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1. Introduction

We shall show that the algorithm for determining the generating function and
prediction error matrix of a g-variate, discrete parameter, weakly stationary, stochastic
process (S.P.), as well as the unique, mean-convergent, autoregressive series for the
linear predictor in the time-domain, which were obtained by Wiener and the writer in
{8, Part II](2) in case the eigenvalues of the spectral density matrix ¥’ are bounded
above and away from zero, are valid under a more general setting. The algorithm
will be shown to hold under the weaker conditions that the quotient of the largest
to the smallest eigenvalue of ¥’ is in L,, ¥’ is invertible a.e. and F'~* €L;. The series
for the predictor will be shown to prevail under the hypothesis ¥’ € Lo, F' "' €L,
which while more stringent than the last is again weaker than that assumed in IL.
Our method will rest on extending to the g¢-variate case a theorem of Kolmogorov

[2, Thm. 24] on simple minimal processes, i.e., those for which the random function

(1) The writer wishes to thank Harvard University and the Massachusetts Institute of Techno-
logy for visiting appointments in 1957-58, during which a part of this research was completed.

(2) In the sequel all references which are prefixed by I or II are to parts I or IT of the
paper [8].
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at any time is outside the closed subspace spanned by the past and future functions
of the process. These results were announced by the writer in [3, 4] along with in-
dications of their proofs. At about the same time Rosanov obtained a similar exten-
sion of Kolmogorov’s theorem but from a different standpoint [6, Thm. 17].

In §2, we shall define a g¢-variate, full-rank minimal S.P. (£,)%, and the asso-
ciated two-sided, normalised, tnnovation process. Unlike the ordinary (one-sided) innova-
tion process this is not orthonormal, but we shall show that it is biorthogonal to
(f.)%w, and that as a consequence the reciprocal of the generating function @ of
()% is in L3", i.e. the entries of the matrix @ ' are in L, and their Fourier series
have mno negative frequencies. This crucial fact enables us to extend Kolmogorov’s
Theorem to the g¢-variate case: (f,)%, is full-rank minimal, if and only if it has a
spectral distribution F such that F’ is invertible a.e. and F''€L,. We shall amplify
the proof of this extension sketched in [3], even though Rosanov [6, Thm. 17] has
given such an extension in th> meantime, because the latter uses a new definition
of g¢-variate S.P., which while equivalent to ours, results in an appreciably different
conceptual framework. (Reasons for adhering to our definition, which is due to Za-
suhin [9], as against Rosanov’s have already been given in [5, §5].)

In §3 we shall show that the new spectral condition, mentioned in the opening
paragraph, allows an imitial factorization of F' into a complex-valued function Fj
such that F;, 1/F; € L, and a matrix-valued function I+ M €L, such that (I+M) ' €L,
and |M|z<1, a.e., the subscript B referring to the Banach-norm. This yields a cor-
responding factorization of the generating function, in terms of which the frequency-
response function for the process is expressible. Since methods for finding the generating
function of a simple S.P. are known, we are left with the problem of determining
the generating function of a g¢-variate process with spectral density of the form 1+M,
where [M|[z<1 a.e. and (I+M) ' €L,.

In §4 we shall solve the last problem with the aid of the operator P defined
in terms of M as in II, 6.2. But whereas in IT |PD|z<1, we now have |D|z<1. We
shall show, nevertheless, that ) is a strict contraction operator on LJ*, that the
geometric series >§° (—1)*DF converges strongly on the range of J+ D (which need
not be the whole of L,)(*) and that this yields the same algorithm for the generating
function as was found in II, 6.5, 6.6. As the frequency-response function is expressible
in terms of the generating function and its reciprocal, we will have solved the

prediction problem in the frequency domain.

m 1 being the identity operator on L.
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Finally, in §5 we shall show that with the stronger condition ¥’ €L, replacing
F' €L, above, we can exploit the isomorphism between the temporal and spectral
domains to get the mean-convergent, autoregressive series for the linear predictor in the
time domain, which was given in II, 5.7. To get this series in the univariate case
Akutowicz [1, §3] has assumed that the Fourier series of ® and &' converge abso-
Iutely. Our result, and indeed the weaker one given in II, 5.7, shows that this as-
sumption is unduly restrictive, We shall also express the (one-sided) innovation pro-
cess as a one-sided moving average of the given process (f,)2%. Cur criterion for this,
viz. ' €L,, F'"'€L, is the same as that given by Wiencr-Kallianpur in the uni-
variate case in [7, ch. IV] (unpublishzd). As stated above the condition F~'€L, is
equivalent to @~ '€LJ", which Akutowicz [1, Thm. 1] has shown to be necessary in
the univariate case for the existence of such a moving average, under the assumption
F'€L,. But as remarked in II, §5 (end) the last assumption seems to be unduly
strong, ard it would b2 worth while to try to relax it.

We shall use extensively the theory developed in I, II, and adhere to the nota-
tion followed therein. A list of errata to I, IT is given in §6. We shall recall here

some of this material for ready referencs, and state a lemma which we will need.

NoraTtton. As in {1, II| bold face letters A, B, etc. will denote gqxq matrices with
complex entries a, by, etc. and bold face letters ¥, B, ete. will denote functions whose
values are such matrices. The symbols 1, A, *, will be reserved for the trace, determinant
and adjoint of matrices. |A|p, |Alg will dencte the Banach and BEuclidean-norms of A
(1L, 1.1]. The letters O, D., D_ will refer to the sets |z|=1, |z|<1, 1<|z|< o of the
extended complex plane.

We shall be concerned with the sets L, of g¢xg matrix-valued functions
F=[f;;] on C such that each entry f; is in L, in the usual sense, 0 <p< co. For
p=1, Lj, 13", L,, LY will denote the subsets of functions in L, whose nth Fourier
coefficients vanish for n<0, n<0, n>0, >0, respectively. If F€L,, p>2, and has
Fourier coefficients A;, — co <k < oo, then F,, Fy,, F_, Fo_ will denote the functions
in L}, Ly*, Ly, 1", whose nth Fourier coefficients are A,, for n>0, =0, n <0,
n<0 respectively (and zero for the remaining n). F, will denote the constant func-
tion with value A,

In I, we introduce the Gramian, inner product and norm

1 [ . .
(P, ‘I’)=ﬂf0 P () F* () d 0 (1)

(@, ) =7(2,¥), [&]|=yr(® &)
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We readily infer the following relations, the second of which follows from the Parse-
val relations II, 1.13:

1.2. LEMMA. For &, WEL, and X€L,,
(@X, 'i’) = (¢: q'X*)’ (¢+7 \If)-_— (¢+’ II,+) = (¢r ‘IJ+)'

In I, IT1 we defined a g-variate, discrete parameter S.P. as a sequence (f,)%, of
g-dimensional vector-valued functions f,=(f,)%; such that each component f; is L, on
a probability space (Q, B, P). This definition is germane to all stochastic applications
of prediction theory, but is overspecific as far as much of the theory itself is con-
cerned: it suffices, following Zasuhin [9], to treat each f, as a vector in some (fixed)
complex Hilbert space M, so that f, belongs to the Cartesian product H? We call

(£,)% weakly stationary in case the Gram matrix
4 fn)z[(ﬁm .fin)]=rm—n (1.3)

depends only on m--n. In this case there exists a unitary operator U on H into
itself such that U"fh=f,. U is called the shift operator of the process. We let

M =S () oy M=C ()i, 1<i<q, —oco<n<oo,

The first is the (closed) subspace of ¥ generated by the elements fi for k<n; the
second is the corresponding subspace of H? defined similarly except that linear com-
binations are taken with gxq matrix coefficients and the closure with respect to the
induced topology in MY cf. I, 5.6. The orthogonal projection (¢p|M1,) of a vector
@ = (¢')"-1 € H* on the subspace M3, is defined as the vector whose ith component is

e .
component is the projection ((p,-lclos.‘z M), cf. 1, 5.8 (a), 5.9.
4

We call the S.P. non-deterministic if Wi, =+ W, 1, and regular if (f,]91_,)—0 as

n— oo, In the non-deterministic case

go=1,— (I, M. 1)*0. (1.4)

We call G=(g,, g,) the prediction error matrixz for lag 1, and say that the S.P. has
full rank in case AG=>0.

On taking the spectral resolution of the shift operator U we get a bounded,
non-decreasing, right continuous, gxg matrix-valued function F on {0, 27] such that
F(0)=0 and

1 27
T, " G (6).

27 Jo
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The corresponding function on C, also denoted by F, is called the spectral distribution
of the S.P. We know [I, 7.12] that (f,)*, is regular and of full-rank, if and only if
F is absolutely continucus and log AF’ € L;. For such processes, we define the space
Ly » as comprising all functions @ on ¢ such that @ F @* € L,. The structure of this

space is governed by the Gramian, inner product and norm:

_ 1 n i6 r 0 * ¢ i0
(®, 'i')p%—fo D (") F' (") W™ (") 4, (1.5)

((¢7 \P))F:T(¢> \F)Iﬁ ”QHF:V'[ (‘b’ Q)F

In terms of this structure the space Lsr is isomorphic to 1., as shown in II, 4.10.

2. Full-rank minimal processes

In this section we shall extend to the g¢-variate case the spectral characterization
of simple minimal sequences due to Kolmogorov [2, Thm. 24]. Our approach [3] will
differ from Kolmogorov’s in that we shall lean on the Wold-Zasuhin decomposition

rather than on results on subordinate sequences.

21. DeFINITION. We shall call a g-ple stationary process (£,)% minimal, if and
only if for some n, 1, &M, where M, =S (F)pwn.

From the stationarity property it follows that the relation given in 2.1 holds for
a single n only if it holds for all n. Hence for a minimal process

@, =1, — (L, M.)=0, —oco<n<oo. (2.2)

We shall call the functions <, the fwo-sided innovations of the f,-process. Unlike the
ordinary (one-sided) innovation functions g,, they do not form an orthogonal set, but
we still have

P =Upy,  (Pu, Pr) = (@, ) (2.3)
where U is the shift operator of (f,)%%.
2.4. DEFINITION. We shall call (£,)”, @ full-rank minimal process, if and only if
the Gramian (,, @,) s positive definite, i.c., A (¢, ¢y)>0.

Since YI,.1S Ui, it follows readily that (g g,)> (@ @) (), cf. I, 5.10 (b);
whence we get:

(1) A>B means that A~ B is non-negative hermitian.
9t -~ 60173032
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2.5. LEMmMA. A minimal S.P. is non-deterministic; a full-rank minimal S.P. is

non-deterministic and of full-rank.

We shall “normalise” the two-sided innovations as follows (1):
2.6. DeriNiTION. Let ()%, be full-rank minimal, and let, cf. (2.2},
$u= (o> @) P

We shall call (,)7, the normalised two-sided innovation process of (f,)%

The following lemma gives the basic properties of this process:

2.7. LeMmmaMA. Let (£,)% be a minimal, full-rank process, and let ({,)% be its

normalised two-sided innovation process. Then

(a) the sequences (P,)%, (£,)% are biorthogonal, i.e., (Yn, £,) =6m 1;
) $a= 3 Dihuus,

where (0,)% is the mormalised (one-sided) innovation process of (£,)% cf. [I, 6.12], and
D, is the k-th Taylor coefficient of the reciprocal ®3' of the inner holomorphic gmtenswn

D, of its generating funciion ®, cf. [1I, 2.6](2);
(c) P el

Proof. (a) Write A for (¢, ¢,) ' and P for the projection on M, onto
M, N (W)L, so that ¢@,=P1f,. Then

(o> T0) = (A @y, To) = A (Pfy, To) = A (g, @) =1. (1)

Also for n=+0, f, € 1, L ¢,; hence
("l)m =0. (2)

Applying the shift operator U* in (1) and (2) we get (a).

(1) This normalization, which differs from that a,dopted by Kolmogorov, is chosen so that the
resulting process ('-Pn) « may have spectral density ¥ , where F is the spectral distribution of

(£2) %, cf. Cor. 2.9 below.
(2) In view of the first and last equalities in II (2.5) it follows that q>+ is holomorphlc on the

disk D 4
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(b) Since ¢, L M2 M, for n<O0, therefore

$o L N M= .. 3
It follows that €S (hy)*,. for obviously Y, € M, and by I, 6.10 (b)
M =MZ% + S (h) %%, U o L S(hy)%.
Actually g €€ (h,)¢%, since for k<0, h, € M_; S W5 L o. Hence
4)

$o= 2 Achy, 2 JAgfE < oo,
k=0 )

Now by I, 6.11 (a), 6.12
t,= 2 Ch, o+,
£=0

where v, €N_,. Hence by (3) and (4)

(q’o’ fn):( Z Aj hj: Z Ck‘hn—k) = . A,» C:,;.

i=0 k=0

Hence by (a) 6)
i=0

Z Cn—k D= Ono L.
.

Taking the adjoint, and comparing with (5) we see by a simple inductive argument

that A;=D;. On applying U™ to both sides of (4) we now get (b).
(¢) It follows from (b) and (4) that > |Di|3< . Each entry of the matrix-
0

function ®7' is therefore in the Hardy class H, on D,, and hence its radial limit is
in L3*. This means that each entry of &' is in L3*, ie., ® 1€Ld*. (Q.ED.)
We are now ready to give the spectral criterion for full-rank minimality:

2.8. TEroREM. Let (£,)%, be a q-ple stationary S.P. with spectral distribution F.
Then (£,)%, is full-rank minimal, if and only if ¥’ is invertible a.e. on C, and ¥ 1 €L,
Proof. Let (1,)°, be full-rank minimal. Then by 2.5 it is non-deterministic and of
full rank. Hence by I, 7.10 AF' +0, a.e., and therefore F~! is defined a.e. Since by

2.7 (c), ' €L, it follows that F''=(®*)'d '€L,.
10 — 60173082, Acta mathematica. 104. Tmprimé le 23 septembre 1960
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Next, suppose that F'~!'€L,. Then by I, 3.7 (¢), 1/AF’ € L,;,. Likewise AF € Ly,
since F' € L,. The inequality

FE

q v
|log AF'|=q |log VAF'| <gq max (VAF', ! )
VAF'

now shows that log AF' €L,. Hence by I, 7.10, (f,)%, is non-deterministic and of
full-rank. We therefore have the Wold-Zasuhin decomposition

)
f,.=u,+v, = Z Ckhn~k+vn: (1)
£-6

where v, €EW_,, and (u,)%, is regular of full-rank with spectral density
F,=F =& &" 2)
cf. 1, 6.12 and 7.11.
Now let €3, =6 (W,)ic_w, $oo =S ()7~ _ . By II, 4.10 there is an isomorphism
on %¥, onto Lz, such that to w, corresponds e ™I, and if to ¥, Y, € ¥ corre-
spond X, X, €Ly r,, then (cf. (2))

1 27 ) ) )
(X1 X2) 3 L X, () F' (%) X5 () d 6. 3)

Now F' "' €Ly, since F'"'F, (F1)*=F '€L,. Hence if y is the function in ¥¥, cor-
responding to F'~', then by (3)

1 2n R N Sl Bk 1 f2n 1
- i ¢ = 4
% %) 2nf0 B E (@) (B ) o= | TN 0, (4)
1 (> ) . .
(X un)z—f F' =1 () B (€°) € d.0 =50 L. (5)
2x 0

Since y €¥3,, S S ()%, v, €M o, ©(h) % L M_,,, it follows from (1) and (5) that

(X, fn) = (X’ un) + (x: vn) =0po L.

Thus y L%, for n=+0; therefore x L M= (f)kro. But obviously x € Wi, since
K S M,,. Also x+0, since by (4) (), %) is positive definite. Thus Mg = M., which
means that f,¢ Mo, ie., (f,)%» is a minimal S.P.

That (f,)%,. is full-rank minimal depends on the easily established relation

M, =M+ S (@), @ L Ui 6)
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For since yx €Yi, and yx L Y, it follows from (6) that x €S (¢,), ie., X =A ¢,
Hence
(X X) = A (Po, @g) A™.

Since by (4) A(y, x)>0, it follows that A (e,, ¢,) >0, ie., (£,)%, is full-rank mini-
mal. (Q.E.D.)

2.9. CoroLnarY. If (},)% s a full-rank minimal process with speciral distribu-
tion F, then F'~' is the spectral density of its normalised two-sided innovation process

(Pn)Z (cf. 2.2, 2.6), which is a regular process of full-rank; moreover

1 27 1 -1
{%f P (e"’)de} = (0, o)

JO

where @, is as n (2.2).

Proof. By 2.7 (b) 8
o b= (S020s Soth)- 5 pi
k=0 k=0 k=max {-n,0}

In this Dy is the kth Fourier coefficient of the reciprocal @ ' of the generating func-
tion of (f,)%. Since the kth coefficient of (@ 1)* is D*,, it follows readily that the
last sum is the nth Fourier coefficient of (@7')* @', ie., of F'~'. The ¢,-process
thus has spectral density F'~7.

By 2.5 (£)% is non-deterministic and of full-rank. Therefore by I, 7.10
log AF € L. Hence log AF €L, It follows by I, 7.12 that ({,)*, is a regular
process of full-rank. Finally,

1 (%= _, . -
2 Pl dg = (G, Py) = (epg, @) 1’
T Jo

in view of 2.6. (Q.E.D.)

We conclude this section with the following obvious consequence of 2.7 (¢) and
the Convolution Rule I, 3.9 (d):

2.10. Cororrary. If (£,)%, is a regular, full-rank minimal process with spectral
density ¥’ and generating function ®, and for » >0,

Y, (%) =[e "0 @ (), &7 (),

then Y, € L3 and its k-th Fourier coefficient is given by
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k
E'vkz Z Cv+n Dk—n’
n=0

where Cy, D, are the k-th Fourier coefficients of ®, ® 1.

Y, corresponds in the frequency domain to the linear predictor 'f\,,= (.| ¥1,) in
the time-domain under the isomorphism between Wi, and Lsp cf. II, 411. It is
therefore the frequency-response or transfer-function of the S.P. for lag v (cf. II, 5.8
et seq.). The corollary shows that the Fourier series of this function can be derived

from those of the generating function and its reciprocal. Two problems now arise:
(1) To obtain the generating function from the spectral density matrix F'.
(2) To find out if the Fourier coefficients E,, of Y, can be used to get the

predictor fr in the time-domain.

Both problems were solved in II under the Boundedness Condition II, 5.1. In
§4 we shall solve problem (1) under the weaker conditions 3.1. In §5 we shall
solve problem (2) under conditions, which though more stringent than 3.1 are weaker
than II, 5.1.

3. The spectral assumption; initial factorization

To use the J) operator mentioned in §1, it is necessary to factor the spectral
density in the form F' = F} I:", where F; is complex-valuied and in L, F €L, and
1/Fi€ L, ¥ '€L,. The conditions on the reciprocals are required in order that we
may utilize the preceding results on minimal processes (§2). To be able to carry out

such a factorization we have to make the following assumption regarding F’:
3.1. AssuMPTION. Our q-ple regular full-rank process (1,)%. has a spectral den-
sity ¥ such that

(i) F'eL, on C,
(i) of A(e®), u(e) are the smallest and largest eigenvalues of F' (), then u/A € Ly on C.

Now suppose that F', F'~'€L, Then obviously F', F'~'€L,. Since for any 6,
the trace of F’'(¢”) is equal to the sum of its eigenvalues and similarly for F',
we will have, cf. II, 1.9 (c),

O<u<t(F)e€L, O<l/A<t(® ")EL,

and therefore /4 € L;. Thus
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3.2. Lemma. The condition 3.1 will be satisfied if F', "' €L,. -
We shall use the following notation:
Fi (%~} {z €%) + p (e}

3.3
M () = (3:3)

Fl( 0 () —1, a.e.

Since by 3.1(i), Fi(e®)>}1(e®)>0, a.e., the function M is well-defined a.e. The

initial factorization alluded to above is given by the following:

3.4. LEMmmaA. If (1,)%, satisfies Assumption 3.1, then
(a) F=F(I+M), ae;
(b) IM (%) |p<1, 0<6<2m; |M(®)|s<]1, ae;

() I+M, I+M) ' €Ly;; I+ M is therefore the spectral density of a g-ple, regular,

full-rank-minimal process (cf. 2.8);
(d) Fi, 1/Fi1€Ly; Fi is therefore the spectral demsity of a simple regular, minimal

process.

Proof. (a) is obvious from (3.3).

(b) Since
A I<F (®)<pu (1, (1)
we get, cf. II, 1.5 (c),
oy |2 sy | <€) = A7) _ ‘
|M(6 )IB_ A(ei9)+ﬂ(eie)F(e) < (19)_}_/1(10) (2)

Also by (3.1) (i), A>0, a.e. and therefore |M (%) [z<1, a.e.
(¢) By (b), I+M€L,<L,. Next, from (2)

2
22 rem< 2y e,
Atu Atu

whence since 1>0, a.e. we get
A/ I<I+M) 7 <31+ p/2)1

Since u/2 € L,, we conclude that (I+M)!'€L,.

(d) Since for any 6, the trace of F' (&) is the sum of the eigenvalues we have
y g

O<Fi=}{A+u}<}iz(®)€L,



152 P. MASANI

so that F; € L,. Similarly,

1 2

0< =y
Fl ﬂ.-i-[u

<2t HEL,

2
%
and hence 1/F;€L,. (Q.E.D.)

The next theorem shows that our factorization of F’ yields corresponding factor-

izations of the generating function and of the prediction-error matrix.

3.5. THEOREM. If (i) (£,)%, saiisfies the Assumption 3.1

(ii) @, o, @, are the generating functions of the processes with spectral densities
F, I+M, Fj,

(i) G, G are the predictor-error matrices with lag 1 of the first two processes, and
g the innovation function of the third,

then (a) @', @ '€l 1/db, € L3

(b) =P, &,

(c) G=|g[*G.

Proof. (a) follows from 2.7 (¢), since by hypothesis and 3.4 (i) the processes re-

ferred to are full-rank-minimal.
(b) We have (cf. II, 2.5, 2.6) the factorizations
F=®®*, F=-0,0, I+M-&d"
Hence by 3.4 (a)
PP =0, 0, - DD = (D, D) (O, D) =¥ I*, say. 1)

Our problem is to identify @ and W. For this we appeal to our Uniqueness Thm.
II, 8.12.
We first note, cf. (a), that
o, b el (2)

We assert next that Y leld'. (3)

This follows, for on the other hand by (1) ¥¥*=F €L,, (¥ V"W '=F T€L, and
so we have W, W '€L, and on the other hand we have ‘I’=(D1<i>€L(2)*, yl=
—(1/®,)d €Ly since D, €Ly, LY and (cf. (a)) 1/@, € LY+, &' € L*. Finally,
since by II, (2.5), ®(0)=VG, ®,(0)=VG are positive definite and @, (0)=|g|>0,

we have
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D (0), W (0) are positive definite. (4)

From (1)-(4) and the Uniqueness Thm. II, 8.12 it follows that ® =W, ie., P=0, .
(c) clearly follows from (b). (Q.E.D.)

We know how to find the generating function of any simple regular S.P. by
optimal factorization of its spectral density [II, p. 103]. In view of the last theorem
all we have to do to get the generating function of the given S.P. (f,)% is to deter-
mine that of the process whose spectral density is I+M. An algorithm for accom-

plishing this is given in the next section.

4. Determination of the generating and frequency-response functions
Let (1,)% be a S.P. satisfying the Assymption 3.1 and let M be as in (3.3).
Then by 3.4 (b), (c), M certainly satisfies the following:

41. ConbpirtioxNs. (i) M is hermitian-valued on C, and M € Ly,.

(ii) |[M(?)|z<1 on C.

(1ii) |M(e®)|z<1 on a subset of C of positive measure. ()

(iv) I+M) €L,

We shall therefore assume that the function M to be dealt with in this section
satisfies 4.1. We can then define our ) operator exactly as in II, 6.2, the definition
being meaningful, since for W €L, and M€L, we have WM €L,

4.2. DEFINITION. For any WEL,, D(¥F)=(FM),.

The following properties of [ are easily established using 4.1 (ii):

4.3. LeMma. (a) D is a bounded linear operator on Ly into Ly, and | Pls<1.

(b) PM=M., P*(M)= (M. M),, P*(I)= (M, M). M., and so on.

The relevance of the operator P to the problem of determining the generating

function @ of a S.P. with spectral density I+ M is seen from the following lemma:

4.4. Maty Lumma. Let @, G be the generating function and prediction error

matriz with lag 1 of a S.P. with spectral density 1+ M. Then
(J+D)(VGe ) =1,

where J is the identity operator on L.

(1) Actually |M(ew) |B<1 a.e., but the weaker condition (iii) is all we will need.
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Proof. The proof rests on the crucial fact that <I~>’1€Lg+, which stems from
4.1 (iv), 2.8, 2.7 (c¢). Now let W—yG® . Then W eLl". Also, since 6(0)=V(§r, we
have W (0)=1. Hence
¥Y=I+¥.. (1)
Next, since I+M =& &*, we have

Y WM=VGd (I+M)=VGD* LI .

Hence ¥, +(¥M), =0,
ie., by (1), Y—-1+(¥YM), =0,
ie., J+D)¥=1. (QED)

This lemma shows that we can get ®, if we can invert the operator J+ . We

proceed to show that this can be done in view of the condition 4.1 (iii).
4.5. LEMMA. () D is a strict contraction operator on I3%; i.e.,
0Ly implies || D(F)| <] ¥

(b) I+ D ts one-one on Ly, into itself.
(€) D is hermitian on L, i.e., for all W, X €Ly,

D), X)=(F, PX)),  (P(E), X)— (¥, DX).
Proof. (a) By 4.1 (iii), there is a positive number ¢ and subset C, of C such that
|M(e®)|s<V(1—¢) on C,, meas. C.>0.

Since || D (¥)||=|(¥M), || <||¥M]| we have, writing § for brevity instead of e?,

1 27
Ipewir<y [ IwoneRao

1 27

<— | |®OEIM®)[Ed0  (by II 14

==
27'60

1 1 '
<<1—8)ﬂf|w(e)|zde+% fpr(e)[%de
¢ cle,

<||w||2—;—nf|w(e)|%de. (1)
Ce
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Now let 0+W €L3*. Then its entries y; vanish almost nowhere on C. Hence

¥ 6)%= 2 2w 0)F>0 ae.

i=1j=1

on Ce. It follows that the last integral is positive, so that || D (¥)| <|¥|.
(b) Let W €L, and suppose that (J+ D) (¥)=W+ D (¥)=0. Then

¥--P¥)EL;, and [¥|=| D).

Hence by (a) ¥=0. Thus J+ D is one-one on L,.
(¢) For W, X€L$ we have the equalities

(D(F), X)=(¥M),, X)=(¥M, X,)=(¥M, X)
Z(\F> XM):(‘P+, XM):(‘I’? (XM)+)
=(¥, D X)),

the second up to the sixth of which follow respectively from 1.2, the facts that
X=X,, M=M*. ¥=W¥,, and 1.2. On taking the trace we get the second equality
in (¢). (QED.)

By 4.5 (b) the operator J+ D (with domain L,) is invertible on its range R,
but R may not be the whole of L,. (From 4.5 (c) it follows that R has a subset
everywhere dense in Ly.) We know from 4.4, however, that 1€R. We shall now
show that the usual geometric series for the (posssibly unbounded) operator (J+ D)’
converges strongly on R. The application of this operator-series to I will yield our

algorithm for the generating function.

4.6. THEOREM. (a) D"—>0 strongly on L, as n->oo; ie., for all ¥EL,
lim [| D" ()| 0.

(b) If W is in the range of J+ P, then

lim 3 (=1 DF(®) = (T+ D)L (P),

n->0 k=0
the limit being taken with respect to the Ly-norm || .

Proof. (a) Let W €L,. Then, cf. 1.1,

D™ (#) = D" (B) [P = || D" () I + || D" (F) P - 2 real (P™(F), D" (F)). (1)
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Consider first the case m=n+2%k, k>0. Since D" (¥), D" (¥)€Ls, it follows
from 4.5 (¢) that

(D" (F), D"(EN =D D (), P*(EN =D ()|
Hence letting X=D (‘I’) €Ls, (1) becomes
”Dn+2k ("P) “2 ”Dn+2k 1 )“2_‘_”Dn~1 (X)”2_2||Dn+k~1(x)||2. (2)

By 4.5 (a) the sequence (|| P’ (X)||)e%, is monotonic deereasing. Hence || P* (X) || - 1>0,
as y—>oo, It follows from (2) that

[P * () =P (¥)[| »0, as n—>co. 2)
Next, take separately n even and n odd in (2). We see that
lim || D7 (F) - P (B)||=0= lim || D" (E) - DR
L, being complete, this means that

lim D™ (¥)=X,, lim P (¥)=X, X, X, €L (3)

n—>o0

Now since P is bounded (and therefore continuous)

X, = lim D(P* (¥)) =D (X,) )
X, = lim PP ()= P (X)) = P*(Xy)- (5)

Since (cf. 4.5 (a)) P and therefore D> are contraction operators on Lg, it follows
from (5) that X,=0, and from (4) that X;=0. Thus from (3) lim P"(¥)=0 in

the L,-norm.

(b) Let $,=J—=D+P*— -+ (=1)" D"
Then S, (I+P) =T+ (- P, (6)
Hence for any W in the range of J+ P, say ¥ —=(J+ D) (X), X€L,, we have
$:(®) =8, (T+ D) X)=X+(-1)"P"(X)=(T+ D) (F) + (- )" P (X)
Thus || S (®)— T+ D) (®)[ =P X) [\

Since by (a) the last term tends to 0 as n-»oo, we get (b). (Q.E.D.)
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Since by 4.4 I is in the range of J+ P, it follows from 4.6 (b) that

VG® =T+ D) (D)= lim kio(—l)" D ()=, say.

By 4.3 (b) W=1-M, + (M, M), ~{M. M), M}, +---.
Also YI+M¥* /6D DD (@ ) VG—G.
Thus

4.7. THEOREM. If &, G are the generating function and prediction-error matrix
with lag 1 of a S.P. with spectral density 1+M subject to the Conditions 4.1, then

{a) the series T—M, - (M, M), — {(M, M), M} + - is mean-convergent,

(b) W being its sum, we have
WoyGd ey, G=W(I+M) P

This theorem is an extension of II, 6.6. It follows that ‘I”lzé(Vé)‘leng‘.
Hence letting

\P (eiB)N Z Ak ekie’ \I[—l (eiﬂ)~ Z Bk ekiﬂ
0 )
we get, exactly as in II, 6.10, A;=1 and for m>0
A,=-T+ >, — >S5Sy pThnt o,
n n p

where T'; is the kth Fourier coefficient of M, and all subscripts run from 1 to oo.

The coefficients B, can be found from the A, by the usual recurrence relations (cf.

11, 6.11). The kth Fourier coefficients of <I~>, @ ! can then be had from the relations
6k=BkVé, f)k=Vé71 Ak-

As in JII, 6.9 somewhat different expressions for G and & are also available.
For since M=M*, we get

W =I-M + MM ) —{MMM_)_}_+-€L). (4.8)
Letting X=1+Mmy* (4.9)

is follows from 4.7 (b) that X =¥ 16 =& /G € L%, and since &>0 = VG that X =& VX,.
Thus
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4.10. CoroLLARY. Let X be defined by (4.9) and (4.8). Then
d-X X)), G=X,

The last theorem and corollary provide methods for determining the generating
function @ and prediction-error matrix G from the spectral density I+ M. As re-
marked at the end of §3 we can get from these the generating function @ and pre-
diction-error matrix G of any S.P. whose spectral density satisfies Assumption 3.1.
For such a proccess the frequency-response or transfer-function can therefore be deter-

mined, cf. 2.10. Tts linear prediction in the frequency domain is thus accomplished.

5. Determination of the predictor in the time-domain

We shall now show that the unique mean-convergent series for the linear pre-
dictor obtained in II, 5.7, 6.13 under the Boundedness Condition II, 5.1 is available
under the weaker conditions F’' €L, and ¥ €L,.

51. LeMma. A S.P. for which ¥’ €L, and ¥ ' €L, satisfies Assumption 3.1.

Proof. For letting F’ (¢%)<B1, it follows that u(e®)/A(¢®)<pB/A(e”). But since
F'-'€L,, therefore 1/4(e®)<7 (F"')€L,. Hence u/A€L,. (QED.)

All results established in §§ 3, 4 will therefore apply to a process satisfying our
new conditions.

5.2. TueoreM. If F €L, and ¥ '€L,, and Y,, E,; are defined as in 2.10, then
as N —> oo

(a) S E,r ¢ —Y,(e?) in the Ly p-norm.
k=0
(b) 2, B 1,1, in M.

Proof. (a) We have, cf. 2.10,
) y—1
e ® ()]s = 2 Cryy =" {D (%) kZo Gy €%}
K=0 -

Now ®€L,, since ' €L,. Hence both the terms inside { } are in L, and so there-
fore is the term on the L.H.S. Since & '€L,, as F'"1€L,, it follows that

Y, (ew) = [e—viﬂ P (¢%))o- @ (ew) €L,.
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Hence (cf. 2.10)

N
2 Epe®—->Y, (% in the L,-norm. (1)
K=o

But since F' (¢%)<p1I a.e., < oo, it easily follows (cf. II, 5.2 (b)) that

N N
1.3 B =X, o <VB|| > B e,

Hence (a) follows from (1).

(b) follows from (a) in view of the isomorphism between Wi, and Lpp, cf.
11, 4.10, 4.11. (Q.E.D.)

The same conditions on the spectral density also enable us to express the ordi-
nary (one-sided) normalised innovation process (h,)*, as a one-sided moving average

of the given process (f;)%:
5.3. TeEOREM. If a regular S.P. (£,)%. has a spectral density ¥’ such that

F €L, F €L, then its (ordinary) normalised innovation process (h,)%, is given by

hn= Z Dk fn—k’
k=0

where Dy is the k-th Fourier coefficient of the reciprocal of the gemerating function ®.

Proof. As remarked just before 5.2, the conclusions of 2.8 and 2.7 (¢) apply to
our process. Thus

q,—l ~ z Dk eIciB € Lg—«-,
k=0
and therefore, as N — oo,
N
2 D> @ (e in the L,mnorm. (1)
K0

But since F'(¢?)<gB1, a.e., f< oo, it follows that

N N
|3 Dee~ @ - <3| 3 Do - @71

Hence (1) implies

N
kZODk e > @ (% in the Lyp-norm. 2)
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But by II, 4.9 (a) for any regular, full-rank process @ ' €Ly, and corresponds
to hy €M, under the isomorphism between L, r and $i,. Hence (2) implies

N
> Dt ,—h, in .
k=0

We get the desired result on applying the shift operator U™ to both terms in the
last relation. (Q.E.D.)

6. Errata to Parts I and II

(1) The second equation in I (4.3), p. p. 124 should read:

FP@)=F(a+0)-F@)+ > {Fi+0)-F(i-0)}+F(@x)-F@-0).
a<t<z

But when F is right continuous this reduces to the (generally erroneous) equation given in the paper.
Since the spectral distribution of a S.P. is right continuous this error does not affect any result
inl§?7.

(2) In I, 413 (a) (b), p. 128, the qualification “essentially”, i.e., up to a set of zero Lebesgue
measure, is required. This in turn shows that in the proof ef I, 7.8 (a), p. 143, the relation

F=F,+F,+const.

is valid only a.e. But in view of the right continuity of the functions involved and the fact that all
vanish for 0=0, it still follows that F =F,+ F, throughout [0, 2 #], as desired.

(3) In the proof of I, 5.11 (b) the equalities on the second, third and fourth lines from the
bottom of p. 133 are not proven, for the term-by-term application of the limit as k— oo to the in-
finite sum on the R.H.S. of (8) is unjustified. But the proof can still be completed as follows.
From (3)

IMZ(N [(Aj 0 — A o) Ko< g5— 8"

Letting k -» oo, we get
> (82— Ba K [i<]lg-sll"
in|<N

o0
whence E '(Ai,n_Bn) K? I%‘<|Igj~g![2.

n=—0co
o0 2 [la]
But LHS.=|| 2 A -By@.l’=]lgi- > B.e.l.
n=-o M- — 00
2 2 2
Thus ”gi_ Z Bn(Pn“ <“gj_g”-
Ne=—o0
oC
Now let § > co. We then get g = > B, @, €U ie., W is closed, as desired.
n=—o00

(4) It should have been remarked that when the rank ¢ <g, the Ay occurring in I, 6.11 (b), p.
137, are not uniquely determined although the products Ay G are. It follows easily that the products



MULTIVARIATE STOCHASTIC PROCESSES, TII 161

A, G? are also uniquely determined. Hence the expression for W, in I, 6.11 (b), p. 137, is unequi-
vocal, as is that for the function @ in I, 7.8 (b), p. 143.

(56} Most of the matrix equations on II, p. 101, are incorrect to the extent that the rows and
columns of the block matrix have been transposed. With the following changes, however, the method
given for solving the Prediction Problem becomes valid:

(i) In the matrices [I';_;] interchange N and — N (3 places).
(ii) The last line of (3) p. 101 should read

] :
=

k=0

N N N
> BT, ;Bi- (% Bt % BT ),

j

(iii) The equation following (3) should read
N LO
g Bt ;=B (t,+ ; By B;f ) =B, (1, - 2).

(iv) In the subsequent discussion (p. 101 bottom, p. 102, 1st{ paragraph) replace the subscript
N by 0.
(6) The following minor errata may be noted:

Location For Read
Part I
1. P. 116, inequalit, 1 (" . S .
. equality 2_7;J'0 $ () P re® & ar, 5}71 L 8P (ré, ity di
2. P. 123, formula before
3.13 a0 do
3. P. 123, 3.13 (second
line n>0 n<0
. b b :
4. P. 126, 4.9 (c) f G (z) d F (2) f dF (z) - G ()
a a
5. P. 128, line 7 aF () F(©)d0
6. P. 128, 4.12 0<0<2m 0<8<2n
7. P, 128, line 3* (1) If If F is of bounded variation and
8. P. 130, line 9 produkst product
9. P. 130, 5.4, formula (%, ¢*1 [P, ¢
10. P. 131, 5.7 (g) Smm O
11. P. 132, footnote 3 (4.3) (5.3)
12. P. 135, line 10* fn i,
137 P. 140, §7, line 1 s0 In so in the
14. P. 148, line 10* 6i1' I (SUI
Parr 11
1. P 105, line 1 Gk; Ck
2. P. 111, line 2% Leo L
3. P. 111, line 1% Lep Lz,p

(*) An asterisk indicates that the line is to be counted from the bottom of the page.
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©® o wa

10.

12.

(1.
[21.
(3.
[4].
[5].

[6].

[8].
[9].

P. MASANI

Location For Read
P. 114, line 5 P P
P. 115, line 9 Pr"oof. Proof. (a)
P. 115. line 2* &) &0
P. 116, line 1* | ® () VF (9 [% | @ () VF” () [%
P. 119, line 1* g (two places) gn
P. 119, line 1* } . S
P. 123, line 15 subtile subtle

= 0+ 0+
P. 125, (6.7) Ls Ly
P. 128, line 8 choise choice
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