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1. Introduct ion  

We shall show tha t  the algori thm for de termining the generat ing funct ion  and  

predict ion error ma t r ix  of a q-variate,  discrete parameter ,  weakly s ta t ionary,  stochastic 

process (S.P.), as well as the unique,  mean-convergent ,  autoregressive series for the 

l inear predictor in  the t ime-domain,  which were obta ined  by  Wiener  and  the writer in 

[8, Pa r t  I I]  (2) in  case the eigenvalues of the spectral  dens i ty  mat r ix  F '  are bounded  

above and  away from zero, are valid under  a more general setting. The algori thm 

will be shown to hold under  the weaker condit ions t ha t  the quot ient  of the largest 

to the smallest eigenvalue of F '  is in  L1, F '  is inver t ible  a.e. and  F '-1 EL 1. The series 

for the predictor will be shown to prevail  unde r  the hypothesis  F '  E L~, F '-1 EL 1, 

which while more s t r ingent  t h a n  the last  is again weaker t h a n  tha t  assumed in  I I .  

Our method  will rest on extending  to the q-variate case a theorem of Kolmogorov 

[2, Thm. 24] on simple min ima l  processes, i.e., those for which the r andom func t ion  

(1) The writer wishes to thank Harvard University and the Massachusetts Institute of Techno- 
logy for visiting appointments in 1957-58, during which a part of this research was completed. 

(2) In the sequel all references which are prefixed by I or II  are to parts I or II  of the 
paper [8]. 
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at  any  t ime is outside the closed subspace spanned by  the past  and future functions 

of the process. These results were announced by  the writer in [3, 4] along with in- 

dications of their proofs. At  about  the same time Rosanov  obtained a similar exten- 

sion of Kolmogorov ' s  theorem but  from a different s tandpoint  [6, Thin. 17]. 

I n  w 2, we shall define a q-variate, /ull-rank minimal S.P. (fn)~oo and the asso- 

ciated two-sided, normalised, innovation process. Unlike the ordinary (one-sided)innova-  

t ion process this is no t  or thonormal ,  bu t  we shall show tha t  it is biorthogonal to 

(fn)~:r and tha t  as a consequence the reciprocal of the generating funct ion �9 of 
0§ (f~)V~o is in L2 , i.e. the entries of the matr ix  cI) 1 are in L 2 and their Fourier  series 

have no negative frequencies. This crucial fact  enables u s  to extend Kolmogorov's 

Theorem to  the q-variate case: (f~)~oo is full-rank minimal, if and only if it has a 

spectral distr ibution F such tha t  F '  is invertible a.e. and F '  1E L1. We shall amplify 

the proof of this extension sketched in [3], even though Rosanov  [6, Thm. 17] has 

given such an extension in th~ meantime,  because the lat ter  uses a new definition 

of q:variate S.P., which whil~ equivalent  to ours, results in an appreciably different 

conceptual  framework.  (Reasons for adhering to our definition, which is due to Za- 

suhin [9], as against  Rosanov ' s  have already been given in [5, w 5].) 

I n  w 3 we shall show tha t  the new spectral condition, mentioned in the opening 

p~ragraph, allows an  initial /actorization o/ F '  into a complex-valued function F~ 

such tha t  F~, 1/F~ E i 1 and a matr ix-valued function I + 1~I E L~r such tha t  (I § M) -1 C L 1 

and I}ItB < 1, a.e., the subscript  B referring to the Banach-norm.  This yields a cor- 

responding factorizat ion of the generating function, in terms of which the frequency- 

response funct ion for the process is expressible. Since methods for finding the generating 

funct ion of a simple S.P. are known, we are left with the problem of determining 

the generating funct ion of a q-variate process with spectral densi ty of the form I+IM,  

where [ M [ B < I  a.e. and (I+Yl)-leL1. 
In  w 4 we shall solve the last problem with the aid of the operator  ~) defined 

in terms of 1~I as in I I ,  6.2. But  whereas in I I  [ p [ B <  1, we now have [0[B~< 1. We 
0+ shall show, nevertheless, t ha t  ~) is a strict contract ion operator  on L ~ ,  tha t  the 

geometric series ~ g ( - 1 ) k O  e converges s t rongly on the range of 3 +  ~) (which need 

no t  be the whole of L2)(1) and tha t  this yields the same algorithm /or the generating 

/unction as was found in I I ,  6.5, 6.6. As the frequency-response function is expressible 

in terms of the generat ing function and its reciprocal, we will have solved the 

prediction problem in the frequency domain. 

(~) I being the identity operator on L~. 
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Finally, in w 5 we shall show that with the stronger condition F 'E  L~ replacing 

F' EL 1 above, we can exploit the isomorphism between the temporal and spectral 

domains to get the m~an-eonvergent, autoregressive series for the linear predictor in the 

time domain, which was given in II,  5.7. To get this series in the univariate case 

Akutowicz [1, w 3] has assumed that  the Fourier series of (I) and (I) 1 converge abso- 

lutely. Our result, and indeed the weaker one given in II,  5.7, shows that  this as- 

sumption is unduly restrictive. We shM1 also express the (one-sided) innovation pro- 

eess as a one-sided moving average of the given process (f,)2~. Our criterion for this, 

viz. F'EL~r F ' - I E L ,  is the same as that  given by Wiener-Kallianpur in the uni- 

variate ease in [7, eh. IV[ (unpublish3d). As stated above the condition F ' - I C  L 1 is 

equivalent to r ~-1 EL ~ which Akutowicz [1, Thin. 1] has shown to be necessary in 

the univariate case for the existence of such a moving average, under the assumption 

F ' E L ~ .  But as remarked in II,  w (end) the last assumption seems to be unduly 

strong, and it would b~ worth while to t ry to relax it. 

We shall use extensively the theory developed in I, II ,  and adhere to the nota- 

tion followed therein. A list of errata to i,  I I  is given in w 6. We shall recall here 

some of this material for ready referene?, and state a lemma which we will need. 

NOTATION. As in [I, II]  bold /ace letters A, B, etc. will denote q• matrices with 

complex entries a~, b~j, etc. and bold /ace letters F, ~ ,  etc. will denote Junctions whose 

values are such matrices. The symbols T, A, *, will be reserved/or the trace, determinant 

and ad]oint o/ matrices. I A IB, I A IE will denote the Banach and Euclidean-norms o[ A 

[II, 1.1]. The letters C, D+, D_ will re/er t9 the sets I z l = l ,  I z I < l ,  l < l z l ~ o o  o[the 

extended complex plane. 

We shall be concerned with the sets Lp of q• matrix-valued functions 

F=[/~j] on C such that  each entry /~j is in L~ in the usual sense, O<p~<oo. For 
O+ O-  p>~ 1, L +, L~ , L; ,  Lp will denote the subsets of functions in Lp whose nth Fourier 

coefficients vanish for n ~ 0, n < 0, n ~> 0, n > 0, respectively. If  F E L~, p >~ 2, and has 

Fourier coefficients A~, - ~o < k,< oo, then F+, F0+, F_, F0- will denote the functions 
* O+ 0 -  

i n  L~, Lp , L~, Lp , whose nth Fourier coefficients are A~, for n > 0 ,  n~>0, n < 0 ,  

n ~ 0  respectively (and zero for the remainiag n). F 0 will denote the constant func- 

tion with value A 0. 

In L~ we introduce the Gramian, inner product and norm 

(cI~, ~ )  = 2 ~  (I~ (e i~ (e ~~ d 0 (1.1) 

( (r  w)) = ( r  II r II = ( r  r  
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We readily infer the following relations, the second of which follows from the Parse- 

val relations I I ,  1.13: 

1.2. L~MMA. For ~ ,  W EL~ and X EL~r 

(~I,X, W) = (el,, ' ~ X * ) ,  ( 0 + ,  tI.') = (cI,+, ty+)  = (~I,, '.Y+). 

In I, I I  we defined a q-variate, discrete parameter S.P. as a sequence (fn)~r of 

fn = (In)i=1 such tha t  each component fn is L 2 on q-dimensional vector-valued functions ~ q 

a probabili ty space (~, ~ ,  P). This definition is germane to all stochastic applications 

of prediction theory, but  is overspecific as far as much of the theory itself is con- 

cerned: it  suffices, following Zasuhin [9], to t reat  each /~ as a vector in some (fixed) 

complex Hilbert  space ~ ,  so tha t  fn belongs to the Cartesian product ~q. We call 

(fn)~_oo weakly stationary in case the Gram matr ix  

l . ) ] = r m - .  (1.3) 

depends only on m - - n .  In  this case there exists a unitary operator U on ~ into 

itself such tha t  U n/~ =fn.  U is called the shi/t operator of the process. We let 

t n ~ n ~')~n----| ~, ~r~n=~(k)~ . . . .  l<~i<.q, - - ~ < n < ~ .  

The first is the (closed) subspace of ~ generated by  the elements ]~ for k~< n; the 

second is the corresponding subspace of ~q defined similarly except tha t  linear com- 

binations are taken with q• matrix coefficients and the closure with respect to the 

induced topology in ~q, cf. I, 5.6. The orthogonal projection (~[ ~ n ) o f  a vector 

r = (~i)~=x E ~q on the subspace ~T~ is defined as the vector whose i th component is 
q 

component is the projection (~ [clos. ~ ~J~), cf. I ,  5.8 (a), 5.9. 

We call the S.P. non-deterministic if ~ n : ~  ~n+ l ,  and regular if (I01 m - n ) - > 0  as 

n - >  ~ .  In  the non-deterministic case 

gn=f~-(f.I mn 1)=~ -0. (1.4) 

We call ( ]=  (go, go) the prediction error matrix for lag 1, and say tha t  the S.P. has 

/ull rank in case A (] > 0. 

On taking the spectral resolution of the shift operator U we get a bounded, 

non-decreasing, right continuous, q xq matrix-valued function F on [0, 2g]  such tha t  

F (0) = 0 and 

rn = ~  e-n~~ 
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The  corresponding funct ion on C, also denoted by  F, is called the spectral distribution 

of the S.P. We know [I, 7.12] tha t  (f~)_~ is regular  and  of full-rank, if and only if 

F is absolutely  continuous and log A F ' E  L I. For  such processes, we define the space 

L.z.F as comprising all functions r on U such tha t  ~ F '  ~ *  E El. The s~ructure of this 

space is governed by  the Gramian,  inner p roduc t  and  norm: 

(~ ,  W)~ = ~ ~ (e i~ F' (e ~~ (e ~~ d 0, 
(1.5) 

I n  te rms  of this s t ructure  the  space IL2,F is isomorphic  to lithe, as shown in I I ,  4.10. 

2. Full-rank minimal  processes 

In  this section we shall ex tend  to the q-variate  case the spectral  character izat ion 

of simple minimal  sequences due to Ko lmogorov  [2, Thm.  24]. Our approach  [3] will 

differ f rom Kolmogorov ' s  in t h a t  we shall lean on the  Wold-Zasuhin  decomposi t ion 

ra ther  than  on results on subordinate  sequences. 

2 . t .  D E F I N I T I O N .  We shall call a q-ple stationary process (fn)~176 minimal ,  i / and  

only i/ [or some n, f~ ~ ~'~, where ~1t~ = ~  (fk)k.~. 

F rom the s ta t ionar i ty  p rope r ty  it  follows t h a t  the relat ion given in 2.1 holds for 

a single n only if i t  holds for all n. Hence  for a minimal  process 

, r  = f ,~-  (f,~ [ m;~) # 0, - o ~ < ~ < ~ .  (2.2) 

We shall call the  functions r  the two-sided innovations of the f~-proeess. Unlike the 

ord inary  (one-sided) innovat ion functions gn, they  do not  form an orthogonal  set, bu t  

we still have  

�9 ~ = U~ q~0, (q~, q~n) = (q~0, ~0) (2.3) 

where U is the  shift opera tor  of (f,)_~. 

2.4.  D E F I N I T I O N .  We shall call (f.)V~ a ful l -rank minimal  process, i/ and only i/ 

the Gramian (q~o, q~o) is positive de]inite, i.e., A (q~o, q~o) > 0. 

Since ~TU-- I~m~ it  follows readily t h a t  (gn, g~)>~(r ~n)(1), ef. I ,  5 .10(b) ;  

whence we get: 

(1) A>-B means *hat A - B  is non-negative hermitian. 

9~ -- 60173032 
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2.5. LEMMA. A minimal S.P. is non-deterministic; a /ull-rank minimal S.P. is 

non-deterministic and of full-rank. 

We shall "normalise"  the  two-sided innovations as follows(I): 

2.6. D E H N I T I O N .  Let (f~)Y~o be [ull-rank minimal, and let, el. (2.2), 

Lpn = (r  tPo)  - 1  ~o~, 

We shall call (%bn)~_oo the normalised two-sided innovat ion plocess of (fn)~oo. 

The following lemma gives the basic properties of this process: 

2.7. L]~MMMA. Let (f~)~o be a minimal, /ull-rank process, and let (~n)~-oo be its 

normalised two-sided innovation process. Then 

(a) the sequences ( ~ n ) ~ ,  ( t , ) ~  are biorthogonal, i.e., ( ~ ,  f~) ~-/~mnl; 

(b) ~b~= ~ D*h~+k, 
k = O  

where ( h ~ ) ~  is the normalised (one-sided) innovation process o/ (f~)~162 el. [I, 6.12], and 

Dk is the k-th Taylor coe]/icient o[ the reciprocal ~ +1 o/the inner holomorphic extension 

e~+ o/ its generating /unction c]~, el. [II ,  2.6] (2); 

(C) cI :~-1 e L 0+. 

Proo/. (a) Write  A for (q)o, q)o) -1 and  P for the projection on moo onto  

~;II~ N (too) • so tha t  qao=Pfo .  Then 

(qo, f0) = (A r fo) = A (Pro, fo) = A (q)0, q)0) = I. (1) 

Also for n 4= 0, fo E BI~ • ~ ;  hence 

(q~, to) = 0. (2) 

Applying the shift operator  U k in (1) and (2) we get  (a). 

(1) This normalization, which differs from that adopted by Kolmogor0v, is chosen so that the 
resulting process (t~n)~oo may have spectral density ~ '  1, where F is the spectral distribution of 
f or ( n)-or cf. Cor. 2.9 below. 

(2) In view of the first and last equalities in I I  (2.5) it follows t h a t  '~:D+ 1 is holomorphie on the 
disk D+. 
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t 
(b) Since %b o J_ ~ o - l l t ~  for n<O,  therefore 

n<:0 

I t  follows that  ~b 0 E~(hk)_~.  for obviously d~0 E ~T~r and by I, 6.10 (b) 

m ~  = m ~  + | (hk)-~,  m ~ • | (hk)_~. 

Actually ~b o E | (h~)~-o, since for k < 0, h k E ~ff 1 -~ ~:ffo • ~bo. Hence 

Now by 1, 6.11 (a), 6.12 
k=0 0 

f n =  ~Ckh~ k+v~, 
k~0 

147 

(3) 

(4) 

where v~ E m_~.  Hence by (3) and (4) 

(~o,  L)  = Aj hi, * = Aj C,_j. 
] ]=0 

Hence by (a) ~ A s C* s = r I. (5) 
]=o 

But by II, 2.6, r  ~ Ckek*~ hence 
k=0 

~C~-k Dk = ~,~o I. 
k=O 

Taking the adjoint, and comparing with (5) we see by a simple inductive argument 

that  A~=D*. On applying U" to both sides of (4) we now get (b). 

(c) I t  follows from (b) and (4) that  ~ t Dkl~< ~ .  Each entry of the matrix- 
o 

function ~+1 is therefore .in the Hardy class H a on D+, and hence its radial limit is 

in L ~ This means that  each entry of ~ -1  is in o+ L2 , i.e., ~ -1  e L ~ (Q.E.D.) 

We are now ready to give the spectral criterion for full-rank minimality: 

2.8. THEOREM. Let (fn)_~ be a q-ple stationary S.P.  with spectral distribution F. 

Then (f~)_~ is /ull-ran]c minimal, i/ and only i / F '  is invertible a.e. on C, and F "-1 E L 1. 

Proo/. Let (f~):r be full-rank minimal. Then by 2.5 it is non-deterministic and of 

full rank. Hence by I, 7.10 AF ' :#0 ,  a.e., and therefore F '-1 is defined a.e. Since by 

2.7 (c), ~ - I E  L 2, it follows that  F ~ - 1 :  (cI~*)-I ~ :~ 1E L 1. 

10--60173032.  Acta mathematgca. 104. I m p r i m ~  le 23 sep tembre  1960 
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Next, suppose that  F "-I ~ L~. Then by I, 3.7 (e), I /A F' ~ L~/q. Likewise A F' ~ L~/q, 
since F' ~ Lx. The inequality 

,log AF'l=qllog ~AF'l<~q max (~AF', ~-)VAF, 

now shows that  log A F '~L1.  Hence by I, 7.10, (f=)~r is non-deterministic and of 

full-rank. We therefore have the Wold-Zasuhin decomposition 

l ~ = u ~ §  ~Cah=-~§  (1) 
k=O 

where v~ E .~lt__~ and (u~)_~ is regular of full-rank with spectral density 

F~ = r '  = ~ r  (2) 
cf. I, 6.12 and 7.11. 

Now let Y~=@(uk)~= ~, ~ = ~  u ~ ( k)k . . . .  By II, 4.10 there is an isomorphism 

on Y ~  onto L2.Fu such that  to uk corresponds e-k~~ and if to Xz, X~ E ~  corre- 

spond X~, X~ ~ Le.r u, then (cf. (2)) 

(X~, Xz) = ~-~ Xl (e ~~ (e ~~ X* (e ~~ d 0. (3) 

Now F '-1 E L2.ru, since F F~ (F'-I) * = F' 1 E L 1. Hence if X is the function in Y ~  cor- 

responding to F'  1, then by (3) 

1 ; ~ F ' - '  F' 1 ;~F'-l(e~~ (4) (X, X) = ~ (e ~~ (e ~~ {F' -~ (e~~ * d 0 = 2 ~  

(X' Un) = ~ ~ ' -  1 (eiO) ~t (eiO) eniO d 0 = 0n0 I .  (5) 

Since X E V ~ @ ( h k ) T ~ ,  vnE !1~_~, ~(hk)T~ ~-IT~ ~, it follows from (1) and (5 ) tha t  

(X, fn) = (X, u,) + (X, v~) = ~o  I. 

Thus X ~  fn, for n # 0 ;  therefore X • ~r~0=~(fk)k.0. But  obviously X E ~ ,  since 

~ m ~ r  Also X # 0 ,  since by (4) (X, X) is positive definite. Thus ~t~=4=~r162 which 

means that  f0 r ~lt0, i.e., ( f , ) ~  is a minimal S.P. 

That ( fn )~  is full-rank minimal depends on the easily established relation 

m ~  = ~lto § ~ (r ~o • too. (6) 
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For since XE~:II~ and Zs it follows from (6) that  ZE~(q~0), i.e., x = A ~ o "  

~-~ence 

(X, X) = A (q~o, q~o) A*. 

Since by (4) A (X, Z )>0 ,  it follows that  A (q~o, q~o)>0, i.e., (f~)_%~ is full-rank mini- 

mal. (Q.E.D.) 

2.9. COROLLARY. I /  ( fn)~ is a ]ull-rank minimal process with spectral distribu. 

r F, then F '-1 is the spectral density o/ its normalised two-sided innovation process 

(d~)~:r (cf. 2.2, 2.6), which is a regular process o/ /ull-rank; moreover 

2~ (e! ~ =(%, %), 

where q~o is as in (2.2). 

Proo/. By 2.7 (b) !~ 

( S )  
k=0 k = m a x  { -  n, O} 

In this Dk is the kth Fourier coefficient of the reciprocal 4 -1 of the generating func- 

tion of (f~)_~. Since the kth coefficient of (4-1) * is D*~, it follows readily that  the 

last sum is the nth Fourier coefficient of (r * 4 -1, i.e., of F '-1. The ~-process 

thus has spectral density F '-1. 

By 2.5 (f~)~oo is non-deterministic and of full-rank. Therefore by I, 7.10 

log A F ' E L  v Hence log AF" 1EL1. It  follows by I, 7.12 that  ( ~ ) ~  is a regular 

process of full-rank. Finally, 

127~ f f~  F'-I  (e~~ dO = (~o, d~0) = (q~0, q~0) -1, 

in view of 2.6. (Q.E.D.) 

We conclude this section with the following obvious consequence of 2.7 (c) and 

the Convolution Rule I, 3.9 (d): 

2. i0.  CO•OLLARr. I /  (f~)%~ is a regular, ]nil-rank minimal process with spectral 

density F' and generating ]unction 4 ,  and /or v > O, 

L ( H  ~ = [e-~00 (e~~247 O -1 (e~O), 

then Y~ E L~ + and its k-th _Fourier coe//icient is given by 
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k 
E~k= ~ C~+~ D~_., 

n=O 

where Ck, Dk are the k-th Fourier coe//icients o/ r f~-l, 

Y, corresponds in the frequency domain to the linear predictor f, = (f~ I ~ 0 )  in 

the t ime-domain under the isomorphism between ~ and L2.F, cf. I I ,  4.11. I t  is 

therefore the /requency-response or trans/er-/unction of the S.P. for lag v (cf. I I ,  5.8 

et seq.). The corollary shows tha t  the Fourier series of this function can be derived 

from those of the generating function and its reciprocal. Two problems now arise: 

(1) To obtain the generating function from the spectral density matr ix  F'.  

(2) To find out if the Fourier coefficients E~k of Y~ can be used to get the 

predictor f', in the time-domain. 

Both problems were solved in I I  under the Boundedness Condition II ,  5.1. In  

w we shall solve problem (1) under the weaker conditions 3.1. In  w we shall 

solve problem (2) under conditions, which though more stringent than  3.1 are weaker 

than  I I ,  5.1. 

3. The spectral assumption; initial factorization 

To use the ~) operator mentioned in w 1, i t  is necessary to factor the spectral 

density in the form F ' = F ~  "' F ,  where F1 is complex-valued and in L 1, F ' E L ~ ,  and 

1/F~ EL1, ~,-1 EL1. The conditions on the reciprocals are required in order tha t  we 

may  utilize the preceding results on minimal processes (w 2). To be able to carry out 

such a factorization we have to make the following assumption regarding F': 

3.1. ASSUMPTION. Our q-ple regular lull-rank process ( f ~ ) ~  has a spectral den- 

sity F' such that 

(i) F ' - 1  E L  1 on C, 

(ii) i/ ~ (e~~ # (e ~~ are the smallest and largest eigenvalues o /F '  (ei~ then/z/~ E L 1 on C. 

Now suppose that  F' ,  F '-1 EL 2. Then obviously F' ,  F ' -1  E L  1. Since for any  0, 

the trace of F ' (e  t~ is equal to the sum of its eigenvalues and similarly for F '-1, 

we will have, cf. I I ,  1.9 (c), 

0~</z ~<~ (F') EL2, 0~< 1/2~<~(F' 1) E L2, 

and therefore # / ~  E L 1. Thus 
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3.2. LEMMA. The condition 3.1 will be satisfied i/ F', F '-1 EL 2. 

We shall use the following notation:  

F~ (e ~~ = �89 {4 (e g~ + ~ (egO)} ] 
_ _ _  [ (3.3) 

M (e ~~ ~ 1 F'  (e g~ - I, a.e. 
F~ (e g~ 

Since by 3.1 (i), F~ (e t~ >/�89 4 (e t~ > 0, a.e., the function M is well-defined a.c. The 

initial factorization alluded to above is given by the following: 

3.4. LEMMA. I /  ( fn )~  satis/ies Assumption 3.1, then 

(a) F' =F1 ( I+M),  a.e.; 

(b) 0~<0~<2~; ]M(e'~ a.e.; 

(c) I + M ,  ( I+M)  -1 EL1; I §  is there/ore the spectral density o/ a q-ple, regular, 

/ull-rank-minimal process (cf. 2.8); 

(d) F~, 1/F~ eL1; F; is there/ore the spectral density o/ a simple regular, minimal 

process. 

Proo]. (a) is obvious from (3.3). 

(b) Since 
4 (d ~ I-<F'  (egO)-(# (e g~ I, (1) 

we get, cf. II ,  1.5 (c), 

I (e i~ - 4 (e g~ 2 F ' (e  ' ~  ~/~ < 1 .  (2) 
[ M (d~ ]. = 4 (e ~~ + / ~  (e g~ /~ (e g~ + 4 (e g~ 

Also by (3.1)(ii), 4 > 0 ,  a.e. and therefore ]M(ei~ a.e. 

(c) By  (b), I + M  fiL~c___L1. Next,  from (2) 

4 + / ~ t I M I + M ~  I, a.e., 

whence since 4 > 0, a.e. we get 

�89 (1 + 4/#) I< (I + M)-~< �89 (1 + #/4) I. 

Since ju/4 E L1, we conclude tha t  (I §  -1 fi L 1. 

(d) Since for any  0, the trace of F '  (e g~ is the sum of the eigenvalues we have 

0 ~ F I =  �89 (4§ ~ �89 ~(F')  ELl ,  
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so that  F~ E L 1. Similarly, 

P. MA SAI~II 

1 2 2 
0~<F~- =A+#~<_~<2~(F ' - I )  EL1 , #  

and hence 1/F~ EL 1. (Q.E.D.) 

The next theorem shows that  our factorization of F' yields corresponding factor- 

izations of the generating function and of the prediction-error matrix. 

3.5. THEOREM. I /  (i) ( fn)~  satis/ies the Assumption 3.1 

(ii) ~ ,  r r 1 are the generating /unctions o/ the processes with spectral densities 

F', I §  F;, 

(iii) G, G are the predictor-error matrices with lag 1 o/ the /irst two processes, and 

g the innovation /unction o/ the third, 

then (a) r 1, ~ 1 EL~ , 1//O1 EL ~ 

(b) ~ = ~1 ~ ,  

(c) 

Proo/. (a) follows from 2.7 (c), since by hypothesis and 3.4 (i) the processes re- 

ferred to are full-rank-minimal. 

(b) We have (cf. II,  2.5, 2.6) the factorizations 

Hence by 3.4 (a) 

F '  : cI) {I }* , F I :  (~)1~1, I + M = r r 

Our problem 

II, 8.12. 

We first note, cf. (a), that  

We assert next  that  

{I} {I}* =(I ) l ( I )  1 , 1 ~ * =  (( ] )1~)  ((I)11~)* =t I / I t t ]*  ' s ay ,  (1) 

is to identify ~ and W. For this we appeal to our Uniqueness Thm. 

�9 , O - '  e L ~ (2) 

~Y, ~Y-' e L ~ (3) 

This follows, for on the other hand by (1) tI~P* = F '  EL1, (~--1). ~ - I = F , - 1  EL 1 and 

so we have ty, ty-1 EL2; and on the other hand we have W = O I ~  o+ ~i s 1 EL2 , = 

= (1/O1) 4 -1 E L1 ~ since (])1 E i ~ ~) E i ~ and (cf. (a)) 1/O 1 E L ~ r E L ~ Finally, 

since by II, (2.5), ~(0)--VG, ~0(0) =Vd are positive definite and �9 1(0) = I gI > o, 

we have 
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r (0), t~ (0) are positive de/inite. (4) 

From (1)-(4) and the Uniqueness Thm. II, 8.12 it follows that  r  i.e., ~ = q b  1 r 

(c) clearly follows from (b). (Q.E.D.) 

We know how to find the generating function of any simple regular S.P. by 

optimal factorization of its spectral density [II, p. 103]. In view of the last theorem 

all we have to do to get the generating function of the given S.P. (f,)T~ is to deter- 

mine that  of the process whose spectral density is I + M. An algorithm for accom- 

plishing this is given in the next  section. 

4. Determination of the generating and frequency-response functions 

Let (f~)_~ be a S.P. satisfying the Assymption 3.1 and let M be as in (3.3). 

Then by 3.4 (b), (c), M certainly satisfies the following: 

4.1. CONDITIONS. (i) M i8 hermitian-valued on C, and M E L~.  

(ii) I M(e ~~ on C. 

(iii) I M (e g~ [B < 1 on a subset o/ C o/ positive measure. (1) 

(iv) (I + M) -1 E L 1. 

We shall therefore assume that  the function M to be dealt with in this section 

satisfies 4.1. We can then define our ~ operator exactly as in n ,  6.2, the definition 

being meaningful, since for tlS EL 2 and M ELm we have tit M E L2: 

4.2. DEFINITION. For any tI~EL2, ~(W)=(tISM)+. 

The following properties of ~ are easily established using 4.1 (ii): 

$,.3. LEMMA. (a) p is a bounded linear operator on L 2 into L~, and IP lB• I .  

(b) p (I) = M+, p2 (I) = (M+ M)+, p3 (I) = (M+ M)+ M+, and so on. 

The relevance of the operator ~ to the problem of determining the generating 

function ~ of a S.P. with spectral density I + M  is seen from the following lemma: 

4.4. MAIN LEMMA. Let ~ ,  G be the generating /unction and prediction error 

matrix with lag 1 o/ a S .P.  with spectral density I + M. Then 

(y + p)  (~j~, ~-1)  = I, 

where 3 is the identity operator on L 2. 

(1) Actually [ M (e t0) [B < 1 a.e., but the weaker condition (iii) is all we will need. 
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Proof. The proof rests on the crucial fact that ~ 16LO+ which stems from 

4.1 (iv), 2.8, 2.7 (c). Now let W = V G ~  -1. Then tY6L ~ Also, since ~(0)=VG, we 

have W (0) = I. Hence 
W = I + W+. (1) 

Next, since I + M = q' q'*, we have 

%I2 A-~11M = I/G~D -1 (I-l- M ) =  Vi~&* 6L ~ 

Hence tlS+ + (tis M)+ = 0, 

i.e., by (1), W - I + ( W M ) + = 0 ,  

i.e., (Y + O) tI' = I. (Q.E.D.) 

This lemma shows that  we can get ~ ,  if we can invert the operator Y + ~.  We 

proceed to show that  this can be done in view of the condition 4.1 (iii). 

0+.  4.5. LEMMA. (a) ~) is a strict contraction operator on L~ , i.e., 

0:t=tIt6I~ + implies I l P ( w ) l l < l I w l ]  

(b) ,7+ ~) is one-one on Lz into itself. 

(c) ~ is hermitian on L + 2, i.e., for all tp, X 6 L~, 

(O(W), X)=(W,  p(X)),  ((O(W), X))=((~ ' ,  p(X))).  

Proof. (a) By 4.1 (iii), there is a positive number e and subset C~ of C such that  

[ M ( e t ~  ) on C~, meas. C~>0. 

Since II ~)(tIt) H = H (tItM)+ II ~< H tItM]] we have, writing 0 for brevity instead of e ~~ 

f  lV(O)M(O)l dO 
I't'(o)l lM(o)lldO 

1 f i~(0)[~d0+ ! ~<(1--s)2x 2 z  
C e 

2 8  <ll ll fl r(o)l%dO 
Ce 

(by II, 1.4) 

f l r(O)l dO 
C- C s 

(1) 
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Now let 0~=tI~E 0+ L2 . Then its entries ~'tj vanish almost nowhere on C. Hence 

q q 

I ~ ( o ) 1 ~ =  Z Z Iw~,(o)l~>o a.e. 
i = l  ]=1 

on C~. I t  follows tha t  the last integral is positive, so tha t  [] 0 (W)]I < ]ltYH �9 

(b) Let  W e L 2 and suppose tha t  (Y + ~ )  (tit) = W + ~ (W) = 0. Then 

= - p (~ )  e L ; ,  and JI ~ II = II P (~)J J- 

Hence by (a) t Iz=0.  Thus Y + ~0 is one-one on L 2. 

(c) For W, X E L.~ we have the equalities 

(D(W), X ) =  ((WM)+, X) =(WM,  X + ) =  (WM, X) 

=(W, XM)=(W+, XM)=(W, (XM)+) 

= ('~', p (x)) ,  

the second up to the sixth of which follow respectively from 1.2, the facts tha t  

X = X + ,  M=M*.  tI~=~IJ+, and 1.2. On taking the trace we get the second equality 

in (c). (Q.E.D.) 

By 4.5 (b) the operator Y + ~ (with domain L2) is invertible on its range R, 

but  g may  not be the whole of L 2. (From 4.5 (c) it follows tha t  R has a subset 

everywhere dense in L2+.) We know from 4.4, however, tha t  I ER. We shall now 

show tha t  the usual geometric series for the (posssibly unbounded) operator (Y + ~)  1 

converges strongly on R. The application of this operator-series to I will yield our 

algorithm for the generating function. 

4.6. THEOREM. (a) ~n-->O strongly on L2, as n-->oo; i.e., /or all V~EL2, 

l im II P n (~)II =o. 
n - ~ r 1 6 2  

(b) I /  W is in the range o/ Y +  ~,  then 

lim Z (-i)~W(~y)=(y+O)-~(W), 
n-~aa k=0  

the limit b~ing taken with r~spect to the L~-norm II II. 

Proo/. (a) Let  tIs EL 2. Then, cf. 1.1, 

IIP~(~')-O~(~)II~=IIO~(~,)II~+IIp~(~,)II~-2 real ((Ore(W), O~(tIS))). (1) 
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Consider first the case m = n + 2 k ,  k>~O. Since ~(~IS), ~n+k(~')EL~,  it follows 

from 4.5 (c) tha t  

((pro (~), p~ (~))) = ((p~ pn+~ (~), pn (~))) = II pn+~ ( ~ ) i i  ~ 

Hence letting X = 0 ( t I Z )  EL~, (1) becomes 

II p.+2k (~) _ On (~,)ii  ~ = II pn+2~_l (x)II 3 + II p n - x  (X)11 ~ - 2 II On+k_.1 (x)II 2. (2) 

By 4.5 (a) the sequence ([I P~ (X)1[)~-1 is monotonic decreasing. Hence II O ~ (X)I[--> l>~ 0, 

as v--> ~ .  I t  follows from (2) that  

II p~+2k(~,)_ pn(~,)ll § o, as n -+  ~ .  (2') 

Next, take separately n even and n odd in (2'). We see that  

lim H~)~m(W)-~)~n(w)[[=0 = lim Hp2m+l(~Iz)-p2n+l(~)H. 
m,n...-).oo m,n--->oo 

L 2 being complete, this means that  

lim ~)2n(tIz)=X 0, lim ~2n+l(~Iz)=Xl, X o, X~eL~.  (3) 

Now since ~) is bounded (and therefore continuous) 

X~ = lim ~) (p2n (tit)) = ~ (So) (4) 
n-~oo 

X o = lim ~) (~)2~-1 (~is)) = ~) (X~) = ~ (So). (5) 
n--~oo 

Since (cf. 4.5 (a)) ~) and therefore ~)2 are contraction operators on L~, it follows 

from (5) that  X 0 = 0  , and from ( 4 ) t h a t  X l = 0 .  Thus from (3) lira ~n(LIZ)=0 in 

the L~-norm. 

(b) Let $ = j _ p +  p2 . . . .  + ( _ l ) ~ p n .  

Then Sn (J + P ) =  Y + ( -  1) n 0 n+l. (6) 

Hence for any ~I ~ in the range of Y+ ~,  say ~I s = ( J +  ~) (X) ,  X EL~, we have 

$~ (W) = Sn (Y + O) (X)  = X + ( - 1) n p ~ l  (X) = (Y + 0 )  -1 (~I ~) + ( - 1) n pn+l (X).  

T h u s  II Sn (~IS) -- (~ -~ p ) - I  (~)11 = II p n + l  (X)II .  

Since by (a) the last term tends to 0 as n - + ~ ,  we get (b). (Q.E.D.) 
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Also 

Thus 
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Since by 4.4 I is in the range of J +  ~,  it follows from 4.6 (b) that  

V G ~ - ~ = ( Y + 0 ) - ~ ( I )  = lira ~ ( - 1 ) ~ 0 k ( I ) = W ,  say. 
n - + o o  k = 0 

W = I - M +  + (M+ M)+ - {(M+ M)+ M}+ + . . . .  

W (I +M) W* = V d ~  -~ ~ *  (~-~)* V(~ = G. 
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This theorem is an extension of II,  6.6. I t  follows that  tI~ I=cI~(VG)-I E Loo~ 

Hence letting 

,I~ (e ~~ ~ ~ a~ e ~~ ~ -1  (e ~~ ~ ~ B~ e ~~ 
0 0 

we get, exactly as in II,  6.10, A0=I  and for m > 0  

Am = - r;n + ~ r~ r ~  ~ - ~ 5 r~ r~_~ r~_  ~ +. . . ,  
n n p 

where r~ is the kth Fourier coefficient of M, and all subscripts run from 1 to oo. 

The coefficients B~ can be found from the A~ by the usual recurrence relations (cf. 

II,  6.11). The kth Fourier coefficients of ~ ,  ~ 1 can then be had from the relations 

As in II,  6.9 somewhat different expressions for G and ~ are also available. 
For since M =M*, we get 

Letting 

W * = I - M  + ( M M _ ) _ - { M ( M M _ ) _ } _ + . . - e L  ~ 

X = (I + M) tit* 

(4.8) 

(4.9) 

is follows from 4.7 (b) that  X = tIZ-1 ~ = ~ / ( ~  E L ~ and since ~o = VG that  X = r o. 

Thus 

4.7. THEOREM. I/ (~, G are the generating /unction and prediction-error matrix 

with lag 1 o/ a S.P. with spectral density I +  M subject to the Conditions 4.1, then 

(a) the series I -  M+ + (M+ M)+ - {(M+ M)+ M}+ + .-. is mean-convergent, 

(b) W being its sum, we have 

W = V G ~ - l e L  ~ d = W ( I + M )  W*. 
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4.~0. COROLLARY. Let X be de/ined by (4.9) and (4.8). Then 

& = X (VXoi) ,  d = X  O . 

The last theorem and corollary provide methods for determining the generating 

function ~ and prediction-error matrix G from the spectral density I +  M. As re- 

marked at the end of w 3 we can get from these the generating function cla and pre- 

diction-error matrix (~ of any S.P. whose spectral density satisfies Assumption 3.1. 

For such a proccess the /requency-response or trans/er-/unction can therefore be deter- 

mined, el. 2.10. Its li~ear prediction in the /requency domain is thus accomplished. 

5. Determination of the predictor in the time-domain 

We shall now show that  the unique mean-convergent series for the linear pre- 

dictor obtained in II ,  5.7, 6.13 under the Boundedness Condition II, 5.1 is available 

under the weaker conditions F' ELm and F '-1 EL I. 

5.1. LEMMA. A S.P. ]or which F' EL~  and F '-1 EL 1 satis/ies Assumption 3.1. 

Proo]. For letting F' (e ~~ ~ fl I, it follows that  /~ (e~~ (e ~~ ~ fl/2 (e~~ But  since 

F '-1 E L 1, therefore 1/~ (e i~ ~< T (F "-1) E 51. Hence #/~t E L r (Q.E.D.) 

All results established in w167 3, 4 will therefore apply to a process satisfying our 

new conditions. 

5.2. THEOREM. I /  F' EL~ and F ' - IEL1,  and Y~, E~k are de/ined as in 2.10, then 

az N--> oo 

(a) ~ E~k e kt~ --> Y~ (e i~ in the L2,F-norm. 
k=O 

(b) in 
k=0 

Proo[. (a) We have, cf. 2.10, 

k=O k=O 

1Wow cI~ E L~, since F 'E  L~r Hence both the terms inside { } are in L~r and so there- 

fore is the term on the L.H.S. Since cla -1 EL2, as F '-1 EL1, it follows that  

Y~ (d ~ = [e -~~ ~ (d~ 4~ -1 (d ~ E L~. 
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Hence (cf. 2.10) 
N 

E~kek~~ t~ in the L2-norm. (1) 
k = 0  

But since F'(e*~ a.e., f l< ~ ,  it easily follows (eft II,  5.2 (b)) that  

N N 

llfl_oE~e~'~ Y~ I1~ < ~Z lily o E~e ~*~ Y~II. 

Hence (a) follows from (1). 

(b) follows from (a) in view of the isomorphism between ~ and L~,F, cf. 

II,  4.10, 4.11. (Q.E.D.) 

The same conditions on the spectral density also enable us to express the ordi- 

nary (one-sided) normalised innovation process (hk)~r as a one-sided moving average 

of the given process (fk)-~. 

5.3. THEOREM. I /  a regular S.P. (f~)_~r162 has a spectral density F' such that 

F' ELm, F "-~ EL1, then its (ordinary) normalised innovation process (h~)~ is given by 

hn ~ ~ Dk fn k, 
k = O  

where D k is the k-th Fourier coefficient of the reciprocal of the generating function ~ .  

Proof. As remarked just before 5.2, the conclusions of 2.8 and 2.7 (e) apply to 

our process. Thus 

~ - 1  ~ Dk ekl0 oF EL2 , 

k=O 

and therefore, as N--~ c~, 

N 

Dk e k*~ ---> r ~-1 (e i~ in the L2-norm. (1) 
k = 0  

But since F'(e~~ a.e., /~< co, it follows that  

Hence (1) implies 

N N 

II~ ~ D~ e~*~162  I1~ < V~ ]I~0 D~e ~'~ r 

N 

D~ e k~~ --> ~ -1  (et0) in the L2,F-norm. (2) 
k = 0  
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B u t  b y  I I ,  4 .9  (a) f o r  a n y  r e g u l a r ,  f u l l - r a n k  p r o c e s s  �9 -1  E L2.F a n d  c o r r e s p o n d s  

t o  h 0 E Moo u n d e r  t h e  i s o m o r p h i s m  b e t w e e n  L2,F a n d  ~ r  H e n c e  (2) i m p l i e s  

N 

Dkf_k-->h o in 1~too. 
k = O  

W e  g e t  t h e  d e s i r e d  r e s u l t  o n  a p p l y i n g  t h e  s h i f t  o p e r a t o r  U ~ t o  b o t h  t e r m s  i n  t h e  

l a s t  r e l a t i o n .  ( Q . E . D . )  

6. Errata to Parts I and II 

(1) The second equa t ion  in I (4.3), p. p. 124 should  read: 

F(a)(x)=F(a+O)-F(a)+ ~ {F(t+O)-F(t-O)}+F(x)-F(x-O). 
a < t < x  

But  when  F is r ight  cont inuous  this  reduces to  the  (generally erroneous) equa t ion  given in tbie paper.  
Since the  spectral  d is t r ibut ion  of a S.P. is r ight  cont inuous  this  error does no t  affect  any  result  
i n I w  

(2) In  I, 4.13 (a) (b), p. 128, the  qual if icat ion "essent ia l ly" ,  i.e., up to a set of zero Lebesgue 
measure,  is required.  This in t u r n  shows t h a t  in the  proof cf I,  7.8 (a), p. 143, the  relat ion 

F = Fu + Fv + c o n s t .  

is val id  only a.e. Bu t  in view of the  r igh t  con t inu i ty  of t he  funct ions  involved and  the  fact  t h a t  all 
van ish  for 0 = 0, i t  still  follows t h a t  F = F u + F v th roughou t  [0, 2 zr], as desired. 

(3) In  t he  proof of I,  5.11 (b) the  equali t ies on the  second, th i rd  and  four th  lines f rom the  
b o t t o m  of p. 133 are no t  proven,  for the  t e rm-by - t e rm  appl ica t ion  of t he  l imit  as k -+  c~ to t he  in- 
f inite sum on  the  R.H.S .  of (3) is unjust i f ied.  Bu t  t he  proof can  still be comple ted  as follows. 
F r o m  (3) 

l (A,,.- Ak,.) K~ I~ < II g,- gk Ill 
I n } < N  

Le t t ing  /c-+ o% we get  

whence  

Inl<N 

~ [ (A,.~- B~) K~ I~ < II gj-  g!r. 

But L.H.S.=II - 

� 9  I Ig , -  
n ~ - o o  

Now let  ] -+  ~ .  We  then  get  g = 
n =  oo 

n - ~ o o  

B.  q,.ll -<llgFglr. 

B~ r n E ~;1$; i.e., ~ is closed, as desired. 

(4) I t  should have  been r emarked  tha t  when  the  rank  Q<q, the  Ak occurring in I ,  6.11 {b), p. 
137, are  no t  uniquely  de te rmined  a l though  the  products  A k G are. I t  follows easily t h a t  t he  products  
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A k G  ~ are  also u n i q u e l y  de te rmined .  Hence  t he  express ion  for u s in l ,  6.11 (b), p. 137, is unequi -  
vocal ,  as  is t h a t  for t h e  func t ion  cla in I, 7.8 (b), p. 143. 

(5) Most  of  t he  m a t r i x  equa t i ons  on  I I ,  p. 101, a re  incorrec t  to t h e  e x t e n t  t h a t  t h e  rows a n d  
c o l u m n s  of the  block m a t r i x  h a v e  been  t ransposed .  W i t h  t h e  following changes ,  however ,  t he  m e t h o d  

g iven  for solving the  1)rediction 1)roblem becomes  valid:  

(i) I n  t he  ma t r i c e s  [I~k_j] i n t e r change  ~V a n d  - N  (3 places). 
(ii) The  las t  l ine of (3) p, 101 shou ld  read  

N N N N 

] = 0  k = 0  0 0 

(iii) The  equa t i on  following (3) shou ld  r ead  

N N 

B; L j  = B o (fo + ~ B f  ~ Bs L j) = Bo (fo - g). 
0 1 

(iv) I n  the  s u b s e q u e n t  d iscuss ion (p. 101 bo t tom,  p. 102, ls~ pa r ag raph )  replace t he  subsc r ip t  
N b y  0. 

(6) The  fol lowing m i n o r  e r r a t a  m a y  be noted:  

Location For Read 

1)ART I 

1. 1). l l 6 ,  i n e q u a l i t y  : ~ j ,  2z 1 f2z  r ~0, e~t)dt, ---- ~(ei~)OP(reiO ' e~t)dt 
af te r  (2) 0 2 

2. 1 ) . 123, f o r m u l a  before 

3.13 dO dO 
3. P.  123, 3.13 (second 

line n > O n < 0 

5. 1). 128, l ine 7 d F  (0) F (0) d 0  

6. 1). 128, 4.12 0 < 0 < 2 z  0 < 0 < 2 z l  
7. 1), 128, line 3* (1) I f  ] f  F is of b o u n d e d  va r i a t ion  a n d  

8. 1). 130, line 9 p r o d u k t  p r o d u c t  
9. 1). 130, 5.4, fo rmula  [(/U), g(k)] [(f(i), g(k))] 

10. 1). 131, 5.7 (g) ~mrn ~mn 
11. 1). 132, foo tno te  3 (4.3) (5.3) 

12. P. 135, l ine 10" ]n fn 
13/  P .  140, w 7, l ine 1 so in so in t, h e  
14. 1). 148, l ine 10" (~iJ I (~ijI 

PART II 

1. 1). 105, line 1 G k C k 
2. 1). 111, l ine 2* L ~  L~o 

3. 1). I l l ,  l ine 1" L2,F •2,F 

(1) A n  as ter i sk  ind ica tes  t h a t  t he  l ine is to be  coun t ed  f rom the  b o t t o m  of t he  page.  
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Location For Read 

4. P. 114, line 5 ~:D r 
5. P. 115, line 9 Proo/. Proo/. (a) 
6. P. 115. line 2* e kg0) e kg0 

7 P 116, line 1" (e g~ (e g~ (e '~ 
8. P. 119, line 1" gk (two places) gn 
9. P. 119, line 1" t - n  f-k 

10. e .  123, line 15 subtile subtle 
11. P .  125, (6.7) L ~ L ~247 
12. P. 128, line 8 choise choice 
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