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Hyperbolicity of localizations

Tatsuo Nishitani

1. Introduction

Let P(z,D) be a differential operator of order m in an open set QCR"*!
with coordinates x=(z9, z')=(z0, z1, ..., Tn ), hence a sum of differential polynomials
Pj(z, D) of order j (j<m) with symbols P;(z,). In [7] Ivrii-Petkov has proved a
necessary condition for the Cauchy problem of P(z, D) to be correctly posed which
asserts that P,_;(z) must vanish of order r—2j at z if Pn(z) vanishes of order r
at z with z=(z,£)eT*Q\0. This enables us to define the localization P,,(z) at a
multiple characteristic zo (of Pp,(z)) following Helffer [4] which is a polynomial on
T, (T*Q).

In this note we show that P, (z) is hyperbolic, that is verifies Garding’s con-
dition if the Cauchy problem for P(z, D) is correctly posed. The proof is based on
the arguments of Svensson [9].

Since P,,(z) is hyperbolic one can define the localizations P, ,, . ..y(2) suc-
cessively as the localization of P(ZO’zl,__,,zs_l)(z) at z, which are hyperbolic poly-
nomials on T, (T*Q)2...2T, (T*Q) (see Hérmander [6, II] and Atiyah-Bott—Gar-
ding [1]). It may happen that the lineality A¢, .. . ..)(Pm) Of Pz z1,....2.) (%)
is an involutive subspace with respect to the canonical symplectic structure on
T, (T*Q). In this case we prove that for the Cauchy problem to be correctly posed
it is necessary that

P(zo,zl,...,zs)(z) = Pm(zo,zl,...,zs)(z)'

This argument was also used in Bernardi-Bove-Nishitani [2] with s=1.

2. The localization is hyperbolic

We denote by L7»" the set of pseudodifferential operators P near zo with
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symbol P(z,§) verifying
P(x,f) ~ Z Pm_](l',é-)
7=0

in every system of homogeneous symplectic coordinates around zg, where P, _;(z, §)
are positively homogeneous of degree m—j in & and vanish of order at least r—2j
and P, (z,£) vanishes exactly to the order r at 2p. Note that we may replace in the
definition “every” by “some”.

Lemma 2.1 (Helffer [4]). Let PEL7Y". Then
(21) Qw6 =en{ 13 -2 lpe e
. 2 - p 2 J: ax . 3 b

is invariantly defined in LZ;”"/L;’S”“: Let x be a homogeneous symplectic trans-
formation around 2o and let F' be a Fourier integral operator associated with x and
P=FPF~'. Then we have

Qx(2,6)=Q(.9)
in L7 /LT where Q is associated with P by (2.1).

Definition 2.1. We define the localization P,,(z,§) of PEL" at 20=(zo,&o)
as the lowest order term of the Taylor expansion of

1P Q(zo+px, 2o+ E)

as #—0 which is invariantly defined as a polynomial on T,,(T*Q). If y are local
coordinates around the origin and P(y, n) is the full symbol of P for the coordinates
(y,ndy), then we have

Py (¢ (o), "y (T0) T1€) = Puy (2, €), wo = (y(wo), ' (z0) ~*&0).
Writing Q(z, &) as the sum of homogeneous parts Q,—;(x, &), it is clear that

on(x7§)= Z QM—j,Zo(m’g)’

r—25>0

Qi) =Prjr(D+ Y P, ()

i<j’|a|=j_i

(2.2)

with some constants ¢, where Qm_j ., (x,€) and Pp_j ;, (2, £) are defined by
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Prmjz(2)= 51310 p P20+ piz).

Let P(x, D)=3"7", Pj(z, D) be a differential operator of order m on € con-
taining the origin where P;(z, D) is the homogeneous part of degree j with symbol
Pj(z,€). Assume that the plane zo=0 is non-characteristic and we are concerned
with the Cauchy problem with respect to zo=const. Let 2y be a multiple character-
istic of P,,. By the necessary condition of Ivrii-Petkov [7] stated in the introduction
we conclude that PEL}>" with some r>2 provided that the Cauchy problem for P
is correctly posed. Then we have from Lemma 2.1 the following

Proposition 2.2. Assume that the Cauchy problem for P(z,D) is correctly
posed near the origin and let 2o€T*Q\0 be a multiple characteristic of Pr,. Then
the localization P,,(2) is an invariantly defined polynomial on T,,(T*Q).

Let us denote by }3;0 (z,€) the lowest order term of the Taylor expansion of
p?" Pz +pz, p 2o+ p 1) as u—0. Then we have

Lemma 2.3. The following two conditions are equivalent.

(i) Py, (2) is hyperbolic with respect to 6=(0,eo),
(ii) P,,(2) is hyperbolic with respect to 6.

Proof. Recall that ﬁzO(z):Zr_szO Ppj 2 (2). Since P,,(2) is hyperbolic if
and only if Py,_; ., (2) are weaker than Py, ;,(2)=Qm,z(z) (see Hérmander [6, 1],
Svensson [9]) the proof is immediate by (2.2).

Now our aim is to prove

Theorem 2.4. Assume that the Cauchy problem for P(z, D) is correctly posed
near the origin and let zo€T*Q\0 be a multiple characteristic of Pn,. Then the
localization P, (2) is a hyperbolic polynomial with respect to =(0,ep).

Let 29 be a characteristic of order ro of Pp,(z) so that P, (2) is a polynomial
of degree rg. We denote by P, ,,)(2) the localization of P, (2) at 21, that is the
first coefficient of u™ P, (u~'21+2) that does not vanish identically in z:

WO Pao (™ 214 2) = " (Plag ) (2) +0(1)), =0

(see Hérmander [6, II] and Atiyah-Bott—-Garding [1]). We call 71 the order of
z1. From Lemma 3.4.2 in Atiyah-Bott-Garding [1] it follows that P, ,,)(2) is
again hyperbolic with respect to #. Furthermore z; is a characteristic of Py, ., of
order 71 and Py, (., »,)(2) is the principal part of P, ,,)(z). On the other hand
Corollary 12.4.9 in Hérmander [6, II] shows that

duQm_j,ZO(Zl)ZO, l/<7'1—2j
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where d”Q(z) denotes the v-th differential of Q with respect to z. Since Qum—j, 4, (2)
are homogeneous of degree ro—2j it is clear that

P(zo,ll)(z)z Z Qm—zj(zo,h)(z)

r1—2j>0
where
Qm—j(z0,21)(2) = ;13}) N—(TI—ZJ)Qm—J’,zo (21+u2)
which is homogeneous of degree r1 —2j in z. Repeating the same arguments we get

Lemma 2.5. Let P, .. ., \(2) be the localization of P,,. ... ., ,)(2) at 2 where
its order is vy, (>2). Then we have for every j with ry—25>0

duQm—j(zo,...,zk_l)(zk) = 0; V< T “2]
and hence
Qm—j(zoam,zk)(z) = ;PLI%) /-“_(Tk—2j)Qm—j(zo,...,zk_1)(Zk +,UZ)

exists. Moreover P, .. ..)(2) is equal to

Z Qm—j(zo,...,zk)(z)
re—2§2>0
and hyperbolic with respect to 0.
Corollary 2.6. Let zx be a characteristic of Py, ..., 1)(2) of orderry (>2).
Then we have

(2.3) dVPm—j(zo,...,zk_l)(Zk)=0a v<rKp—23

and hence

(2.4) Pr—j(z0,.. ) (2) = limy p TP o, me) (26 102)
exists.

Proof. Assume that (2.3) and
(25) Qmjannm)(2) = Prosemn () D0 P o o(2)
i<j,lal=j—i
hold with k=p where ¢, are constants. Then it is easy to see that (2.5) with k=p+1
holds. Thus (2.3) with k=p+1 follows from Lemma 2.5. By induction on k we get
the desired conclusion.

Let Az, ...,z,)(Pm) be the lineality of Pp(,,. .. ., which is defined by
A(zo,...,zs)(Pm) = {ZIPm(zo,...,zs)(w+tz) = Pm(zo,...,za)(w)7 Vte R, Yw € Tzo (T*Q)}

and let O'IZ;L:O déjAdz; be the canonical symplectic two form on T*Q. For
SCT,,(T*Q) we denote by S the annihilator of S with respect to o:

S° = {2 €T, (T*N)|o(z,w) =0,Vw € S}.
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Theorem 2.7. Assume that the Cauchy problem for P(z, D) is correctly posed
near the origin and
Atzg,,z)(Pm)” C Az, 20 (Prm)-
Then we have
P(zo,.‘.,zs)(z) = Pm(zo,...,zs)(z)'

Ezample 2.1. Let
P(z,£) = (65 — a1, —€1)(&5 — 216 — 261) +p2(60, 216n, E1)én
where p is a homogeneous polynomial of degree 2. With zo=(0, e,,) it is clear that
Py = (-2 —€1)(€5—21-260), Q3,2 =6iz1&1+p2(60, 21, 61).-
Let 21 be {g=z1=a, a€R, & =0 so that
Pyso.z) =402 (E0—71)%,  Q3(z0,20) =DP2(a,0,0).

Since A(zg,2,)(P1)° CA(z,20)(Pa) it follows from Theorem 2.7 that py(a,a,0)=0.
Similarly choosing 2; to be {p=a, z1=—a, & =0 we get p2(a, —a,0)=0. Thus

p2(&0, 71, &1) = (€5 — 73) +£1p1(€0, 21, £1)
where p; is linear. Finally one can write
P(z,£) = (65 —1&% — & +cn) (€5 — 2365 — 267) + €1 L0, 16, €1 )
with a linear function L.

Ezample 2.2. Let

P(z,£) = (€0~ 0&n)? (€0 +Z0€n) + (€0~ T0€n)bn +B(o+20&n )én
where a, 86 C. With 2p=(0, e,) we have

Ps o = (€0—z0)*(f0+20), Q2,20 = @(€o—0)+(6~1)(éo+0).-
Taking 21 to be {p=1, zo=1 it follows that

P30,z =260 —%0)%,  Q2(z0,21) = 2(8—1).

Since A(zo,zl)(P3)aCA(zo,zl)(P3) we have $=1 by Theorem 2.7. Set

p1(z,8) =& —z0kn, P2(2,8) = (0—z0&n)(o+T0ln)+(a+i)én

then §=1i implies that
P(z, D) =pY (=, D)py (z, D)

where p¥ (z, D) are Weyl realizations of p;(z, ), see Hormander [6, III].
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3. Proof of Theorem 2.4

To prove Theorem 2.4 we construct an asymptotic solution depending on a large
parameter contradicting an a priori estimate that a correctly posed Cauchy problem
must satisfy. In constructing a desired phase function of the asymptotic solution we
follow the arguments of Svensson [9]. We first derive an a priori estimate assuming
that the Cauchy problem for P(z, D) is correctly posed in both Q! and € for every
small t where Qt={z€Q|zo<t} and Q={z€Q|zo>1}. Let a=(09,...,0,)€QTH"
and set

oo

yN) =Dy A, n(N)=D_mA, yum eR™, ceQy
j=0 j=0

which are assumed to be convergent in a neighborhood of A=00. For a differential
operator P on C*°(Q) with C* coefficients we set with € Q.

Pi(y(N),n(A); z,€) = P(y(A\) + A" 7z, A" n(A) +A7¢€)

where A™7z=(A"%zg, ..., A" x,) etc.

Proposition 3.1. Assume that 0, yo=0 and that the Cauchy problem for
P(x,D) is correctly posed in both Q! and QU for every small t. Then for every
compact set WCR™? and for every positive T>0 we can find C>0, A\>0 and
peN such that

|u cowey < CACTP| Pyl ooy, ulcow,) < CA(6+%)p|PAU|CP(Wt)

if ueCP(W), A=A, |t|<T where 6=max; o;.

Proof. Recall the following a priori estimate a proof of which is found in
Hormander [5]: for every compact set K C§ there exist positive constants C, 7
and p€N such that

(3.1) |u|cockty < ClPuler(kty,  |uleok,) < C|Pulor(k,)

for ueC(K), |t|<7. Setting P(z, D)=e~*"<1(N).=>p(g D)eir"<n(0):z> we get
from (3.1) that _
|’u,|00(Kt) SCl)\%p|PUICp(Kt), A> A

For a given compact set WCR™"! one can find a compct set KC so that
w(Az—y(A)eC(K), YueCP(W) if A>3, Then the desired inequality follows
from (3.1). The second estimate is proved in the same way.
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Let zy be a characteristic of P, of order r. We may assume that z0=(0, e,,)
without restrictions. We specialize Proposition 3.1 setting
yN)=AT2G),  n(d) =en+AT2H(N)
where §(A\) =372 y;A™7, (A) =332, n;A 77 are meromorphic in a neighborhood
of A=00 and #/2+7,>0. With T'(A)=(g()),7(A)) it follows that
)\—x(m—r/Q)P(y(/\)+)\—x/2+cr/2x, )\xn(/\)+)\x/2—a/2§)
= Py () +(A7/22, X77/2€)) +O(A /24 H12/2) - X — 00,
By Lemma 2.3, ISzO is hyperbolic with respect to 8 if P,, is. Now assuming

that ﬁzO is not hyperbolic with respect to 8 we look for an asymptotic solution with
complex valued phase function to Pu~0. The main step is to prove:

Proposition 3.2. Assume that ]320 s not hyperbolic with respect to 8. Then
we can find T1(s)=3" 2,8, 2, €R?"+?2 which is meromorphic in a neighborhood of
5=0, an open set W CR?"*? and —1<a<0 such that

P, (D1(s)+s%2+5%m0) =cs™™" (Ri(r,2)4+0(s%)), 2eW
with some §>0 where c£0, m*€R and Ry(7,z) is a monic polynomial in T which
has a non-real root for VzeW.

Admitting Proposition 3.2 we prove Theorem 2.4. Taking A=s"1 and 6/2=—a,
Proposition 3.2 yields
(3.2) P, (D) + (A2, X772¢)) = eA™ (R(z, £) + O(A~%)).

It is clear that R(xz,€) is a monic polynomial in & and R(z,&)=0 has a non-real
root for every (z,£')eW’ where W’ is an open set in R2"*!. Therefore we may
assume, by shrinking W’ if necessary, that

!

R(z,&) =[] o~ fi(=, &))"

7j=1
where f;(z,¢’) are real analytic and mutually different from each other in W’ and
Imfi1#0 in W’'. Let ¢(z) be a solution to

$ao(2) = fi(e, ¢ (2)),  G(do,2") =<, >
which is defined near & with (2,&')eW’. Set
E(x) =exp(iA7 ¢(z))
and study
E(z) " P, (P(\)+(A°/2z, A=7/2 D)) E(z) exp(iA" w(z))

where w(z) is a C* function near £ and o1>0 which will be determined in the
following lemma.
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Lemma 3.3. There exists 0< o1 <o such that for every w(z) we have

P, (TN + (X722, A=7/2 D)) E(z) exp(i A% w(z))
= \m —rle—o1) (L(z, wz(z))+0(1)) E(z) exp(iA"*w(zx))

where

L(z,0)= Y R®(z,{)/al+5(z,()

|a|=r1
and S(z,{) is a polynomial in { of degree less than ry.

Proof. Recall that

e~ A @B, (TN +(A\7/ 22, A=7/2 D)) (a(z)e ¢))
=3 (a2 P, (TN + (A7 22, A=772€))|(e=re 6) D2 (a(2)€™ )| 2=z

where ¥(z, 2)=¢(2) — ¢(z)— <$z(z), z—z>. On the other hand we have
0¢ Py (PO + (A%, A= /2) | (gmrez) =A™ 71 (R®) (2, ) +O(A )

by (3.2) and hence the result.

Now to prove Theorem 2.4 it is enough to follow the same arguments as in
Ivrii-Petkov [7] and Flaschka—Strang [3] (see section 6 in Ivrii-Petkov [7]).

It remains to prove Proposition 3.2. We first recall the following result of
Svensson [9]. Let g(2)=3_"_, ¢-—;(2) be a polynomial of degree r in zeR", N=
2(n+1) where ¢,_;(z) stands for the homogeneous part of degree r—j. Let f(%,s)
be a polynomial in ¢ with coefficients which can be expanded in a Puiseux series in
s€R in a neighborhood of s=0. We denote by R(f(¢, s)) the Newton polygon of f
(see Svensson [9]). Then the result of Svensson [9] asserts that

Theorem 3.4 (Svensson [9]). The following two conditions are equivalent.

(i) Xi—09r—j(2) is hyperbolic with respect to 6=(0, eo),

(i) ¢r(0)#0 and R(t*qr—k(7(s)+10))CR(gr(v(s)+10)), 1<k<r, for every
v(8)=3" 2,8, 2, RN which is meromorphic in a neighborhood of s=0.

Lemma 3.5. Assume that g, is hyperbolic with respect to 8. Let v(s)=> 2, 8",
2, €RYN be meromorphic in a neighborhood of s=0. Then there is a neighborhood
U of the origin in RN such that

R(qr(v(s)+tz+10)) = R(q-(v(s)+1t8)), VzeUl.
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Proof. We first show that
(3.3) R(g-(y(s)+tz+10)) C R(g-(7(s)+16)), VzeRN.

Since ¢ )( )=02¢,(z) is weaker than g, it follows from Theorem 12.4.6 in Hérman-
der [6, II] that the hyperbolicity of ¢, is not altered by adding any linear combination
of q(m(z), |8|>1. Then Theorem 3.4 shows that

R(z%tP1q{P)((s)+10)) C R(gr(v(s)+16)), VzeRY

which proves (3.3) because

gr(y(s)+tz+1t0)= Zq(ﬁ) (v(s)+10)2°11#1 3.
8

Using (3.3) we end the proof. Write
qr(fy(s)+tz+t0)=Z( Z 650 (ﬁ) s))zﬁ/ﬁ'z'>
k id(Bl=k

and let ({, k) be any vertex of R(g.(v(s)+t6)). Note that

(3.4) 85,a-(v(s)) =cs'(1+0(1)), c#0.
From (3.3) it follows that
(3.5) > 85,0 (1(s))2P /84 = O(s")

i+[8|=k

for every € RN and hence 8} g B (y(s))=0(s"), i+|B|=k. Hence taking U suffi-
ciently small we conclude that the left-hand side of (3.5) is equal to cs'(140(1))
with ¢#0 by (3.4). This together with (3.3) proves the assertion.

Lemma 3.6. If z avoids the union of the zeros of finitely many polynomials
in z then R(g;(y(s)+tz+10)) is independent of z and

R(q;(7(s)+10)) C R(g; (v(s) +t2+1)).

Proof. Recall that

qj(»y<s)+tz+w)=2( S 8P () ﬁ/ﬂw)

k Nit|B|=k
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It is clear that

ST 8,67 (1(s)2P 18t = 8 (Pe(2) +0(1)), s—0

i+|8|=k

with some polynomial Py(z) and an integer [ if the left-hand side is not identically
zero. This proves the assertion because 8f g;(v(s))=0(s").

To simplify notations we write

qT—2j(z):Pm—j,Zo Z ) q(Z Z qr-— 2]
r—252>0

and assume that ¢ is not hyperbolic with respect to 8. Then by Theorem 3.4 we
can find a non-negative integer £ and y(s)=Y_ 2,,8%, 2, €R" which is meromorphic
in a neighborhood of s=0 such that

R(t* gk (v(5)+10)) € R(a- (v(s) +16)).

Hence by Lemmas 3.5 and 3.6 one can choose a neighborhood U of the origin in
RY and Z’, the union of the zeros of several polynomials, so that

R(t* gr—21(v(5) +t2+16)) € R(q (v(s) +t2+10)), 2€U, 2¢ 2",

We now follow the proof of Theorem 1.1 in Svensson [9] to conclude that there are
an integer p, a real constant c#0 and a set Z which is the union of the zeros of
several polynomials such that:

(a) R(c"sP"q(c 157 P(y(s)+tz+10))) is independent of z€U, z¢Z and has a
line segment with slope —u, p—1<p<p as a part of the boundary.

(b) The right endpoint of the line segment is a vertex of the Newton polygon
R(gr(v(s)+tz+16)).

Let (lo, ko) be the right endpoint of the segment and set kou+Ilo=g.

Lemma 3.7. We have
(3.6)

k
s7q(e s () Ftattrd)) = D (O eri()tts T4 D (o)t
ku+l=g i=0 kuti>g

for 2€U, 2¢ Z where cyi(z) are homogeneous of degree i in z and cx,07£0. Moreover
cri(2) is not identically zero for some (k,i) with k<ky.

Proof. With v;(s)=c1s7Py(s) we have

Al Pl tetrd) = 3 () 5D o) )

k i+|B|=k
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Taking =1 we see that the coefficient of ¢ in the right-hand side is O(s!) (ku+I=g)
for every z with z€U, 2¢Z by (a). This shows that

(csP) %8 gD (v1(s)) = 8! (big+o(1)), i+|Bl=Fk, ku+l=g.

Thus the coefficient of ¢* is equal to

IZ > (bigz+o(1))ri/ B!

i=0 ||=k—

and hence the result. In particular, since (lo, ko) is a vertex of R(g(~y(s)+10)) we
have
(es”) R0 (ma(s)) = es®(140(1)), ¢#0
which proves ci,07#0. The last assertion is clear because the line segment contains
another vertex different from (Io, ko).
We now prove Proposition 3.2. Taking t=s* (s>0) and changing ¢ 'z, ¢717
to z and 7 in (3.6) we have

g(T1(s)+5%245%70) =y~ ™ ( > ch, ’H’+o(1)>

kp+l=g i=0
=c15~™ (R(7,2)+0(1))

(3.7)

where T'1(s)=c™'s7Py(s), a=p—p and hence —1<a<0, m*=pr—g and c,;(z)=.
c*~icg;(cz). On the other hand after changing s to —s in (3.6) we take t=s* (u>0)
and change ¢~ 1(—1)"Pz, ¢"1(~1)"Pr to z and 7. Then (3.6) turns out to be

(3.8)

q(Da(s)+5%24+5%70) = cys™™ ( > Zc )ik z+o(1)>

kp+l=g i=0
=cys™™ (R/(1,2)+0(1))

where Ty(s)=c~1(—s)"Py(—s), ¢/, (2)=(=1)PE-Dck=ic ;(¢(~1)Pz). Therefore to
prove Proposition 3.2 it is enough to show that either R(r,2) or R'(7,2) has a
non-real root for some 2€U, 2¢Z.

Set u=a/b where a and b are relatively prime so that k with ku+Il=g takes
the form k=kqg—jb, =0,1, ..., jp. Thus R(7, z) becomes

Jo ko—jb
> Z TRl (2) = Chy g i(2).
=0

Jj=0



388 Tatsuo Nishitani

Recall that af,#0 and hence we may assume that af, >0. Let S be the set of indices
(4,4), j+i>0 such that @}, is not identically zero and remark that S contains at
least two elements. Set ‘

min - : -
(JA)ES,gb+i<ko Jb+1

which is less than 1 of course. Plugging 7=|z|"F into R(r, z) it follows that

R(2I"7,z) =z Y aji(2/[2)FRo I o( |2 7R0),
=7 (jb+i)

ko—1 ko—2

If v>0 then no terms 7 y T occur in the first term of the right-hand side
because b>2 and y<1. This implies that

> due/leheiizg

i=(jb+i)

has a non-real root for every z€U, z¢ Z. Then taking z¢ Z sufficiently close to the
origin we conclude that R(|z|?7, z)=0 has a non-real root ¥ and so does R(r, 2)=0.
We turn to the case y=0. This means that there is j>1 with a}oy’:O. Since

Jo
R(r,2) = ajor* 7 +0(|2|)

Jj=0

the same argument can be applied if either b>3 or a}, >0 to conclude that R(7, z)=0
has a non-real root for some z€U, z¢Z. It remains to examine the case b=2 with
ajp<0 and hence a=1 necessarily. In this case we employ R'(7,z). Noting that
the coefficient of 7%¢ and 7%0=2 in R/(r, z) are equal to (—1)Pkoq}, and —(—1)P*0q/,
respectively the proof is reduced to the preceding case. Thus we have proved Propo-
sition 3.2.

4. Proof of Theorem 2.7

Our aim in this section is to prove Theorem 2.7. Let z; be characteristics of
Plz,...,z5_1)(2) of order 1 (rp>2), 1<k<s and let P,,_j(,,..2)(2) be given
by (2.4). We first give another formula which defines Pp,_j(,,, .. ..)(2) directly.
Let 0<po<p1<...<ps be a sequence of positive parameters with HjZO(N;-TEl) as
tj+1—0.
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Lemma 4.1. Let u; be as above. Then

Pr_j(2z0+poz1 4.4 o o fle—12k+ 110 .- [k Z)
= g U T (P (g ) (2) O (k).

Proof. Since zg is a characteristic of P, of order ry it follows from Corollary 2.6
that Pru_j(z0-+p02) =15 (P 2y (2)+O(p1o)). Hence

P j(z0+po(z1+122)) = Y~ (Prn—j o (21 + 112)+ O(po)-

Since z; is a characteristic of Py, ., of order r; we see from Corollary 2.6 again that

Prjozo(z1+112) = 47" (P j(z0,20) (2) +O(1))-
Noting that po=0(u*™) we get the desired result with k=1. A repetition of the
argument completes the proof.

Assume that A, .,)(Pm)° CA(s,....2,)(Pm) and recall that P, . y(2) is an
invariantly defined polynomial on T,,(T*€2). Then one can find local coordinates
preserving the plane xo=0 such that

Pm(Zo,-nst)(z) = Q(éaa zb)

with a homogeneous polynomial ¢ of degree r, where =(x4,xp), zo=(z0, ..., k),
zp=(Tgy1,...,Zy) is a partition of the variables x and £=(&,, &) is that of £ (see
Proposition 2.6 in Nishitani [8]).

Lemma 4.2. In the above local coordinates T we have

P(zo, ,z,,) Z Pm—j(zo,...,zs)(z)'
rs—2520

Proof. By Lemma 2.5 it sufficies to show that

(4'1) Qm—](zo, 2Zs) (z) m (=0, ,zs)(z)

in these coordinates. Since P, .. ,,)(2) is hyperbolic it follows from Corollary 12.4.8
in Hérmander [6, II] that Q,,_j(,.....z,)(2) are polynomials in ({,, ;) and hence

Qf:lj(mw’zs)(a)(z)zo if |a|>1. Recall that

Qm—j(zm--wzk—l)(z):Pm—j(207~~~7zk—l)(z)+ Z Pv(na)z(zo, 2k 1)(0)( z)

i<j,ja|=j—i
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with some constants ¢,. Using this formula and the fact

Qm(zo,...,zk_l)(z) = Pm(zo,.--,zk~1)(z)
we conclude (4.1) by induction on j.
It is clear that what we shall prove is that
(4.2) Pm_j(zoy,,,,za)(z):o, i>1, rs—25>0.

Assuming that (4.2) is false we construct an asymptotic solution to Pu~0 contra-
dicting the a priori estimate in Proposition 3.1. Let us take

8
nj=(m+1)°7, 1<j<s, no=) m
k=1

so that with go=A"1/24m08 . =2=7% ;>1 we have

po =0, p;=pTH

for sufficiently small §>0. Note that

ro—27 r—275 _ ym
Ho e g =",

1 E}
ml:(—%+noé)ro+j—2nkrk6—2j5 Z ng.
k=1 k=l+1

Let us set
Y(\), = ZOU_‘_)\—1/2+n06zlu+)\~1/2+n05—n15z2y+.”+)\—1/2+n06—22;1 "kézsu
= (y(A), vn(X))

where zj, =(z;,v¢;) for z;=(z;,&;) and 1<v<A%/?™, When v=1 we write ()
for y(A), dropping v. We now study

(43)  PHO)+AT72, wm(N)+27€) = A" Pr_j (v (N +(A 72, A7)
with
A= ()‘_1/2+€$a, )\—1/2—6xb)’ )\0—15 _ ()\~1/2—s§a’ )\—1/2+g€b)

where 0<e<é. Setting X=(§,, ), Y=(£,z,) and taking the homogeneity into
account the right-hand side of (4.3) is written as

S AT ()4, A X ),
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Lemma 4.3. Let r;—2j<0. Then taking 6>0 small we get
(4.4) )\m—-jym~ij>j (’Y(A)+)\_1/2+€Yu*1 +>\'1/2“EXV_1 ) _ O()\m+m*—6/2)

where m* =(—1+nob)ro— Y j_; nkTk6.

Proof. When ry—25 <0 the assertion is clear because m—j<m—ry/2— % Let
ro—27>0 and r,~25<0. Choose [ to be the smallest integer satisfying r;—25>0.
Since

y(A) = zo+...+)\_1/2+”°6_zfv;11 S N )

and Pp,_j(s,...,2,)(2) exists by Corollary 2.6 the left-hand side of (4.4) becomes
)\m—jljm—j)\ml(Pm—j(zo,,,.,zl)(zl-i—l+---)+O(>\_"l5))-

Since m* — (my—j)=6 35 _;1(2i — Tk )n =6 and v™ < A%/2 we obtain the assertion.

We turn to the case r,—25>0. From Lemma 4.1 with k=s it follows that

ATy Py (W AATY (Y, AT X, )

=y Nmm I me = (6e)re =2) (P, J (Yoot +AT2X, 1)+ O(AT0FE)),

—3(20,--,2s

Noting that ms_1—j—(6—¢)(rs—2j)=m*+e(rs—2j) and Pp,_j(4,....2,)(2) is inde-
pendent of Y (see the proof of Lemma 4.2) the right-hand side yields

Vm—j)\m+m*_5rs+2€j (Pm—j(zo,...,zs)(Xu_l)+O()\_5+(2rs+1)5))'

Taking ¢>0 so that 2¢(2m+1)<§ we summarize what we have proved.

Lemma 4.4. Let v=0)*¢ with §cR\0. Then we have
Py(M)+2"7z, dwng(A)+X7¢)

— )\m*-l-m_ersl/m( Z g_ij-j(zo,...,zs)(Xu—1)+0()\_6/2)>

s —25>0

where §>0.

Let us set
R(X)= ), 077Pu_jt,..z0(X)

re—2j52>0

where X =(&,,zp)=(&, X').
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Lemma 4.5. Assume that some Pp,_j(s,,...,2,)(X) with >1, r,—25>0 is not
identically zero. Then with a suitable 6€R\0

R(X)=0
has a non-real root &y for some X'.
Proof. Tt is clear with a small positive £ that

R(fo,eX')=ctp+0(e)+ Y 677’ (R;(X)+0(e))

rs—2j20,52>1

with a constant c#0 where p; are non-negative integers. Recall that there is j>1
with R;(X)#0. Letting

y=  min ]
i2L,R;(X)#0 ]
and setting 8=¢76 we have
R(fo,eX")=ctp'+ > 67IR;i(X)+o(1), e—0.
p;—jv=0
Since the degree of R; are less than or equal to r;—237, j>1 it is clear that

o+ Y. 0IR(X)=0

pj—jv=0

has a non-real root for some X’ changing § to —@ if necessary. Taking ¢>0 suffi-
ciently small we get the desired assertion.

The rest of the proof of Theorem 2.7 is a repetition of that of Theorem 2.4.

Remark. If we are interested in the microlocal Cauchy problem near zy then
the wave front set of the asymptotic solution that we have constructed should be
contained in a conic neighborhood of zy. Hence the sign of 8 in Lemma 4.5 is limited
to be positive. In this case we could have a weaker assertion: P, . . )(z) has only
real zeros & for every (z,¢').
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