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I. Let ~ ( o l ~ ) - -  I + 2 q + 2 q 4 + z q g +  . - ,  where q ~ e  i€ and ~ : x + i y  

is a complex variable. Let ~ be a quadratic surd, and let p2~- be the n-th con- 
q~ 

vergent of the continued fraction for ~. In a paper published recently in Vol. 

52 of the Acta mathematica (p. I43- - I68  ) I gave an account Of the asymptotic 

behaviour of #~(o1~ ) as z - -~  along the straight line x = ~ .  The chief result 

consisted in proving the existence of an integer H for which the following 

theorem is true. 

Theorem. Suppose a is a fixed number in the interval o ~ a <  I and R is 

a fixed integer in I ~ It ~ H. Let 

where 

4 

Let n tend to infinity by taking all values congruent to R (rood. H). Then }f y a~ (o1~) 

tends to a finite limit. 

Methods were also' given for calculating the limits for all values concerned 

of a and B. 

2. The object of the present note is to point out that the above theorem 

is true (with a suitable H, whose existence can be proved) for some other classes 

of irrationals besides quadratic surds. The irrationals considered here are inte- 
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resting as they include some s tandard transcendental  numbers like e, e 2 etc. As 

this note is essentially a sequel [ shall assume (to save lengthy explanations) 

tha~ this will be read along with the paper in the Acta  mathemat ica  cited above. 

I shall denote the latter shortly by an asterisk (*). The Lemmas I, 2, 3 , . . .  8, 

the equations (7), (I3), (I5) and the congruences (I7) referred to below are the 

ones tha t  occur in (*). 

Let  us consider an irrational (not necessarily a quadratic surd) and let its 

expression as continued fraction be t 

(i) [c,, c2, . . .  cn . . . .  ]. 

Let  c,, be the integer satisfying ~he conditions I _--< c,~ =< 8, c , ~  c,~ (mod. 8). Let  

the continued fraction (i) be such tha t  the sequence 

C1, C2, �9 �9 �9 Cn,  �9 �9 �9 

is periodic ~ with period r. We shall call such a continued fraction and the 

irrat ional  represented by it, residually periodic (rood. 8) with period r. For  these 

irrationals we can put  in evidence the periodicity of the c-sequence and write it  

in the form 

(ii) b ~ ,  ~ 2 , .  �9 �9 ~ . . . .  ( I [ ,  f l , 2 ,  �9 �9 �9 { l r ,  ( 1 1 , 1 1 2 , "  �9 �9 f i r ,  ' �9 �9 

the b's forming the non-recurring part,  and the a's the recurring part. Now 

with reference to (ii) we can introduce the /'-notation3; m and r being respectively 

the  number  of 5's and the number of e's fit (ii) and 7,, 7 . z , . . . 7 ~ , . . .  being any 

sequence we define 

/~(j) : 7 m  + ( j - -  1)r  + s 
: I ,  2 ,  

To indicate the relation between the 7's and F 's  we write as in (*)(7~}={I1~)}. 

Wi th  this notat ion let {c~}:{C~U)}. 

3. An examination of the proofs of Lemmas 3 to 8 shows tha t  these lemmas 

hold for all irrationals which are r e s i d u a l l y  periodic (rood. 8). The numbers 

c,~, p,~, q~ which occur in the lemmas have now, of course, reference to the con- 

1 T h e  n o t a t i o n  i s  t h e  s a m e  a s  t h a t  u s e d  i n  (*), p .  I 4 5 ,  t h i r d  f o o t - n o t e .  

2 F o r  t h e  d e f i n i t i o n  o f  a p e r i o d i c  s e q u e n c e ,  s e e  (#), p .  I 5 5 .  

8 S e e  (*), p .  I 5 4  , I 5 5 .  
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tinued fraction of a residually periodic irrationalS; the numbers m, r wherever 

they occur, should be taken to denote respectively the number of b's and the 

number of a's in (ii); and wherever the F-notation is used it should be considered 

to have reference to the sequence (ii). The proofs of Lemmas 3 to 8 will then 

be seen to hold verbally for residually periodic irrationals, with a few modifica- 

tions of a minor character. The changes required are as follows. 

On page I56 of (*), instead of the equations 

we should write 

IP ') = .3 Pi,,) 

i p~t,) = C,~h)p~) + p(h) 

= c 9 ) P i  + 

and in addition to the congruences (I7) use the fact that  

and so deduce 

C~') ~ C(~ k) ( rood.  8), 

/,(~,) _= p(k). 

The rest  of the proof of Lemma 3 proceeds as before. 

The second alteration is that  the equation 

C h + l  ~ Ck+l 

on page i6I of (*) should be replaced by the congruence 

ch+l ~ e~+l (mod. 8). 

The rest of the proof o f  Lemma 7 remains unchanged. 

Taking into account these alterations, it is easily seen that  the arguments 

used in (*) establish the existence of the numbers H, g2, m (of Lemmas 7 and 8) 

for a residually periodic irrational. 

4. Since Lemmas 3 to 8 hold for all residually periodic irrationals, it 

follows that  the main theorem of (*) will be valid for such of these irrationals 

as satisfy the requirements of Lemmas I and 2 also (with a suitable g). The 

1 When  we speak of res idual ly  periodic i r ra t ionals  in th is  note  the  modulus  concerned is 
a lways 8; so t ha t  we will drop the  phrase  )~(mod. 8),, for s implici ty.  
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i rrat ionals  ~ which we propose to consider in this note  are subject  to the fol lowing 

conditions: 

~o They  are residually periodic (rood. 8) with period r. 

2 ~ . I f  g is the least common multiple of 2 and r, then  for each fixed Q in 

I ~ Q ~ g, the sequence 

behaves in one of t w o  w a y s i :  namely,  ei ther  the terms of the sequence, 

f rom a certain point  onwards, re ta in  a constant  value; or the sequence 

tends to infinity. 

We  shM1 describe these two conditions short ly as conditions ~ .  

Wi th  the g defined above we will prove present ly  the t ru th  of Lemma I 

for  irrat ionals sat isfying conditions ~ ;  tha t  is to say, if p,~, q. refer  to the con- 

t inued fract ion of such an i r ra t ional  ~, and if 0 is any fixed in teger  in I ~ Q ~ g  

and n tends to infinity th rough  integers congruent  to r (mod. g), then qn-1 and 
qu 

pn q , -  ~q:~ tend to finite limits. W e  shall denote  these limits (as in (*)) respec- 

t ively by ~ Le, _//e. 

5. Now Lemma 2 was substantial ly a deduct ion f rom Lemma I; but  in 

effecting this deduct ion in (*) we implicit ly made certain assumptions,  which were, 

no doubt, obviously t rue  in the case of quadrat ic  surds. The assumptions were, 

firstly, tha t  J/~ + J~+~ which occurs as the coefficient of ~,o (a), ~Q (a) in equations 

(I5) is never zero; and secondly, tha t  L e which occurs as the  denominator  in the 

term )/Q-1-//-e in the first of the equations (I5) is never  zero. In  the case of 
Le 

quadrat ic  surds we had always Le > o, -4 e > o, and so also f/~ + J~+~ > o. There- 

fore the assumptions were then  justified. For  the irrat ionals we consider here 

it  will be seen Shat some of the numbers  Le, ./1 e are zero; and the assumptions 

ment ioned above require consideration.  The  difficulty caused by the first assump- 

t ion is easily disposed of by taking  a to lie in the in terval  o < a ~  I instead of 

in the interval  o ~ a < I. This change is of no significance (and could indeed 

have been made in the case of quadrat ic  surds also); the main point  being tha t  

in the in terval  for  a one of the end points o, I should be included, and the other  

1 The  behav i ou r  need no t  be the  same  for two different  va lues  of 9. 
2 We  sha l l  also have  by  defini t ion (as in (*)), Ao=Ag, L g + l = Z 1 .  
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excluded. W h e n  we take a to be in o < a ~  i, we will have J e + l ~ a > o ,  and 

so A~ + J~+~ > o .  As regards the second assumption, it  will be seen from what  

follows that ,  in the case we are considering here, whenever L e vanishes, Ae_l 

will also simultaneously vanish; so tha t  the term //e-1//Q takes an indeterminate 
Le 

form. I f  now we refer to equation (I3) from which the first of the equations 

(I5) was derived, we see t ha t  the term l/,o-~-//e is contributed by 
Le 

qn (pn- lqn- l - -~q ,~- l ) (pnqn- -  ~qn~); 

so that ,  if we prove (in addition to Lemma I) the existence of the limit of 

m 2 qn (p~t,--1 q,,--1 ~ q,,--,), 
qn--1 

the difficulty caused by the second assumption would also be got over. We are 

thus  led to consider the following lemma which we proceed to prove. 

6. Lemma l-a.. Suppose that ~ is an irrational satisfying the conditions ~ ,  

and that Q is a f ixed integer in I < Q < g. Let  n tend to infinity through integers 

congruent to Q (rood. g). Then 

q"---~, pn q,, --  ~ q,",, q" (p,~-, q,~-i -- ~ qn2-1) 
q,, qn--I 

tend to finite limits. 

I f  the sequence formed by all the part ial  quotients c,~ is bounded, i t  is seen 

from the conditions ~ tha t  ~ is a quadratic surd. We  may therefore leave aside 

this case (as it  has been already considered), and suppose tha t  there is at  least 

one integer s in I _--<s~g, for which the sequence 

Cs, Cs+g, Cs&2g , . . .  

tends to infinity. We shall denote the last  writ ten sequence by ~ .  

Let  us first consider the behaviour of q . -1  and f,~, where as in (*) 
q n  

(iii) f .  : [en, c,~+1, c .+2 , . . . ] .  

l l -  28583.  Acta mathematica. 53. I m p r i m 6  le 27 m a r s  1929. 
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There  are two cases to be examined  according as t c~(n~--Q) tends to infinity or 

u l t imate ly  re ta ins  a cons tan t  value. I n  the first case, i t  is easily seen f rom the 

ident i ty  

q n - 1  __  [O, en,  O n - - l , . . .  C2] 
q*~ 

t h a t  q'~-~-~o; and  also f rom (iii) i t  follows tha t  fn--~ ~ .  I n  the second case, 
q~ 

the  sequence of par t ia l  quotients  in the  cont inued f rac t ion  of q"-~ begins (when 
q, 

n is sufficiently large) wi th  a series of cons tan ts  

O, h i ,  b o , . . . b 0 ,  

and then  follows a t e rm of a sequence 28 which tends  to infinity. The constants  

b and  the i r  num ber  ~ I depend only on Q and not  on n. I t  therefore  follows 

tha t  

qn--1 ~[O, b l ,  b ~ , . . . b 0 ]  , 
q~ 

the  l imit  on the  r igh t  being different f rom zero. Similarly when cn(n--e) ulti- 

mate ly  re ta ins  a cons tan t  value, the sequence of par t ia l  quotients  in the  cont inued 

f rac t ion  of f~ begins (when n is sufficiently large) wi th  a series of cons tants  2 

e l ,  e 2 ,  �9 �9 �9 e l ,  

and then  follows a t e rm of a sequence 3 2s which tends to infinity. The  cons tants  

r and  the i r  num ber  i =  > I depend only on Q and not  on n. W e  there fore  con- 

clude as before t h a t  

[el, r 

the l imit  on the  r igh t  being different  f rom zero. 

W e  have  thus  proved tha t  in any case qn-1 tends to a finite l imit  which 
qn 

may  be zero; and  t h a t  fn tends to infinity or to a finite l imit  different  f rom zero. 

These  results  are t rue  for  every fixed • in I < Q ~ g. 

L To avoid  cons t an t  r epe t i t ion  we shal l  u n d e r s t a n d  t h a t  t h r o u g h o u t  the  proof  of the  p resen t  
L e m m a  the  values  t h r o u g h  which  n tends  to  inf in i ty  are all congruen t  to O (rood. g). 

Clearly bl = e~ �9 
3 This  sequence need not  he the  same as the  sequence  ~:s las t  ment ioned .  
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Now by (7) we have 

"~ q,~ - r e  fi ,+l + q,~ / .  

From what  has been said above, it follows tha t  there  are only two al ternatives 

to consider;  if Q is such tha t  fi~+1--~oo, then pnqn- -gq~- -~O;  while, if (~ is such 

tha t  f~+l tends to a finite limit, then  f , + l  + qn-1 tends to a l imit different f rom 
qn 

zero, and so pn q , , -  ~q~ tends to a finite limit. 

I t  now remains to consider 

(iv) q" (Pn-1 q . - ,  - -  ~ qua-l). 
q n - - 1  

I f  e is such tha t  qn-1 tends to  a l imit  different f rom zero, then  f rom the results 
q n  

proved above we see tha t  (iv) tends to a finite limit. We  will now suppose tha t  

e is such t h a t  

(v) o 
q n  

This  happens (as indicated above) only w h e n c , ~ o o o .  In  this case clearly 

q n - - 1  
- -  " Cn "---)' I~  
q~ 

f ~  
~ I ,  

Cn 

and so 

(vi) f~  q . - ,  " - -  ---> I . 
q~ 

Now by (7) (with n - - I  in place of ~) we have 

qn (pn--1 qn-1 - -  ~ q.L-1) = q'~ �9 ~e-, q,,-t = Vo-1 
q,~- ~ q,~-i fn qn--1 + q.--2 f ,  . q,~--I + q~--22 q.--, 

qn qn--1 qn 

q.-2 
q.-1 

Since < I, we obtain on using (v) and (vi) in the last equation, 
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(vii) qn (pn--1 qn-1 -- ~ q,~2-1) -* r](~ 1 ; 
qn--1 

the lemma is therefore completely proved. 

Denoting as in (*) the limits of q,,-1, P, q,~--~ q~ by Le, Ao~ we see that a 
qn 

consequence of the existence of the limit (vii) is that, when L e = o, we also h a v e  

- ~ - - 1  = O. 

7. After having proved Lemma I-a, there is no difficulty in seeing that 

the arguments of paragraph 6 of (*), which constitute the proof of Lemma 2, 

hold substantially for irrationals ~ which satisfy the conditions ~.  The only 

modifications are that instead of having o N a <  I we should have o < a_-- < I ; a n d  

in the special ease when L e = o  , the first of the equations (I5), which defines 

5~ (a) should be replaced by 

(viii) 50 (a)(_//~ + Ji~+~)= A,o. 

I t  is also worth observing that when Le+I=O, L e > o ,  the equations for 

5 0 (a), Oe (a) take the simple form 1 

/ 5o (a) =-  V,o+lLe 

0,;(~) = I 

As all the lemmas of (*) have now been shown to be valid for irrationals 

satisfying conditions ~ ,  it follows that the main theorem of (*) is  also true 

for such irrationals, with the understanding that the interval for a should be 

changed in t h e  manner indicated, and that when LQ=o,  the real part of 

3;o (a)= 5~ (o)+ i 0e (a) should be taken to be defined by (viii). 

8. Among irrationals satisfying conditions ~,  there  are some standard 

transcendental numbers, for example~: 

e = [ 2 ,  , , 2  + 2 ~ ,  ,],=0 

= [ 2 ,  1 , 2 ,  I,  1 , 4 ,  I,  1 , 6 ,  I,  1 , 8 ,  I ,  I, IO, I , . . . ]  

Use is made of the result (mentioned above) that  when L 0 + l = O  , we also have MQ=o. 
2 See O. PERRON, Die Lehre yon den Kettenbrfichen (I913) , p. 134 , 138. On pages 132-- 

I38 of this book will be found further examples of transcendental numbers related to e and satis- 
fying conditions ~.  
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e ~ =  [7, 2 + 3v, I, I, 3 + 3v, 18 + 12 v]~_o 

= [ 7 , 2 ,  I, 1 , 3 , 1 8 , 5 ,  I , I , 6 , 3 o ,  8, i , i , 9 , 4  2 , . . . ] .  

85 

I t  may  be of in teres t  to set down the numer ica l  detai ls  when  ~ e. I n  

this case r - ~  12, g =  I2, and  by calculat ion it  is found t h a t  H =  24. The  values 

of ~, e, Y2, m corresponding to R =  I, 2, 3 . . . .  24 are given in the first table  below; 

and the values of Le, Ae, Je+l(a), ~.e(a), ~e(a) corresponding to e = I , 2 ,  3 . . . .  I2 

are given in the second table. I t  is found  on calculat ion t ha t  if  e ' - - Q = 6 ,  then  

Le=Le,, _ d e = M  e , etc.; and so the pairs  of values (i, 7), (2, 8 ) , . . .  (6, 12) of e 

are entered toge ther  in the first column of the  second table.  When  y tends to 

zero in the manne r  described, in the  enuncia t ion of the  main  theo rem of (*) - -  
4 

with, of course, the  modif icat ion i n t h e  in te rva l  of a - -  the  l imit  of ] / y ,93 (o l ,  ) 

for  given values of R, a can be easily read  off f rom these two tables.  1 

R o Z m ~2 V ~  R o ~. m ~2 V2 

I r 3 

! 8 
I 

z - - i  3 / z + i  I3 

2 I 2 [ ~22 I4 

3 --i 4 - - [ + i  15 

4 ~ 3 i V2 

5 --i 2 - - I + i  I7 

6 I 4 - - i ~  I 8  

7 --* 3 I--~ 19 

8 I 2 - - i  1P2 2o 

9 --z 4 - - I - -z  2I 

IO I 3 --~22 22 

- - I - - i  

I - - i  

3 V~ 

2 z+i  

4 V~ 

' The F~2 in the first table denotes the positive root. 
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o Le Ao ore+l (a) aee (a) ,% (.) 

I, 7 

2 ,  8 

3, 9 

4, IO 

(I +3a)2--4 
-~(i +3a) 
4 (I + 3a)~+ 4 

4 " ( I  + 30") ~ 

40  + 3 0 )  
4 + ( 1  +30" )  2 

4(I +3a )  

I 

2 

~(1 +3a) 
4 4 + (I + 30)  2 4 + (I + 3 a) 2 

5~ I I  0 a 

I 2 4 
6, 12 0 2 I 5 5 

I 


