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On a theorem of Korenblum 

Kristian Seip 

The purpose of this note is to obtain a sharp version of one of the main the- 
orems of Korenblum's paper [3]. This theorem concerns the problem of describing 
geometrically the zeros of functions in A - a ,  a > 0, i.e., the set of functions f analytic 
in the unit disk U={ z: [z[ < 1 ) with 

s u p ( l - ] z  I) '~ [f(z)l < ~ .  
zEU 

We formulate this problem in the following way. For a given sequence Z={zk}~_l 
of points from U, we denote by ~(Z) the infimum of those a such that  some function 
f in A - a  vanishes on Z, i.e., the order of the zero of f at a point z is greater than 
or equal to the number of occurences of z in Z; we define p(Z)-=c~ should no such 
a exist. The question is, if Q(Z) can be expressed in terms of a geometric density 
of Z. 

We solve this problem using the notion of density which was introduced by 
Korenblum in [3] and in that  paper, led to a partial solution. Our contribution is to 
observe that  some fine estimates, due to Specht [7], on the mapping function and 
its derivative in conformal mapping of so called nearly circular regions, provide the 
crucial tool for closing the gap in Korenblum's theorem. 

We mention that  our study also concerns the weighted Bergman spaces [2], 
since it may be proved that  p(Z) does not change if in the definition we replace 
A -~ by those functions f which are analytic in U and satisfy (z=x+iy, 0 < p < o c )  

/fv ]f(z)iP(1-]zi)P~-I dx dy < c~. 

The same is true if we replace A -~  by the functions which, according to [6], are of 
exponential type at most a; this class contains all of the above-mentioned L p spaces 
as well as A -~.  For the definition of this class of functions and some remarks on the 
analogy to the classical theory of functions of exponential type, we refer to [6]. Here 
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we mention only that  the quantity Q(Z) appears as the analogue in the unit disk 
of the closure radius described by Beurling and Malliavin in the context of entire 
functions of exponential type with a certain growth restriction on the real axis [1]. 

The density of a sequence Z from U will be measured in the following way. 
Without loss of generality, assume that  0~Z.  For an arbitrary finite subset F of 
the unit circle OU, let {Ik} denote the set of complementary arcs of F.  We put 

k 

which is called the Carleson characteristic of F.  The normalized angular distance 
on OU is defined by 

d(eit, eiS) _ It-s[, 
rr 

where it is assumed that  It-sl_<~r. For a finite set FcOU we define 

GF= { zEU:I-lzI>-d(~z[,F) }U{O}. 

We put 

zkCZnGF 

and define the Korenblum density of Z to be 

1 
log [Zk[' 

~i(Z) = inf{ j3: sup(aF(Z)-fl~-(F)) < co }; 
F 

we define 6(Z)--co if the set on the right-hand side is empty. 
Our aim is to show that  the following statement is true. 

T h e o r e m .  e( Z)=~( Z) .for every sequence Z ~O. 
Korenblum's original theorem [3,Theorem 3.1] states that  

�89 < ~(Z) < 20(Z). 

In [5], when solving the interpolation problem for A -a ,  we proved that 0 (Z)<~(Z)  
[5, Lemma 4.1]. What  remains, therefore, is to prove the inequality 

(1) ~(Z) < 0(Z). 

In order to motivate the proof of this inequality and, indeed, Korenblum's notion 
of density, we prove first a simple criterion which we obtain directly from Jensen's 
formula. 
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Fix some number e, 0 < e < l ,  and let 0 < r < l .  We assume that  f c A  -~, f ( 0 ) = l ,  
If(z)l<<_C(1-1z]) -~, and let zl, z2, z3, ... denote the zeros of f in U, counting mul- 
tiplicities. Then Jensen's formula applied to the circle I zl--R= 1 - e ( 1 - r )  yields 

R 1 1 
< s log  TZ~_ +log C + a l o g  E log _ 7' 

since r < R. For I zk I ~-- r we have 

R - = l - e ( 1 - r ) > r  ~ ~ Izkl ~. 

Thus the above inequality implies 

1 c~ e log  1 
E log ~ _ 1 -  1-~-r + C ' '  

Izkl<r 

where we have put  C'--(logC+alog(1/e))/(1-e).  This permits us to conclude 

that  

su C ,og  
r < l  k, i z'~"~, r 

holds for all f l>a .  The corresponding argument with f E A  -a replaced by some 
function f in the Nevanlinna class leads to the Blaschke condition which, rather 
remarkably, in that  case is sufficient as well. In our situation, however, it is easy to 
see that  the condition just proved is far from being sufficient, since, e.g., a radial 
sequence {zk} must satisfy the Blaschke condition. 

Korenblum's idea is to replace the disk Izi<r in the above argument by the 
star-like domain GF so that  we focus on the density of {zk} along different rays 
from the origin; we replace the disk ]z] < R  by a larger star-like domain containing 
GF, map the larger star by a Riemann mapping to U, and apply Jensen's formula 
as above. For this approach to be successful, on the one hand, the larger star 
must be so large and smoothly bounded that  the Riemann mapping is close to the 
identity, while on the other hand, the larger star should be sufficiently close to GF to 
make the integral appearing in Jensen's formula not too large. These are seemingly 
contradictory requirements, and the problem is to find an optimal trade-off between 

them. 
We now turn to the proof of (1). We need to show that  given some function 

f E A  -~ vanishing on the sequence Z={zk},  we have for every ~ > a  that  

(2) sup(aF(Z) - /3~ ' (F) )  < exp. 
F 
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We fix a finite set F={eUl,e u2, ...,eit~}, where O<_tl<t2<...<tn<27r; for conve- 
nience we define t , ,+ l=t l+2~r  and Ak=tk+~--tk,  l < k < n .  We introduce param- 
eters 1<q_<2, O<e<_q/2 q-1 and associate with F a closed Jordan curve FF;q,s; 
FF;q,~ is star-shaped with respect to the origin and given in polar coordinates by 
z(t)=o(t)e it, where o(t) is 27r-periodic and defined in the following way. We let 

~ ( L ~  q-1 ' 

Aq,s(t) = 7r \7c]  

t_>0; then we put O(tl)----1 and require 

{ --~q,~(t--tk), 
--)~q,~(tk+ �89 

p'(t) = ~q,~(t--tk-- �89 

;~q,~(tk+Ak--t), 

tk < t  < t k + �8 8  

tk +�88 K_t < tk +�89 
i < t k + 3 A k  tk + gAk _< t 

tk+~Ak_<t  < t k + A k .  

Note that g(tk) = 1, 1<_ k <_ n, while otherwise p(t) < 1. 
Let f~F;q,~ denote the domain enclosed by the curve FF;q,~ and observe that  

GF C ~'~F;q,e. 

We denote by w=w(z) the Riemann mapping function which maps ftF;q,~ con- 
formally onto U so that  w(0)=0 and w'(0)>0; we denote by z=z(w) the inverse 
function and define r =arg  z(ei~ 

In order to state the crucial estimates on w and w', we perform a few simple 
calculations. It follows from the definition of ~ that  

p(t) _> 1-E = m, 

10'(t)l _< - ,  71" 

and also that 

c t-to q-i 
Id ( t ) -d ( t0 ) l  _< 21r 

for arbitrary real numbers t, to, because of the concavity of )~q,~(t). Using these 
facts, we find that 

l i (  Q'(t) Q'( t~176 ~t< 
sup~o ,~ ~(t) o ( t o ) ] /  \ 2 ] -m(q-1)+~ =~ 
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We put 

and claim that we have(1) 

6e+5  
~=~(q , e )  = 6  1 - 5  

(3) I ~ ( ~ ) - ~ l  -< , ,  

(4) Ir  rl, 
(5) [ z ' ( w ) - i  I _<, 

for Iw[<l,  0 < 0 < 2 ~ ,  provided that m>�89 and 5<1.  Indeed, note that z (w) /m 
maps U onto a nearly circular region in the sense of Specht [7]. Then we see that 
(3) follows from Theorem I of [7] (or trivially, in this case, from (5)), (4) follows 
from Theorem II of [7], and (5) follows from Theorem III of [7]. We see from 
Specht's work that the above estimates are not optimal, but  they are convenient for 
our purpose. The main point is that 77 can be made arbitrarily small for any fixed 
q > 1 by choosing a sufficiently small e. 

We consider now a function f E A  -'~ vanishing on Z={zk},  with f ( 0 ) = l  and 
If(z)l < C ( 1 - M ) - %  Jensen's formula applied to the function w~--~f(z(w)) yields 

a f21r 1 
(6) E log 1 < l o g C + ~ - ~  Jo log l_lz(eiO)l dO. 

zk~GF Iw(z~)l -- 

To estimate the right-hand side of (6), we make the change of variable t= r  
in the integral. In view of (4), this gives 

a fo2~r 1 1 a fo27r 1 
2~ log 1 -  Iz(ei~ dO <__ 1-----~ 2~ log ~ dt. 

An explicit computation, using the definition of Q, then gives 

a ~0 2~ 1 
(7) ~ log 1_  iz(ei0)l dO< qa ~.(F)+C(q,e). 

- 1 - r  I 

To estimate the left-hand side of (6), let z r  be some point in GF, and let 
be the point on FF;q,~ for which arg(~)----arg(z). From (3) it follows that 

(s)  w (z) = w ( 0  - ( r  z) + ~ ( r  z)  = ~ + ~ ( r  - z) ,  

(1) It is well-known that z~(w) extends to a continuous function on U so that the expressions 
make sense; see, e.g., [4, Theorem 3.5, p. 48]. 
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where 

I~I < n 
- 1_~7 = 7  �9 

Using (3), we find that  

cos (arg  w ~ )  ) ->l - r /2 ,  

so that  

I~oI = < i + Iz -  ~-I=- 21z-C l ( l -n  =) _< ( 1 -  ( i -  x/2n)Iz-~-l) 2 . 

Because of this and since 1-Kl<n(1-1zD, we obtain from (S) that 

lw(z)l ~ 1 -  ( i -  3~r)(ICI- Izl) ~ Izl +4-, / ( i - Iz l )  ~ Izl ~-~~, 

assuming that  Izl>�89 and 1 -8V>0 .  Combining (7) with this estimate, we get 
from (6) 

qa ^ 
~ ( z )  (1-s~)(1-~) x(F) _< c'(q, ~). 

This proves (2) since the number q / ( ( 1 - 8 7 ) ( 1 - ~ ) )  can be made arbitrarily close 
to 1 by appropriate choices of q and e. 

It seems natural now to go one step further and ask what connection there may 
be between the condition 

sup(~F(Z)-- .~(F))  < 
F 

and the property that  Z be the zero sequence of some f c A - %  We do not know if 
there is an implication in any direction. 
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