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EQUATIONS. 

Let f (x) be a solution of the difference equation 

f (x  + i ) - f ( x )  = g(x) 

for x>o.  f (x)  may be uniquely determined by prescribing its values arbitrarily 

for o < x ~ 1. For certain functions g(x) however the solution f may also be 

characterized by simple properties, instead of prescribed values in an interval. 

A solution may e.g. be uniquely determined by its asymptotic behaviour for 

large x; this leads to the >)HauptlSsung>) of the difference equation, as defined by 

N. E. NSrlund in his ~)Vorles.ungen iiber Differenzenrechnung)). In special instances 

solutions have also been characterized by local properties. Thus it has been proved 

by H. Bohr, that  for g(x) ~ log x, all strongly convex solutions o f ( i )  are of the 

form f (x) -~  const. + log F(x). 1 Here a function is called ~)strongly convexly, if 

(2) f ( ) . X  '{- (I - -  ~)~/) ~ ~ f ( x )  -{- (I  - -  Z) f (y )  f o r  0 ~ Z ~ I, 

whereas ,>convexity>> alone only implies, that  

f , x  -~ y~ <= f (x )  +.f(y) , .  
2 

An analogous result has been derived recently by A. E. Mayer: ~ The only con- 

vex solution of the functional equation I / f ( x  + I ) ~ - x f ( x )  is given by 

i Cf. e. g. E. Art in:  Einf i ihrung in die Theorie der Gammafunkt ion,  or Courant:  Differential 
and Integral  Calculus, vol. I I  p. 325. 

Convexity ~ boundedness in some finite interval  is equivalent  to s trong convexity, Cf. 
Hardy, Littlewood, Polya: Inequali t ies,  p. 9 I. 

Konvexe L5sung der Funkt ionalg le ichung I / f ( x  + I) ~ xf (x) ,  Acta mathemat ica  7o, p. 59. 
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i n  the  present  pape r  we shall  give some theorems  concern ing  mono tone  or 

convex solut ions of  (I) fo r  ce r ta in  genera l  classes of  func t ions  g(x).  As special  

cases we shall  obta in  the t h e o r e m  of Bohr,  and  also a somewha t  weaker  fo rm of 

the t heo rem of A. E. Mayer ,  wi th  *convex>> replaced  by >)strongly convex,). 

Also an ana logous  t heo rem  for  more  genera l  difference equat ions  will be derived. 

Under  sui table  res t r ic t ions  for  g(x) the  special  solut ions ob ta ined  here,  can be 

proved to be ident ical  with the  ~HauptlSsungen>> men t ioned  above.  

T h e o r e m  A. L e t  g(x) be defined for  x > o, and  let  

g. 1. b. g ( x ) =  o. 1 

Then  every two m ono t one  non-decreas ing  solut ions of (I) differ a t  mos t  by a 

constant .  

P roof :  Le t  f ( x )  = 9 (x )  and f ( x ) - ~  W(x) be two m o n o t o n e  non-decreas ing  

solut ions of  (I) for  x > o. T h e n  

is a func t ion  of per iod I and  is un i fo rmly  bounded,  as the  m o n o t o n e  func t ions  

q~(x) and  V 2(x) are cer ta in ly  bounded  fo r  I ~ x ~ 2. Le t  

Le t  p(x )  not  be a constant .  

M ~ - I .  u. b. p (x) 

m - ~  g. 1. b. p (x). 

Then  M > m .  L e t  ~ be a n u m b e r  wi th  o < ~  < 

M - - m  
< - - - -  There  is an x 0 > o such t h a t  g(xo)<= ~ .  As ~0(x) is non-decreas ing  

2 

__> g ( x 0 ) =  ~ ( x 0  + i)  - ~ ( x 0 )  >= ~ ( b )  - ~ ( a )  

for  all a and  b wi th  

(3) x0 ~ a _--< b ~< x0 + I. 

Hence ,  as W is non-decreas ing  

>-- w (b) - ~ (a) + ~ (~) - p (.) __ p (b) - p (a) 

for  all a, b sa t i s fying (3). Thus  in pa r t i cu la r  for  b = x  0 + I 

>-- p (Xo + i) - p (~) = ~ (~o) - p (-) 

for  all a in x 0 ~ a_--< x o + I, and  consequent ly  

1 g. 1. b. denotes the  greates t  lower  bound,  1. u. b. the  least  uppe r  bound.  
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_>_ 1. u. b. (p ( .%) - -p (a ) )=p  (Xo)--m. 

Similarly for a = x o 

177 

=> p (b) - v (~o) 

for all b in Xo <= b ~ x o + I, and therefore 

_>_ 1. u .  b.  ( p  (b) - -  p (Xo)) = M - -  ~ (x0).  

Adding we obtain the contradiction 

2 e > ~ M - - m ,  

which proves the theorem. 

Theorem A does not assert the existence of a monotone solution. This is 

guaranteed under more restrictive conditions by 

Theorem A': I f  g(x) is non-increasing and lim g ( x ) =  o, all non-decreasing 

solutions of (I) are given by 

(4) l (x)  = c - g  (~) + F, (g ( ~ ) - g  (~ + ,)), 
~=1 

where C is a constant; in case ~ g(~) converges, f (x )  may simply be written 
cx=l 

in the form C ' - - ~  g ( x + # )  . 
/z~O 

Proof: According to theorem A, it only remains to be shown, that  the 

f (x )  given by (4) represents a non-decreasing solution of (I). Now the infinite 

series in (4) converges; for if o < x < n, where n is an integer, the expression 

IV N 

Y I g ( ,)  - ~ (x + , ) l  --< Y~ (g ( , )  - g (,~ + ~)) = 
#~1 #71 

= ~ g ( , )  - g ( N  + ,~,) _< q (,) 
~I ~i /z~l 

is bounded uniformly in N. Moreover it is obvious, that  f(x) is non-decreasing 

and that  it is a solution of (I). 
23--3932. Acta  mathematica.  71. Imprim6 le 4 juilleb 1939. 
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Example: Let g (x) = l o g - -  

I 
x + -  

2 
Then, according to theorem A' 

X + -  ~ I t  + - X + ~ t +  
2 

f ( x ) : C - - l o g - -  + ~  log log 
x # x + [ ~  

,u=l 

: C + log 1-[ - - -  i 

, = ~  x + re+ 

: C + log 

H x ~ (, + ; ) V , +  ~ ~ + i  1 
x + L ~ = l  x +  I �9 

- -  t t~l 
2 2 

1 + - -  
# 

I 
| I - { - - -  

L e t  C ' :  C + l o g l ~  2~ . Then 

f ( x )  = C' + log IX ~ ('+xlI'+ ;l'+~l 
�9 - ~ - H  (, + ~-I" (;~x + '~-~.// 

(5) f (x) = C' + log F (x) 

It  is evident from theorem A', that  even every solution of 

I 
x + - -  

(6) f ( x  + I) - -  f ( x )  = log 2 ,  
x 

that  is non-decreasing for  sufficiently large x, will have to be of the form (5). 

Let now F(x) be a strongly convex solution of the functional equation 
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_ i 

(7) F (x -[- I) X F(X)  

treated by A. E. Mayer. Then F(x) is either monotone non-decreasing or mono- 

tone non-increasing for sufficiently large x. Besides F(x) is of constant sign, 

as F(x)  is continuous and according to (7) F(x)~ o. F(x) satisfies the simpler 

functional equation 

(7') F(x + 2)- -  x F(x) .  
x - h i  

Therefore, if F ( x ) >  o, then F(x)  is non-increasing for sufficiently large x, and 

if F(x)< o, F(x) is non-decreasing for sufficiently large x. Hence f (x )= 
= - - l o g  ]F(2x) l  is a non-decreasing solution of (6) for sufficiently large x. 

Thus F(x) is of the form C. As F(x) is convex, C >  o, and using 

the functional equation (7), it follows that C----- ~ 
g 2  

Theorem B. Let  g(x) be defined for x >  o and let 

lira inf g ('~) = o. 
X ~  X 

Then every two strongly convex solutions of (I) differ at most by a constant. 

Proof: I f  f(x) is a strongly convex solution of (I), 

replacing ~ by I -  

f ( ( I  --  Z)x + Zy) ~ (I --,~)f(x) + Zf(y); 

we derive from (2), 

adding this inequality to (2) it follows that 

f ( Z x  + (i - z)y) + f ( ( i  - Z)x § zy) <=f(x) +/(y)  

a 
for o < ~ =< I. Let  a and h be arbitrary positive numbers, then for Z- -  

a + h '  

h 
I - - k - -  a+h -- - - - - ,  y = x + a + h the last inequality yields 

f ( ~  + h + ~ ) - f ( x  + ~) >=f(x + h ) - / ( x ) .  
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Hence  the funct ion  u ( x ) - ~ f ( x  + h ) " f ( x )  is monotone  non-decreasing for  every 

positive h. Besides 

O ~ U (X -~" 1) - -  U (X) = g (X + h) - -  g (x). 

W e  have 

g. 1. b. (g (~ + h) - -  g (x)) = o .  

For, otherwise there  would exist a positive e such tha t  

g (x  + h) - -  e(x) > 

for  all x > o and hence for  posit ive integers  n 

g ( . h )  > ( .  - -  i )~  + o (h ) ;  

by assumption there  are arbi t rar i ly  large Xo, such tha t  

g (Xo) ~ . 
Xo 

let  n h = < x o < ( n +  I)h;  then,  

g (xo) g (n h) ( n ,  I) ~ .q (h) n - - I  .q (h) 
2~>  > - - - - >  + "  > _ - - - - e + - -  X 0 - -  (n -{- I ) h  = Xo Xo n + I x o 

whereas  the  expression on the r igh t  is cer ta in ly  > 2 h  for  sufficiently large x o. 

According to theorem A u ( x ) ~ f ( x  + h ) - - f ( x )  is t hen  uniquely  de te rmined  

up to an addit ive cons tan t  C ~  Ch. Hence  for  two convex solutions ~0 (x) and 

(x) o f  ( i )  

p (x) =- ~ (x) - ~ (x) 

is a func t ion  of period I, for  which 

(x + h) - -  p (x) = Ch 

is independent  of x .  Le t  again 

M = l . u . b .  p (x), m = g .  l. b. p (x) 

and o < ~ < M - - , - - m  in case p(x)  is no t  a constant .  Le t  3>----Xo > 2  be such, 
3 

tha t  p ( X o ) > = M - - ~ ,  and let  xl be such t h a t  p ( x l ) = < m + e  and x o < x  1<_-4. 
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Then  for  h : x ~ - - x 0 ( o < h ~ 2 )  and any x > o  

p (x + h )  - -  p (x) = p (x l )  - -  p (Xo) = ch  _-< m - -  • + 2 ~. 

P u t  x = x o - -  h ( >  o). Then  

m - i + 2 ~ >__ p (Xo) - p (~o - h) >= ( M - -  ~) - -  i = - -  ~, 

as M = I. u. b. 19 (x). Consequent ly  

3e>=M--m,  

which leads to a contradict ion.  Thus  p(x)  is cons tan t  and theorem ]3 proved. 

Theorem B': Le t  g(x) have a cont inuous  der ivat ive  for  x > o .  L e t  g'(x) 

be monotone  non-increasing and lira g'(x)~ o. T h e n  all s t r o n g l y c o n v e x  solu- 
x - -  ~c 

t ions of (I) are of the form 

( s )  / ( x )  = c -  z x - 9 (~) - ~ (g (x  + t,) - ~ (t,) - x g '  (,)) 
te~l 

where C : f ( I )  and 

7 = lim (re)-- g(~ . 

Proof :  According to theorem B we only have to show, t h a t  the f(x) given 

by (8) is a convex solut ion of (I). I n  order  to prove the  convergence of the 

infinite series, it  is sufficient to note,  tha t  i t  obviously converges for  x = o and 

tha t  the series ~,  [g' (x +/z) --  g' (u)], obta ined by formal  different iat ion,  converges 

absolutly and hence un i formly  for  uni formly  bounded  x owing to the  same ar- 

gumen t  as used in the proof  of theorem A'). Moreover  

f ( x  + I ) - - f ( x ) =  - - 7 - - g ( x  + I) + g(x) 
ov  

- -  Z [g(x -~- , "F I ) - - g ( x  -~- , ) - - g ' ( , ) ]  
tt~l 
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as 

besides 

�9 g( f 
l im [g (x + n + I) - -  n)] -= lim g' (n 

0 

+ y) dy = o; 

f ( I )  = C - - y - -  g(1)--  Z [g(I -~- ~t) - - g ( ~ ) - -  g'(~$)] 
/~,=1 

= C - - 7 + l i m  g ' ( ~ ) - -  g(n  + I = ( 2 .  

The convex charac te r  of f(x) is obvious. 

Note: The  assumption of strong convexity of f(x) cannot  be weakened to 

convexity alone. There  are under  the  same assumptions  for  g(x) as in theorem 

B' always many  o ther  >>convex>> solutions, at  least  on the  basis of Zermelo's  

axiom. F o r  with g(x) also g ( x ) - -  I satisfies the assumptions.  Thus the equat ion 

F (x + I) - -  F (x) -~ g (x) - -  I has a s t rongly convex solut ion F(x) .  Le t  now ~ (x) 

be a discontinuous solution of the funct ional  equat ion  ~ (x + y) ---- ~ (x) + ~ (y), 

which may be chosen in such a way, t h a t  ~ ( I ) - ~  I. 1 ~(x)  is convex and 

q~(x + I ) = ~  (x)-~ I. Then  f ( x )=  F(x)+ q~(x) is a d iscont inuous convex solu- 

t ion of our  equat ion (I). 

E x a m p l e :  For  g (x) -~  log x the assumptions of theorem B' are satisfied. All 

s t rongly convex solutions of (I) will t hen  be g iv en  by 

f ( x ) ~ - / ( I ) - - T X - - ~  log I +  - -  - - l o g x  
~ 1  

where 7 = lira - - l o g  n is Euler ' s  constant .  Hence  

+ log r(x) 

and we regain t h e  theorem of H.  Bohr.  

I t  seems possible to ex tend  the  preceding theorems in various ways to 

equat ions of more  general  ~ype than  equat ion  (I). An e~tension to difference 

equat ions shall be given here.  

1 Such solutions are constructed by Hamel: Mathematische Annalen 60, p. 459--462. 
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Theorem C, Given the difference equation 

(9) aof(X + n) + a J ( x  + n - -  I) +. . .  + ant(x) = g(x) 

with constant  real coefficients ak for a funct ion f (x)  defined for x > o. Le t  all 

roots of the characterist ic equat ion 

(IO) F (O)  = ao O n + gtl e n - 1  § " " "[- ( tn  = 0 

be simple and of absolute value I (real or imaginary).  

I f  Q--  + I is a root of (1o), and if lira g(x)= o, then  the difference of any 
x ~  av 

two monotone non-decreasing solutions of (9) is a constant.  

I f  e + I is not  a root of (IO) and if l im'q(x) = - - =  o, then  there exists at  
x ~  oo 3C 

most one monotone non-decreasing solution of (9). 

Proof:  Le t  f (x)=q~(x) and f ( x ) =  ~p(x) be two monotone non-decreasing 

solutions of (9). Then 9~(x)--~p(x)~P(x) is a solution of the corresponding 

homogeneous equation. Hence P(x) is of the form 

P ( x )  = 

b e ~ l  

where the p~(x) are functions of period I, determined by the system of l inear 

equations 

P ( x  § h ) =  (h ---- o ,  . . . ,  , - -  

! ~  1 

the de terminant  of these equations is ((~l . .  �9 Qn)~'II (Q~- (~k) ~ o. As difference 
l>k  

of two monotone funct ions P(x) is bounded in every  positive finite interval;  

hence all pi(x) are bounded everywhere. 

W e  cannot  assert, t ha t  P(x) is uniformly almost periodic in the ordinary 

sense, at  i t  is not  necessarily continuous.  In  spite of tha t  the existence of a 

relatively dense set of t ransla t ion numbers of P ( x ) f o r  every e > o is easily 

established. Le t  e~=e~ and let B - ~ M a x  (I § According to Kroneeker 's  
k 

i Cf. e. g. P. M. Batchelder: An introduction to linear difference equations, Chapt. I, w 4, 
(the proofs given there have to be modified slightly for the case of non-analytic solutions) or 1NSr- 
lund 1. c. p. 29~--6. 
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theorem I there is for given ~ > o a number  1 such tha t  every interval of length 

l contains a solution x of the n + I inequalities 

I ~ x l  ~ ~ ,  '~ I z~ x l  =< ~ g ( m o d  2 7~) (k = I , . . .  , ~);  

i f  y is the integral  number  nearest  to x,  

l i l y  I < ~(I + H ) <  
B 

(k = I,  . . . ' ,  n). 

Thus every interval of length L = l  + 4 contains an integral  number  y, for 

which all I Zkyl-<_d (rood 2~). Then 

Ip(x + y ) -  P(x)l = ~ b~(x + ~,,,~o~+~, - ~(~)~) 
l = l  

__< ~ b,(~,'/I. I ~ ' -  ~1--< ~ 
l= l  

for sufficiently small d----d (s). 

Le t  P(x) not  be a constant.  Then there are two values x 0 and xl,  such tha t  

I P ( x o )  - -  P ( x l ) l  = 3 ~ > o.  

Hence, if y is a t ransla t ion number  per ta ining to e, 

[ ~)  (X 0 + ~]) __ .~O (X 1 + ~)] ~ $. 

Thus the tota l  variat ion of P ( x )  is >_--e in every interval  of sufficient length. 

Le t  N be such, t ha t  the  tota l  variat ion of P (x)  ~--- 99 (x) - -  ~) (x)  is ~ e in 

every interval  of length  N. As the to ta l  variat ion of /)(x) is at  most  equal to 

the sum of the tota l  variations of ~0(x) and ~(x)  and as those funct ions are 

monotone,  we have 

(x + iv)  - ~ (x) + ~ (x + iv) - ~ (x) >_ ~; 

hence for every positive in teger  rn 

1 Cf. e. g. J.  F a v a r d :  Lecons  su r  les  fonc t ions  p resquep~r iod iques ,  p. I 8 - - 2 I .  



Special Solutions of Certain Difference Equations. 185 

(x + m N) + ~ (x + ~ ;v) _>_ , ,  ~ + ~ (x) + ~ (~) 

and  consequent ly  

(, 2) l im inf  9~ (x) + ga (x) => ~ > o, 

unless .P(x) is a cons tant .  

The  solut ions of  (9) m a y  be found  by the  me thod  of va r ia t ions  of  con- 

s tants .  1 f ( x )  is of the  f o r m  

f (x)  = ~ q~ c, (x), 
I=i  

where  cz(x) is a solut ion of the  equa t ion  

~, (x + ~) - ~, (z) = 

This implies 

( I 3 )  

r (*) 
z+l P 

k--1 

~, ( .  + k) -=- ~, (x) + . , 

I f  lim g(x) = o, we have  
x ~ 

k--1 I I ,  ~ g(~ + ~) 
l im k I z.~ ~+~ 

and hence 

k--I 

- ~ _ ~ k  Z I~(x + ~)1= o, 

c~ (x + k) 
lira - -  ~ o, 
k ~  x + k  

l im f ( x  § k) _~ o .  
k--~ x + k  

I f  f (x )  is monotone ,  this implies 

I n  pa r t i cu l a r  

f ( )  
lira ~, ,x,~ = o. 

x ~  X 

1 Cf. Batchelder loc. cir. p. I 3. 

24--3932. Acta  mathematica. 71. Imprim6 le 4 juil!et 1939. 
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This constitutes a contradiction to (I2) and consequently P(x)is a constant. 

Thus the first part of theorem C is proved. 

If only lim g(X)=o," it follows from (I3) , that  at least 
x ~  r X 

lim - -  -- o. ~_~ (x + k) ~ 

Hence for a solution f(x) of (9) 

lim f (x + k) 
k - ~  (x + k) ~ 

and if f is also monotone 

f ( x )  (I4) }ira x~ - - = O .  

The function E ( x ) = ~ ( x ) +  ~ (x) is a monotone non-decreasing solution of the 

difference equation 
3, 

2 ]  a . ~ ( x  + ~) = 2 ~(z);  
ke=0 

according to (I2) and (14) 

I X2 (I5) 2 ~ x  < ~(x) < 

for sufficiently large x. 

Let now Q-- + I not be a root of (Io): Then 

Let ~ [ a ~ [ : A .  

(~6) 

I f  

n 

.~ a ~ d ~ o .  
/z=O 

x (~ + ~) - ~ (x) < ~ ]  I2 (x) l, 

then also 

I~! ~ x ~.(x+ i ) - - ~ . ( x ) < ~ - ~ [  ( )1 ( i =  o, . . . ,  ,), 

and 
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Consequently 

! I1 o ! I # = o  = 

--< ~. I~,1 [4 (z + , )  - z (x)] __< I,)1-14 (x) l .  
:2 

# = 0  

I,q. IZ ( x ) l -  I= g (~)1 =< 12 g ( x ) -  ,~ 4 (x)l-_< I,~1.14 (x)l, 
2 

But  for  sufficiently large x 

14(~)1 < 4 Ig (x)l 

Ig(x)l < I ~  .x .  

Thus  [Z(x)[ < I - ' ~ - x ,  and we are led to a cont rad ic t ion  with (I5), unless P(x) 
2 

is a constant  or (I6) does not  hold. 

Therefore ,  if P(x) is not  a constant ,  we have for  all sufficiently large x 

4 (x + ,) - z (x) > I~l Ix (x) l, 

f ~ ' l  Z(x) 4(X "{- n) >~ I 4- 2 A /  

as 4 ( x ) >  o for  large x according to  (I5). Bu t  t hen  4(x) would increase ex- 

ponent ia l ly  with x ,  which also contradicts  (I5). Hence  P ( x ) = - c o n s t .  ~ - C .  As 

C would have to be a solution of the homogeneous  equat ion belonging to (9), 

C .  6 ~ o and hence C ~ o. This  completes the proof  of  theorem C. 

Example: The previously considered equat ion  

f ( x  + ~) + f ( x )  = log x 

can have at most  one monotone  non-decreasing solution. Th a t  

given by 

f(x) = log r(;) 

solut ion is 
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Theorem D. Let g (x) be defined and continuously differentiable for x > o, 

and let all roots of  equation (Io) be simple and of absolute value I. 

I f  lira g' (x)= o, every two strongly convex solutions of (9) differ at most 
x ~  oo 

by a constant. 

I f  + I is not a root of equation (Io) and if lira g' (x)= o, equation (9)has 
x ~  X 

at most one strongly convex solution. 

Proof: I f  f(x) is a convex solution of (9), then for h > o u (x) ~ f ( x  + h ) -  
- - f (x )  is a monotone non-decreasing solution of the difference equation 

ao u (x + ~) + a l  u (x + .  - i) + . . .  + an u (5) = g (x + h) - -  ~ (x).  

As g ( x + h ) - - g ( x ) = h ' g ' ( ~ )  we have 

l i m [ g ( x + h ) - - g ( x ) ] ~ - o  or lim g ( x +  h ) - - g ( X ) = o  
X ~ z  ~ O o  X 

respectively. Hence, according to theorem C, f (x  + h)- - f (x)  is uniquely deter- 

mined except for an additive constant. Let f(x)----9~ (x) and f(x)--~ tp (x) be two 

convex solutions of (9). Then P(x)-~q~(x)--~p(x) is a solution of the homo- 

geneous equation. Besides for h > o 

(I7) (x + h) - -  ~ ( x )  = cons t .  = CA. 

As difference of two convex functions P(x) is continuous. Thus P(x) is 

representable in the form (I I) with continuous functions 2,(x) .  The p,(x) being 

continuous and of period I are uniformly bounded. Therefore P(x) is bounded. 

But from (I7) P(x + kh) = P(x) + k CA for integers It. The boundedness of P(x) 
implies, that  Ch----o for every h > o. Thus P(x) is a constant. 

Is )  

Similar uniqueness theorems may be exspected for equations of the form 

1 

f f ( x  + y) K(y) dy = g (x), 
0 



w h i c h  c o r r e s p o n d s  to  

s o l u t e  va lue  I. 
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u n d e r  s u i t a b l e  c o n d i t i o n s  f o r  K a n d  g.l Of  p a r t i c u l a r  i n t e r e s t  in  t h i s  connec~ 

t i o n  seems  to  be t h e  case,  in  w h i c h  a l l  r o o t s  o f  t h e  e q u a t i o n  

1 

f e~ K (y) d y = o~ 

0 

t h e  c h a r a c t e r i s t i c  e q u a t i o n  (IO), a r e  s i m p l e  a n d  of  ab-  

1 For equations of type (I8) see F. John: Bestimmung einer Funktion aus ihren Integralen 
fiber gewisse Mannigfaltigkeiten, Mathematische Annalen IO9, p. 488--520, and J. Delsarte: Les fonc- 
tions ,,moyenne-p6riodiques,,, Journal de Math6matiques pures et appliqu6es, vol. Ioo, p. 4o3--453 . 


