then a mean on D is an element m in
the adjoint D* of D which satisfies

(,md>=1, (f,m>=0 for f>0.

If D is invariant under right translation, a mean m on D is said to be right in-

variant if
(Rof,m>=(f,m, all { in D, ¢ in 3.

Similarly one defines a left invariant mean via the L,; m is invarient if it (and D)
are both right and left invariant.
If 8 is commutative or is a solvable group, C(S) has an invariant mean (see [5]

for this and further sufficient conditions).
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For compact topological semigroups with jointly continuous multiplication the

following result is in [17].

Lemma 28, Let 8 be a compact topological semigroup. Then the following are

equivalent :

(1) 8 has a unique minimal left ideal.

(il) C(8) has a right invariant mean.
The corresponding result holds for right ideals and left invariant means.

Proof. Assume that (i) is false. Let J, and J, be two distinct minimal left ideals
of §. They are closed by Lemma 2.2 and disjoint by (ii) of Theorem 2.3. Let fin
C (8) satisfy

0, o€J,
f(6)={

1, o€d,.

Then for 7, in J, and 7, in J,, B, f=0 and R, f=1, so a right invariant mean on
C (8) cannot exist. For the converse, assume that (i) is true. Then by Corollary 2.4,
K (S) is a union of compact topological groups that are right ideals. Normalized
Haar measure on any one of these will be a right invariant mean for C(8). This
establishes the equivalence of (i) and (ii). The proof of the last assertion is com-

pletely analogous.

CoROLLARY 2.9. Let S be a compact topological semigroup. Then the following

are equivalent:

(1) K (S) s a compact topological group.
(i) C(S) has an invariant mean.

(iil) C(S) has a right invariant mean and o left invariant mean.

When these conditions hold, the invariant mean is unique and can be identified as the

Haar integral over K (S).

Proof. If K(S) is a compact group, its normalized Haar measure provides an
invariant mean since K (S) is a two-sided ideal. Thus (i) implies (ii). Clearly (ii)
implies (iii). If (iii) holds, by Lemma 2.8 S has a unique minimal left ideal and a
unique minimal right ideal. Consequently K (8) is a compact topological group by
Corollary 2.5. Finally suppose m is an invariant mean. Then <{f,m>={ fd u, where
u# is a regular Borel measure on §. If y is not supported by the group XK (§), there
is a compact set £ < S disjoint from K (8) with x(E)>0, and u (K (S))<1. Thus if
the real valued function f in C(S) has the constant value 1 on K (S) and 0 on E,
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while <1 elsewhere, we have {(f,m)>=[fdu<1l. But for ¢ in K(S), R,f=1 and
thus 1={1,m>=(R,f,my={f,m) <1, contradicting our assumption that w is not
supported by K (8). Thus g is supported by the group K (8); trivially it is an in-

variant measure, and thus coincides with Haar measure.

LeEMma 2.10. Let S and 8’ be topological semigroups with S’ compact, and ¢ : §—8’
be a continuous homomorphism, with (p(S)vdense in 8. Let ¢:C(8)—=C(8) be the dual
map taking f into fop. Then C(S') has a right (resp. left, two-sided) invariont mean if
and only if @ (C(S)) has a right (resp. left, two-sided) invariant mean.

Proof. Since ¢ (8) is dense, ¢ is an isometry and ¢ (€ (8)) is a closed subspace
of C(8). Moreover, it is trivial that for f in C(8'),

B, (‘79 f)=‘7’ (Rq:(a)f)»
L:(@)=¢ Ly [) allo€sl.

Thus @ (C(8") is invariant. If m' is a right invariant mean on C(S’), and m is
defined by
{gfimy=<{f,m' >, allfinC(S'), (2.2)

m is a right invariant mean on ¢ (0 (8)). For
<Ra(¢f)am>=<¢(Rq:(c)f)’m>=<Rq:(a)fam’>=<f7m,>=<¢f>m>7 all 0 €8S.

On the other hand, if m is a right invariant mean on @ (C(S8')), we can define a

mean m’ on C(8') by (2.2). m’ satisfies

{Byor ;M) ={P(Roir ) m)> =< Bo f,m)=(@f,m>=<f,m"), all c€S.

Thus m' is invariant under the right translations produced by the dense subsemigroup
@ (8) of §’. That m’ is right invariant on C(S’) now follows since 7— R, f is weakly
continuous on S by (i) and (iii) of Theorem 2.7. Similar proofs apply for left in-

variant means.

3. Compactifications of Semigroups of Operators

If B is a Banach space, we shall denote by B (B) the usual Banach algebra of
bounded linear operators on B. The weak operator topology on B (B) is the weakest

topology rendering all of the maps

T—>{(Txy>, =€B, y€B"
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continuous, where (-,-> is the pairing between B and B*. B(B) is a topological
semigroup under operator multiplication and the weak operator topology. For U—UV
is clearly continuous and the continuity of V—UV follows from the identity <UV z,y)
={(Vax, U*%>. We shall speak of any subsemigroup of B(B) containing the identity
operator as a semigroup of operators.

If 8 is a semigroup of operators on B, the orbit O(x) of an element x of B is
defined to be {Tx:T€S}. 8 will be called almost periodic if each orbit has compact
closure in the norm topology, and weakly almost periodic if each orbit has compact
closure in the weak topology of B. For such semigroups 8§ each orbit is bounded,
so by the uniform boundedness theorem S8 is uniformly bounded, i.e., there is a
constant M so that ||T||<M for all T in S.

If § is any semigroup of operators on B, we shall denote by § the closure of
S in B(B) in the weak operator topology. The following allows us to apply the

results of Section 2 to the study of weakly almost periodic semigroups.

THEOREM 3.1. Let S be a weakly almost periodic semigroup of operators. Then
8 is a compact topological semigroup under the weak operator topology.

Proof. Since multiplication in B (B) is separately continuous in the weak operator
topology, the closure § of the semigroup 8 will be closed under multiplication and
thus a topological semigroup. It remains to prove that it is compact. For each z
in B, we shall denote by O (z)” the compact topological space formed by the closure
of the orbit O(x) in the weak topology. For each T in § and z in B, T« is in
O(x)”. Let g:S‘—>IHBO (x)~ be induced by the maps T—Tz. ¢ is 1-1 and is a

homeomorphism because of the definitions of the weak topologies. Since by the

Tychonoff theorem, [] O (x)~ is compact, to show that S is compact it suffices to show
reB

that ¢ (S) is closed, or equivalently, that each point in the closure of g (S) must be
in o (5). Let {z;},cs be a point in the closure of ¢ (S). If V:B— B is defined by
Vx=z, all z€B, it is clear that V is in §. Thus {z;},ca=0 (V), and the proof is
complete.

If S is actually almost periodic we can replace the weak topology and the weak
operator topology in the above argument by the strong topology and the strong
operator topology, respectively, to conclude that the strong operator closure of § is
compact. Since it must remain compact in the weak operator topology it coincides
with §, on which both weak and strong operator topologies must coincide by com-

pactness. As a consequence multiplication in S is jointly continuous. This follows
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since multiplication on bounded subsets of B (B) is jointly continuous in the strong

operator topology by virtue of

UV a—U, Vazll< | UVa—U Vyall + U Vox— Uy Vorll <[ U] [V2— Voul +
W =Ty V]l

TarEorEM 3.2. Let S be an almost periodic semigroup of operators. Then the
strong and weak operator topologies agree om S, which is a compact topological semigroup

tn which multiplication is jointly continuous.

Remark. In subsequent results our use of various crucial facts concerning the
weak topology (as opposed, for example, to the weak® topology of B*) will be quite
apparent. It should, however, be pointed out that our construction of S cannot be
imitated for “weak® almost periodic” semigroups on B* (i.e., “uniformly bounded”).
For although we have a weak® operator topology, the construction would fail (ex-

actly) at the outset: B(B*) is In general not a separately continuous semigroup.

4. Weakly Almost Periodic Semigroups of Operators

This section is devoted to an extension. of the results of Jacobs in [12] and [13].
Throughout the section B is a fixed complex Banach space and 8§ a fixed semigroup
of operators on B which is weakly almost periodic in the sense of Section 3, i.e.,
each orbit O(x)={Tx:T €S8} is conditionally weakly compact. The weak operator
closure § of S is, by Theorem 3.1, a compact topological semigroup in the weak
operator topology, and the results of Section 2 applied to § will yield information
concerning the action of § on B. In all of the following we shall consider S and §
to be topologized with the weak operator topology.

We shall first define subsets B,, B,, and B, of B introduced by Jacobs.

Recall that for each z in B, O(z)” is defined to be the weak closure of the
orbit {Tx:T€8}. Since § is compact in the weak operator topology, it is clear that
O@) ={Tx:TeS}.

DEFINITION OF B,. A point x of B isin B, if for each y in O ()7, x is in O(y)~
(or equivalently, O (y)" =0 (x)~ for all y in O(x)7).
B, is the set of reversible vectors in the sense of [12]. It is an S-invariant

subset of B but need not be a linear subspace.

Lemma 4.1. Let x be an element of B. Then the following are equivalent:

(i) xisin B,.
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(ii) For each U in § there is some V in S with VU z= .
(iii) There is a projection E in the kernel K (S) with E x = x.

Proof. The equivalence of (i) and (ii) is clear since O (z)” ={T'z:T €§}. If (ii)
holds,
{Vv.veS, Va=x}N K (S) (4.1)

is non-empty since K (S) is a left ideal. (4.1) is a compact subsemigroup of S and
thus by Corollary 2.6 contains an idempotent. Thus (ii) implies (iii). Suppose now
that E is a projection in K (S) and Ex=x. - J={U E:U€R&} is a minimal left ideal
of 8 by (i) of Theorem 2.3. If U is in S, then U is in J, so by (iii) of Theorem
2.3 there isa VinJ with VUE=E. Then VUx=V UEx=Ex=ux, so (iii) implies (ii).

DerinNiTION OF B, A point x of B is in By if O(x)” contains 0.
B, is the set of “Fluchtvectoren” in the sense of [12]. It is in general neither

S-invariant nor a linear subspace.

LemmaA 4.2. Let x be an element of B. Then the following are equivalent.

(i) = 45 n B,
(i) Ux=0 for some U in S.
(ili) Ex=0 for some projection E in K (S).

Proof. The equivalence of (i) and (ii) is clear since O (x)" ={Tx:T €§}. (iii.)
trivially implies (ii). That (ii) implies (iii) follows since {U:U €8, Uxz=0} is a left
ideal of § and thus by Lemma 2.2 and Theorem 2.3 contains an idempotent in K (S).

Suppose now that E is any projection in K (§). Then by the preceding two
lemmas, the direct sum decomposition B=FE B+ (I — E) B has the first factor a subset
of B, and the second a subset of B,. Since these may be proper subsets the de-
composition seems to be without interest in general. However, we shall see in Theo-
rem 4.11 that if there is a unique projection E in K (S) (this will occur, for example,
when § is commutative), #B=B,, (I —E)B=2B, and the elements of B, are almost
periodic in the sense of [12]. In order to define this type of almost periodicity we
need first a preliminary definition. '

If R is any set of linear operators on B, and D is an R-invariant subspace of
B, we shall denote by R|D the set of linear operators on D obtained by restricting
the operators in R to D; i.e., U:D—D is in R|D if and only if there is a V in R
with Ux=Vx for all x in D. A finite dimensional S-invariant subspace D of B will
be called a wunitary subspace of B if S|D is contained in a bounded group of operators

on D (with, of course, the identity of the group being the identity operator on D).
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D is a unitary subspace if and only if it is possible to choose an inner product on
D so that all of the operators in S|D are unitary. This is a consequence of the

following well-known fact (see [20], p. 70).

Lemma 43. Let D be a finite dimensional complex linear space and G a bounded
group of operators on D whose identity is the identity operator. Then it is possible to
choose an inner product in D so that all of the operators in G are unitary.

The following property of unitary subspaces will be needed later.

LEmma 4.4. Let D be a unitary subspace of B. Then D< B,.

Proof. It S|D is contained in the bounded group @, S|D will be contained in
the closure & of G which is a compact topological group. S|D is a subgroup of @
by Corollary 2.6, and thus by Lemma 4.1, D<B,.

DEFINITION OF B,. B, is the closed linear subspace of B generated by the unitary
subspaces.

B, is the set of almost periodic vectors in the sense of [12].

We shall see next that there are simpler equivalent definitions of B, in the cases

where § is either a group or commutative.

Lemma 4.5. If 8 is a group whose identity is the identity operator on B, B, is
the closed linear subspace of B generated by the finite dimensional S-invariant sub-

spaces of B.

Proof. If D is any finite dimensional S-invariant subspace of B, S|D is a group
which is bounded since § is uniformly bounded on B. Then D is a unitary subspace

and the lemma follows.

Lemma 4.6, If S is commutative, B, is the closed linear subspace of B spanned
by the common eigenvectors of S that have eigenvalues of modulus 1, i.e., by those x in
B that satisfy

Ta=2rz, |Ar|=1
for all T in 8.

Proof. Each common eigenvector of the type described spans a one-dimensional
S-invariant subspace of B that is unitary. Thus all such eigenvectors are in B,. For
the converse, let D be a unitary subspace of B. There is an inner product in D rela-
tive to which all of the operators in S|D are unitary. It is well known (see [20])
that any commuting family of unitary operators can be simultaneously diagonalized.
Thus D is spanned /by common eigenvectors of the type described. This completes

the proof of the lemma.
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The following Lemma 4.7 is the key result that allows us to identify B, with
B, in the circumstances of Theorem 4.10 and 4.11, and it is at this point that we
introduce results depending on Theorem 2.1.

First, some comments concerning functions on compact topological groups and
weak vector valued integration are necessary.

Let G be a compact topological group with identity element e and normalized
Haar measure y. We shall use below the well-known fact (see [20]) that G has an
approximate] identity {g,} consisting of trigonometric polynomials, i.e., a net ¢, of

functions in C(@) having the following properties.

@) limf%]‘d‘u=f(e), all fin C(G).

(i) ];}ach @, is in some finite dimensional left invariant subspace of C(G).

Let X be a compact Hausdorff space and u a regular Borel measure on X. If
f: X — B is weakly continuous, f f@) dpu () is defined to be the unique element z of
B that satisfies ¥ |

(= f @), v du ()

for all ¥ in B*. The existence of such an element is guaranted (see [2]) by the fact
that the weakly closed convex hull of a weakly compact subset of B is weakly com-
pact (see [7], Theorem 1.2). We shall use below standard properties of this vector-
valued integral discussed in [2].

The use of weak integration in this context was suggested to us by H. Mirkil.

Lemma 47. If S has a unique minimal right ideal and E is a projection in
Kk (S), E(B)< B,.

Proof. By Corollary 2.4, K(S) is the unique minimal right ideal of S and
G={TE:TeKS)={TE:TeS}

is a minimal left ideal and a compact topological group having identity E. Let ¢,
be an approximate identity on G consisting of trigonometric polynomials. For each

y, T, : B— B is defined by the vector-valued integrals

T,x= f(p,,(U)de‘u(U), all x in B.

G
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For each # in B, lim T,2=Ez weakly, since
14

(T, g = f 0, (0) U, 4> du (U)—~ (B, 3>

G

for all ¥ in B*. B, is by definition a strongly closed linear subspace of B, which is
therefore weakly closed. Thus since for each z in B, T,z — Ex weakly, to complete
the proof of the lemma it suffices to show that each 7,z in B,. Choose any element

z in B. If F is any finite dimensional linear subspace of C(6),
DF={ff(U) Uxdu(U) :jGF}
[

is a finite dimensional linear subspace of B; furthermore if F is left-invariant, Dg
will be S-invariant. For if V is in 8§ and V,=VE, VU=V,U for all U in G, so
for each f in F,

fo(U) Uxdu(U)= ff(U) V,Uzdp (U) = ff(V;lW)Wwdy(W)
G G

G

which is in Dz The same computation with V=17 shows E acts as the identity on
Dy. Finally, if F is left-invariant, Dy is a unitary subspace of B. For ¥ acts as the
identity operator on Dy and 8|Dy is contained in the bounded group G|Dy, since
for each V in S and z in Dy, V2=V Ez and VE is in G. The proof is now com-
plete, since » was an arbitrary element of B and each T,z is in some Dy, a unitary
subspace, and so in B,

A further definition and lemma are necessary before we can begin to establish
the theorems of this section. ((S) is defined to be the smallest uniformly closed
subalgebra of C(S) closed under complex conjugation and containing the constant

functions and all f of the form
f(T)={Tx,y>, x€B, yEeB*. (4.2)

LemMMA 4.8. If i: 88 is the injection map, the adjoint i* : C (S) — O (S) defined
by i* (f)=f0i maps C(S) onto Cyx(8S).

Proof. i* is an isometry since S is dense in S. Thus +* (C'(S)) is a uniformly
closed self-adjoint subalgebra containing 1. Since it also contains all f of the form

(4.2), it must contain Cp(S). For the converse, (:*)7*(C5(8)) it a uniformly closed
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self-adjoint subalgebra of C(S) that contains 1 and separates points. So it must be

all of O(S) by the Stone-Weierstrass Theorem. We can now establish our theorems.

TurEoREM 4.9. Let B be a Banach space and S a weakly almost periodic semi-

group of operators on B. Then the following are equivalent:

(i) Cs(8) has a right invariant mean.
(i) 8 has a unique minimal left ideal.
(iii) E,E,=E, for all projections E, and E, in K (S).

(iv) By is a closed S-invariant linear subspace of B.

Proof. By Lemmas 2.10 and 4.8, (i) holds if and only if C(S) has a right in-
variant mean, which by Lemma 2.8 and Corollary 2.4 is equivalent to (ii) and (iii).

Assume now that (iii) holds. Then all projections in K (S) have the same kernel,
so by Lemma 4.2 By is a closed linear subspace of B. To establish (iv) it remains to
show that B, is S-invariant. Choose z in B, and U in S. By Lemma 2.2 and Theo-
rem 2.3 there is a V in S which is such that VU is a projection in K (). But by
(ili) and Lemma 4.2, z is in the kernel of each such projection so VUx=0. Thus
Uz is in B, so (iv) must hold.

Assume now that (iv) holds. Since B, is a closed linear subspace it is weakly
closed. Thus B, is S-invariant. Let and E, be projections in K (S). For any 2 in
B, E,(I-E)xz=0 so (I—Ey)x is in B, By the S-invariance of B,, E,(I—E,)x
must also in B,. But by Lemma 4.1, B, (I - E,)x is in B, and thus must be 0 since
by their definitions B, N B,={0}. Thus B, (I —E,)z=0 for all « in B so E,=FE, E,
and (iii) holds. This completes the proof of Theorem 4.9.

TrEOREM 4.10. Let B be o Banach space and S a weakly almost periodic sems-

group of operators on B. Then the following are equivalent:

(i) Cg(8) has a left imvariant mean.

(i) S has a unique minimal right ideal.

(i) E,B,=E, for all projections E, and E, in K (S).
(iv) B,=B,.

Proof. The equivalence of (i), (ii) and (iii) follows as in the proof of Theorem 4.9.

Assume now that (i), (ii) and (iii) hold. By (iii), all of the projections in K (S}
have the same range, so by Lemma 4.1, B, is a closed linear subspace of B. Thus
by Lemma 4.4, B,< B, But by (ii) and Lemmas 4.1 and 4.7, B,< B, so B,=B, and
(iv) is established. ’
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Assume now that (iv) holds. By the definition of unitary subspace, if E is a
projection in § and D is a unitary subspace of B, Ha=z for all  in D. As a con-
sequence the elements of B, are fixed under all projections in S. Now let Z, and Z,
be projections in K (S§) and 2 be an element of B. By Lemma 4.1, E,z is in B, and
thus in B, by (iv). Since E, leaves B, pointwise fixed, E, E,z= E,x, so B, E,=E,
and (iii) is established. This completes the proof of Theorem 4.10.

The following main theorem of this section is now a simple consequence of the
preceding two results. That (iv) holds if § is commutative and B reflexive is the

main result of [12].

THEOREM 4.11. Let B be a Banach space and S a weakly almost periodic semi-

group of operators on B. Then the following are equivalent:

(1) Cz(8S) has a two-sided invariant mean.

(ii) K(S) is a compact topological group.

(iii) K (S) contains a unique projection.

(iv) B, 18 a closed S-invariant subspace of B, B,=B, and B is the direct sum of
B, and B,.

Proof. The equivalence of (ii) and (jii) follows from Theorem 2.3. The equivalence
of (i) and (ii) follows from Lemmas 4.8 and 2.10 and Corollary 2.9. That (iv) implies
(iii) follows from the corresponding parts of Theorems 4.9 and 4.10. So it rvemains
to show that (iii) implies (iv). Because of Theorems 4.9 and 4.10, all that needs to
be established is that B is the direct sum of B, and B,. Since B,= B, and B, N B,= {0},
it suffices to show that each  in B has some representation of the form x=uz,+ z,
with «, in B, and 2, in By, If £ is the ];;rojection in K(S), z=Ez+(I—E)z is
such a representation by Lemmas 4.1 and 4.2. This completes the proof of Theo-
rem 4.11.

If § is commutative, C(S) has a two-sided invariant mean (see [5]) so (i) through
{iv) of Theorem 4.11 hold. We discuss next conditions on B and S of a quite different
nature which guarantee that the assertions of Theorems 4.9, 4.10 and 4.11 hold.

A Banach space is called strictly convexr if ||z| =] y||=1 and z=+y imply
llz+yll<1. \

CorROLLARY 4.12. Assume that B is strictly convex and that ||T||<1 for all T
wn 8. Then (i), (ii), (ili) and (iv) of Theorem 4.10 hold.

Proof. If z is in B, and U is in S, by Lemma 4.1 there is a V in § with
VUz=x. Thus |Uz| must equal ||z| for all » in B,. If E is a projection in S and
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x is in B,, E leaves x fixed. For if this were not the case we would have

Ex+zx
2

Ex+a

el 1122 - | 2 (22

<ll=]l.

< ‘

Thus if H, and E, are projections in K (S), E, E,x=E,x for all # in B, since by
Lemma 4.1 E,z is in B,. It follows that E, E,=E, and (iii) of Theorem 4.10 holds.

CoROLLARY 4.13. Assume that B* is strictly convex and that ||T||<1 for all T
m 8. Then (i), (ii). (iii) and (iv) of Theorem 4.9 hold.

Proof. The argument is essentially that of Corollary 4.12 applied to the adjoints
of the operators in S. Let E;, and K, be any two projections in K (S). By Theorem
2.3 there is a V in S with E,E,V=E,. Thus if y is in B*, V*EfEfy=E%y so

| BXyl =NV B2 Bty|| <|| Bf Efy || <|| EY y |

and thus || B3 E¥y||=||Efy|. I for some y in B*, B Efy+ Efy, we would have

the contradiction
BTyl = BZ BYy|| =} || BS (B3 By + Efy) || <} || BS BYy + EYy|| <|| BT y ).

Thus E; EY =Ef so E,E,=E, and (iii) of Theorem 4.9 holds.

Putting together these two results we obtain

CoROLLARY 4.14. Assume that B and B* are strictly convexr and that ||T] <1
for all T in 8. Then (i), (i), (iii) and (iv) of Theorem 4.11 hold.

For the case of B and B* reflexive and strictly convex, and with one of them

uniformly convex, this is the main result of [13].

5. Weakly Almost Periodic Functions

Let S be a topological semigroup. A function f in C'(S) is said to be almost
periodic if {R,f:0 €8} is conditionally compact in the strong topology of C(S); fis
said to be weakly almost periodic if {R,f: o €8S} is conditionally compact in the weak
topology of C(8). The corresponding definitions involving left translates are equivalent;
for almost periodic functions this is proved as on page 167 of [14], and for weakly
almost periodic functions the equivalence is Proposition 7 of [10]. We shall denote
the set of almost periodic functions on § by A (S) and the set of weakly almost
periodic functions on 8 by W (S). By Theorem 4.2 of [7], A(S8) and W (S) are in-
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variant closed linear subspaces of C(S8) and are thus Banach spaces. In the present
section we shall confine our attention mainly to W (S). The corresponding results for
A (8S) are discussed in Section 6.

In some cases A (S) or W(8) is all of C(8). Indeed by Theorem 2.7 we have

THEOREM 5.1. If 8 is a compact topological semigroup, W (8)=C(8). If further-
more the multiplication of S is jointly continuous, A (8)=C(8).

The following indicates how part of A({S) or W(S) can be obtained when § is

not compact.

LemMA 5.2. Let S and S’ be topological semigroups, o:8 8 a continuous

homomorphism and ¢ : C(S") — C(S) the induced mapping defined by
ef=fop, all fin C(S).

Then o(W(S')<W(S) and p(A(S)<A(S). If 8 is compact, o (C(8))= W(S), and
if in addition the multiplication in 8’ is jointly continuous, g{(C(S" ))<= A(8).

Proof. Since p is a homomorphism, if f is in C(8’),

Ri(0f) =0 (Bywf), all o in 8. (5.1)
Thus {R,(0f): 0 €8} (5.2)

is contained in the image under p of

{R.f:7€S8'} (5.8)

¢ Is continuous, and thus weakly continuous, so (5.2) will be conditionally compact
(resp. weakly conditionally compact) if (5.3) is conditionally compact (resp. weakly
conditionally compact). Thus ¢ (4 (S'))< A (S) and ¢ (W (8'))< W (S). The assertions of
the lemma referring to the case where &' is compact now follows from Theorem 5.1.

As a simple application we have the following. If S is a locally compact group,
and 8 is its one-point compactification, with the multiplication of § extended by
oo =goo = oog, S is a compact topological semigroup. Thus Lemma 5.2 yields Eber-
lein’s result that Cy(G)< W (Q).

Actually, as we show below in Theorem 5.3, all the functions in W (S) are in-
duced by a continuous homomorphism ¢ : 8 —8’, with §’ a compact topological semi-

group.
6 — 60173047, Acta mathematica 105, Imprimé le 20 mars 1961
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To obtain this result we proceed as follows. The restrictions (') of the translation
operators R, to the Banach space W (S) clearly form a weakly almost periodic semi-
group of operators in the sense of Section 3. The weak operator closure of this semi-
group is by Theorem 3.1 a compact topological semigroup in the weak operator topo-
logy. It will be denoted by S* and called the weakly almost periodic compactification
of 8. This is justified by

TrEOREM 5.3. The homomorphism B :S8— S” defined by R (o)=R, is continuous.
The induced map B :C(8?)— C(8S) is an algebra isomorphism of C(8”) onto W (S).

Proof. Observe first that by the Hahn-Banach theorem the weak topology of
W (8) is identical with the topology induced on it by the weak topology of C(S).
By (iii) of Theorem 2.7, for each f in W (S), the map ¢ — R,f of § into W (S) is
continuous into that topology. Thus R is continuous as S* has the weak operator
topology. Since R is a homomorphism, by Lemma 5.2 the induced map R : ¢ (8%) - C (S)
defined by Eh=hoR takes C(S8*) into W (S). To show that B is onto W(S), let f
be any function in W (S). Let m, be the unit point mass at the identity element e
of S. If the function 2 on S” is defined by

r(Ty=(Tf, me=TFf(e), all T in §¥,

h is continuous and
hoR(o)=h(R;)=R,f{e)=f(s), all ¢ in S,

so Rh=f. Thus B is onto. Since R(8) is dense in 8%, K is 1-1 and an isometry.
Moreover, B evidently preserves the ordinary multiplication of functions, so W (8) is
an algebra, and K an algebra isomorphism, completing our proof.

Because of Theorems 5.1, 5.3 and Lemma 5.2, the multiplication in 8% cannot
be jointly continuous if W (S)+4(S). Thus for example if S is a locally compact
but non-compact group the multiplication in S8* is not jointly continuous since
Co (8)= W (8S), while clearly C,(S) is not contained in A4 (8); furthermore 8% certainly
cannot be a group in this example in view of Theorem 2.1.

Before discussing the main results of this section, which are the consequences
for W (S) of the existence of the compactification S¥, we show in Theorem 5.5 that
our compactification has the expected property of homomorphism extension. This yields

as Corollary 5.6 a characterization of S¥.

(1) In the following we shall also use the symbol R, to denote the restriction of the translation
mapping to some subspace of C (S).
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LeMMma 5.4, If 8 s a compact topological semigroup, then o R, is a topological

isomorphism of S with S*.

Proof. By Theorem 5.3 the map is a continuous homomorphism. By Theorem 5.1,
W(8)=C(S) so the map is clearly 1-1. Thus since § is compact, the map is a

homeomorphism, mapping S onto a dense compact subset of §¥, ie., onto S¥.

TurorEM 5.5. Let S and S be topological semigrowps, and ¢:8— 8" be a con-
tinuous homomorphism. Then there is a continuous komomorphism p* :8*— 8% for
which ¥ (B;)= Ry, all o in 8.

Proof. Lemma 5.2 shows the induced map p takes W(S') into W (S). Consider
first the case in which ¢(S) is dense in S. Then g is an isometry, so o(W(S')) is
closed, and the adjoint ¢* of g is a map of W (S)* onto W(S)*. Let B(W (8)) and
B(W (8')) be the algebras of bounded linear operators on W (S8) and W (S’) respec-
tively, taken in the weak operator topologies. Denote by B, the subset of B(W (S))
consisting of all 7' which leave invariant the closed (and therefore weakly closed)
subspace p (W (8)) of W (S). B, is clearly a closed subalgebra of B (W (S)) that con-
tains S¥. Since p is an isometry, each 7 in B, induces a corresponding map yr in
B(W(S")) that is characterized by

eyr=Te.

It is simple to check that 7 — s is an algebra homomorphism of B, into B (W (8')).
It is continuous for the weak operator topologies since p* is onto; for if f is in
W(8) and m' in W(S')*, when m in W(S)* is chosen so that o*m=m' we have

lyrf, ml>:<1/)Tf’ é*m>=<é1/’Tf: M>=<Téf, my.
Now by (5.1) Ri(0f)=0(Byor ),

all fin W(S'), so ygr, = R,@. Thus it ¢¥: 8% - B(W (S)) is defined to be the restric-
tion of the map T —y, to 8% oY (R,)=R,. Since ¢” is continuous, it maps 8%,
which is the closure of {R,:o €8} into

closure {R,q,:0 €S} < closure {R,:7€8}=8".

This completes the proof for the special case where p(8) is dense in &',
To obtain the general case is now quite simple. Let g, : § — 8% be the con-

tinuous homomorphism defined by

01 (G)ZRQ(U); all g in 8.
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Let 8, be the compact topological semigroup that is the closure of the range of p,.
We can now apply the special case that has been established to the map g,:8 — 8.
It yields a continuous homomorphism g7 : 8 — 87 satisfying ¢t (R,) = R, for each
o in 8. Let ¢ : 8, — 87 be defined by y(n)=R, for all » in §,. Since §; is compact,
by Lemma 5.4, ¢ is a topological isomorphism. Thus the composite map g : 8% — 8%

defined by ¢”=y 'opl’ is a continuous homomorphism. For each o in S it satisfies
0" (Bo) =y~ 00 (Bo) =9~ (Bouw) = 01 (0) = By,

and thus is the desired mapping. The proof is complete.

It is not at all apparent that one can easily find a proof of Theorem 5.5 avoid-
ing the special case; however, the special case itself has considerable value and because
of it we shall make the following definition. If g : § =&’ is a continuous homomor-

phism with ¢ (S) dense in §’, we shall say S is densely represented in 8§’ by p.

COROLLARY 5.6. Let S be densely represented by p in the compact topological
semigroup 8', and suppose the induced map o defined by of=foo takes C(S') onto
W (8S). Then there is a topological isomorphism ¢ of S* onto 8 for which ¢ (R,)=g (o)
for all ¢ in 8. (That is, we can identify S¥ as the unique compact semigroup in which

S can be densely represented so that all elements of W (S) extend continuously.)

Proof. By Theorem 5.5 there is a continuous homomorphism g* : 8% — 8" that
satisfies ¢ (R,)=R,c, all o in 8. Let y:8"->8 be the topological isomorphism,
whose existence is guaranteed by Lemma 5.4, that satisfies p(R,)=7, all 7 in §".
@:8¥—> 8" is defined to be the composite mapping yog”. It is a continuous homo-
morphism and satisfies ¢ (R;)=p(0), all ¢ in 8. Since p(8) is dense in &, ¥ (S¥) is
a dense compact subset of 8 and thus all of 8. p is also onto so ¢ must be
onto. Since S¥ is compact, it remains to show that ¢ is 1-1. Let ¢ : C(8'y— C'(8)
be the map induced by ¢, ie., §f=foep, all f in O(S5’). Then

¢f(Bo)=1(@(Re)=f(e(0)=0f(0), all oin S,

so ¢ is the composite of ¢ with the natural isomorphism of W (S) and C(8¥). Since
o has been assumed to be onto, ¢ is onto and thus ¢ must be 1-1.

We can now proceed to the main results of this section. The first, Theorem 5.7
below, is essentially Theorem 4.11 for the case where B is W (S) and the semigroup
of operators is {R,: o €8}. Before stating this result we recall the notation of Sec-
tion 4 in this context. W (S), is the set of all f in W (S) having 0 in the weak
closure of {R,f:c€8}. W(S), is the set of all f in W(S) which are such that f is
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in the weak closure of {R;h: 0 €8} wherever & is in the weak closure of {E,f: 0o € S}.
One further definition is necessary before describing W (S),. If H is a Hilbert space

and ¢ — U, is a unitary representation (1) of S on H, a function f on S of the form
flo)=(Usx, y), all c€S8,

for some z and y in H, is called a coefficient of the representation. If f is a coeffi-
cient of a finite dimensional unitary representation of 8, f isin A4 (S) and thus W (S).
Furthermore, it will be contained in a subspace of W (S) that is unitary in the sense
of Section 4 and thus in W (8),. Conversely any unitary subspace of W (8) consists
entirely of coefficients of finite dimensional unitary representation of 8. Thus W (S),
is precisely the closed linear subspace of W (S) spanned by the coefficients of finite

dimensional unitary representations of 8.

TaEOREM 5.7. Let S be a topological semigroup. Then the following are equivalent:

(i) W(8) has an invariant mean.

(ii) K (S%), the kernel of 8%, is a compact topological group.

(i) W(S), s a closed translation invariant linear subspace of W (S), W (S),
=W(S),, and W (S) ts the direct sum of W(8), and W (S),.

Proof. By Theorem 5.3 and Lemma 2.10, (i} holds if and only if C(S¥) has an
invariant mean. And by Corollary 2.9 this is equivalent to (ii). By Theorem 4.11,
(ii) is equivalent to (iii) modified to assert the invariance of W (S), under only the
rihgt translations {R,: o €8}. So to complete the proof it remains to show that W (S),
is automatically invariant under left translations. This follows since right translates
commute with left translates; if f] is in W(S), and 7 is in S, 0 is in the weak
closure of {R,f:0 €8}, so 0is in the weak closure of {R,L,f:c €8} =L, ({R,f:0€8}),
and L,f must be in W (S),.

If W(S) has an invariant mean, Corollary 2.9 can be used to identify the mean.

THEOREM 5.8. Assume that W (S) has an invariant mean m. Then if
E.0(8%) — W (8) is the isomorphism of Theorem 5.3

Bh, m)= fhdﬂ, all & in C(8%),

K (Sw)

where u is the normalized Haar measure on the compact groujo K (8%). In particular

m 18 the unique tnvariant mean on W (S).

(*) A unitary representation is a strongly continuous homomorphism into the unitary group.
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Proof. If m is an invariant mean on W (S), the construction of Lemma 2.10 ap-

plied to the case §'=8“ and ¢ =R yields an invariant mean m’ on C (8¥) that satisfies
(Bh, m>=<h, m>, all hin C(S¥).

But by Corollary 2.9, m' is normalized Haar measure on K (S%).

If W(S) has an invariant mean m, a Fourier analysis of W (S) relative to m
can be established. For 8 a locally compact Abelian group this was carried out in [7].
It is evident from Theorem 5.8 that this Fourier analysis of W (S) is identical with
the Fourier analysis of the restriction of C'(S8%) to the kernel K (8) relative to Haar
measure on K (8”). We omit the details.

When W(S) has an invariant mean, W (8), can be identified in terms of this

mean.

COROLLARY 8.9. Assume that W (S) has an invariant mean m. Then W (S), is
{f:fews), (f[* my=0}. (5.4)

Proof. Let R:C(S”)-—> W(S) be the isomorphism of Theorem 5.3. By Theorem
5.8, (5.4) is the same as

{Rh:heC(8"), h=0 on K(8%)}. (5.5)

Let ¢ be the identity of § and E the identity of K (S¥). Recall that by the proof
of Theorem 5.3, if h is in C(8®), h(T)=T Rh(e) for all T in S*. Let h be =0 on
K (8®). Then since K (8%) is a left ideal, for all ¢ in S, ERh (6)=R,ERh(e)=h (R, E)-0.
Thus by Lemma 4.2, Bh is in W(S),. This shows that (5.5) is contained in W (S),.
For the reverse, assume that E% is in W (8),. Then by Lemma 4.2, EERn=0. For
any T in K(8¥), TE=T and thus R(T)=TRh(e)=0, so h=0 on K(8*). Thus
W (8), is contained in (5.5) and the proof is completed.

If our topological semigroup S is algebraically a group, W(S), is identical with

the space of almost periodic functions on 8.

Lemma 5.10. If S is a group, W(S),=A4(8).

Proof. We have observed that W (S8), is spanned by the coefficients of finite
dimensional unitary representations of S. Since such coefficients are in 4 (S), and 4(8)
is a closed linear subspace of C(S), W(S),= A(S). For the reverse, suppose that f
is in A(S). Then f is in 4 (S%), where 8% is the group S supplied with the discrete
topology. The theory of almost periodic functions on groups (see [15]) assures us that
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the uniformly closed invariant subspace of A (8% generated by f is spanned in the
norm topology of A4 (8% by the coefficients of finite dimensional unitary representa-
tions of S% that it contains. Each of these coefficients will be continuous on § since
f is, and so will be in W(S),. Thus f can be uniformly approximated by functions
in W(S),, and since W (8), is closed, f is in W (S),. This completes the proof.

As a consequence of Theorem 5.7, Corollary 5.9 and Lemma 5.10, we have the

following (which for locally compact Abelian groups is due to Eberlein [8]).

THEOREM 5.11. Let G be a topological semigroup which is algebraically a group.
If W(Q) has an invariant mean m, then W (G) s the direct sum of A(G) and the sub-
space W (@)y={f:fe W (&), {|f[*, m)=0}.

In Theorem 5.14 below we indicate a method for constructing topological groups

G which have invariant means for W (). First two lemmas are necessary.

LemMa 5.12. Let G be a topological group, H a closed normal subgroup, and let
f be a function in W(Q). Then the restriction of f to H is in W (H). If f is constant
on cosets of H, and the function [ is defined on G/H by f(c)=f(c H), all ¢ in G,
then f is in W (G/H).

Proof. The first assertion follows from Lemma 5.2 applied to the injection map
H—@. Let C%(@) consist of all functions in C (@) that are constant on cosets of H.
The natural map G—G/H induces an onto isomorphism ¢ : C (G/H)—C" (@), defined by

(@ (M) (0)=F(c H), all feC(G/H), c€G.

Let f be a function in C¥(G)n W (@) and suppose that f=¢ (f). By the Hahn—
Banach theorem the weak topology of C¥(G) is identical with the topology induced
on it by the weak topology of C(G). Since f is in W (&), the subset {R,f:0€G} of
C" (G) is weakly conditionally compact in that topology. Thus its image {R,f:7€G/H}
under ¢! is weakly conditionally ecompact in C(G/H), so f is in W (G/H) and the
proof is complete.

Lemma 5.13. Let S be a topological semigroup, f in W (S) and m in W (S)*.
Then if the function h is defined by

h(c)=<{R;f, m>, all ¢ in S,
h is in W (S).

Proof. For each f in W (S), let ¢ (f) be the function on S defined by

(@ () (6)={RBsf, m)>, all ¢ in S.
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By Theorem 2.7, ¢(f) is in C(S). It is simple to check that ¢ : W (S)—=>C(S) is a
bounded linear operator and that R,q(f)=¢(R,f) for all ¢ in S. Thus {R, ¢ (f):0 €S}
is the weakly continuous image of the conditionally weakly compact set {R,f:o €S}
and so is itself conditionally weakly compact. This shows that ¢ maps W (8) into
itself and the proof is complete. .

THEOREM 5.14. Let G be a topological group, and let {G,},., be a well-ordered

increasing family of (not mecessarily closed) subgroups satisfying

i G :ﬁU Gs is a relatively closed normal subgroup of G, «<y.

(i) W(G./G%) has an invariant mean.
(i) G5 =G, G,=/{e}, e the identity of G.
Then W(G) has an invariant mean.

Proof. We shall show first that W (G) has a right invariant mean. Let M be
the set of all means on W (@), i.e., the set of all m in W(G)* that satisfy (1, m>=1
and {f, m>>0 if f>0. For each a<y let M,={m:meM, (Byf, m)={f, m)>, all
fEW(G), 0€G,}. Each M, is weak® compact (although possibly void) and M,= M.

For each a<y let M*= nM g. M? is the set of right invariant means for W (G).
p<a

M*+¢ if and only if Mz+¢ for each f<a, by the weak® compactness of the M.
Thus to show that M?+¢ it suffices to show that M,+¢ for each a <y and since
M, ¢, it suffices to establish the induction step: Mg=¢ for all §<a (or equivalently
M*=+¢) implies M+ ¢.

So let us assume that M* is non-empty. Choose a mean m in M* Then
<R0' fr m> = <f: m>> all fe W(G)7 GEG:' (56)

Let ¢:W (@)W (G) be the map (whose existence is guaranteed by Lemma 5.13)
defined by

(@ () (6)=<Bsf, m)>, all c€QG. (6.7)

By (5.6), each @ (f) is constant on right cosets of G5 in G. This together with
Lemma 5.12 guarantees the existence of a map y: W(@)—W (G,/G;) that satisfies

(w (M) (Gzo)=(p(N) (o), all fEW(G), 6EGC,. (5.8)

Now let m; be an invariant mean for W(G,/G%). The mapping f—{y (f), m> is a
continuous linear functional on W (G) that takes 1 into 1 and preserves positivity,

and so it is a mean on W(@). If it is denoted by m', it is simple to check, using
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(6.7), (5.8) and the invariance of m, that
<R0'f’ m’> = <f: m’}, all fe W(G)’ g€ Ga‘

Thus m' is in M, and the proof of the induction step is completed, so W (G) has a
richt invariant mean. A similar argument shows that W (&) has a left invariant mean.
Thus by Theorem 5.3, Lemma 2.10 and Corollary 2.9, W (G) has an invariant mean.

If G is a compact or commutative topological group, (&) and thus W(G) has
an invariant mean. This fact, together with Theorem 5.14 indicates that the class
of topological groups G having an invariant mean for W (@) is quite large. But we
know of no examples of such groups besides those constructed from compact and
commutative groups using Theorem 5.14. In particular we do not know whether the
free group @, with two generators has an invariant mean for W(6,) (C(G,) has no
invariant mean, see [4], p. 290). However, for a group &, W (#) has an invariant
mean if it merely has a one-sided invariant mean, as one can see from the following
considerations.

For f in W(Q) let f* be defined by f* (¢)=f(c""). In view of the equivalence
of right and left weak almost periodicity, f* is in W (@) and f—f* appears as a (real)
involution on W({(®); let m—>m* be the dual involution on W (@)*. The identity

(Rorf, my = (Bt f*, my = (L ), my = (Lo f*, m*)

shows that one has a homeomorphism mapping the weak operator closure S, of
{L,:6€ G} onto 8™ which extends LG—>R0__1. Moreover, as is easily seen S, is exactly
an anti-isomorph of S, with an extension of R,— L, providing the anti-isomorphism,
Hence R,—L,—~R__; has a continuous extension ¢ mapping S anti-isomorphically
onto itself. Since ¢ then interchanges minimal left and minimal right ideals, uni-
queness of either insures that K (S8¥) is a group.

Finally let us point out that it seems likely that the analogue of Theorem 5.14
with C(G) in place of W (G) is not true in general. However, a proof similar to that

given above shows that the analogue holds if G is discrete.

6. Almost Periodic Functions

Let S be a topological semigroup. The restrictions of the right translation
operators R, to the Banach space A4 (8) of almost periodic functions on S clearly
form an almost periodic semigroup of operators in the sense of Section 3. The strong

operator closure of this semigroup is by Theorem 3.2 a. compact topological semigroup,
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having jointly continuous multiplication, in the strong (or equivalently weak) operator
topology. It will be denoted by S® and called the almost periodic compactification of
S. The justification for this is to be found in the fact that all the resulls 5.3 through
5.9 carry over to the present situation; indeed tn their statements one need only replace
W(8) by A(S), S* by 8% and “compact semigroup”’ by “compact semigroup with jointly
continuous multiplication” to obtain valid results. Since the proofs are simple modifica-
tions (and in some cases simplifications) we shall not give them here. However, for re-
ference purposes we state formally three results, the analogues of Theorems 5.3 and 5.5

and Corollary 5.6.

TueEOoREM 6.1. The homomorphism R:S—S8° defined by R (o)= R, is continuous.
The induced map R:O’(S”)—>C(S) 18 an algebra isomorphism of C (8% onto A(S).

THEOREM 6.2. Let S and S’ be topological semigroups, and ¢ : S—8" a continuous
homomorphism. Then there is a continuous homomorphism p*:8*—8'* for which
0% (Bo) = By -

THEOREM 6.3. Let S be densely represented by o in the compact topological semi-
group S' having jointly continuous, multiplication, and suppose the induced map o defined
by of=fop takes C(S) onto A(S). Then there is a topological isomorphism ¢ of S
onto 8" for which @ (R,)=p (o) for all ¢ in 8.

In other words we can identify S® as the unique compact semigroup having
jointly continuous multiplication in which S can be densely represented so that all
elements of A (S) extend continuously.

We see now that the distinction between S¥ and 8% as “compactifications’ rests
primarily on the distinction between separate and joint continuity of multiplication.
We can view S” as the maximal “compactification” of S reflecting its algebraic
structure and S° as the maximal ““jointly continuous compactification” of this sort.

Some of the results of Section 5 do, of course, say nothing new for almost
periodic functions (5.11 and 5.14 for example). But this is not the case for the de-
composition theorem, Theorem 5.7. For example if S is the topological semigroup
formed by the non-negative reals under addition, the analogue of (iii) of Theorem 5.7
states in this case that A4 (S) is the direct sum of the space of restrictions to § of
almost periodic functions on the full line (which is clearly our 4 (8),) and C(S) (the
space of all continuous functions tending to zero at infinity, which clearly forms the
set of f in C(S) having 0 in the strong closure of their orbits). Thus in particular
every f in 4 (S) can be approximated in the uniform norm by linear combinations

of exponentials. This raises the question of when one might expect, on semigroups,



APPLICATIONS OF ALMOST PERIODIC COMPACTIFICATIONS 91

an analogue of the classical approximation theorem for almost periodic functions on
groups. One natural formulation (see [6]) fails in general (some important cases in
which it holds will be covered in a subsequent paper), due to the lack of an ana-
logue of the Peter—Weyl theorem. In the group case the latter combines with the
Stone—Weierstrass theorem (and the fact that G* is a group when G is) to yield
approximation; in the semigroup case the Peter-Weyl theorem must be replaced by

a detailed investigation of the structure of S2

7. Convex Semigroups of Operators and Ergodic Theory (1)

In this section applications of the results of Section 4 to ergodic theory are
given. Throughout B will be a fixed Banach space and S a semigroup of operators

on B that is weakly almost periodic and convex in the sense that
{AU+pV:A20, u=0,A+pu=1}

is contained in S whenever U and ¥V are in S. The results that we obtain are re-
lated to, and were suggested by, those of [11].

Recall that for each z in B, O(x)” is defined to be the weak closure of the
orbit O(x)={Tz:T€8} and that O(x)" ={Tx:T€S}. Since S is weakly almost
periodic, each O(x)” is a weakly compact subset of B. Furthermore, each O(z) is
convex so the weak closure O(x)” is convex and is identical with its strong closure.

In ergodic theory the following conditions on § and B are of interest:

I. If 0 is in O(x)”, then 0 is in O(Txz)” for each T in 8; equivalently, B, is
S-invariant. (2)

II. Each O(x)” contains at least one fixed point of S.

III. Each O(x)” contains exactly one fixed point of 8.

The main result below is that I is satisfied if and only if the conditions of
Theorem 4.9 hold, and that the same relation subsists between II and Theorem 4.10
and between III and Theorem 4.11. We also establish that B, is the set of fixed

points of § and that the kernel K (S) consists entirely of projections. First we need

a lemma.

(*) After this paper was prepared for publication the authors learned of some recent results of
H. Cohen and H. 8. Collins which contain several of the results of this section (see Affine Semi-
groups, Trans. Amer. Math. Soc., 93 (1959), 97-113).

(2) The proof of Theorem 7.4 shows that I is also equivalent to the S-invariance of B,. This
is the condition that S act “ergodically” on B in the sense of [11].
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Lemma 7.1. Let D be a Banach space and G a subsel of the algebra B (D) of
bounded linear operators on D that is a group under operator multiplication. Assume
furthermore that G is convex and is compact in the weak operator topology. Then G con-

sists of a single projection.

Proof. For each V in G the map U—VU of B(D) into itself is linear and
is a 1-1 map of G onto itself. Thus is takes extreme points of G onto extreme points.
Since by the Krein-Milman Theorem @ has at least one extreme point, all points of
G must be extreme, so & consists of only one operator which clearly must be a

projection.

TusorEM 7.2. If 8 is a convex weakly almost periodic semigroup, K (S) consists

entirely of projections.

Proof. By Theorem 3.1, the weak operator closure § is a compact topological
semigroup in the weak operator topology. Since S is convex, § will be convex. By
Theorem 2.3, K (S)=UESE, where the union is over all projections £ in K (§), and
each ESE compact and a group. Since S is convex, each ESE is convex, so by

Lemma 7.1 consists of £ alone.

Lrmma 7.3. If 8 is a convex weakly almost periodic semigroup, B, is the set of
fixzed points of S.

Proof. It is clear that each fixed point of § is in B,. For the converse let D
be a unitary subspace of B. As in the proof of Lemma 4.4, §|D is a group in B(D)
containing the identity operator. S|D is compact and convex since S is compact
and convex, so by Lemma 7.1, §|D contains only the identity operator. Thus §
eaves each unitary subspace of B pointwise fixed and as a consequence B, consists

entirely of fixed points.

TarorEM 74. Let S be a convex weakly almost periodic semigroup. Then

I holds if and only if (i) through (iv) of Theorem 4.9 hold;
II holds if and only if (i) through (iv) of Theorem 4.10 hold;
IIT holds if and only if (i) through (iv) of Theorem 4.11 hold.

Proof. 1 implies 4.9. We shall assume that B, is S-invariant and prove that
it is a closed linear subspace. Note that, since S and O(x) are convex, if z is in B,
0 is in the strong closure of O(z). Choose K so that ||T'||<K for all T in 8. Now
let # and y be in B, and choose ¢>0. There is a U in S with |Uz| <e/2K and

since B, is S-invariant, there is a ¥V in S with ||V Uy||<le. Then



APPLICATIONS OF ALMOST PERIODIC COMPACTIFICATIONS 93

| VU@+y)||<K||Ux||+]|VUy| <e,

s0 x+y is in B, and B, is a linear subspace. To show that B, is closed, let = be
a point in the closure of B, and choose ¢>0. There is a y in By with ||z —y||<e/2 K
and a U in S with |Uyl||<le. Thus

12| <|T@=p|+]|Uy]<e

and # must be in B,. That 4.9 implies I is trivial,

II implies 4.10. By Lemma 7.3, B, consists entirely of fixed points, so certainly
B,< B,. For the reverse inclusion, choose 2 a point in B,. By II, {T'z:T €S} con-
tains a fixed point Ux. By Lemma 4.1, there is a V in § with x=VUz=Ux.
Thus x is a fixed point and consequently in B,.

4.10 implies IT. Let x be in B, and E be a projection in K (J), Then Ex is
in O(x)", and by Lemma 4.1, (iv) of Theorem 4.10 and Lemma 7.3, Ex is a
fixed point.

IIT implies 4.11. Since III is stronger than II, by “II implies 4.10” above,
B,=B,, which by Lemma 7.3 is the set of fixed points of 8. If (iii) of Theorem 4.11
did not hold, there would be two distinct projections #; and E, in K (S). Then for
any x in B with E,x+E,x, O(x)” would contain the two elements F,z and E,z
which are in B, by Lemma 4.1 and thus fixed points.

4.11 implies III. By “4.10 implies 1I” above, each O (x)” contains at least one
fixed point. Let w and v be fixed points in O(x)”. Choose U and Vin Sso Uz=wu
and Ve=v. Then U(x—u)=0 so x—u is in B,. B, is a closed linear subspace and
thus is weakly closed, so since it is S-invariant it must be S-invariant. As a con-
sequence, V(r—u)=v—w is in B, But v—w is a fixed point so v=u. This com-

pletes the proof of Theorem 7.4.

8. Miscellaneous Applications

In this section we present two applications of the results of Sections 2 and 4.
The first shows that weak and strong compactness are equivalent for groups of

operators.

TrEOREM 8.1. Let B be a Banach space, B (B) the algebra of bounded linear
operators on B, and S a subset of B(B). Suppose that S is a group under operator
multiplication and is compact in the weak operator topology. Let E be the identity ele-
ment of S. Then By is the kernel of E, B, is the m;zge of E, and S is compact in the

strong operator topology.
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Proof. Since S is a group and is compact in the weak operator topology,
S=8=K(S) and the conditions of Theorem 4.11 hold. By Lemma 4.2, B, is the
kernel of E, and by Lemma 4.1, the range of E is B,=B,. Thus it remains only
to show that § is compact in the strong operator topology. By Theorem 3.2 it suf-

fices to show that

{w:2€B, O(x)" strongly compact} (8.1)

is all of B. By Theorem 4.2 of [7], (8.1) is a closed linear subspace of B. Since each
element of B, is annihilated by 8, (8.1) contains B,. And since each unitary sub-
space of B is contained in (8.1), (8.1) contains B,. Thus (8.1) is all of B, since by
(iv) of Theorem 4.11, B is the direct sum of B, and B,.

The following is the analogue in our context of the well-known fact that a closed

subsemigroup of a compact group is a subgroup.

CoroLLARY 8.2. Let S be a subset of B(B) that consists of tnvertible opemtors.'
Suppose that S is compact in the weak operator topology and closed under operator
multiplication. Then 8 is a group that is compact in the strong operator lopology, and
B=B8,.

Proof. By Corollary 2.6, S contains a projection, which must be the identity
operator since S consists entirely of invertibles. Thus 8, with the weak operator
topology, is a compact topological semigroup and Theorem 2.3 can be applied. Let
E be a projection K (S). Since E is invertible it must be the identity operator, so
S=K (8). Since K (8) contains a unique projection, by Theorem 2.3 it is a group. The

remainder of the proof follows from Theorem 8.1.

Appendix

This section is devoted to a proof of Theorem 2.1: Every compact topological
semigroup that is algébraically a group is a topological group, i.e., has jointly con-

tinuous multiplication and continuous inversion. First we need two lemmas.

Lemma A.1. Let G be a compact topological semigroup that is algebraically o
group. Then C(G) has an invariant mean m that satisfies {f, m>>0 if f=0 and f=0.
Proof. The proof of the existence of m is identical with that given for compact
topological groups in [16], pp. 91-99, except for the construction of the sequence
G1s Jos -+ » Yns --- - One has to replace the three paragraphs starting near the bottom
of p. 93 with “Let us denote by A ...” and ending on p. 94 with “..., that s=07,

with the following argument.
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A is defined to be the subset of C' (@) consisting of all n ' > R, f. It is clear
-1

that its closure A in the norm topology is convex. Since a strongly closed convex
set is weakly closed, A is weakly closed and thus the weakly closed convex hull of

{R,f:6€G}. By Theorem 2.7, {R,f:0€G} is weakly conditionally compact so by
Theorem 1.2 of [7], A is weakly compact and thus compact in the topology of point-

wise convergence. For each A in C((f), define S (k) to be
sup [k (o) = h(7)]

Let s= inf S(h)=inf S(k). In order to complete the argument we must find
heA heA

a function g in O(&) with S(g)=s and a sequence {g,} in A with ¢,—>¢ uniformly.
But for any s >s, {h:h€A, S(h)<s'} is non-empty and closed in the topology of
pointwise convergence (in which A is compact), so some g in A yields S(g)=s. And

since A is the strong closure of A, there is a sequence {g,} in A converging uni-
formly to g.

Lemma A 2. Let § be a compact topological semigroup and let f be in O (S).
Then the subset

{|Rsf—R.f|:0, T€S} A1)

of C(8) is compact in the weak topology. Furthermore, the weak topology and the topo-
logy of pointwise convergence agree on (A.1).

Proof. The map (o, 7)—>|R,f— R, f| of Sx§ into C(S) supplied with the topo-
logy of pointwise convergence is continuous. Thus (A.1) is compact in the topology
of pointwise convergence. Since it is bounded, by Theorem 5 of [10] it is compact
in the weak topology, and since the two topologies are comparable, they must agree
on (A.1).

We can now proceed to the proof of Theorem 2.1. Let e be the identity ele-
ment of (. Separate continuity shows the topology of @ is defined by the base of
neighborhoods of e, and thus it suffices to show the map (7, 6)—>7 '¢ of @xG into
G' is continuous at (e, e). Suppose that this is not the case. Then there exists a
neighborhood W of ¢ which has the property that for each neighborhood U of e there
is some gy and 7y in U with 77U=T?11 oy not in W. Let N be the directed set of
neighborhoods of e with the usual ordering, ie., U>V if Uc V. Let 7 be a cluster
point of the net {ny}. Such an % must exist by the compactness of @. By the
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choice of the oy and 1y, n is outside of W and thus 74e. Choose f in C (G) so that
fey=f(xn). Then f+R,f so by Lemma A.1,

| f—Ryf|, my>0. (A. 2)

Since liﬁn oy=e and lilrvn TN =1,
]i]flanGUf_RTUnflzlf_Rnfl (A.3)

in the topology pointwise convergence. Thus by Lemma A.2, (A.3) also holds in
the weak topology of C(@). In particular

lipl]n (| Rs, f— Ryyy fl; my =<|f— R, f|, m>>0, (A. 4)

by (A.2). For each U in N, by invariance of m, and since 7]U=TZ;1 oy

<] ngf—R.,U,]fl, my = <R151|Rcv.f-Rrvnf|’ m>:<anUf_Rnf|7 my.

Thus by (A.4) .
lim | R,, |~ Ryf|, my>0. (A. 5)

We shall obtain a contradiction to (A.5) by showing that the net {{|R, f—R,f|, m)}
of real numbers has 0 as a cluster point. Since # is a cluster point of the net {5y},
the function 0=|R, f— R, f| is a cluster point of the net | R, f— R, f|in the topology
of pointwise convergence. Thus by Lemma A.2 it is also a cluster point in the weak
topology of C(@); as a consequence O is a cluster point of the net 4 R, {—RB, fl, m).

This is our contradiction and completes the proof.
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