ON CHARACTER SUMS IN FINITE FIELDS.

By

H. DAVENPORT
of MANCHESTER.

1. Introduction.

Let ¢=1p® be a power of a prime p, and let [¢] denote the finite field (or
“Galois field”) of ¢ elements. Let f,(x), ..., /»(x) be polynomials over [g], and
let %4, ..., x» be multiplicative characters of [¢] with the convention x(o)=o.
A character sum is an expression of the form

(I) S(f: l) == le (fl (@) S Xv'(fr@))-

x in [q]

We shall make the (trivial) simplification of supposing that y,, ..., y- are non-
principal characters, and that f(x), ..., f»(x) are different normalised® polyno-
mials, each irreducible over [¢]. Let %k, ..., %k denote the degrees of these
polynomials, and let K=4F%k + --- + k.

In connection with any such character sum we define a function L (f, y; s)
of the complex variable s==0¢ + ¢¢ which is in fact a polynomial in ¢—* of de-
oree K — 1. These L-functions are essentially the same as those obtained by
Hasse® as factors of the congruence zeta-function of an algebraic function-field
generated by an equation of the form "= f(x). The object of this paper is to
give a more direct and elementary account of these L-functions.

The definition is as follows. Let (f,9) denote the resultant of two nor-
malised polynomials f(x), g(x) over [¢].> Let

! A normalised polynomial is one in which the coefficient of the highest power of x is I.
? Journal fiir Math. (Crelle), 172 (1934), 37—54.

g = Hf(zp), where @ runs through the roots of ¢g(x) = o.
&
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(2) 0=t (o 9) - 2 for 9)

where the summation is extended over all normalised polynomials g(x) over [g]

of degree ».' Then

(3) L(f, 7; 9) Zm

The results which will be proved fall under three heads.

(I.. If h is any positive integer, the field [¢"] is an extension-field of [g],
and any character y in [q] induces a character x" in [¢"]. This character is
defined by yW (&)= y(NE&), where N& denotes the norm relative to [g] of an
element & of {¢"]. Let

o SO D= DA ) - A )
§in[qh]

Let s, ..., sk—1 denote the different zeros of L(f, %; s), ignoring the period
27 in . Then |
log q
g — SO ) = o e,
In particular,
(6) — SR =a"+ - +gr

(IT). If g% ... z" 4y, (the principal character), L(f, z; s) satisfies the
functional equation?®

L —1)(1—s] =
(7) EEL, g = e D O LS, 71—,
where
o

(8) (i) =a > Voxn, le(fs )l =1.

ox—1 will be evaluated explicitly in terms of Gaussian sums and of the characters

of certain resultants of the polynomials f, ..., f.
If % ... x’;r= Xo» L(f, z; s) has the factor 1 — ¢—*. Writing

! For » = o, there is only one polynomial g, namely 1. Also ( » 1)=1. Hence ¢, = I.

® This was conjectured by Hasse (loe. ecit., 52). A proof different from that in the present
paper has been given (in an unpublished MS) by Witt.
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(9) M“%ﬂZ%%%§:®+¢T”“”+ﬁ4fW%,
L,(f, x; s) satisfies (7) and (8) with K — 2 in place of K — 1 and ox—» in place
of 0x—1. 0k—s will be evaluated explicitly.

(ITII). It is conjectured that the zeros of L(f, %; s) (apart from the possible

zero s ==0) all have real part ;— If K=2, and #% ... xf" = %0, then

L(f,z;89) =1+ 0,47,

and |01|=:q%7 by (8). If K=3 and zb ... z'"=y,, then

L(f,g;8)=(1—q)(1 + 0, ¢,

and |d,| = q%. Hence, in these two cases, the conjecture is true.

It is a deep theorem of Hasse' that the conjecture is true for K = 3 when
each of the characters is the quadratic character.

It will be proved that, in the general case, the real part of any zero
(except s=0) satisfies

(10) g =0=1—10p
where _
I 3
Oy =-1 O =7 =
(I I) 3 4 A 2 (K + 4) (K 4)
If gh . xf": %o, (10) ean be improved to
(12) Op1=0=1—0x,.

Combining (10) with (6), we have
(13) | S(f 0| = (B — 1) g%,

where 0k can be replaced by Ox_; if b . .. xf’z Lo+
The inequality (13) has several applications. The most obvious of these is
to the distribution of power-residues (mod p). This is discussed in § 9.

! Hamburg Abh. 10 (1934), 325—348.

® For K > 3, all previously known inequalities for S(f, x) dealt only with the case in which
all the characters are quadratic. For an account of them, see Davenport, Journal London Math.
" Soc. 8 (1933), 46—52. They are all weaker than (13) above.
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Another application is to a result of Bilharz on the distribution of the
irreducible polynomials (mod p) with respect to which a fixed polynomial is a
primitive root.! In the proof of this, the hypothesis® is made that the zeros of
L(f, y; s) satisfy an inequality of the type (10), where @k is independent of the

characters %, ..., . This, as we see, is the case.

2. Proof of (5).

In this section we shall take for granted the result {which will be proved
in § 4, § 5) that L(f, %;s) is a polynomial in ¢—* of degree K — 1, and shall
show how (5) follows from the definition of L(f, x; s). '

We observe first that the definition (3) of L(f, %; s) can be written in a
product form, analogous to the Euler product for Dirichlet's L-functions. Write,
for brevity,

X@=nlf,e) . w(fr 9
then X {g,9:)= X(g,) X(g,) for any two normalised polynomials g, g, Write
also |g| = ¢” for any normalised polynomial g of degree ». We have

L(f, 25 8) = ZY Hal™,

where the summation is extended over all normalised polynomials g over [q¢].
Since every such polynomial is representable uniquely as a product of normalised
irreducible polynomials, and since X(g), |g| are multiplicative, we have (for
Rs>1)

(14) LU 9= [[(1 = X(@| 6 [

o
where the product is extended over all normalised irreducible polynomials &
over [q].
It follows from (14) that

log L{f, 23 5) =3 3 5 X(¢7)] [,
@ v=1

On the other hand, if L(f, x;s) is a polynomial in ¢ with zeros s, ..., Sk—,

we have

! Math.. Annalen 114 (1937), 476—492.
% loc. cit. (20).
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K—1
(f ¥, §) = Z (Z qlzsz) —hs,

h=1

Comparing the coefficients of ¢~”* in the two expressions, we obtain

K—1

8 — l” ary
— Zq" | hzv)x((w)

Y v

l6v|= o

h
:Z”waﬂ
nh G
where, in the last sum, G runs through all normalised irreducible polynomials
of degree 1.
We now recall that the elements of [¢"] consist precisely of all roots & of
all normalised irreducible polynomials G over [¢] whose degree /' divides h. The

conjugates of such an element & consist of all the roots of &, each counted W
times. Hence
h
08 = v gie =z @)
Thus

G A= (GZ)

Summation over all elements & of [¢"] is equivalent to summation over %’ and
G- under the same conditions as in (13), and each polynomial G arises from 7’
different elements £ Hence the sum (135) is equal to S™(f, ) and (5) is proved.

3. Preliminaries.

Gaussian swms. Denote by ©z the absolute trace (Spur) of an element z
of [g], 1. e. its trace relative to [p]. Corresponding to any non-principal character
% of [q] there exists a Gaussian sum defined by

(16) (1) = D1 lw) e (©a),
in {g]

2mwin
where e(u) is an abbreviation for ¢ ? .. Tt is well known that
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(17) Iz =V4q.

If, in (16), we replace x by ax, where a & 0 is an element of [¢], and change
2 into the conjugate complex character 7, we obtain the useful formula

1

(18) 1=t 3 ) e(@wa).
t(7) &
xin (¢}
This formula is obviously also valid for a« = o.
Let h be any positive integer, and let 4", as before, denote the character

induced by x in [¢"]. Let
(19) V() = 3 (6) e (SE),

gin {o"]
where ©§& again denotes the absolute trace of §& It was proved by Davenport
and Hasse! that

(20) )= (= )

A more elementary proof has been given by H. L. Schmid.®

Basis for a finite field. Let 9 be any generating element of [¢*] relative to
[¢], so that 1, &, ..., 9*! form a basis for [¢*| relative to [g], i. e. every ele-
ment £ of [¢%] is representable uniquely as ‘

E=xy+ 2,9+ - + Zpg IF1

with z,, . .., @ in [q].
There exists an element A of [¢*] such that

Ispl:Splﬂ’: :82)2‘19.’{—2207

21
(21) | sphFPF =1,

where sp denotes the trace of an element of [¢*] relative to [g]. For the equa-
tions (21) are % linear equations for 4 and its conjugates, and are easily seen to

have the solution

p=T[e— 9,

a9

where % runs through the conjugates of 9 other than 4 itself.

! Journal fiir Math. (Crelle), 172 (1934), 151—182. The Gaussian sums are defined there with
a negative sign prefixed.
? Journal fiir Math. (Crelle), 176 (1937), 189—I191.
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If an element & of [¢*] has the form
(22) E=uy+ud+ - F g PTG (tgy - . . in [q}),

—

where 0 <» = k — 1, the equations (22) show that'

IE=splFE= - =spl P E=
(23) jopdE—epd 55 e S
spAITTTE = 1.
It is plain that as wg, ..., # ran through all elements of [g], £ runs through

all elements of [¢f] which satisfy (23).
Simultaneous basis for several finite fields. Let ky, ..., k be positive integers
(not necessarily different), and let K =%, + -+ + k.. Sets

Crgy - v vy Cp; gy« v oy ap a2, PN Cipy « vy OKy
of elements of [¢%], ..., [¢"] respectively will be called a simultaneous basis for
‘these fields relative to [q] if every set &, ..., & of elements of [¢"], ..., [g%]

respectively is representable uniquely as

Si=wiai+ - txrag (f=1,..,7),
where x,, ..., xy are elements of [g].
Let 9, ..., &, be generating elements of [¢"], . . ., [¢"r] respectively, relative

to [q], and suppose also that no two of the ¥'s are equal or conjugate. Then

LSy L, L s Dy, L, SE
form a simultaneous basis for the fields. For, as x), ..., xx— run through g},
the elements &, ..., & defined by
Si==uwy +x; M+ -+ xpa «‘)Z‘;‘l
run through ¢F = ¢"* " +% sets of elements of b[q"'l], .. lg". Thus it suffices

to show that these sets are all different, i.e. that there is no non-zero set of

x's for which
xy by D+ o+ I =0

for «=1. ... r. This is so, since the determinant of the K linear equations

formed by these equations and their conjugates is not zero.

Y If » = k — 1, the first line of (23) is empty.

14—3932.  Acta mathematica. 71. Tmprimé le 15 mars 1939,
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Let &, ... 9 be a set of generating elements, as above. There exist

elements 2,, ..., 4 in [¢"], .. ., [¢¥] respectively, such that

r , 1.
Nsphi= Dsplii= = D splyIF— =o,
i=1 - pa
(24) |
l ZSp Jih— =

i==1

where spA; 9! denotes the trace of 1;9!, considered as an element of [¢*], rela-

tive to [g]. For, denoting by Al =2, A% .. | l&ki) the conjugates of 1; relative

. _— S s
to [q], the equations (24) are K linear equations in the K unknowns 2V, .. 227,

r

Their solution is easily seen to be

(25) D= H (9 — 91,

where ' runs through all of ?y, ..., 9 and their conjugates, except J; itself.
We observe that if a set &, ..., & of elements of [¢%], .. ., [/*] has the form

(26) =y + ;% + -+ wp FT S (Mg, .., wy—1 in [g]),

where 0 =» =< K — 1, then (24) show that!

r r

Z sp Ai é.[ === Z' sp A ¥ §,; e == Z sp Ai 1‘)'5‘(_2_" g; = 0,
=1 F=:1 Fez=l

(27)

”
Z sp i r.‘)j"“l“" £ =1.

i=1

Tt is also plain that if #,, ..., #,-; ran through all elements of [¢], then &,, .. ., &,
defined by (26), run through all sets which satisfy (27).

4. 'Theorem 1.

Let ¥ be a root of fi(x)=o0 (=1, ... ). Since fi(x), ..., fr(x) are
different normalised irreducible polynomials, no two 's are equal or conjugate.

VIf v = K ~ 1, the first line of (27) is empty.
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Thus they form a set of generating elements of [(]"*],‘. .o lg*] of the kind
considered in § 3.

Let ;= x‘;’:’\’ be the character induced by y in [¢%]. Let
A Ky
e=gh oo (— 1)

Theorem 1. Vo v= K, 6,=0. Foro=v=K-—1,

o= 2P (&) (S,
Sonn 3y
(2m)
where &, .. & run through ol dements of (g%, ..., [¢%] respectively -which

satisfy (27).
Proof. If g{x) is a normalised polynomial of degree », we have, by the
definition of the resultant, ‘

(for 9) = (= 1}l (g, fi) = (— 1)} Ng (%),

where Ng(&;) denotes the norm of g(9;), considered as an element of [¢%], rela-

tive to [¢). Hence
2 (for @) = 2 (= 1) i (g (9).

Let g(x)=a" + .2 + -~ + u,. By definition,

g = N (fo o) o 2 (frog)
Moy ooy My
in [q] !

(28) = 81’2’% (g) oo (g ).
Moy ooy Uy
in [q]

In view of the remark made at the end of § 3, this establishes the second result.

Since
I, 'l(}'l, ey 1‘)'{‘7_1; [P Y 1')‘7-, ey 1‘)"‘[\'—1
forms a simultaneous basis for [gh], ..., [¢%] it follows that, if v = K, ¢(3),
.+ g{%) run through all elements of these fields as u,, ..., ux—; run through

lq], for fixed wx, ... w,—. Hence, if v = K,

=g ER o SyE) . wlE) =o.

siinldh] g [gh]

This completes the proof of Theorem 1.
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5. The Functional. Eqguation, and the Value of ox_,.

Let fi(x) denote the derived polynomial of fi(x), and let

(20) A= (5 AL 1)
i

for =1, ... 1 Since fi(x), ... fr(x) are different normalised irreducible

polynomials, A4; == o.

Theorem 2 (). If 2% ... 77" 1,

s

- D R 1 TR L
(30 B R L | (=T
2 VAN Z,.) ket

Also, for v=o0, 1, ..., K—1,

(3 I) Qr _ Ox-1 o-,l,‘ifl_" B
P -
a

Lig—1)

q

I

q°
Proof. 1f a is any element of [¢|, we have

Z(f(@ ‘b)) == foif a=o,

tin [q] lq if « =:0.

Suppose that o <» < K— 1, and let ¢, ¢, ..., tx—1—, be any elements of |q].
Let t(x)==t, + - + ty—1— ¥~ The value of the sum

2 e (@ (Z spri&it () — ?J;~—1-r))

fos oo t](—l-—v im=]
in [q]
is zero unless &, ..., & satisfy (27), in which case it is ¢¥—. Hence, by

Theorem 1,

av \ \ g .
o= ke 2 > Q) we(E) X
oy ooty —p diin [qu} ipin ['Ikr]

in[ql

i=1

xe (@ (2 &p A ;:7 f(x‘),) - t](...l.—-;v)) .
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B:Y (18)7
2 9le (B (o 4o & (1)
i in [¢"7]
== wl(;‘”f(:}lb T (wl)

- . . <) )
Since, in the notation of § 3, Y. =y4,", we have

and, by (20),

By (23),
);_1 == II (19',, - ()")
P’y
- fl ('9'1') II f/ (‘9‘1):
izl
hence '

'j {:
We have, therefore,
0, = A_,][ —1 ’-—l/t ) Z, W (t o (PO e(— S tr—i—).
for -ty —y

In the sum over the #'s, we consider first all terms for which ¢x_;—, = O,
With any set £, ..., tx—— (not all zero) occur also all sets wuty ..., wtg—o—s
for any u <=0 of [g. The contributions of these two sets ditfer by the factor

Yo ) =gk 7 ().
Since
" _k,
Z ooz =o,
# in [q]
w0

the total contribution of the terms under consideration vanishes.
In the terms for which #x_;—. == 0, we write

b = tk—1—v U},

g@) ==y + @+ U gR T gl
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Then the sum over #,, ..., fx—i—, becomes

2lg@) o (g On) D -y z‘;\—1~).( S th—m1—).

oy oy Uy e q—y i 4]
in [q] e ey 0

The value of the sum over #x-;— (in which the condition fx_;—, + 0 may now
be omitted) is

- ky
_>_ b 77t e(— St = ( C 27_’).
The sum over the w's gives

by (28).
Hence

ekt gy o ()t 44 o
(52) g o (I e 0 o
using (17). Taking v= K — 1, we obtain (30) (since g, = 1). Finally,j (31) follows
from (32) and (30). ‘_
The relations (31) are equivalent to the functional equation (7), and (8)

follows from (30) and (17).

Theorem 2 (b). If x sy O 4 o+ o =0, Af o, =
=gy'+ - + 04, then
7
, 1 . : -

(33) T Ok == Op— == q LAVALINN T(Zf')k"ﬂ (= Dt g (4)).

i=1
Also, for v==0, 1, ... K —2,
(34) o _ ff’ff:." Ok
34 Iv k-2 H(E--2—)

q* q? q-

Proof. We note first that ¢ = % . .. x]r’(—— 1) =1.
If &, ..., & run through all sets satisfying (27), and « runs through all
elements of [¢} except o, then u, =ak,, ..., 5 ==a& run through all sets satis-

fying
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(35 a) 2, sphin; = Z sphsFimp= -0 = Z sp hi 9E=q = o,
i—=1 -1 [e=1
(35 b) 2 sp A 19["““1”‘" n; = 0.
i1

Hence

(0--1)0, = 2 L (771> ce Wy (777')-
(3‘5:,&'),' (3; 7i})

It follows that
(36) (= Dlom+ o+ - Fo)= Sy (n) .. vn(n).
Yesa "
Taking » = K — 1, the conditions (35 a) disappear, and we obtain
| (/;fl)(aavL S Opg) = 0.

Replacing the conditions (35a) by summations over variables 7, ... tg—s,
as in the proof of Theorem 2 (a), we have

’ - . v
(@—1)0 = R > D 2 ) o e X
fo, - - ;ntli\;]'i—‘:’»——l #iin -['7["j 7y in [(Ik’.]

X e (@ (27 sp A& f(.‘)‘f)))

=1

r .
I o . - o )
= K—1—» 1[ (— 1)t Z::(Ai)’l(xi)]‘izlﬂl (tG90) e (t09).
1 i=1 loy o oy
in {q]

As ty, ..., tx—s_, run through all elements of [¢], t(&,), . .., #(J) run through
all sets 7, ..., 5 of elements of [¢gh], ..., [¢*] which satisfy (35a) with »

replaced by K-—2 —». Hence

7

. ’ I . . ,;
(37) (1 —1)o, = = (H (— I)"'”’Z/(Af)f(lf)’”") (4 — 1) Ok—20
71

Taking » = K — 2, we obtain (33) (since o, = 1). Finally, (34) follows from (33)
and (37). 7

The relations (34) are equivalent to the functional equation (7) for L, (f, x; )
with. K — 2 in place of K — 1, and the modified form of (8) follows from (33)
and (17).
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6. Inequalities for the Zeros.

In this and the following sections, the constants implied by the symbol O

depend only on K.

Lemma 1. If
(58) S (£ ) = 0(g"=) fo<e=))

as h tends to infinity through all multiples of a fixed positive integer k, then all
zeros of L(f, x; s) (exeept s =0) satisfy
0=0=1-0.

Proof. By (5), the hypothesis is equivalent to

qh b _(]”"‘K—l = () (q(l—ﬁ)h)

as h—~ o, kih. Let o be the maximum real part of any of s, ... sx,
attained, say, for &, ... s7. Let ¢ be the maximum real part of any zero
other than |, ... s7. By Dirichlet’s theorem on Diophantine approximation,

there exist, for any ¢ > o, infinitely many A, all multiples of %, such that
gttt — 1| < e
for I==1, ..., L. For such values of &,

jg" + -+ gv—1|> (1 — e Lg" — (K — 1 -— L) g
Hence _
0" = 0 (") + 0 (q?").
Since ¢ << g, this implies 6 =< 1 — 6. Finally, by the functional equation (7), if
s3=0is a zero of L(f, ;) then 1 — s is a zero of L(f, 7, s).
It is an interesting consequence of Lemma 1 that any inequality of the

form (38) automatically implies a more precise inequality. If
S, 7) = Olg—r+)

for any ¢ > 0, as h > % through multiples of a fixed integer %, then, by Lemma 1

and (5),
| S, 21 % — g

for all h. Such a state of affairs is familiar in connection with the Riemann

zeta-function.
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Let / denote the least common multiple of &, ..., 4. Leta, ... «x
denote &,, ..., Y+ and their conjugates. ¢, ... e¢x are all elements of [¢*],

and are all different. If %!k, f;(x) splits up into a product of linear factors in

", and we can write

(39) SU - 2 ) e ),
Zin Tyt
where ¥, ... W are characters of [¢"], 4; of them being equal to y (/==1,...,7).

From now onwards we consider the sum

(40) S~ 8Sley, .. noag; Wy oo, W)= PF E+qa)... Fr(E+ ap),

P
Fin [Q)
where «,, ..., ax are any elements and ¥, ... ¥y any characters of an
arbitrary finite field [¢:. It will be proved in the next two sections that if
«;, ..., ay ave all different, and ¥,, ..., ¥y are non-principal, then
(4]) S == O(leul\')
as ) -> %, where 0y has the value given in (11).
Suppose for a moment that ¥, ... ¥y is the principal character and that
«,, ... ay are different. The change of variable £ - —«y +  in (40) gives
-

(42) Sley, ..., ax; ¥, ..., Fr) =SB ..., Sn—1; P, ..., Fro)+ 01),

where |#|: -1 and

(43) Bi= ! (f=1, ..., KN—1)

o, — Qn

Hence any inequality of the form (41) which is valid for all sums with K factors
for which ¥, ... ¥y is the principal character is also valid for all sums with

K — 1 factors without any such restriction, and conversely.

7. The ecase A == 3.

In this section and the following one, all variables of summation run through
'Q)], subject to any restrictions explicitly imposed.

We note here for convenience of reference two formulae resulting from
linear transformation of the variable. Firstly, from the transformation & ==
= —a, + (@y — @) We obtain

153932, Adcta mathematica. 71, Tmprimé le 15 mars 1934,
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(44) | S(ay, @y ay; Wy, Fy, F)| =S80, 1, «; ¥, ¥, )|+ 01),
where

. RS
(45) =

Secondly, if ¥, ¥, ¥, ¥, is the principal character, successive application of (42),
(43) and (44), (45) gives

(46) |S(({19 <o Oy 11;1’ LS} 11)‘4) ‘: S(Oa 1, a; qili zp‘__)’ ng)l + O(I)v

where
. o, — ag) (g — @)
(47) s it

Lemma 2. If «,, a,, ay are different elements of (@), and ¥, ¥,, ¥, are non-

principal characters of [Q), then
Slay, ey, oy ¥, Ty, W)= ()(Qij)~

Prooft By (44) it is sufficient to consider S= S(o, 1, «; ¥,, ¥,, ¥,), where
«+0, 1. We have

|S|P = Z Z‘Fl E W, () W&+ )W (p + D (E+ )Py {y + ).

This is unaltered if we impose the condition % == 0. Writing §= 5 {, we obtain

ISP:Z.‘P}(QZ:}@(’?@ + 1)?‘2(1] + 1)‘1’3(77’;' —+ f‘)lps(’] + C‘)
£ 50

«

I R cp s . :
le(:’ I, Z a; Wy, ¥, Fy, lp'})' -+ ()(Q\)

t

A

O

« are all different.

If we impose the condition { = 1, «, ;, the elements é, 1, a
Hence, by (46), (47),
51 = D800, 1, 7005 s # #9] + 010)

£+0,1, a,a

where

! This proof is cssentially the same as one given in a previous paper (Journal London Math.
Soe. 7 (1932), 117—121).
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(1 —a)?f

78 = A=
The number of solutions of y({) =y for given y is at most 2. Hence

[SPF=2 2180, 1, 7 ¥y Py, F)| + 0(Q)
,

liA

(48) 2]/ @ 318, 1, 71 Wy o W)+ 0(Q)
by Cauchy’'s inequality.
Now

ZIS(O’ I’ ;/) iP‘-.’y 72[1‘27 1F.‘)')l:!

ar

= Z. W, (S) P&+ 1)@, (77) v, (77 + I) 2 v, (E + 7') éP.z (77 + 7)-

ar

’ I
Al itino ~ = ~ ~—
so, writing » g
MEE A+ )Wy +y) = 2‘ P (1 + E—ny)
k ' =0

e

The last sum has the value ¢ — 1 if § =1, and — 1 otherwise. Hence

2 IS (01 I) 77 'i'[fzv ZP‘:_” qi:i)lzi ((l)2)

Substituting in (48) we obtain the result enunciated.

Theorem 3. If (a) K=3, w (b) K=4 and 7% ... 1" = 1o, the zeros of
L{f; 73 s) {exeept s = 0) satisfy

1A
i

1

s=3.
4 4
This follows from Lemma 2, in virtue of Lemma 1 and the remarks made

in § 6.

8. The case K > 3.

The proof of (41) in the case K > 3 uses quite different ideas from the

proof for K = 3 just given.'
! The proof is a refinement and extension of a method previously used in connection with
a special casc of the problem (sce Quarterly Journal of Math. 8 (1937}, 308—312).
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Let R be any positive integer. For any I, ..., {r of [¢] we define

l(gl e {;H) == Z('(@icl El + ok glﬂ}-:jvr;),

S s SR

where X, =5+ - + &g, ..., Zx=2§ ... §r denote the elementary symmetric

functions of &, ..., &, and © denotes the absolute trace of an element of [@].

Lemma 3. I TEy, - )P = R (Jé”.

LISICIIS) E]L

Proof. The sum is

o\ | [N N A N
S0 S @Em =0 LX),
Sooouwip N n¥p Guouip

where X', ..., Y, denote the elementary symmetric functions of &, ..., &
The sum over the {'s is zero unless ¥, =3X';,, ..., Zp=2X'p, i.e. unless &;, ..., &'r

are a permutation of &, ... & Hence the result.

Lemma 4. Let ¢, ..., ax be different clements of [Q] and ¥, . . W be
non-preneipal characters of [Q), and let S be the sum (40).  Then

. . : 'y
[S|F=< @™ 2 K 2 Z i o] 11 Z niak “', Cen Z i
i1

N oo N =1
q;,:i-»l), Lo MK

Progf. We have

SE= D (& + e .. Exta)) o FrlE +aw .. Ertoen)
S in :
Hence, by (18),
——e B W p T P (k) (Z o ) r i mekl, i\;.m
t(F) ... t(Fx),, _‘_“"fw\ bt = iy

Using (17), the result now follows.
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Lemma 5. Suppose that, in addition to the hypotheses of Lemma g, ¥, ... ¥g
is the principal character. Let w,, us, ty, wy be elements of [Q) satisfying

(49) oy — Wty =1, paa; + =0 (t==1,... K).
Then
|S(ay, ..., ax; F, .. )| =80, ..., Bx; ¥, ..., )|+ 0(1),
where
PR (=1, ... K).
Mg it 1y

Progf. By the linear transformation

£ = /s —*,',,ff% .
pym oty

Lemma 6. Suppose that K = 5, and that a, ... ax are diflerent elements
of [Q]. The number of solutions of the K + 3 equations

X woai + uY S, (e oY
1 [ -] 7 1 I3 2 .
o =22 = A= j=o0,1,..., K+2
(s0) Zi w (.“3 a; + .“4) Zl g (.“/:; oy !"4) J ’ R ’
im= e ki
in clements ny, . i Ny e NEy My ety W o iy of [Q] subject to

’ ’ ’ ’
Al‘l/l /.LJ _— lIllz_l,l:).‘—'r"l,t 1[1.4 —‘[t‘_,‘us e I,

trg i+ gty #F 0, Wy + @ o0 (b==1,..., K)

s O(QF+Y),
S . e+ oy
Progf. Replacing Raci™ Uy

;- by «; it is sufficient to prove that the nummber
mger+ oy,

of solutions of

X Y
. 3 g @+ pay N ]
. N Ead BTN ] Ll =0,..., K+ 2,
1) b L

P
subject to the other conditions is O (QX). For there are O({?®) possible sets of
values for u'y, py, 'y

Suppose first that pu,, u,, us, u, are such that the two sets

My o+ uy My GK T
Boat SRR g TR vof Shad S

(52) Cyy ooy Opy : ’-
’ T T Wy g + 1y
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have at most two common elements. Then, since K = 5, there exist suffixes

1y, 43, t3 such that

(53) MGy & My G Yy G T
>3 Haai F g pe, b gy oy
are different from all of «, ... «,. Consider the equations (51) as K + 3
linear equations for 7'y, ..., 0'x, 4, Wi 7, in terms of the remaining K — 3 7's.

The determinant of these equations is not zero, since «,, . . ., ax and the numbers
(53) are all different. Hence, for given u,, u,, w,, 1, of the above kind, the
number of solutions of (51) in %, ..., 7x, %'y, - .., 'x is O(QF3). Also there
are at most O(Q% values for o), u,, 1y 11

’ Suppose now that g, u, pg, p, are such that the two sets (52) have at
least three common elements, say, without loss of generality,

ey vy )

Ly oyt 1y
=P C et =

= 4,
ty 0y + oty

(54) = 3y,

23

Uz Gy T 1y Uz €y + oy,

Here B, 8, 3y are three of ¢, ..., «x, necessarily different. The number of
possibilities for a,, a,, a; 8, 8 By is O(1). Given the values of these, there
are only O(1) possibilities for u;, ws, oy, u, to satisfy (54) and g, 10, — popey = 1.
For if this is not so, the linear equations

fy ey gy — gy ey 8y — gy By == 0,

fy Gy by — phg (g 8y == 11,3, = O,

py gty — pg ey By — 1y By =0

are not independent, i.e. there exist A, B, C not all zero such that

A+ B+ (=o,
Aa, + Be, + Cay=o,
AB + BB, + Cp,=o,
Ae B+ By, + Cay8y==o0.

Suppose, e.g., that 4 0. We have

A(“L_“s) + B(az——a3):O,

AB (e, — ) + Bg, (@ — g) = 0,
whence .
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A B — B ey — @) =0,
which is a contradiction.

Hence there are at most O(1) sets of uy, u, u,, 1, such that the two sets
(52) have at least three common elements. Given the u's, the first K of the
equations (51) determine 7, ..., 55 uniquely in terms of 3, .. ., 7'k, and so
in this case we again obtain only O(QF) solutions for (51).

Lemma 7. If K=y5, and « ..., ax ave different elements of [€)], and
#y, ..., Fx are non-principal characters of [Q) such that ¥, - Py is the prin-

ctpal character, then
8 == S(Cll, ey Oy zpl, Ce ey l[’,,() = 0 (Ql ;5)

Progf. Choose It = K + 3. Let s, w,, u;, u, be any elements of [¢)] satis-
fying (49). By Lemmas 4, 3,

| S+ 0 )|P/Q 2

Ty e WK
M0, L, N0

I K+2 K
e o 1 g
T (2 K (;45 o -+ 114) Z‘ )

7=1

Summing over all u,, us, 1y, p, satisfying (49), we obtain

(s5) @S+ o)+ = O(Q_'-AZP Crtay oo CF T Crvns - Co)|),
S ERpn
where P(lkya, ..., §,) denotes the number of solutions of the K - 3 equations
X nye; + u
ARUSRRY W Tl ot 3 R e -
1‘%1’% (‘usai“*‘!‘;) = ' o1 K¥z,
inomy, L N Wy, w, pg, w satisfying n; <o and (49).
Now

2 (P<'glx"i—2, LR C0>>2

SN2 -0t

is precisely the number of solutions of (50) as defined in Lemma 6. Hence

(56) '_ D) (Prra, oy L) = O(QFH).

By (55), (56), Lemma 3, and Cauchy’s inequality,
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P15+ 0= 007V e i)

—0 (QK+3+ g)
whence the result. l

3 . .o . k.
heor 4. lLet Op= - 2>— . JIf (o) K= ' = byt
Theorem et Oy (K + ) f(a) K=z 4,00 (b)) K= 5 and 7% . .. %,
== o, the zeros of L(f, u; 5) (except s=0) satisfy
O <0=1—0x i case (a),
and
O 1=06=<1—0k in case ().
This follows from Lemma 7, in virtue of Lemma 1 and the remarks made

in § 6.

9. The Distribution of Power-residues (mod ).

Let p be an odd prime, and let z;, ..., z. be any non-principal characters
(mod p). Denote their orders by 1, ... l.. Let &, ... & be any set of »
roots of unity, & being an l-th root of unity. Let E(e,, ..., &,) denote the num-

ber of sequences

x+1,x+2 ..., +n
out of ¥, 2, ..., p—1 for which
(57) nlE+ 1) =e, . gule + n) =
Theorem 5. | E(e, ..., &) — » < (p~fn + 1), where
PR
I 3
0, = -5 0, = ——-- = 4).
3 4’ n 2 (11 + 4) (“ = 4)
Proof.  The expression
—_ —_—9 9 — l‘——-
1+ &7y () + 72 @) + o g ) g ()

has the value /; if 7;(x) = & and zero otherwise (for x==0). Hence

p—n—1 =
E(, ..., &)= I‘*I**In 2’ H {I + &1y, (x+7)+ -+ 8?07—1) Zifml (@ + 7)}
{ ... In -

=0 7=1
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The error made in replacing the summation by one over a complete set of residues
(mod p) does not exceed 7 in absolute value. On expanding the product, the
right hand side then comnsists of I, ... I, sums. One of these has summand 1,
the others are character sums of the form

p—1
Z il i) .. Zele + 4,
=0
with non-principal 7', ..., %» where 1 <r=<#n. The sums for which r=1
p p 1 X

vanish, and those for which 7=2 have absolute value =¥ p < np'—f». By (13), the
absolute value of a sum with 3 <7 =< n does not exceed (1 — 1)p' % < np'~0,
where 6, is given by (11). Hence the result.

2{n+4) .
Corollavy. If w=4 and p>nl, ... L+ 1) * | there exists a sequence
z+ 1, ..., x+n satisfying (57).
For then
prr=nly o+
>nly . (1 + pTo)
>nly ... (1 4+ pTite),
whence
n (P~ + 1) < —r .
A
In the particular case of quadratic residues ([, = --- =1, = 2), the result

of Theorem 5 can be improved upon by the use of various devices.! Using the
theorem of Hasse, 6, can be replaced by é for n =4, 5, and using the result

of this paper, 8, can be replaced by

3

— e f =24, 22 .
2(2%'-%—3) or n w, 2n + 1

The University, Manchester.

! See Davenport, Journal London Math. Soc. 8 (1933), 46—52.

16—3932. Acta mathematica. 71. Imprimé le 8 mai 1939.



