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1. Introduction

Let ¢ be an abelian group, A, B and C subsets of . By A+ B we denote the
set of all the elements g €G having at least one representation as a sum g=a+b of
an element a€4 and an element b€B. For each g€, the number of such repre-
sentations is denoted as v,(4, B). Further, H (C) will denote the subgroup of G
consisting of all the elements g€G for which C+g=0C, thus, C+H(C)=C. If
H(C)+{0} then C is said to be periodic, otherwise, aperiodic. Finally, [C] denotes
the number of elements in C.

In this paper, we shall determine the structure of those pairs (4, B) of non-

empty finite subsets of @ for which
[A-+ B]<[A]+[B]. 1)

In view of Theorem 3.1 due to Kneser [4]; [5] it suffices to consider the case that

A+ B is aperiodic and
[4+B]=[4]+[B]-1, 2)

cf. Theorem 3.4. If (2) holds, 2<[4]< oo, 2<[B]< oo, then (Theorem 2.1) either
A+ B is in arithmetic progression or 4+ B is the union of a non-empty periodic set
(¢’ and a subset C" of some H ((")-coset. On the basis of such information on 4 + B,
one can study the structure of the pair (A4, B) itself, see section 4. The final result
is Theorem 5.1; here besides (2) it is assumed that »,(4, B)=1 has a solution ¢ in
case A+ B is periodic. Theorem 5.1 completely determines the (rather complicated)
structure of the pairs (4, B) satisfying (1), cf. the discussion at the end of section 5.

(1) This work was supported by the National Science Foundation, research grants NSF-G 1979,
NSF-G 5226.
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For the special case that G is cyclic of prime order, this structure was already estab-
lished by Vosper [8] (see also the Corollary to Lemma 4.3).

In view of a result due to Kneser [6], p. 89 (namely, a generalization of his
Theorem 3.1 to abelian locally compact groups), the Structure Theorem 5.1 also solves
the problem of determining the structure of those pairs (4, B) of non-empty meas-

urable subsets of an abelian locally compact group G for which
px (A+ By <p (A)+u (B);

here, u denotes a fixed Haar measure on G, u. the inner measure induced by u.
The Structure Theorem 5.1 is also a useful tool in investigating the function

v. (4, B), (A and B fixed). As an illustration, we shall derive in the final section

6 some curious results of the following type. Let A, B be finite non-empty subsets

of an abelian group G such that
[A]1+[B]—-[4+Bl=p=>1
It was shown by Scherk [7] that v, (A4, B)>p holds for each element c€4 + B (see

also section 3); let n denote the number of elements ¢ for which v, (4, B)=p. Asser-

tion: for each element ¢, we have v.(4, B)>n as soon as ». (4, B)>g.

2. Small sumsets in a discrete group

In this paper, all groups considered are discrete abelian groups. Let G' be such
a group.

DEFINITION. A subset O of G is said to be quasi-periodic if there exists a
subgroup F of G of order [F]>2 (a so-called quasi-period of (), such that (' is the
disjoint union of a non-empty set ¢’ consisting of F-cosets (that is ¢'+F=C"), and
a residual set C"' contained in a remaining F-coset (that is O <c+ F if c€C").

Observe that [2]<[F]<[C] for each quasi-period F of C, hence, if each ele-
ment g==0 in G is of order >[C] then C cannot possibly be quasi-periodic. Further,

each periodic set is also quasi-periodic.

DEFINITION. A subset ¢ of @ is said to be in arithmetic progression if C is
of the form O={c,+jd; j=0,1, ..., [C1—1}. If so, d is called a difference of C;
note that d is necessarily of order =[C].
It is important to find the precise structure of the pairs A, B of finite subsets
of @ satisfying
[4+B]=[A4]+[B]~1, (1)

of. Theorem 3.4. As a first step in determining this structure, we shall prove:
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TaEoREM 2.1. Let A, B be finite subsets of G such that (1) holds and [A)=2,
[B]=2. Then either A+ B is in arithmetic progression or A+ B is quasi-periodic.

The proof of Theorem 2.1 makes use of the second assertion of the following
Lemma 2.2. The proof of Lemma 2.2 is a refinement of Kneser’s [4, 467] proof of

the first assertion (3).

Lemma 2.2. Suppose that the finite subset C of @ is the union of the proper

non-empty subsets Cy, ..., O, (n=1) in such a way that

[C1<[CQ+TH(CY], (=0,1, ..., mn). (2)
Then [C1+[H (C)]=[Ci]+[H (C)] (3)
holds for at least ome 1=0, ..., n. Moreover, either C is quasi-periodic or, for some

¢€0, we have C—c=H U H,, where H,, H, denote finite subgroups of G of equal order
with H, n H,={0}.

CoroLLARY (Kneser). Let Oy, ..., C, be finite non-emply sets with
[Cl+HH(C)lZze, (=0, .., n).

Then C=CyU - U C, satisfies [C]+[H (C)]> «.

Proof of Lemma 2.2, Let I, denote the statement that Lemma 2.2 holds true for
n=k. Let n denote a fixed integer, n>2, and suppose that I, holds for k=1, ..., n—1.
Consequently, in proving I,, it may be assumed that C is not equal to the union of
less than n-+1 among the sets C,, ..., C,. Put C;=C,U---UC,. Then O, ..., C,
are proper subsets of 7 while Cys O, are proper subsets of C. From (2) and I,_,
we have [07]+[H (01)]= [C,]1+ [H ()] > [C] for at least one index i=1, ..., n. Hence,
in view of CyU Cy=C, [Cy]+[H (0y)]>[C], I, implies the stated assertion I,. It re-
mains to prove I,.

We now assume n=1. Thus,
C=0,u0C, Cy=*=0, C,=C. (4)
Let H(C;)=H;, thus, from the definition of H (C,),
Ci+H,=0C, (i=0,1). (5)

Further, put Hy+H,=H*, Hyn H,=H, [H]=% and let m; denote the index of H,
in the group H*, thus,

[H*]=mgm b, [Hyl=m,h, [H]=myh.
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From (5), ;N C; is the union of H-cosets (C; denoting the complement of C; in @),
hence, from (2) and (4),
0<[CinOj]<(m;—1)h; (6)

here, and in the sequel, t=0, 1, while j=1—4. From (4) and (5), C+x=C for x€H,
thus, [H (C)]>h, consequently, in proving (3), it suffices to show that

[Cin Cj1= (m;—1) h. (M

Interchanging the indices, if necessary, we may assume [H}>[H,], thus, my,<m,.
From (6), there exists an element ¢, €0, NC,. Let ¢, be fixed. Then

D=c,+ H* satisfies [C, N Cy N D]>0. (8)

Note that the intersection of an Hgy-coset in D and an H,-coset in D is precisely an

H-coset. From (5), C;ND is the union of (say) u; cosets of H;, 0<u,<m; thus,

C;N D is the union of m; —u; cosets of H;. Consequently,
[Cy 0 Cy 0 D] = (mg— uy) uy b, (9)
and 0<[C,NCyN D= (my—u) ugh < (myg— 1)< (m; — 1) A, (10)
in view of (6), (8), my<m,. From (10},
1<yy<my—1, 1<y, <m;—1L (11)

We now have, from (9), (10) and (11),

1

1
- Z {(mj—l)h——[@ﬂCj]}— Z [a-nC,-ﬂl—)]
0 i=0

i=

M=

{lCin C;n DY (m; — 1) b} = (mg—up— 1) (uy — 1)+ (my —uy — 1) (o — 1) > 0.

i

0

It follows from (6) that: (i) (7) and, thus, (3) holds; (ii) Either u,=1 or uy=m;—1;
moreover, either u,=1 or u, =m, —1; (iii) Finally, [C;n C;n D]=0, (=0, 1).

Let ¢'=CnD. From (iii) and 4), C'=C, N D=C,nD. From (5) and (8),
¢’ +H*=C'. Note that, from (6), m;>2, thus, [H;]=2. If ¢’ is non-empty then H*
is a quasi-period of C. If A>2 then, from C+H=C, H is a quasi-period of C. If
ug=my—1 then H, is a quasi-period of C, similarly, if u,=m,—1. Consequently, if
C is not quasi-periodic then C' is empty, H, N H,=H={0} and wu,=u,=1, hence,
C is the union of an Hj-coset in D and an H,-coset in D. Moreover, from (7) and
9), my —1=my—1, thus, [H]=[H,;]. This proves Lemma 2.2.
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Proof of Theorem 2.1. For brevity, put A+ B=C. Assume first that to each
element b, €B there corresponds a set C; such that ;4 and

A+bcCicC;  [CI+[H(C)]=[C]. (12)

Especially, C =4+ B is the union of the proper subsets C;. Suppose that ' is not
quasi-periodic. Then, from (12) and Lemma 2.2, there exists an element c,=a,+ b,
(@, €4, b€B) in C=A+B and finite subgroups H,, H, of eqnal order such that
H NH,={0} and A+ B—c,=H, U H,. Hence, A'= —a,+ A and B’ =B- b, satisfy
A'+B=H UH, A'cH UH, B<H, UH,, [A'1>2, [B]>2.

Let acAd’, a+0, a€H, (say), thus, a¢ H,. Then b€B' N H, implies a+~b€ H, U H,,
hence, =0, consequently, B'< H,. Taking b€B’, b0, we have in a similar fashion
that 4’'< H,, hence, H, U H,= A’ + B'< H, which is impossible.

Next, suppose that there exists an element b,€ B such that (12) always implies
C;=0C. Replacing B by the set B—b;, we may assume b,=0€ B, thus,

A<y C, [C+[H (O)]>[C] imply Cy=C. - (13)

Now, consider a pair 4,, B, of finite subsets of @ such that:

(i) A=Ay, 0€B,, dy+B,=C (thus, 4,=0), [B,]>2 and
[4o] +[Bol=[C]+ 15 (14)

(from (1) and [B]>2, these relations hold for 4,=A4, B,= B);

(ii} Subject to (i}, [4,] is maximal.
Suppose first that 4,+ By=4,, thus, [H (4,)]>[B,]. From A< Ay;=A4,+B,=C, (14)
and (13), we have A,=C, hence, from (14), [B,]=1, a contradiction.

Therefore, the set D, (say) of elements a€A4, with a+ Byd 4, is non-empty.
Here, B; shall denote the non-empty set obtained from B, by deleting the element 0.
Thus, from (14),

[Bo] =[B,] — 1=[D,], where D,=C N 4, (15)

(4, denoting the complement of 4, in G).
Let a€D,. It is easily seen that the pair of sets

A, =A,U(@+By), By=B,N(—a+4,)

satisfies

A< A, 0€B,, A+ B,c Ay+ By C, [4,]+[B,]=[4,]+[B,] = [C]+1 and [4,]>[4,].



68 J. H. B. KEMPERMAN

Consequently, from the maximal character of [4,], we have [B,]=1, hence, [4,]=[C].
It follows from 4,< A4, +B,c Ay+ B,=C that C= 4,, thus,

Dy=Cndy,=A4,0 dy<a+ By,
hence, from (15),

a €D, implies a-+ By=D,. (16)

Generalizing the definition of D,, let D, (m>>1) denote the set of all those ele-
ments a€4, such that m is equal to the smallest number of elements b,, ..., b, in
By for which a4 by + - +b,¢4, Let k denote the largest integer m for which D,
is non-empty. Finally, let D, denote the set of all elements a € 4, satisfying

atb+--+b,€4,
for each choice of the elements b, ..., 5, in B;. Here, the D, are disjoint, while
(from Ay< O, Dy=Cn A4,)
Ay=DyUD,U---UD;; C=DyUDgU:---UD,UD,. (17)
Clearly, D, + Bo= D,,. We assert that, moreover,
a€D, implies a+By=D, 1 (m=1, ...,k). (18)

From (16), (18) holds for m=1. Let m>2, a€D, and ¥ € By. From the definition
of D,, a+b €D; for some j=m—1, while there exist elements b,, ..., b, ; in By
with a,=a+b,+ - +b,_1€D,, thus, (a+)+b,+ - +bp_1=0a,+b ¢4, from (16),
showing that a+b"€D; for some j<m—1, consequently, a+b €D, ;. This proves

a€D,, implies a+ Bo< Dp_y  (m=1, ..., k). - (19)
Especially, D,,+ By< Dy,_1, hence, [D,]<[Dn-1] (m=1, ..., k), thus,
[Bo] = [a + By) < [Dm 11 < [Dy] = [Bo]

and (19) implies (18).

For 1<m<k, let F, denote the group generated by all the differences a,—a,
of elements a,, a, in D,, thus, D, is contained in an F,-coset, [F,]>2 if and only
if [D,]>2. From (18), a,+ Bo=a,+ By if a,, a,€ D,,, hence, By+ F,,= By, thus, F,,
is finite while, from (18) and D, + By= D,

D;+F,=D;if j=0,1, ..., k—1 or j=oo. (20)

From (17) and (20), F, is a quasi-period of C provided that [D,]>2, thus, assume
[D]=1, that is, D, consists of a single element ¢,. But then, from (17) and (20),
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F,, is a quasi-period of ' provided that [D,]> 2, thus, assume [D,]=1 (m=1, ..., k).
Finally, if D, is non-empty then, from D + By= D,,, (17) and (18), the group gen-
erated by B, is a quasi-period of C, thus, assume that D, is empty.

If k=1 then, from (17), [4,]=[D,]=1, contradicting [4,]>[A4]>2. Applying
(18) for m=2, we have [By]=[D,]=1, hence, B, consists of a single element d=-0.
From (18), Dy_», consists of the single element ¢,+md (m=0,1, ..., k). The D;
being disjoint, these k-1 elements are distinct, thus, from (17), C' is an arithmetic

progression of difference d. This completes the proof of Theorem 2.1.

3. Auxiliary results
In the subsequent sections, we shall frequently need the following result due to

Kneser [5], [6]. For the benefit of the reader, Kneser’s proof is given below.

TuEOREM 3.1. Let A, B be finite non-empty subsels of the (abelian) group G
satysfying
[4+B]<[A4]+[B]—-1. (1)

Then H=H (A+ B) satisfies
[A+B]+[H]=[4+H]+[B+H] (2)
Hence, A+ B s periodic if .
[4+Bl<[4]+[B]-2.

Proof. Let b; denote a fixed element in B. Consider a pair A4;, B; of finite
subsets of G such that:

(i) A< 4, b,;€B;, A,+B,c A+ B and
[4]+{Bi]=[4A+H]+[B+H] (3)
(from A+ B+H=A4+B, A;=A+H, BB=B+H is such a pair);
(ii) Subject to (i), [4;] is maximal.

Let C,=A,+ B,, thus, ,
A+b,<Cjc A+ B. (4)

Let a€A4;. It is easily seen that the pair
Ai=A;U(@+B;—b), Bi=B,N(—a+A4,+b)

satisfies (i) and 4;c A4{, thus, 4;=4;. Consequently, a-+ B;—b,< A4;, for each a€A4,,
hence, A;=A;+ B;—b;=C—b; and H (C;)=H (4;)> B;—b;, thus, from (3),
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[CI+[H (CH]=[A+H]+[B+H]. 5)
From (4), 4+ B is the union of the sets C; (b;€B), hence,
[A+B]+{H]=[4A+H]+[B+H], (6)

from H=H (A-+ B) and the Corollary to Lemma 2.2. If (2) were false then, all terms
in (6) being multiples of [H], we would have [4 + B]>[4 + H]+ B+ H], contradicting
(1). This proves Theorem 3.1.

For the moment, let @ denote an additively written semigroup (commutative or
not) in which the left and right cancellation laws hold. If 4, B are subsets of ¢
and g€G then »,(A4, B) shall denote the number of different representations of g as
a sum g=a+b (a€4, b€B). The following result will be needed for the special case
only that G is an abelian group.

TueorREM 3.2. Let A, B be finite subsets of G. Then, for each element c€ A+ B,
v.(4, B)=[A]+[B]—-[4+ B]. (7)

That c€4+ B implies (7) was shown in [3] under the condition that ¢ possesses
an inverse in an apropriate extension in G. But by a recent result of Liapin (cf.
[2], no. 21), each element of G has this property.

Now, assume again that G is an abelian group. For this case, Theorem 3.2 was
first proved by Scherk [7]. It can be strengthened as follows.

LeMMA 3.3. Let G be an abelian group, A and B finite non-empty subsets of G.
Put H(A+B)=H and
[4]+[B]—[4+ Bl=yp, (8)

thus (from Theorem 3.1), H is a finite group of order >p. Let ay€A, by€B be fixed,

co=aq+by. Then each element c€cy+H has at least o representations of the form
c=atb with a€AN (a,+H), bEBN (by+H).

Proof. We may assume g>1, otherwise, the assertion is trivial. From Theo-
rem 3.1 and (8),
[(A+H)n A]+[(B+H) ﬂE]=[H]—g,

hence, [(ay+ H) 0 A)]+[(by+ H) N BI<[H]—p,
thus, [(ao-+ H) N A]+[(by+ H)N Bl =[H] +p,

showing that, for each h€H, the subsets (a,+H)N A and (a,+b,+ k) — ((b,+ H) N B)

of a;,+ H have at least o elements in common.
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The following result shows that, in characterizing the pairs of finite sets satis-
fying (9), it would suffice to consider the case that A+ B is aperiodic (in which case
{9) holds with the equality sign). We shall however also be interested in the case
that 44 B is periodie, while v, (4, B)=1 holds for at least one element ¢ (ef.
Theorem 5.1).

THEOREM 3.4. Let G be an abelian group. The following construction yields pre-

cisely all the pairs A, B of non-empty finite subsets of G satisfying ;
[A+Bl<[4]+[B]-1. 9
Construction: Choose a finite subgroup H of G and, further, a pair of non-emply finite
subsets A*, B* of G/H such that A*+ B* is aperiodic and
[A*+ B*]=[4"]1+[B*]- 1. (10)
Finally, let A be any subset of o' A*, B any subset of ¢~ B* such that
lc14*n A} +[o7* B* n B]<[H}; (11)

here, o denotes the quotient mapping G—G/H.
Proof. (i) The above construction yields a pair A, B satisfying (9). For, using
(11) and (10),

[4]+[B]>[67" A*]+[o™" B*] — [H] = ([4*]+[B*] - 1) [H]
=[4*+B*]{H]=[c"'(4*+ B*)]>[4 + B],
in view of ¢ (A+B)=¢A+cB< A*+ B*.

(i) Suppose that (9) holds. Let H=H (4+ B), thus, H is a finite group satis-
tying A+ B+H=A4+ B and (2), from Theorem 3.1. Let ¢ denote the quotient map-
ping G—G/H and put A*=0 4, B*=¢B. From A+ B+ H=A+ B, (2) implies (10).
From ¢ '4*=A+H and ¢ B*=B+H, (9) and (2) imply (11). Finally, if A* + B* +
+x=A"+ B* then, for g€o 'z, we have A+ B-+g=A+ B, hence, g€H, thus, z=0.

4. From sum to components

Again, G shall denote an abelian group, 4 and B finite non-émpty subsets
of G. If

[4+ B]<[A]+[B]-1, o 1)

{4]>2, [B]>2, then, from Theorem 2.1 and Theorem 3.1, either 4 + B is in arith-

metic progression or A+ B is quasi-periodic. Problem: given such information on
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A+ B, what can be said about the pair 4, B itself?! Let us first consider the simple

case that A+ B is either a coset or a coset with one element deleted.

LEmMa 4.1. Let H denote a finite subgroup of G. In order that (1) holds and
A+ B coincide with an H-coset, it is necessary and sufficient that each of A, B is a
subset of some H-coset in such a way that [A]+[B]>[H].

Proof. Obvious.
LeEMMaA 4.2. Let H denote a finite subgroup of G. In order that (1) holds and

that A+ B is oblained from an H-coset by deleting one element c,, it is necessary and
sufficient that A is an aperiodic subset of some H-coset, while B is of the form
B=c,—AN(a+H) (a€A). If so, (1) holds with the equality sign. '

Proof. Necessity. Clearly, A+ B is aperiodic, hence, 4 is an aperiodic subset
of the coset a+ H (a€A4). Moreover, from (1), [B]>[H]—[A]=[B’], where B =c,—
—An(a+H). It is easily seen that B< B’, hence, B=B and (1) holds with the
equality sign.

Sufficiency. Put A+ B=C. Clearly, C€c,+ H, ¢,¢C, [(]<[H]=[A]+[B]. Sup-
pose that [C]<[H]—2. Then, from Theorem 3.1, [F]>2 where F=H (C). Thus, 4
being aperiodic, [4+ F]>[A], hence, [A+ F]+[B]>[H]. But then C=(4+F)+B
would occupy the full coset ¢,+ H, contradicting c,¢ C. This proves Lemma 4.2.

Now, let us consider the case that (1) holds with 4+ B as an arithmetic pro-
gression of difference d<0. The following lemma shows that also A and B are in
arithmetic progression provided that [4+ B]<[H]—2, where H denotes the cyclic
group generated by d. On the other hand, the sufficient conditions of Lemma 4.1
and Lemma 4.2 show that this is no longer true if [4 +B]={H] or [A-+ B]=[H]~1.

LeEMMA 4.3. Suppose that (1) holds and that A+ B is in arithmetic progression
of difference d=+0. Suppose further that [A+ B]<n—2, where n denotes the order of
the element d. Then also A and B are in arithmetic progression of difference d. More-
over, in (1) the equality stgn holds.

Proof. Let H denote the cyclic subgroup of G generated by d, [H]=n< .
Replacing 4 by —a,+A4(a,€4) and B by B-—b, (b,€B), we may assume 0€4,
0€RB, thus, 06 A+BcH, Ac H, Bc H. In this proof, all sets considered are subsets
of H, thus, D will denote the complemént of D in H. Further, a set D is said to
be in arithmetic progression iff it is of the form {jd; j=17,, ..., jo--[D]—1}. The case
n=oco being rather trivial (4 + B filling the entire interval between the sum of the
smallest and the sum of the largest elements in 4 and B), we shall assume n < co.

Further, we shall need the following lemma.
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If P, Q are non-empty sets, [P+ @Q]<n, P+ Q in arithmetic progression then
[P+@Q]=[P]+[Q]—1.

For, it is easily seen that P cannot possibly be periodic, thus, the assertion
follows from Theorem 3.1. Actually, we need this lemma only for the special case
that also P is in arithmetic progression. For this case, we have the following ele-
mentary proof.

Shifting P and @,

let P={jd;j=0,1, ..., k—1}
and P+Q={jd;j=0,1, ..., m—1},
where k<m<n,md¢P—l—Q.

Now, P+qd={jd;j=q, ..., q+k—1}c P+ implies that ¢ is one of the integers
0,1, ..., m—k, hence, [Q]<m—k+1=[P+@]—[P]+1.

Let us proceed with the proof of Lemma 4.3. Put A+ B=C, thus, C—Bc A,
hence, from (1),

[C—BI<[4]<[C]+[B]- 1 (2)

Moreover, C' being in arithmetic progression, also ¢ is In arithmetic progression,
[C1>2. It suffices to prove that € — B is in arithmetic progression. For then, from
[C — B]<[A]<n and the above lemma, [C —B]>[C]+[B]—1. Hence, in (2) and (1]
the equality signs hold, thus, 4=C— B is in arithmetic progression, consequently,
A and (similarly) B is in arithmetic progression.

On the contrary, suppose that € — B is the union of the arithmetic progressions
Ay, ..., A, where k is minimal, k> 2. Let b€B, 1<i<j<k; because U —b is in arith-
metic progression and % is minimal, ¢ —b cannot have elements in common with both

A; and 4;. Consequently, putting
Bi={b:beB, 4,0 (C—b)*4¢},

the sets B,, ..., B, are non-empty disjoint sets with union B. Moreover, C—-B,=A4,,

hence, from the above lemma,
[C1+[B1-1<[4], (=1, ..., k).
Adding these relations, we find
k([C]-1)+[B]<[C--B]<[C]—-1+[B],

from (2). But {C]—1>1, hence, k<1, a contradiction.
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CorOLLARY. Suppose that [A]=2, [B]>2, [A + BJ<[A)+[B]— 1. Suppose further
that each element g0 in G is of order =[A+B]+2. Then A, B and A+ B are in

arithmetic progression with a common difference d.

REMARK. For the special case that @ is a cyclic group of prime order, this
result is due to Vosper [8] and was rediscovered by Chowla and Straus [1]. In [9]
Vosper gave a simplified proof which can easily be modified so as to yield the above
corollary.

Proof. G has no subgroups F with 2<[F]<[4 + B], hence, 4+ B cannot be
quasi-periodic, thus, from Theorem 2.1 and Theorem 3.1, 4+ B is in arithmetic pro-
gression. Now, apply Lemma 4.3.

The following is concerned with the case that 4 --B is quasi-periodic.

DeriniTION. Let A, B be finite non-empty subsets of G. Then P (4, B) shall
denote the (possibly empty) collection of pairs (¥, C'') such that:

(i) F is a finite subgroup of G of order [F]>2;

(ii) C” is a proper non-empty subset of 4+ B and is contained in some F-coset;
moreover, the complement ¢’ of ¢’ in 4+ B is the union of one or more F-
cosets.

(iii) If A+ B is periodic then C" itself in an F-coset, while v, (A4, B)=1 holds for

at least one element c€(C’”.

Further, for (F, C")€P (A, B), let o (F, C"')=1 denote the number of representations
of 6 C" as asum a+b with @€c A4, b €0 B, (¢ denoting the quotient mapping G—G/F).
Finally, let P, (A4, B) denote the collection of all the pairs (¥, C”') in P (4, B) for
which ¢ (F, C"")=1.

Note that P (A4, B) is non-empty if and only if either 4+ B is quasi-periodic
but not periodic or if A+ B is periodic {(but not the coset of a cyclic group of prime
order), while v.(4, B)=1 holds for at least one element ¢. Hence, from the Theo-
rems 3.1 and 3.2, if P(4, B) is non-empty then [4+ B]>[A4]+[B]-1.

LevMMa 4.4. Consider a pair A, B of non-empty finite subsets of G sabisfying
[4+B]=[A4]+[B] -1 3)

and suppose that P (A, B) is non-empty. Let (F, C") be a fixed pair in P (A4, B), put
o(F,C") =9, and let oC"" =a;+b; (¢=1,...,0) be the g different representations of
6C” with @,€cA, bj€cB (o denoting the quotient mapping G—G/F). Finally, let
A;=An(c7'a), Bi=BN(c7'h), i=1, ..., p. Assertions:
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(i) Clearly, each of A,, ..., A, is contained in an F-coset, such that different A; are
contained in different F-cosets. Moreover, the complement A" of 4, U ---U 4, in

A satisfies A"+ F=A'. Analogous results hold for B, ..., B,.

(ii) Clearly, C” 1is the union of the non-empty sets A;+B; (i=1, ..., g). Moreover,
permuting the indices if mecessary,

[4,]+[B]=[C"]+]1, (4)

and [A]+[B]=[F] (=2, ...,0) (5)

(thus, [A;]<[F], [B]l<[F], i=2, ..., 0). Further, if A+ B is periodic then, for
some ¢, €07, v, (4, By) =7, (4, B)=1.
(iii) Finally,
[0A4+0B]=[oc A]+ [0 B]—o. (6)
Proof. Suppose that A’+ F==A’, thus, [4*]>[A4], where A*=A4 U (4'+ F). But
(A" +F)+B<(C'+F=C"cA+B,

thus, A*+B=A4+ B and »,(4* B)=v,(4, B) for each ¢€C"”. From (3), [4*+B]<
<[A*]+[B]—1, hence, from the Theorems 3.1 and 3.2, A*+ B=A+ B is periodic
while v, (A%, B)>2 for each ¢c€A4+B. But if 4+ B is periodic we have v, (4%, B) =
=7,(4, By=1 for at least one ¢€C”, a contradiction. This proves A'+ F=A4",

We now assert that, after a proper permutation of the indices,
(4,1 +[B]<[C"]+]1, (7)
and [A]+[BI<[F] (=2, ..., p). (8)
Suppose first that ¢ = (4, +B,) U --- U (4, + B,) contains an element ¢ with ».(4, B) = 1.
Then ¢ is contained in only one of the sets A;+ B; (say) in 4,+ B,, such that
v.(4,, By)=1. Now, (7) follows from Theorem 3.2 and (8) from Lemma 4.1 and
C¢A1+Bt (1’22: vy Q)
On the contrary, if such an element ¢ does not exist then 4+ B and, hence,
(" is aperiodic. For the moment, suppose that
[4]1+[B]l=[C"]+2 (=1, ..., p). (9)
Then, from Theorem 3.1, C;=A,+ B; would satisfy
([CI+[H(CYI=[C"1+2 (=1, ..., 0).

But C” is the union of Cy, ..., C,, hence, from the Corollary to Lemma 2.2, [C"']+

+[H (C")]=[C"1+2 and C" would he periodic, a contradiction.
6 — 603807 Acta mathematica. 103. Imprimé le 19 mars 1960
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Therefore, (9) is false and (7) holds after a proper permutation of the indices.
Finally, ¢’ being aperiodic, ¢’ and, thus, 4,4+ B; is a proper subset of ¢+ F
((F]1>2) and Lemma 4.1 implies (8). This completes the proof of (7) and (8).

From the definition of 4;, B;,, A" and B,

$ (404 B = (4]~ (4] + (B~ [B] o

Further, 4’ is the union of [6A]—g cosets of F, B’ is the union of [¢B]—p cosets
of F, while A+ B=C (say) is the disjoint union of ¢" and C”, (" being the union
of [0C]—1 cosets of F. Hence, from (10} and (3),

él (41 +[B]) = (o— 1) [F]1+[C"]+ 1 + A[F], 1)

where A=p+[cC]—[cA]l-[o B]. (12)

It follows from (7), (8) and (11) that A<0. On the other hand, é=0¢ (" satisfies
vz(c 4, 6 By=9, hence, from Theorem 3.2, 1>0. Consequently, A=0, proving (6).
Finally, (7), (8) and (11) imply (4) and (5). This completes the proof of Lemma 4.4.

LemMaA 4.5. Suppose that (3) holds and that P(A4, B) is non-empty. Then either
A+ B is a coset of a finite group, or A+ B is obtained from a coset of a finite group

by deleting one element or P, (A4, B) is non-empty.

Proof. Consider a pair (F, C"')€P (4, B) with [F] maximal. Observe that the
complement D (say) of A+ B in A+ B+ F is given by

D=0"Nn(c+F) (c€C”),

thus, D is contained in an F-coset. Further, D is empty if and only if 4+ B is
periodic.

It o(F, C")=1 we are ready, thus, suppose that g (F, C"”)>2. It follows from
(6) and Theorem 3.1 that the set g (A4 -+ B) is periodic, ¢ denoting the quotient map-
ping G—G/F. In other words, there exists a finite subgroup H of G/F of order
(H]>2, such that o(A+ B) is the union of (say) m>1 cosets of H. Consequently,
A+ B+ F is the union of m cosets of the group ¢™" H= K (say). Here, [K]=[H][F]> [F],
thus, K contains F as a proper subgroup. Finally, the complement D of 4+ B in
A+ B+ F is properly contained in some K-coset. It follows from the maximal char-
acter of [F] that m=1. Hence, 4+ B is obtained from a certain coset ¢+ K of K
by deleting a subset D of a certain F-coset contained in g+ K.
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If [D]<1 we are ready, thus, assume [D]>2, hence, 4+ B is aperiodic. Now
consider a minimal group F; having the following properties: (i) Fyc Fc K; (ii) D is
contained in some F,-coset. Thus, [F,]>[D]>2. Let C; denote the part of 4+ B in
the coset D+ F,, thus,

Ci'=A+B)n(@+F)=Dn(d+F,),

(d € D). Each F,-coset different from D -+ F, and contained in g-+ K is also contained
in 4+ B. Finally, A+ B being aperiodic, C; is non-empty, consequently,

(Fy, C{YEP(4, B).

Let o (F, Ci')=g;. It suffices to prove that g, =1.

On the contrary, suppose that ¢,>2. From Lemma 4.4, applied to the pair
(Fy, CY'), there exist non-empty sets A,, B, with [4,]+[B,]=[F,] and such that
A,+B,=C, (say) is contained in C;. Now, consider the group H (C,), satisfying
C,+ H(Cy)=C,. We have C,<=C{ while 07’ in turn is a proper subset of d+ F, (d€D),
consequently, H(C,) is a proper subgroup of F,. On the other hand, from Theorem 3.1,

[Cy+ H(Co)] + [H (Cy)] 2 [4,] +[By] = [Fy]=[d + ],

showing that C,=0C,+ H(C,) and, hence, C; contains all but at most one of the
H (C,)-cosets contained in d+ F,, d€D. Consequently, the complement D of O in
d+ ¥, (d€D) is contained in an H (C,)-coset, a contradiction, in view of the minimal
character of F,. This proves Lemma 4.5.

REMARK. Suppose that (3) holds and that A4+ B is periodic but not the coset
of a finite group. If ».(4, B)=1 has a solution ¢ (that is if P(4, B) is non-empty),
then Lemma 3.3 easily implies (H, ¢+ H) € P, (A, B), where H= H (A + B). This yields

a second proof of Lemma 4.5 for the (easiest) case that 4+ B is periodie.

LevMma 4.6. Let A, B be finite non-empty subsets of G satisfying (3) and
ve, (4, BY=1 for some ¢, € A+ B. Let K denote a finite subgroup of G and suppose that
either (i) A+ B=cy+ K, while v, (4, By=1 for some ¢,+¢y; or (i) A+ B is obtained
from ¢, -+ K by deleting one element c,.

Then either both A and B are in arithmetic progression of difference d=c, —¢, or

P {A, B) is non-emply.

Proof. Suppose that (i) holds and let ¢;=a,+b, (a,€4, b,€B). Then a€ 4,
a+a, imply —a+c¢, €EBN(B+K). But [4]—1=[K]—[B]=[Bn(B+K)], hence, (*)
each element in BN (B+K) can be written as —a’'+¢; with o’ € 4. Now, suppose
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that (ii) holds. From c, ¢ A +B we have —A+c,< BN (B+ K). But [A]=[K]—[B]=
=[B N (B+K)], hence (*) holds also in this case.

Let ¢y=a,+b, (@,€A4,b,€B). Then a€Ad, a%a, imply —a+c,€ BN (B+K),
hence, from (*), (¢, —¢,)+a € A. Letting F denote the cyclic subgroup of K generated
by d=¢;, —¢,+0, [F]=2, it follows that the subset A of a,+ K, (similarly, the subset
B of b,+ K), is the union of a number of F-cosets and an arithmetic progression of
difference d contained in a,+ F (or b,+ F, respectively).

It remains to consider the case that F is a proper subgroup of K, thus,
(F,C"YEP(A, B), where C""=(4+ B)N0(cy,+ F). Suppose that o(F, C”")=2 and let
o denote the quotient mapping G — G/F. Then, there exist elements @€c A4, bE€Eo B
such that cco=a+5, Ga+oa, b+ob,. But then the F.cosets 4A'=¢ 'd, B'=¢"'b are
contained in A and B, respectively, while ¢, € 4"+ B’, thus, W;o (4, Byzv, (A, B')=
=[F]=2, a contradiction. This proves Lemma 4.6.

5. The main structure theorem

DeFiNiTiON. The pair (4,, B,) of non-empty finite subsets of the group G is
said to be an elementary pair if at least one of the following conditions (I)-(IV)
holds true.

(I) Either [4,}=1 or [B,;]=1.

(IT) 4, and B, are in arithmetic progression with a common difference d, where d
is of order >[4,]+[B,]—1; (hence, A,+ B, is an arithmetic progression of dif-
ference d while v,(4;, B;)=1 holds for at least one ¢ € 4, + B,).

(IIT) For some finite group H, each of A,, B, is contained in an H-coset while
(4,]+[B,]=[H]+1; (hence, 4, + B, is an H-coset). Moreover, precisely one ele-
ment ¢ satisfies »,(4,, B))=1

(IV) A, is aperiodic. Further, for some finite subgroup H of &, A4, is contained in
an H-coset while B, is of the form B;=g,— A4, N (a+ H) (2 € 4,); (hence, from
Lemma 4.2, 4, + B, is obtained from g,+H by deleting the element g,). More-

over, no element ¢ satisfies y,(4,, B))=1.
Observe that each of the conditions (I)-(IV) implies
[4, +B,]1=[4,1+[B,]—-1.
THEOREM 5.1. Let G be an abelian group, [G]=2, and let A, B denole finile
non-empty subsets of G. Then a necessary and sufficient condition, in order that

[4-+B]=[4]+[B] -1 1
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and, moreover,

(2) if A+ B is periodic then v, (A, By=1 for at least one c,

is the existence of a mon-empty subset A, of A, a non-empty subset B, of B and a
subgroup F of G order [F1>2, such thai:

(i) The pair (4,, B,) is elementary, each of A,, B, is contained in an F-coset.
(ii) The element ¢=¢ (A,+ B,) has ¢=0A,+c B, as its only representation of the form
¢=a+b, a€c A, b€oB. Here, ¢ denotes the quotient mapping G~ G/F.
(iii) The complement A" of A, in A satisftes A"+ F=A', similarly, the complement B’
of B, in B satisfies B'+ F=DB' (hence, from (ii), the complement C' of A, + B, in
A+ B satisfies C'+ F=C").

(iv) Finally, [cA+oB]=[ocA]+[ocB]—1.

This theorem will be obtained by combining Lemma 4.4 and:

LeMma 52. Let A, B be finite non-empty subsets of G satisfying (1) and (2).
Then either the pair (A4, B) is elementary or P, (A4, B) is non-empty.

Proof. We may assume [4A]=2, [B]>2 (thus, [4+ B]>2), otherwise, (4, B) iz
elementary of type (I). Let us first consider a number of special cases.

(i) Suppose that A+ B is a coset of some finite group H. Then A+ B is periodic,
thus, from (2), there exists an element ¢y with v (4, B)=1. If no other such element
exists (4, B) is elementary of type (III). Otherwise, from Lemma 4.6, either (4, B)
is elementary of type (II) or P, (4, B) is non-empty.

(ii) Next, consider the case that 4+ B is obtained from a coset of a finite group H
by deleting one element g,. If no element ¢, exists with v, (4, B)=1 then, from
Lemma 4.2, (4, B) is elementary of type (IV). Otherwise, from Lemma 4.6, either
(4, B) is elementary of type (II) or P, (4, B) is non-empty.

Let us now treat the general case. From [4]>2, [B]>2, (1) and Theorem 2.1,
either A+ B is in arithmetic progression or A+ B is quasi-periodic. Suppose that
none of the above cases (i), (i) occurs, If 4+ B is in arithmetic progression then,
from Lemma 4.3, (4, B) is elementary of type (II). If A+ B is quasi-periodic then
P (A, B) is non-empty, hence, from Lemma 4.5, P, (4, B) is non-empty. This proves

Lemma 5.2.
Proof of Theorem 5.1. The stated conditions are sufficient. For, from (iii), we have
[4+B]=[A4,+ B,]+ (o[4+ B]~ 1) [F],

similar formulae holding for 4 and B. But, (A4,, B,) being an elementary pair,
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[4,+ B;]=[4,]1+[B;]—1, hence, (iv) implies (1). Moreover, (2) holds. For, suppose
that 4+ B is periodic, thus, (4,, B,) cannot be elementary of type (IV), hence, in
view of (i), ».(4, B)=v.(4,, B,)=1 for at least one element ¢ € 4, + B,.

Thus, suppose that the non-empty finite sets A, B satisfy (1) and (2). If (4, B)
itself is an elementary pair then the assertions of Theorem 5.1 trivially hold with
A4,=4, B,=B, F=@. Hence, in view of Lemma 5.2, we may assume that P, (4, B)
is non-empty. Now, consider a pair (F, C")€ P, (4, B) with [F] minimal and let ¢
denote the quotient mapping G—G/F. From o(F, C’) =1, ¢C” has a unique
representation as ¢C""=a+b with @d€gA4, b€gB. Consider the non-empty sets
Ay=A4An0(c7'a) and B,=Bn0(c"'b), thus, 4,+B,=C" and each of 4, By is con-
tained in an F-coset. We assert that F, A4,, B, satisfy the assertions of Theorem 5.1.

Here, (ii) is obvious while (iii) and (iv) follow from Lemma 4.4. It remains to
prove that the pair (4,, B)) is elementary. For this, it suffices to verify that

P, (4,, B))<P, (4, B). (3)

For, each (F,, Ci')€P,(4,, B,) satisfies [F,]<[A4,+ B,]<[F], thus, [F] being minimal,
(3) implies that P,(A,, B,) is empty. Moreover, from Lemma 4.4,

[A1 + Bl] = [A1] + [Bl] -1

Finally, if A4,+B,=C" is periodic then 4+ B is periodic and "’ contains an ele-
ment ¢ with ».(4, B)=v.(4,, B))=1. It now follows from Lemma 5.2 that (4,, B,) is
an elementary pair.

Consider a fixed pair (F,, 0;') € P, (4,, B;). We must show that (¥,,C1’) € P, (4, B).
In the first place, 07 is a proper non-empty subset of A,-+ B, and, hence, of 4 + B.
Further, the complement of C; in A,+ B, is the union of one or more F,-cosets.
But A4;+ B, is contained in an F-coset, thus, F, is a subgroup of F. Moreover, the
complement of 4,+ B, in A+ B is a union of F-cosets, consequently, the complement
of ¢, in A+B is a union of F,-cosets. Further, if 4+ B is periodic then 4,+ B,

- » . 44 . .
is periodic, hence, i contains an element ¢ with

vo(4;, By)=v.(4, B)=1.
Finally, we must show that
CY +F,=(a+F)+(b+F), (4)

a €4, b€B, uniquely determine the cosets a+ F, and b+ F,. From C{ < A4,+ B, =",
(4) implies ¢4+ F={(a+F)+ (b+F), hence, from (ii), €4, and b€ B,. But, from
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(Fy, C1') € Py (4,, B,), the relation (4) with @€ A4, and b€B, does indeed uniquely
determine the cosets a+F, and b-+F,. This completes the proof of Theorem 5.1.

For @ as an abelian group, let [];(N) denote the class of pairs (4, B) of non-
empty finite subsets of (@ satisfying

[A+B]<[A]+[B]—1, [A+B]<N.

For each N>0, this class Iz () can be constructed by applying Theorem 3.4 at
most once and Theorem 5.1 at most log, N times. More precisely:

(1) Theorem 3.4 shows how to obtain all the pairs (4, B) in Ilg () for which
A+ B is periodic, provided that, for each finite subgroup F of @ of order {F]>2,
one already knows the class of all the pairs (4, B) in Ilg(N/[F]) for which 4+ B
is aperiodic.

(i) Theorem 5.1 shows how to obtain the pairs (4, B) in Iz (N) for which 4 + B
is either aperiodic or contains an element ¢ with »,(4, B)=1, provided that, for each
finite subgroup F of G of order [F]>2, one already knows the class of pairs (4, B)
in Ilgr({N/[F]}) for which 4+ B contains an element ¢ with »,(4, B)=1; (here, {o}
denotes the smallest integer > ).

In fact, the following more explicit construction yields all the pairs (4, B) of
non-empty finite subsets of G for which (1) and (2) hold. This is an easy consequence
of Theorem 5.1; observe that the pair (4,, B,) in the formulation of Theorem 5.1 is
elementary of type (IV) if (and only if) v.(4, B)=1 for each c€G.

Construction: choose #>1 groups Gy, ..., G, such that G, =6 and G;.:1=G,/F;
where F; denotes a finite non-trivial (2<[F,]<[G;]) subgroup of G, (=1, ...,r—1).
In the following manner, one now constructs, for ¢=r, r—1, ..., 1, a pair of non-
empty finite subsets P;, @, of G;. If r=1 one chooses P,=Pi, @ =@i as an ar-
bitrary elementary pair of subsets of G;=@, thus, assume r>2. Then one first
chooses the subsets P,, @, of G, such that (P,, @,) is elementary of type (I), (II) or
(1I1), [P, +@.]=2.

Let 1<j<r—1 and suppose that, for ¢=7+1, ..., 7, the subsets P, @, of G,
have already been chosen in such a manner that »,(P;, §)=1 holds for at least one
c€P;+ ;. Now, select any element ¢ from 2,1+ @;,; having only one representation
as ¢=p+ ¢ with pGP}+b g€Q;;1. Further, (o0 denoting the quotient mapping
G;—~ G/ F;=G;.1), choose a subset P;’ of ¢™'p and a subset Q" of 07'q in such a
manner that the pair (P;’, Q') is elementary if j=1, elementary of type (I), (II) or
(III) if j>1. Now, let P,=P; Uo ' P}, and Q=Q; Uo '@}, where P/, Qs
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denote the sets obtained from P;,;, Q.1 by deleting p or ¢, respectively. This com-
pletes the construction. Finally, let 4 =P,, B=@Q,.

Here, v.(4, B)=1 holds for at least one element ¢ € 4 + B if and only if (P}, @7),
is not elementary of type (IV). Further, A+ B is aperiodic if and only if P -+ @i
is aperiodic.

The above results leave one seemingly important question unanswered, namely:
what is the precise structure of the elementary pairs of type (III) and (IV)? But
note that Theorem 5.1 remains valid of one modifies the definition of ‘“elementary
pair” by replacing in (III) “precisely one” by ‘“at least one” and omitting in (IV)
the condition that no element ¢ satisfies v,(A4, B)=1; (one needs only to verify that
the conditions (i)-(iv) of Theorem 5.1 are still sufficient for (1) and (2)). Further,
adopting this modified definition. the above construction again yields the full class
of pairs (4, B) satisfying (1) and (2). From this point of view, there remains only
the problem to determine the structure of the pairs (4, B) of subsets of a finite
group H such that [4]+[B]=[H]+1 while v.{4, B)=1 holds for at least one element
c€H. But it is easily seen that the following construction yields precisely all such
pairs: choose B as an arbitrary non-empty subset of H and let A=(c— B)U {a}
with ¢ €H, a € H arbitrary.

6. Elements having few or many representations
Let 4, B be non-empty finite subsets of an abelian group G such that
o=[4]+[B]-[4+B]=1.

Let n, denote the number of elements g € @ having precisely r representations of the
form g=a+b (a€A, b€B). From Theorem 3.2, we have n,=0 if 0 <r<g. In this
section, we shall prove the curious fact that also »,=0 if p<r <, (which is non-
trivial only if »,>p+1).

As an illustration, let G be of finite even order, let F be a subgroup of G of
index 2 and let F1=x+F (x€G, x¢ F). Take A as the union of F' and the elements
@y, ...,8, in F, and take B as the union of F and the elements b,.4, ..., b, in F,
(0<o<g<[F]). Then A+B=FUPF,, further, »,(4, B)=p iff g€F,, thus, n,=[F],
finally, v,(4, B)>[F]=n, for each element g in the complement F of F, in 4+ B.
Note that each element ¢ with v.(4, B)=p is such that, in each of its fepres)enta-
tions c=a+b (a €A, b€ B), either a € {ay, ..., a,} or b € {bs.1, ..., b}. This phenomenon
always occurs when n,>2g, cf. Theorem 6.2.

We shall first consider the case p=1.
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TaEOREM 6.1. Let 4, B be a pair of finite non-empty subsels of an abelian

group G, such that
: [4+B]=[4]+[B]—1. 1)

Let ¢, ...,¢, (n=20) denote all the different elements in A+ B having only one repre-
sentation as ¢;=a;+b; (a; €A, b;€ B). Assertion:

(o) If n=0 the set A+ B is either periodic or can be made periodic by adding one
element.

(B) If n=1 the set A+ B is either periodic or can be made periodic by deleting
one element. '

(y) If n=3 then either a,=---=a, or b= =b,. Moreover, v.(4, B)=n for
each c€A+B with c+¢; (j=1, ...,n).

Proof. One may assume that either 4 -+ B is aperiodic or » > 1, thus, (5.2) holds.
From Theorem 5.1, there exist hon-empty sets 4, A, B,< B and a subgroup F of G,
[F]>2, satisfying the assertions (i)-(iv) of Theorem 5.1. From (ii),

v.(4, B)=v.(4,, By) if c€A,+ B, 2

hence, n>>m, where m denotes the number of elements ¢ € 4, + B, with »,(4,, B,)=1.

Moreover, (for 1<p<mn),
cr=ap+b, ¢ A, + B, implies that A,={a,} or B,={by}; (3)

(such an element ¢, exists iff n>m). For, if ¢, § A, + B; then either a, ¢ 4, or b, ¢ By,
(say) a, ¢ A,. From (iii), a,+ F< 4, hence, 1 =, (4, B)=[(b,+ F)N Bj], thus,

(bp+F) nB:{bﬂ}a

hence, from (iii), B;={b,}. This proves (3).

Suppose first that n=0; then m=0 and (4,, B,) must be elementary of type
(IV). This proves («) in view of (iii). Next, suppose that 4 + B is aperiodic and n=1.
If m=0 then, from 3), [4,1=1 or [B,]=1, hence, m>1, a contradiction. Thus,
m=1, while 4, B, is aperiodic, consequently, (4,, B,) is elementary either of type
(I) or of type (II), in fact, [4,]=[B,]=1, that is, A'1+B1 consists of a single ele-
ment. This proves (f) in view of (iii).

Finally, suppose that #>>3. We assert that (*) there exist two elements c,=¢,
(1<p, g<n), such that either a,=a, or b,=b, First, if m <n there exists an ele-
ment c¢,=a,+0b, ¢4, + B, hence, from (3), B,={b,} (say), thus, from (2), not only

¢p but also each element ¢, in 4,4+ B, is among the elements ¢;=a;+b;, with b;=b,,.
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On the other hand, if m=n»n>3 then (4,, B,) is necessarily elementary of type (I),
(say) B, consists of a single element b, hence, from (2), each of the m >3 elements
in A,+ B, is an element c¢;=a;+b; with b,=b. This proves (*).

For definiteness, suppose that c¢,==c, are such that b,=b,, thus, [("']>2, where
C" denotes the set of those elements ¢; (j=1, ..., n) for which b;,=8,. If B’ denotes
the set obtained from B by deleting b,, the set 4+ B’ is precisely the complement
of ¢" in A+ B. Thus, from (1) and Theorem 3.2,

2<[C"]=[4)+[B]-[4+B']<y. (4, B)<».(4, B),

for each element ¢ €4+ B'. It follows that, for j=1, ...,n, ¢;§ A+ B’, thus, ¢;€C”,
that is, b,=b, Finally, »,(4, B)>[C""]=n for each element ¢ in the complement
A+B of C"={e, ...,¢,} in A+ B. This proves Theorem 6.1.

THEEOREM 6.2. Let A, B be a pair of finite non-empty subsets of an abelian group
G, such that
[A+B]=[A]+[Bl—p¢ with p=1. {4)

Let ¢y, ...,¢, (n=0) denote the different elements in A+ B satisfying v,(4, B)=op.

Assertion:

(i) We have v.(4, B)=n for each element c € A+ B with c+¢; (=1, ...,n).
(ii) If n>2p there exist different elements a,, ..., a; in A and different elements
boi1, ..., 0, tn B (0<g<yp), such that, for each j=1,...,n, the g representations

c;=a+b of ¢; are of the form
g=a,+b" (v=1,...,0), ¢;=aP+b, (u=0+1, ..., ),
where aP€d, b €B, al=+a, Vb, (1<v<o, c+1<u<y).
We shall first prove a special case.

LeMma 6.3. Let H denote a finite subgroup of the abelian group G, A and B

subsets of some H-coset, such that
[A]l+[Bl=[H]+p with p=1, (5)

thus, A+ B is an H-coset. Finally, let c,, ..., c, denote all the different elements satis-
fying v, (4, By=p. Then the assertions (i} and (i1} of Theorem 6.2 hold. Hence, from
(1), [d]1=n, [Bl=n if n<[H). Moreover, [A]=[H] or [B]=[H] if n='[H].
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Proof. Without loss of generality, we may assume that both 4 and B are con-
tained in H, thus, 4+ B=H. Let A, B denote the complements of 4, B in H.
Then, for each g €H,

vo(4, B)+9,(4, B)=v,(4, H)=[4],

Vg ([I, B) +v, (A’ B) = [-E] = [H] - [B],
hence, from (5),
v (4, B)=g+v,(4, B)>p. (6)

Consequently, »,(4, B)=p iff v,(4, B)=0 iff g¢ A+ B, thus, A+ B is precisely the

complement of {c,, ..., ¢,} in H, hence,
{4+ B]=[H]—n. (7)

If n=[H] then either 4 is empty, thus, 4 =H, or B is empty, thus, B=H. Lemma

6.3 being obvious in these cases, we may assume that 4 and B are non-empty. From (5),

[4]+[B]=[H] -0, (8)
hence, from (7),
[4+ B]=[4]+[B]—(n—0) ©

From (6), (9) and Theorem 3.2,
vy (4, By=p-+v,(4, By=>p+(n—0)=n

for each element g in the complement A+ B of {c, ...,c,} in 4+ B=H, proving
assertion (i).

Now, assume n>2g. From (9) and Theorem 3.1, there exists a subgroup F of
H of order [F]>n—p>p, such that

[A+Bl+[F]=[4d+F]+[B+F],
hence, from (7) and (8),
(H]+[F)>[A+F]+[B+F]>[H]—o>[H]-[F],
consequently,

[A+F]+[B+F]=[H]. (10)

Further, let a,, ..., a, denote the different elements of 4 N (4 +F) and let b,,q, ..., b,
denote the different elements of BN (B-+F), hence,

[A+Fl=[4A]+0, [B+F]=[Bl+(t—o0),

thus, from (8) and (10), T=p.
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Let c=c; be such that v».(4, B)=p; let c=a-+b with a €4, b€B. If a+Fc A,
b+ F< B then v.(4, B)=[F]>p, a contradiction. Hence, either a €4+ F or b€ B+ F,
that is, either a coincides with one of the elements a,, ..., a, or b coincides with one
of the elements b,.1, ..., by, but not both, otherwise, v.(4, B)<p. This proves asser-
tion (ii).

Proof of Theorem 6.2. Without loss of generality, we may assume n>1. Let
H{A+B)y=H, thus, A+B is a union of H-cosets, and let v denote the quotient
mapping G— G/H. Applying Theorem 3.1, we have

[rA+7tB]=[rA4]+[tB]-1 (11)
and [(4+H)n A]+[(B+H)n Bl=[H]—o. (12)

Let us first consider the case [H]=p. From (12), both 4 and B are unions of
H-cosets, hence, for each g €@, we have v,(A, By=9 v, (14, 7 B). Thus,

n=n,[H]=mn,0,

where 7, denotes the number of elements ¢ € v 4+ v B satisfying ».(r4, tB)=1. In
view of (11), applying assertion (y) of Theorem 6.1 to the pair of subsets 74, v B
of G/H, the assertions (i) and (ii) easily follow.

It remains to consider the case [H]+g, thus, [H]>p, from (12). Let j be fixed
(1<j<n), thus, 'uc?.(A, B)=p. From Lemma 3.3, the element 7¢; has only one re-
presentation as zc¢;=@&+b; with @ €14, b,€vB. In other words, introducing the

non-empty sets
AIZA ﬂ‘t‘ld,, B,-=Bﬂ‘z'_ll-)]-,

{each contained in an H-coset), we have
c€c;+H, c=a+b (a€A, bEB) tmplies a €A;, bEB,. (13)
Moreover, from (12), cf. the proof of Lemma 3.3,
[4,]1+[B;]=[H] +o, (14)

A;+ B;=c;+ H, while the complement A; of A4; in A is a union of H-cosets, similarly,
the complement B; of B; in B.

Suppose {first that [Bj]=[H]>p, thus, from (14), A4; consists of ¢ elements
ay, ..., 8, (say). Let O’ denote the complement of 4;+ B in A+ B, thus, C"' is pre-

cisely the set of those elements ¢, (k=1, ...,7) which have all their ¢ representa-
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tions of the form ¢,=a;+b, (B{?€B, i=1, ..., 0). From (13), [C"']1>[H]>p, while,

from (4),
[4j+ Bl=[4+ B]-[0"]=[4;1+[B] - [C"].

Hence, from Theorem 3.2,

ve(4, B)>v, (4], B)>[C"]>0 if c€A]+B.

It follows that none of ¢, ..., ¢, is in A;- B, thus, "' ={e,, ..., ¢,}, proving assertion
(ii). Moreover, v.(4, B)=[C"]=n for each element in the complement 4;+ B of C”
in 4+ B, proving assertion (i).

A similar reasoning applies when [A4;]=[H]. Thus, it remains to consider the case
that [4;]<[H], [BjJ<[H] (j=1, ...,7n). But the complement of each 4,=4n7"'4;
in 4 is a union of H-cosets, hence, 4; does not depend on j§, similarly, B; does not
depend on j. It follows that ¢, €c¢,+H=A,+ B,=A4;+B; (k=1, ...,n), hence, from
(13), ¢y, ..., ¢, are precisely all the elements satisfying v,(4;, B;)=p. In view of (14},
applying Lemma 6.3 to the pair 4, B;, one immediately obtains assertion (ii) and
further, ».(4, B)=wv.(4;, B)>=n for each ¢€A4;+ B; with ¢+¢; (j=1, ..., n). Moreover,
[4;1<[H], [B)]<[H] and Lemma 6.3 imply [4;]=n, [B;]>n. Hence, if

C:a+b¢Aj+Bj (aEA, bEB),

then either a + H< A4, [(b+H)NB]>n or vice versa, thus, v, (4, B)>n, proving as-
sertion (i). This completes the proof-of Theorem 6.2.

Consider a pair of non-empty finite subsets 4, B of an abelian group @. Note
that »,(4, B)<[B] for each g€G. Let m; (=0, 1, ...) denote the number of elements
g € G satisfying »,(4, B)=[B]—1.

THEOREM 6.4. Suppose that >0, where
A=m,—[4]+[B]. (15)
Then m;=0 if either 0<i<] or A<i<my.

Proof. We shall first assume that the group @ is finite. Let A4 denote the
(finite) complement of 4 in G. One may assume that A is non-empty, otherwise,
A=G and m;=0 for each ¢>0. Obviously, »,(4, B)+v,(4, B)=[B], hence, m; is also
equal to the number of elements g with v,(4, B)=1. Especially, m, equals the num-
ber of elements not in 4 + B, thus, from (15),

[4+B]=[4]+[B]—A.
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It follows from Theorem 3.2 that m;=0 if 0<¢<A. Moreover, if >0 then, from
assertion (i) of Theorem 6.2, »,(A, B)>A implies v.(4, B)>m,, hence, m;=0 if
A<i<my.

The case [(F]=cc can be reduced to the previous case by applying the fol-
lowing lemma with D as any finite subset of G containing A, B and A+ B.

LeMMA 6.5. Let G be an abelian group, D o finite subset of G. Then there exists
a finite group G, and a homomorphic mapping T of the group G, generated by D unio
Gy, such that T maps D unto T(D) in a 1:1 fashion.

Proof. Let D’ denote the set of all non-zero differences d; —d, of elements d,, d,
in D. By Zorn’s lemma, there exists a maximal subgroup H of G, disjoint from D’.
Let Gy=G,/H and let T denote the quotient mapping of G, unto G,. For d,, d, in D,
d,+d,, we have d, ¢d,+ H, thus, 7'(d,)=T(d,), showing that T is 1:1 on D.

Further, ¢, is generated by the finite set 7' (D), hence, &, is of finite order if
each element in G is of finite order. Suppose that ¢ €@, is of infinite order. Be-
cause T'(D’) is finite, we have +ng¢ T (D’) for n>n,, =, sufficiently large. But then
H' =T"{jnyg; j=0, 1, ...} would be a subgroup of G disjoint from D’ and con-

taining H as a proper subgroup. This is impossible, H being maximal.
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