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1. Let 30|7)=1+2¢+2¢*+2¢°+---, where ¢=¢€"" and t=x+ 1y
is a complex variable. Let & be a quadratic surd, and let %3 be the n-th con-
vergent of the continued fraction for £& In a paper published recently in Vol.
52 of the Acta mathematica (p. 143—168) I gave an account of the asymptotic
behaviour of 9,(0]7) as 7—& along the straight line x=4§. The chief result
consisted in proving the existence of an integer H for which the following
theorem is true.

Theorem. Suppose o is a fixed number in the interval 0=0<1 and R s
a fixed integer in 1= R<=H. Let

r=1,(0)=&+iy=25+ 1y (0),

where
[ I1—0
N0)— — + —
¥ ( ) (me In+1

Let n tend to infinity by taking all values congruent to B (mod. H). Then Vy3y(0|7)
tends to a finite limat.

Methods were alsovgiven for calculating the limits for all values concerned
of ¢ and R.

2. The object of the present note is to point out that the above theorem
is true (with a suitable H, whose existence can be proved) for some other classes

of irrationals besides quadratic surds. The irrationals considered here are inte-
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resting as they include some standard transcendental numbers like e, ¢® ete. As
this note is essentially a sequel I shall assume (to save lengthy explanations)
that this will be read along with the paper in the Acta mathematica cited above.
I shall denote the latter shortly by an asterisk (*). The Lemmas 1, 2, 3,...38,
the equations (7), (13), (15) and the congruences (17) referred to below are the
ones that occur in (*).

Let us consider an irrational (not necessarily a quadratic surd) and let its
expression as continued fraction be!

(i) [ers CoyooCnynn )

Let ¢, be the integer satisfying the conditions I§f11§8, tn=c, {(mod. 8). Let
the continued fraction (i) be such that the sequence

Cy Coy oo lnyons

is periodic® with period r. We shall call such a continued fraction and the
irrational represented by it, residually periodic (mod. 8) with period r. For these
irrationals we can put in evidence the periodicity of the c-sequence and write it
in the form

(ii) | R VO ¢ O PPN PR MUY DY SURPRRN S

the b's forming the non-recurring part, and the a's the recurring part. Now
with reference to (ii) we can introduce the Inotation®; m and r being respectively
the nuwmber of b’'s and the number of a’s in (ii) and y,, s, .. 7a,. .. being any
sequence we define

1‘27):7m+(j—1)r+s (sz:l’z"”r).
j=1,2,...
To indicate the relation between the 7's and I's we write as in (¥) {yn; ={I'V}.
With this notation let {¢,;={C%}.
3. An examination of the proofs of Lemmas 3 to 8 shows that these lemmas
hold for all imrationals which are residually periodic (mod. 8). The numbers

Cny Pn, Gn which occur in the lemmas have now, of course, reference to the con-

! The notation is the same as that used in (*), p. 145, third foot-note.
? For the definition of a periodic sequence, see (*), p. 155.
* Bee (*), p. 154, 155.
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tinued fraction of a residually periodic irrational’; the numbers m, r wherever
they occur, should be taken to denote respectively the number of b’'s and the
number of a's in (ii); and wherever the Inotation is used it should be considered
to have reference to the sequence (ii). The proofs of Lemmas 3 to 8 will then
.be seen to hold verbally for residually periodic irrationals, with a few modifica-
tions of a minor character. The changes required are as follows.

On page 156 of (*), instead of the equations

(Pl = a, PP + P

P — o, PO 4+ P,
we should write

l' P = g piy 4 p)

\pp = cp P + PP,

and in addition to the congruences (17) use the fact that

W= C¥ (mod. 8),
and so deduce ’
P(;t) = P(sk)

The rest of the proof of Lemma 3 proceeds as before.
The second alteration is that the equation

Ch+1 == Cr+1
on page 161 of (*) should be replaced by the congruence
Ch+1 = Cr+1 (mod 8)

The rest of the proof of Lemma 7 remains unchanged.

Taking into account these alterations, it is easily seen that the arguments
used in (*) establish the existence of the numbers H, 2, m (of Lemmas 7 and 8)
for a residually periodic irrational.

4. Since Lemmas 3 to 8 hold for all residually periodic irrationals,»it
follows that the main theorem of (*) will be valid for such of these irrationals
as satisfy the requirements of Lemmas 1 and 2 also (with a suitable g). The

! When we speak of residually periodic irrationals in this note the modulus concerned is
always 8; so that we will drop the phrase »(mod. 8)» for simplicity.
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irrationals £ which we propose to consider in this note are subject to the following
conditions:

1°. They are residually periodic (mod. 8) with period 7.
2°, If g is the least common multiple of 2 and », then for each fixed ¢ in
1=0=yg, the séquence

Coy Co+gs Cot2g, Co+8gy - -

behaves in one of two ways': namely, either the terms of the sequence,
from a certain point onwards, retain a constant value; or the sequence

tends to infinity.

We shall describe these two conditions shortly as conditions .

With the g defined above we will prove presently the truth of Lemma 1
for irrationals satisfying conditions @; that is to say, if p., ¢. refer to the con-
tinued fraction of such an irrational & and if ¢ is any fixed integer in 1=¢=yg

Gn—1

Pndn—E¢n tend to finite limits. We shall denote these limits (as in (¥)) respec-
tively by® L,, A,.

5. Now Lemma 2 was substantially a deduction from Lemma 1; but in

and

and 7 tends to infinity through integers congruent to ¢ (mod. g), then

effecting this deduction in (*) we implicitly made certain assumptions, which were,
no doubt, obviously true in the case of guadratic surds. The assumptions were,
firstly, that 4; + Jp4, which occurs as the coefficient of X, (o), 9, (o) in equations
(15) is never zero; and secondly, that L, which occurs as the denominator in the

Ag—1 A,

term in the first of the equations (15) is never zero. In the case of

0
quadratic surds we had always L,>o0, 4,>o0, and so also 4, + J;+1>0. There-

fore the assumptions were then justified. For the irrationals we consider here
it will be seen that some of the numbers L,, 4, are zero; and the assumptions
mentioned above require consideration. The difficulty caused by the first assump-
tion is easily disposed of by taking ¢ to lie in the interval o <o =1 instead of
in the interval o=<o<1. This change is of no significance (and could indeed
have been made in the case of quadratic surds also); the main point being that
in the interval for ¢ one of the end points o, 1 should be included, and the other

! The behaviour need not be the same for two different values of g.
? We shall also have by definition (as in (*), A, =g, Lg+1=1L1.
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excluded. When we take ¢ to be in o<o=1, we will have J,;1=0>0, and
80 A; + J3+1 >o0. As regards the second assumption, it will be seen from what

follows that, in the case we are considering here, whenever L, vanishes, 4, 1

A s
4%—" takes an indeterminate

e
form. If now we refer to equation (13) from which the first of the equations

will also simultaneously vanish; so that the term

15) was derived, we see that the term ————F is contributed by
) was derived that the *’10549 tributed b
0
B (s s — Egi0) (e g £ 03
Inr Prn—1Qqn—1 §Qn—1 Pnln §Qn ,

so that, if we prove (in addition to Lemma 1) the existence of the limit of

_an‘_ (}711—1 gn—1— §q.3--1),

anl
the difficulty caused by the second assumption would also be got over. We are
thus led to consider the following lemma which we proceed to prove.

6. Lemma l-a. Suppose that & is an drrational satisfying the conditions o),
and that ¢ vs a fixed integer in 1=<9=g. Let n tend to infinity through integers
congruent to ¢ (mod. g). Then

@1 Pnn—Eqn, /iR (pn—l gn—1—& Gn—1)
an Qn—1
tend to finite lemits.

If the sequence formed by all the partial quotients ¢, is bounded, it is seen
from the conditions @ that £ is a quadratic surd. We may therefore leave aside
this case (as it has been already considered), and suppose that there is at least
one integer s in 1 =s=g, for which the sequence

Cs, Cs+g, Cs+2g, L

tends to infinity. We shall denote the last written sequence by 3.
gn—1

n

Let us first consider the behaviour of and f,, where as in (¥)

. (ill) fn = [Gn, Cn+1, Cnt2, - - ]

11 — 28583. Adcta mathematica. 53. Imprimé le 27 mars 1929.
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There are two cases to be examined according as' ¢,(n=y¢g) tends to infinity or
ultimately retains a constant value. In the first case, it is easily seen from the
identity

Qn—1
q— = [O, Cn, Cp—1,. . .(32]
n

that q'fl—»o; and also from (iii) it follows that f,— . 1In the second case,

qn

—! begins (when
b3

the sequence of partial quotients in the continued fraction of

n is sufficiently large) with a series of constants
O, bl, bg, - bg,

and then follows a term of a sequence 3; which tends to infinity. The constants
D and their number § =1 depend only on ¢ and not on %n. It therefore follows
that

the limit on the right being different from zero. Similarly when ¢,(n=¢9) ulti-
mately retains a constant value, the sequence of partial quotients in the continued
fraction of f, begins (when #» is sufficiently large) with a series of constants®

€y €,y ... 6,

and then follows a term of a sequence® 3, which tends to infinity. The constants
¢ and their number j=1 depend only on ¢ and not on n. We therefore con-
clude as before that

f;l_) [eh e27 tr 'Qi]v

the limit on the right being different from zero.
dn—1

n

tends to a finite limit which

We have thus proved that in any case

may be zero; and that f, tends to infinity or to a finite limit different from zero.
These results are true for every fixed ¢ in 1<<¢=g. '

' To avoid constant repetition we shall understand that throughout the proof of the present
Lemma the values through whieh % tends to inﬁnity are all congruent to ¢ (mod. g).

? Clearly b, =ce,.

® This sequence need not he the same as the sequence X last mentioned.
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Now by (7) we have

1 On—1 Qn—l
oy — MnJn + g = + .
ann'—g(IfL " ‘ﬁ+l " qn e (j;1+1 In )

From what has been said above, it follows that there are only two alternatives
to consider; if ¢ is such that f,11— o, then p,q,—Eqs—o0; while, if ¢ is such

that f,+1 tends to a finite limit, then fni1 + q':l*l tends to a limit different from

n
zero, and s0 p, ¢, —E&qi tends to a finite limit.
It now remains to consider

(IV) qn (pn—l dn—1 — §(Z12—1) .
On—1

If ¢ is such that (1;_-1 tends to a limit different from zero, then from the results
n

proved above we see that (iv) tends to a finite limit. We will now suppose that
¢ is such that

Qn—l
\4 — — 0.
\) "

This happens (as indicated above) dnly when ¢, —> . In this case clearly

Qn—l

Cp— 1,
n
‘L’;l -1 ,
Cn,
and so
(VI) fn . ot — 1.
qn

Now by (7) (with n—1 in place of ») we have

In Bt ) Mn M1 Gn—1 _ No—1 .
qn- 1(pnw1 In §Qn—1) qn—1 fn Qn—1 + qu—2 Gn—1 gn—~2 Gn—1
j;l. & =
qn gn—1 (n
Qn-2

Since

¢ < 1, we obtain on using (v) and (vi) in the last equation,
n—1
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(vii) qqil (pn—i n-1—8qn1) — No—1;

the lemma is therefore completely proved.
QH—I

n

consequence of the existence of the limit (vii) is that, when L,=o0, we also have

Denoting as in (*) the limits of

y Pn {In_gq; by Lg, Ag we see that a

Ago—1=0.

7. After having proved Lemma 1-a, there is no difficulty in seeing that
the arguments of paragraph 6 of (*), which constitute the proof of Lemma 2,
hold substantially for irrationals £ which satisfy the conditions w. The only
modifications are that instead of having o =¢<1 we should have o<<¢=1; and
in the special case when L,=o, the first of the equations (15), which defines
X, (0) should be replaced by

(Vlll) }:9 (G) (*42 + Jg.q.]):Ag.

It is also worth observing that when L,.1=o0, L, =0, the equations for
X, (0), 9, (0) take the simple form*

%, (0) = np+1 Ly
Dylo) = -

Q

As all the lemmas of (*) have now been shown to be valid for irrationals
satisfying conditions @, it follows that the main theorem of (*) is also true
for such irrationals, with the understanding that the interval for ¢ should be
changed in the manner indicated, and that when L,=o0, the real part of
To(6)=%,(0) + ¢ Y, (0) should be taken to be defined by (viii).

8. Among irrationals satisfying conditions @, there are some standard
transcendental numbers, for example?:

- —_— 3 X
e=1[2,1,2+ 2 1],—

:[27 L,21,L,41, Ii6a I I)Sa I, I, 10, I;"']

! Use is made of the result (mentioned above) that when Lo+1=0, we also have Ag=o.

2 See O. PERRON, Die Lehre von den Kettenbriichen (1913), p. 134, 138. On pages 132—
138 of this book will be found further examples of transcendental numbers related to ¢ and satis-
fying conditions @.
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=[7,2+39,1,1,3+37, 18+ 12¥],y

:{7) 2’ I’ 1737 18) 5, I’ 1767 30’ 8) I, 1’9’42""]'

It may be of interest to set down the numerical details when §=e. In
this case =12, g=12, and by calculation it is found that H==24. The values
of 4, ¢, £, m corresponding to R=1, 2, 3,...24 are given in the first table below;
and the values of L,, 4,, Jo+1(0), X,(0), ¥,(0) corresponding to ¢=1,2,3,...12
are given in the second table. It is found on calculation that if ¢’ — =26, then
Ly=Ly, d,= A4y etc.; and so the pairs of values (1, 7), (2, 8),...(6, 12) of ¢
are entered together in the first column of the second table. When y tends to

zero in the manner described- in the enunciation of the main theorem of (*) —

with, of course, the modification in the interval of ¢ — the limit of Vy&,(ol7)
for given values of R, ¢ can be easily read off from these two tables.!

| R 0 ‘ i m ( QVa R 0 i m V2 |
T 1 —1i 3 1+14 13 1 —t 3 —1—i
2 2 I 2 Va2 14 B 2 1 2 V2
3 3 —1 4 —1+1 I3 3 - —1 4 1—i
4 4 1 3 iV2 16 4 1 3 —iV2
5 : 5 —1% 2 —1+17 17 5 B -1 2 1—i
‘ 6 B 6 I 4 —3V2 18 6 B I 4 4V2
| 7 7 ~1 3 1—1 19 7 —1 ‘3 —1+4
.8 8 1 2 —iV2 20 8 1 2 iV2
9 9 -1 4 —1—i 21 9 —1 4 1414
10 10 I 3 —V2 N 22 10 I 3 Va2
11 I1 —i 2 —1—9 23 11 —i 2 1+1
12 12 I 4 | —v2 24 | 1 4 V2 J

' The ¥z in the first table denotes the positive root.
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0 Lg Ag Jg+1 (0') x@ (G) S-l)? (0)
1 1 (1+30°—4 4(1+30)
L7 ! 2 4039 (14307 +4 4+(1+307
! ! I
2, 8- 2 o 4 2 (2
_! 2 4
39 o 2 1 5 5
1 1 4=+ 30" 4(1+30)
4, 1o I 2 4(I+36) 4+ 1+ 307 4+ (1 + 307
! 1 I
5, 11 > o 4 2 G
1 2 4
6, 12 o 5 ! 5 5




