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On the order and type of the 
entire functions associated with 

an indeterminate Hamburger moment problem 

Christian Berg and Henrik L. Pedersen 

0. In troduc t io n  

In the fundamental paper [8] Riesz proved that  the entire functions A, B, C, D 
associated with an indeterminate Hamburger moment problem are of at most mi- 
nimal exponential type, i.e. they all satisfy an inequality of the form 

(1) Ve > 0 3 N~ > 0 Vz E C : If(z)l < Nee ~lzl. 

In other words the order of each of the functions is at most one, and if the order is 
one then the type is zero. 

Concerning the moment problem we shall follow the notation and terminology 
of Akhiezer [1]. Up to now very few examples of quadruples A, B, C, D are explicitly 
known. In Berg and Valent [3] appear explicit formulas for the quadruple associated 
with a birth and death process admitting quartic rates, and the order and type can 
be calculated. It turns out that  all four functions have order �88 and type Ko/v~,  
where Ko=K(1/V'-2) is the complete elliptic integral in the lemniscatic case. 

This result encouraged us to examine if the functions A, B, C, D associated 
with an indeterminate Hamburger moment problem always have the same order 
and type. We shall show that this is indeed the case, and we further show that  two 
more functions associated with the moment problem have the same order and type, 
viz. 

(2) 

(3) 

(~-o \1/2 p(z)= IPk(z)l 2) , 
/ 

q(z) = I Q k ( z ) l  = , 
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where (Pk) and (Qk) are the orthonormal polynomials and the polynomials of the 
second kind respectively. We finally show that  Phragm~n-Lindel6f 's indicator func- 
tions also agree when the type is finite. To see this we prove that  log p and log q 
are subharmonic functions. 

1. Prel iminaries  about order and type 

For a continuous function f :  C--*C we define the maximum modulus 

(4) My(r)= sup If(z)l, r>0,  
Izl<r 

and in case M/(r)---~c~ for r--+cx~ we define the order 

log log M: (r) 
(5) 6y = lim~_~sup log r �9 [0, c~]. 

If 0 < 6 / <  c~ we define the type of f as 

(6) a / =  lim sup log M:(r) e [0, oo]. 
r---+~ r ~ l  

If 0 < a / <  c~ we define the Phragm~n-Lindel6f indicator function 

log If(re '~ 0 e a .  
(7) h/(0) = lim sup re: ' 

?~--* O G  

If f is an entire function of positive and finite order and type, then it is known that  
h: is a continuous periodic function. For these concepts see Markushevich [6]. 

We say that an entire function f is of at most minimal exponential type, and we 
write v(f)<_ (1, 0), if either Q/< 1 or Q f = l  and af=O. Equivalently f satisfies (1). 

L e m m a  1.1. Let f be an entire function such that v ( f ) < ( 1 , 0 ) .  Then the 
order of f is equal to the convergence exponent of its zeros. 

Proof. Let (z~) denote the non-vanishing zeros of f ordered such that IZll< 
Iz2[ <...  and repeated according to their multiplicities. 

The convergence exponent 7: of the zeros is the infimum of the numbers T>0 
for which 

1 

By Hadamard's first theorem T:<_cof<_l, and if 0f<1 then ~-:=0: by [4, p. 24], so 

we can assume Of = 1 and a i  =0. 
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The rank of the zeros is the smallest integer x > 0  for which 

1 
E Iz,~l,~+-----------T < 0o. 

If the rank is zero, the theorem of LindelSf (cf. [4, p. 27]) gives that  f is a canonical 
product. For canonical products we know by Borel's Theorem that  the order is 
equal to the convergence exponent. 

If the rank is one we have EIz,~l-l=oo and hence r f = l ,  so in this case r f =  

s  [] 

2. T h e  i n d e t e r m i n a t e  m o m e n t  p r o b l e m  

In the following # denotes a probability measure on l:t with moments of any 
order, and we assume that  # is indeterminate. Let (Pn)n>0 denote the corresponding 
orthonormal polynomials chosen such that  P~ has a positive leading coefficient for 
each n. The polynomials (Q~)~>_0 of the second kind are given by 

(8) Q,(x) = f Pn(x)-Pn(y) dp(y). 
x - - y  

Since/z is indeterminate, the series in (2) and (3) converge uniformly on compact 
subsets of C, and we define the entire functions 

(9) 

OO 

A(z) = z ~ Qk(O)Qk(z) 
k=O 

O 0  

B(z) = - l + z  E Qk(OlPk(z) 
k=O 

C(z) = l + z  Pk(O)Q (z) 
k=O 

O 0  

D(z)= Z E Pk(O)Pk(z) 
k=O 

cf. [1, p. 54]. 
We recall that  the Nevanlinna extremal solutions (#t)t~Ru{oo} are given by the 

following formula 

(10) / d#t(x) A(z)t-C(z) 
z -x  -B(z)t-D(z)' zEC\R, 
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where we use the convention that A t - C  (resp. B t - D )  shall be interpreted as A 
(resp. B) for t=c~.  

The polynomial sequences y~=P~(z) and y~=Q~(z), n>O satisfy the second 
order difference equation 

(11) 

where 

zy~ = bnYn+l+anYn+bn-lYn-1, n >_ 1, 

f f 
an : /XP2n(X)  d#(x), b n :  JxP~(x)Pn+l(x)d#(x),  n> O. 

The sequence (P~(z)) (resp. Q~(z)) is uniquely determined by (11) and the initial 
conditions 

�88 (12)  y0 = 1, y l  = ( z - c o ) ,  (resp.  yo = 0, Yl = b0 

Replacing (an) and (b~) in (11) and (12) by the shifted sequences 

a n  ~ a n  + l , bn = bn + l 

we get solutions (/5n(z)) and (Q)~(z)) satisfying 

(13)  ~ , ( z )  = b 0 O ~ + ~ ( z ) ,  

(14) Qn (z) = Pl (Z)Qn-bl (z) - ~0 P~+l (z), 

cf. Pedersen [7]. By Favard's theorem (Pn) are the orthonormal polynomials asso- 
ciated with some probability fi, and (~)n) are the corresponding polynomials of the 
second kind. The measure /2 is indeterminate like # because of (13). The corre- 
sponding functions A, B, C, D,~, ~ are derived in [7], and we shall use the following: 

P r o p o s i t i o n  2.1 (Pedersen [7]). 

A(z) = ~D(z )  

a o ~  
C(z) = -~oD(Z) -B( z )  

q(z) = ~ ( z )  

C(z) = -B(z )+  ( z -  ao)A(z) 

b~-~(z) +aoC(z) = D(z) - ( z -  ao)C(z). 
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P r o p o s i t i o n  2.2. 

(15) 

(16) 

For z=x+iy, y#O we have 

]A(z)l _< fy-~lB(z)l, 

IC(z) I <_ i~1 ID(z)l �9 

Proof. 

A(z)t-C(z) 
- I z - u l  

and (15) and (16) follow for t=c~ and t=O. [] 

P r o p o s i t i o n  2.3. For z=x+iy, y#O we have 

(17) 

(18) 

From (10) we get for z as above and tERt0{oo} 

1 
---~,  

IB(z)l < +lz-a01 IA(z)l, 

[D(z)[ < (b~+[z-ao[~ [C(z)l. 
- \ ly l  / 

Proof. By (16) we have 

IC(z)l < ~15 (z ) l ,  

and inserting the expressions for C and /9  gives (17). 
As in the proof of Proposition 2.2 we similarly have 

A(z)t-O(z) l < 1 
B ~ z ) t - ~ ( z )  - ~ '  

and choosing t=-b2/ao (=co if a0=0) we get from Proposition 2.1 

-D(z)+(z-ao)C(z) 1 
biG(z) <- ~ '  

and (18) follows. [] 
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3. T h e  o r d e r  o f  A, B ,  C, D 

Proposition 3.1. The functions t B - D ,  t c R U { c ~ }  all have the same order. 
In particular ~B = QD. 

Proof. It is known that  the functions in question have countably many zeros 
which are all real and simple, cf. [1, p. 101]. For t, x E R  we have 

( t B -  D)' ( x ) B ( x ) -  ( t B -  D )(x)B'  (x) = B' (x)D( x ) -  B(x)D'  (x) --- p2 (x), 

cf. [1, p. 114], showing that  there is exactly one zero of t B - D  between two conse- 
cutive zeros of B and vice-versa. Therefore, if B has infinitely many positive zeros, 
say )u<A2<. . . ,  then so has t B - D ,  and if they are denoted # 1 < # 2 < . . ,  we have 
either 0 < # 1 < ) u < # 2 < ) ~ 2 < . . .  o r  0 < ~ l < P l < ) ~ 2 < ] . t 2 <  . . . .  In both cases the series 

n = l  ~ : '  n= l  ~t: 

converge for the same numbers T>0.  This argument together with a similar one, 
if B has infinitely many negative zeros, shows that  the zeros of B and t B - D  have 
the same convergence exponent. By Lemma 1.1 the orders of B and t B - D  are 
equal. [] 

P r o p o s i t i o n  3.2. The functions t A - C ,  tERU{c~} all have the same order 
as B. In particular QA~-QC=QB . 

Proof. The zeros of A t - C  and B t - D  are all real and simple and they are 
interlacing because of (10). Therefore the convergence exponents and hence the 
orders are equal by Lemma 1.1. [] 

T h e o r e m  3.3. The functions A, B, C, D,p, q all have the same order. 

Proof. From the formula (9) for D we get by the Cauchy-Schwarz inequality 

(19) ID(z)l <_ Izlp(O)p(z), 

hence 

(20) MD(r) ~_ p(O)rMp(r), 

and •D --< Qp follows. 
On the other hand by formula 2.33 in [1] we have 

(21) p2(z) < IB(z)l ID(z)l 
lYl for z = x + i y ,  y~O, 
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from which we conclude 

(22) M2(r) < MB(I +r)MD(I +r). 

In fact for ]zl<r with y > l  we have 

p2(z) < [B(z)[ ID(z)] <_ MB(r)MD(r). 

We next use that t~-*p2(x+it) is increasing for t>0 .  (The function tH]P(x+it)l 2 
is increasing for any polynomial P having only real roots.) Therefore we get for 
z----x+iy, 0_<y_<l, N<_r 

p2(x+iy) <_p2(x+i) <_ M , ( l  + r ) i D ( l  +r). 

Finally using p(5)=p(z) we get (22). 
From (22) we get ~p<_~D since ~B----QD, hence ~p----QD. Similarly/9 and ~ have 

the same order, so by Proposition 2.1 we finally get ~q=QA. [] 

4. T h e  t y p e  o f  A, B ,  C,  D 

In the following we assume that  the common order ~ of the functions A, B, C, D, 
p, q is positive, hence 0<Q<I ,  so the types of these functions are well-defined. We 
shall show that  they have the same type a, and this shall be the conclusion of 
Theorem 4.2. If ~=1 it is known by the theorem of Riesz that  all six functions have 
type a=0 .  We shall therefore suppose 0 < ~< 1. 

P r o p o s i t i o n  4.1. We have ap=aB=aD. 

Proof. From (20) we get CrD<~Yp. 
By (9) we get from the Cauchy-Schwarz inequality 

(23) IS(z)l <_ l +lzlq(O)p(z) 

and hence 

(24) MB(r) <_ l +rq(O)Mp(r), 

from which we similarly get aB<a v. On the other hand (22) implies 

< �89 
If ap<OO the above inequalities imply ap=aB=aD, and if ap-=C~ at least one of 
the numbers aB, r must be infinite. That  they are both infinite can be seen by 
Theorem 2.9.5 in [4] because 0 < Q< 1 so 

aB<OO ~=~ nB(r) 60 ( r  e) 

and similarly for D. Here riB(r) denotes the number of zeros of B in the disc ]z I <r .  
Since the zeros of B and D are interlacing, cf. the proof of Proposition 3.1, we have 
nB(r),~nD(r). [] 
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T h e o r e m  4.2. The functions A, B, C, D,p, q have the same type. 

Proof. Applying Proposition 4.1 to the shifted problem and using Proposi- 
tion 2.1 we obtain 

(25) a~ = a 5 = aA = ~ = aq. 

From (15) we deduce 

(26) MA (r) < MB (1 §  

In fact, for z----x§ y > l ,  Izl<r we have 

IA(z)l < IB(z)l < M s ( l  § 

and as in the proof of Theorem 3.3 we get for Iz[<r, 0_<y<l 

IA(z)l <_ IA(x+i)l < IB(x+i)l <_ M s ( l + r ) .  

To conclude we use that A(5)=A(z). 
From (17) we similarly deduce 

(27) Ms(r) < (b~ + laol+r)iA(1 +r). 

Using (26) and (27) we find aA=aB. 
In the same way we see that  aC=aD, and combined with (25) and Proposi- 

tion 4.1 the proof is completed. [] 

5. The indicators of  A, B,  C, D 

In this section we assume that the common order Q and common type a of the 
functions A, B, C, D, p, q satisfy 0< ~< 1, 0 < a <  co. In this case we can define the 
Phragm@n-LindelSf indicator functions hA, ..., h a of the above functions, cf. (7). 

We shall need that  hp and hq are continuous periodic functions like the indica- 
tors for entire functions. In fact, the crucial property for deriving this, cf. [6], is the 
trigonometric convexity which depends on the Phragm@n-Lindel5f theorem. It is 
known that  the ordinary Phragm@n LindelSf theorem holds for logarithmically sub- 
harmonic functions, i.e. functions f for which log f is subharmonic. Such functions 
are necessarily subharmonic, and they appear as a generalization of the important 
class of log-convex functions. Concerning this extension of Phragm@n-LindelSf's 
theorem see [5, p. 26]. 
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P r o p o s i t i o n  5.1. The functions logp and log q are subharmonic. 

This follows immediately from the following result: 

P r o p o s i t i o n  5.2. Let G be a domain in C and let f l ,  ..., fn be holomorphic 
functions, not all identically zero. Then 

I, ) h(z )=log  z 2 , z E G  
~i=1 

is subharmonic. 

(28) 

but 

Proof. The statement is classical for n - - l ,  and we proceed by induction. As- 
sume t h a t  the statement holds for n - 1  functions. If one of the functions, say fn, 
is non-zero in a subdomain Gi we write in Gi 

n n--1 2 

( ) [fn[+l~ -~- ) log E Is = 2 log 
" i=1  i=1 fn  

n--i 2 )  

" i = l  ' 

is subharmonic in G1 by the induction hypothesis, and so is log(l+exp(~)), since 

log(l+exp x) is increasing and convex. This shows that (28) is subharmonic in G1. 

If all the functions f~ have a common zero zoEG, and if k is the smallest order 
of z0 as a zero of f i , i = l ,  ...,n, then we can write 

• ( z ) = ( z - z o ) k g i ( z ) ,  i = l , . . . , n ,  

where gi is holomorphic in G and gi(zo)#O for at least one i. Then we have 

h(z)=2kloglz-zol+log Ige(z)l ~ , 

which is subharmonic in a neighbourhood of z0. [] 

Remark 5.3. Using Proposition 5.2 it is easy to establish the following funda- 

mental result: 
If f is holomorphic in a domain G with values in a Hilbert space H, then 

log Ilfll is subharmonic. (This result also holds for Banach space valued holomorphic 

functions, see e.g. Aupetit  [2, p. 52].) 
Of course Proposition 5.1 is a special case of this result since P: Z~-+(Pk(z))k>O 

is an entire function with values in the Hilbert space 12. 
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T h e o r e m  5.4. The functions A, B, C, D, p, q have the same Phragmdn-Lin- 
delbf indicator which is non-negative. 

Proof. From (19) and (23) we clearly get hD, hB<_hp. Using (21) we obtain 

hp(8) < �89 for 0610,2~r[\{~}, 

so for these 8 we get hp(8)=hB(8)=hD(8). This holds finally for all 86[0, 21r] by 
continuity of the indicator functions. 

We next apply this equality to the shifted problem and use Proposition 2.1 to 
obtain 

hq = h~ = h 5 = hA. 

From (15) and (17) we get hA(8)=hB (8) for 8E ]0, 27r[ \ { r }  so by Continuity hA=hB. 
Similarly we get hc=hD from (16) and (18). 

The indicator hp is >0  because p>_l. [] 
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