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1. Introduction 

Let  G be an abelian group, A, B and C subsets of G. By  A + B w e d e n o t e t h e  

set of all the elements g E G having at  least one representat ion as a sum g = a + b of 

an element a E A  and an element bEB.  For  each gEG,  the number  of such repre- 

sentations is denoted as vg(A, B). Further ,  H(C)  will denote the subgroup of G 

consisting of all the elements g EG for which C + g = C ,  thus, C + H ( C ) = C .  I f  

H ( C ) #  {0} then C is said to  be periodic, otherwise, aperiodic. Finally,  [C] denotes 

the number  of elements in C. 

I n  this paper, we shall determine the structure of those pairs (A, B) of non- 

empty  finite subsets of G for which 

[ A + B ]  < [A] + [B]. (1) 

In  view of Theorem 3.1 due to Kneser [4], [5] it suffices to consider the case t h a t  

A + B is aperiodic and 

[A + B ]  = [A] + [B] - 1, (2) 

ef. Theorem 3.4. If  (2) holds, 2 ~ < [ A ] < ~ ,  2 ~ < [ B ] < ~ ,  then (Theorem 2.1) either 

A + B is in ari thmetic progression or A § B is the union of a non-empty  periodic set 

C'  and a subset C"  of some H (C')-coset. On the basis of such information on A + B, 

one can s tudy  the structure of the pair  (A, B) itself, see section 4. The final result 

is Theorem 5.1; here besides (2) it is assumed tha t  vc (A, B ) =  1 has a solution c in 

case A + B  is periodic. Theorem 5.1 completely determines the (rather complicated) 

s t ructure of the pairs (A, B) satisfying (1), cf. the discussion at the end of section 5. 

(1) This work was supported by the National Science Foundation, research grants NSF-G 1979, 
NSF-G 5226. 
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For the special case that  G is cyclic of prime order, this structure was already estab- 

lished by Vosper [8] (see also the Corollary to Lemma 4.3). 

In  view of a result due to Kneser [6], p. 89 (namely, a generalization of his 

Theorem 3.1 to abelian locally compact groups), the Structure Theorem 5.1 also solves 

the problem of determining the structure of those pairs (A, B) of non-empty meas- 

urable subsets of an abelian locally compact group G for which 

/~. (A + B) < #  (A) + # (B); 

here, /~ denotes a fixed Haar measure on G, # .  the inner measure induced by ~. 

The Structure Theorem 5.1 is also a useful tool in investigating the function 

Vc (A, B), (A and B fixed). As an illustration, we shall derive in the final section 

6 some curious results of the following type. Let A, B be finite non-empty subsets 

of an abelian group G such that  

[A] + [B] - [A + B] = 0 >~ 1. 

I t  was shown by Scherk [7] that  vc (A, B)>~ ~ holds for each element c E A + B (see 

also section 3); let n denote the number of elements e for which vc (A, B) = ~. Asser- 

tion: for each element c, we have vc (A, B)~> n as soon as vc (A, B ) >  Q. 

2. Smal l  sumsets  in a discrete group 

In  this paper, all groups considered are discrete abelian groups. Let G be such 

a group. 

DEFINITION. A subset C of G is said to be quasi-periodic if there exists a 

subgroup F of G of order [F] >~ 2 (a so-called quasi-period of C), such that  C is the 

disjoint union of a non-empty set C' consisting of F-cosets (that is C' §  C'), and 

a residual set C" contained in a remaining F-coset (that is C " c c §  if cEC"). 
Observe that  [2]~< [F]~<[C] for each quasi-period F of C, hence, if each ele- 

ment g:~0 in G is of order > [C] then C cannot possibly be quasi-periodic. Further, 

each periodic set is also quasi-periodic. 

DEFINITION. A subset C of G is said to be in arithmetic progression if C is 

of the form C={co+]d; j = 0 ,  1 . . . . .  [ C ] - l } .  If  so, d is called a di//erence of C; 

note that  d is necessarily of order ~> [C]. 

I t  is important to find the precise structure of the pairs A, B of finite subsets 

of G satisfying 
[A + B ]  = [A] + [B] - 1, (1) 

cf. Theorem 3.4. As a first step in determining this structure, we shall prove: 
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TI tEOREM 2.1. Let A,  B be finite subsets of G such that (1) holds and [A]>~2, 

[B] >~ 2. Then either A + B is in arithmetic progression or A + B is quasi-periodic. 

The proof  of Theorem 2.1 makes  use of the  second asser t ion  of the  following 

L e m m a  2.2. The  proof  of L e m m a  2.2 is a re f inement  of Knese r ' s  [4, 467] proof  of 

the  f irst  asser t ion  (3). 

L ] ~ M A  2.2. Suppose that the /inite subset C o/ G is the union o/ the proper 

non-empty subsets C o . . . .  , C~ (n >~ 1) in  such a way that 

[C] < [C~] + [H (C,)], (i = 0, 1 . . . . .  n). (2) 

Then [C] + [H (C)] ~> [C~] + [H (C~)] (3) 

holds /or at least one i = 0  . . . . .  n. Moreover, either C is quasi-periodic or, /or some 

c E C, we have C - c  = H 1 U Hu, where H1, H 2 denote /inite subgroups of G o/equal  order 

with H 1 N H~ = {0}. 

COROLLARY (Kneser) .  Let C o . . . . .  Cn be /inite non-empty sets with 

[C~] + [H (C~)] ~ ~, (i : 0 . . . . .  n). 

Then C = C o U "" U C~ satisfies [C] + [H (C)] ~> a. 

Proo/ o/ Lemma 2.2. L e t  Ik denote  the  s t a t e m e n t  t h a t  L e m m a  2.2 holds t rue  for 

n = k. Le t  n denote  a f ixed integer,  n ~ 2, and  suppose t h a t  Ik holds for k = 1 . . . . .  n - 1. 

Consequent ly ,  in proving  In, i t  m a y  be assumed  t h a t  C is no t  equal  to  the  union  of 

less t h a n  n + l  among  the sets C o . . . . .  Cn. P u t  C ~ = C  1 U ' ' "  UCn. Then  C 1 . . . . .  C, 

are p roper  subsets  of C~ while Co, C~ are  p roper  subsets  of C. F r o m  (2) and  I n - l ,  

we have  [C~] + [H (C~)] ~ [Ci] + [H (Ci)] > [C] for a t  leas t  one index i = 1, . . . ,  n. Hence,  

in view of C o U C~ = C, [Co] + [H (Co) ] > [C], 11 implies  the  s t a t e d  asser t ion  In. I t  re- 

mains  to  prove  I r 

W e  now assume n = 1. Thus,  

C = C o U C 1 ,  Co+C,  C I # C .  (4) 

Le t  H (C,)=H,, thus,  f rom the  def ini t ion of H (C~), 

C~ + H~ = C~, (i -- O, 1). (5) 

Fur the r ,  p u t  H 0 + H  I = H * ,  H o N H  I = H ,  [ H ] = h  and  le t  m, denote  the  index of H~ 

in the  group H*, thus,  

[H*] = m o m 1 h, [H0] = m 1 h, [H1] = m 0 h. 
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F r o m  (5), Ci N Cj is the union of H-cosets (C~ denoting the  complement  of Ci in G), 

hence, f rom (2) and  (4), 

0 < [C, fl Cj] ~< (mj - 1) h; (6) 

here, and in the sequel, i = 0, 1, while j = 1 - i. F rom (4) and (5), C + x = C for x E H, 

thus,  [H (C)]>~h, consequently,  in proving (3), it suffices to  show tha t  

[Ci N Cj] = (mj - 1) h. (7) 

In terchanging the indices, if necessary, we m a y  assume [Ho]>~ [H1] , thus,  m o ~ m  1. 

From (6), there exists an  element co EC 1 N C o. Let  c o be fixed. Then 

D = c o + H* satisfies [C1 N C o R D] > 0. (8) 

Note  t h a t  the intersection of an H0-coset in D and an Hx-coset in D is precisely an 

H-eoset.  F rom (5), Ci r iD  is the union of (say) ui eosets of Hi, 0~<ul~<mi, thus,  

Ci n D is the union of m i - u i  cosets of Hi. Consequently,  

[C o N C 1 R D] = (mo - u0) u 1 h, (9) 

and 0 < [C 1 N C o N D] = ( m  1 - U l )  U 0 h ~ (mo - 1) h ~< (m 1 - 1) h, (10) 

in view of (6), (8), mo<~m x. F r o m  (10), 

1 ~< u 0 ~ < m  0 - 1, 1 <~ul<~m 1 -  1. ( 1 1 )  

We now have, f rom (9), (10) and (11), 

1 1 

- ]~ { ( ~ j  - 1 / h -  [d,  n ~ j ] }  - V~ [d,  n c j  n z]]  
i=O i=O 

1 

= ~ { [ C  i n Cj n D] - (mj  - 1 )  h )  = ( m  0 - u o - 1 )  ( u  I - 1 )  2 i - ( / 1  - u l  - 1 )  ( u  0 - 1 )  ~ 0 .  
i = o  

I t  follows from (6) that :  (i) (7) and, thus,  (3) holds; (ii) E i ther  u ~ = l  or u o = m o - l ;  

moreover, either Uo= 1 or u l = m  1 -  1; (iii) Finally, [Ci n Cj R Z)] = 0 ,  ( i = 0 ,  1). 

Le t  C ' = C N  D. From (iii) and (4), C ' = C o N  D = C 1  N D. From (5) and (8), 

C' + H* = C'. :Note that ,  f rom (6), mj ~> 2, thus, [Hi] ~> 2. I f  C'  is non-empty  then H* 

is a quasi-period of C. I f  h~>2 then, f r o m  C + H = C ,  H is a quasi-period of C. If  

u o = m o - 1  then H o is a quasi-period of C, similarly, if u 1 = m  1 - 1 .  Consequently,  if 

C is not  quasi-periodic then  C' is empty ,  H 0 N H I = H = { 0 }  and u o = u  1=  1, hence, 

C is the union of an  H0-coset in D and  an Hl-coset  in D. Moreover, f rom (7) and 

(9), m 1 -  l = m  o -  1, thus,  [Ho] = [HI]. This proves L e m m a  2.2. 
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Proo[ o/ Theorem 2.1. For  brevity,  pu t  A + B = C. Assume first tha t  to each 

element b, E B there corresponds a set C, such tha t  C~ 4 =- C and 

A + b~ = C, c C; [C,] + [H (C~)] > [C]. (12) 

Especially, C = A + B is the union of the proper subsets Ci. Suppose tha t  C is no t  

quasi-periodic. Then, from (12) and Lemma 2.2, there exists an element Co=ao+  b o 

(aoEA, boEB ) in C = A + B  and  finite subgroups / / i ,  H e of equal order such t h a t  

H x A H  e={0}  and A + B - c  o = / / 1 U H e .  Hence, A ' = - a  o + A  and B ' = B - b  o satisfy 

A '  + B ' - -  H~ U H e , A '  c H~ U H e , B '  ~ H 1U He, [A']>~ 2, [B']~>2. 

Le t  a E A ' ,  a # O ,  a E H  1 (say), thus, a(~H 2. Then b E B '  N H e implies a + b E H  1U H 2, 

hence, b = 0, consequently,  B '  c H 1. Taking b E B ' ,  b # 0, we have in a similar fashion 

tha t  A '  ~ H1, hence, H 1 U H e = A '  + B'  c H 1 which is impossible. 

Next ,  suppose t h a t  there exists an element b~EB such tha t  (12) always implies 

Ci = C. Replacing B by  the set B -  b,, we m a y  assume b~ = 0 E B, thus,  

A ~ C o c C, [Co] + [H (Co) ] > [C] imply  C o = C. (13) 

Now, consider a pair  Ao, B o of finite subsets of G such that :  

(i) A c A  o, O E B  o, A o + B  o C C  (thus, A o ~ C ) ,  [Bo]>~2 and 

[Ao] + [Bo] = [C] + 1; (14) 

(from (1) and [B]~>2, these relations hold for A o = A  , B o = B ) ;  

(ii) Subject  to  (i), [Ao] is maximal.  

Suppose first t ha t  A o + B o = Ao, thus,  [H (Ao) ] >~ [Bo]. F r o m  A c A o = A o + B o c  C, (14) 

and (13), we have A o = C  , hence, f rom (14), [Bo]= 1, a contradiction.  

Therefore, the set D~ (say) of elements a E A o with a + Bo r Ao is non-empty.  

Here, Bo shall denote the non-empty  set obtained from B o by  deleting the element 0. 

Thus, f rom (14), 

[Bo] = CBo] - 1 = [Do], where D O = C N Ao (15) 

(Ao denoting the complement  of A o in G). 

Le t  a E D~. I t  is easily seen t h a t  the pair  of sets 

AI  = Ao U (a + Bo), BI = Bo N ( - a + Ao) 

satisfies 

A ~ A1, 0 E B1, A~ + B 1 ~ A o + B o ~ C, [A1] + [B~] = [Ao] + [Bo] = [C] + 1 and [A1] > [Ao]. 
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Consequently,  f rom the max ima l  character  of [A0], we have  [B:] = 1, hence, [A1] = [C]. 

I t  follows f rom A I C A : §  t ha t  C = A  1, thus,  

D o = C  f3 .~0 = A: f3 ~ o c a + B o ,  

hence, f rom (15), 

a E D: implies a + Bo = D o. (16) 

Generalizing the definit ion of D:, let Dm(m>~l)  denote  the  set  of all those ele- 

men t s  a E A 0 such t ha t  m is equal to the  smallest number  of e lements  b: . . . .  ,bm in 

B0 for which a t  b 1 + ... +bm (~A o. L e t  k denote  the  largest  integer  m for which Dm 

is non-empty .  Finally,  let D~ denote the  set  of all e lements  a EA  o satisfying 

a + b l +  ... §  o 

for each choice of the e lements  b: . . . . .  b= in Bo. Here ,  the  Dj are disjoint, while 

(from A o c C, D o = C N zio) 

A o = D o c U D k U . . - U D x ;  C = D c c U D k U . - . U D : U D  o �9 (17) 

Clearly, Dor Bo = D~.  We  assert  tha t ,  moreover ,  

a f iD~  implies a + B o = D m  : ( m = l  . . . . .  k). (18) 

F r o m  (16), (18) holds for m = l .  Le t  m>~2, aED,n and b'EB'o. F r o m  the definition 

of Din, a §  for some ] > ~ m - 1 ,  while there exist e lements  b: . . . . .  b m :  in B'o 

with a ~ = a + b l + . . . + b , n _ l f i D 1 ,  thus,  ( a + b ' ) + b ~ + . . . + b m _ ~ = a : + b ' ~ A o ,  f rom (16), 

showing t h a t  a + b' E D s for some j ~< m -  1, consequently,  a + b' fi Dm 1. This proves  

aEDm implies a + B o c D m _ :  ( m = l  . . . . .  k). (19) 

Especially,  D m +  B o c  Din_:, hence, [Dm] <~ [Din-l] (m = 1 . . . . .  k), thus,  

[B0] = [a § B'0] ~< [Din-l] ~< [D o] = [Bo] 

and  (19) implies (18). 

For  1 ~< m ~< k, let F~  denote  the group genera ted  b y  all the differences a : -  a 2 

of e lements  a:, a 2 in D~, thus,  Dm is contained in an Fa-coset ,  [Fm] ~> 2 if and only 

if [D~]~>2. F r o m  (18), a l + B o = a 2 + B '  o if a:, a2EDm, hence, B o + F m = B o ,  thus,  Fm 

is f inite while, f rom (18) and  Doo +Bo=Dor 

1 ) j + F m = D j  i/ ]=0 ,  1 . . . . .  k - 1  or j = c ~ .  (20) 

F r o m  (17) and  (20), F k is a quasi-period of C provided t h a t  [Dk]~>2, thus,  assume 

[Dk] = 1, t h a t  is, Dk consists of a single e lement  cz. Bu t  then,  f rom (17) and  (20), 



ON SMALL SUMS E T S I N  A N  A B E L I A N  G R O U P  69 

-Em is a quasi-period of C provided t ha t  [Dm] ~> 2, thus,  assume [Din] = 1 (m = 1 . . . . .  k). 

Finally,  if D~ is non -empty  then, f rom D:r +B~=Dor (17) and (18), the  group gen- 

era ted by  B 0 is a quasi-period of C, thus,  assume t h a t  D~  is empty .  

I f  k = 1 then, f rom (17), [A0] = [D1] = 1, contradict ing [A0] >~ [A] ~> 2. Applying 

(18) for m = 2 ,  we have  [B '0 ]= [D1]= I ,  hence, Bo consists of a single e lement  d~:0.  

F rom (18), Dk-m consists of the single e lement  ck+md ( m = 0 ,  1 . . . . .  k). The Dj 

being disjoint, these k +  1 elements  are distinct,  thus,  f rom (17), C is an  ar i thmet ic  

progression of difference d. This completes the  proof of Theorem 2.1. 

3. Auxiliary results 

I n  the  subsequent  sections, we shall f requent ly  need the following result  due to 

Kneser  [5], [6]. For  the benefit  of the  reader,  Kneser ' s  proof  is given below. 

THEOREM 3.1. Let A, B be /inite non-empty subsets o/ the (abelian) group G 

satis/ying 
[A + B] ~< [A] + [B] - 1. (1) 

Then H = H (A + B) satisfies 

[A + B] + [H] = [A + H] + [B + H]. (2) 

Hence, A + B is periodic i/ 

[A + B] ~< [A] + [B] - 2. 

Pro@ Let  b~ denote a f i x e d  e lement  in B. Consider a pair  A~, Bt of finite 

subsets of G such that :  

(i) A c A i ,  btEBt, A ~ + B t c A + B  and 

[Ad + [Bd = [A + H] + [B + HI;  (3) 

(from A + B + H = A + B ,  A t = A + H ,  B~=B+H is such a pair); 

(ii) Subject  to (i), [Ai] is maximal .  

Le t  Ct = At + Bi, thus,  

A + btc C~c A + B. (4) 

Le t  a EA~. I t  is easily seen t h a t  the  pair  

A~=AtU(a+B~-bd,  B~=B~N(-a§  

satisfies (i) and  A~c  A~, thus,  A'~= Ai. Consequently,  a+ B t -b~cAt ,  for each a EA~, 

hence, At = A~ + Bt - bi = C -  bt and  H (C~) = H (At) ~ Bt - bi, thus,  f rom (3), 
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[Cd + [ H  (C~)] ~> [A + H ]  + [B+  H]. (5) 

From (4), A + B  is the union of the sets C~ (b~EB), hence,  

[A + B] + [S] >7 [A + H] + [B + H], (6) 

from H = H (A + B) and the Corollary to Lemma 2.2. If  (2) were false then, all terms 

in (6) being multiples of [H], we would have [A + B] >/[A + H] + [B + H], contradicting 

(1). This proves Theorem 3.1. 

For the moment, let G denote an additively written semigroup (commutative or 

not) in which the left and right cancellation laws hold. If A, B are subsets of G 

and g E G then vg (A, B) shall denote the number of different representations of g as 

a sum g = a + b  (aEA,  bEB). The following result will be needed for the special case 

only that  G is an abelian group. 

T ~ O ~ E M  3.2. Let A, B be finite subsets o/ G. Then, /or each element cEA  + B, 

vc (A, B) ~> [A] + [B] - [A + B]. (7) 

That c EA + B implies (7) was shown in [3] under the condition that  c possesses 

an inverse in an apropriate extension in G. But  by a recent result of Liapin (cf. 

[2], no. 21), each element of G has this property. 

Now, assume again that G is an abelian group. For this case, Theorem 3.2 was 

first proved by Scherk [7]. I t  can be strengthened as follows. 

LEMMA 3.3. Let G be an abelian group, A and B [inite non-empty subsets o/ G. 

Put H (A + B ) =  H and 

[A] + [B] - [A + B] = ~, (8) 

thus (from Theorem 3.1), H is a finite group oJ order >~0" Let aoEA, boEB be /ixed, 

c o = a o + b o. Then each element c E c o + H has at least ~ representations of the form 

c = a + b  with a E A N ( a o + H  ), b E B N ( b o t H  ) . 

Proof. We may assume Q~> 1, otherwise, the assertion is trivial. From Theo- 

rem 3.1 and (8), 

[(A + H) N A] + [(B + H) N/?] = [/t] - ~, 

hence, [(% + H) N A)] + [(b 0 + H) N/~] ~< [H] - e, 

thus, [(a 0 + H) N A] + [(b 0 + H) N B] ~> [H] + ~, 

showing that, for each h E H, the subsets (% + H) N A and (% + b 0 + h) - ((b o + H) N B) 

of a 0 + H  have at least Q elements in common. 
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The following result shows that,  in characterizing the pairs of finite sets satis- 

fying (9), it would suffice to consider the case that  A + B is aperiodic (in which case 

(9) holds with the equality sign). We shall however also be interested in the case 

that  A + B  is periodic, while vc(A, B ) = I  holds for at  least one element c (cf. 

Theorem 5.1). 

TI~EOREM 3.4. Let G be an abelian group. The following construction yields pre- 

cisely all the pairs A, B o/ non-empty finit e subsets of G satisfying 

[A + B] ~< [A] + [B] - 1. (9) 

Construction: Choose a finite subgroup H ol G and, /urther, a pair of non.empty finite 

subsets A*, B* o/ G/H such that A* + B* is aperiodic and 

[A* + B*] = [A*] + [B*] - 1. (10) 

Finally, let A be any subset o/ a-l A *, B any subset o/ a-l B * such that 

[a -1 A* (1 ~ ]  + [a -1 B* Cl/~] < [H]; (11) 

here, a denotes the quotient mapping a~a/H. 
Proof. (i) The above construction yields a pair A, B satisfying (9). For, using 

(11) and (10), 

[A] + [B] > [ a - l A  *] + [a -1B*] - [H] = ([A*] + [B*] - 1) [H] 

= [A* + B*] [H] = [o ~-1 (A* ~- B*) ]  ) [A -~ B] ,  

in view of a ( A + B ) = a A + a B c A * + B * .  

(ii) Suppose that  (9) holds. Let  H =  H (A +B) ,  thus, H is a finite group satis- 

fying A + B + H = A  + B  and (2), from Theorem 3.1. Let g denote the quotient map- 

ping G--->G/H and put  A * = a A ,  B * = a B .  From A + B + H = A + B ,  (2) implies (10). 

From a I A * = : A + H  and ~ - ~ B * = B + H ,  (9) and (2) imply (11). Finally, if A * + B * +  

+ x = A * + B *  then, for g ~ - * x ,  we have A + B + g = A + B ,  hence, gEH,  thus, x = 0 .  

4. F r o m  s u m  to c o m p o n e n t s  

Again, G shall denote an abelian group, A and B finite non-empty subsets 

of G. If 

[A + B] ~< [A] + [B] - 1, (1) 

[A]>~ 2, [B]~>2, then, from Theorem 2.1 and Theorem 3.1, either A + B  is in arith- 

metic progression or A + B  is quasi-periodic. Problem: given such information on 
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A + B ,  what  can be said about  the pair  A, B itself? Le t  us first consider the simple 

case t h a t  A + B is either a coset or a coset with one element deleted. 

LEMMA 4.1. Let H denote a finite subgroup o/ G. In  order that (1) holds and 

A + B coincide with an H-coset, it is necessary and sufficient that each o/ A,  B is a 

subset of some H-coset in such a way that [A] + [B] > [H]. 

Proof. Obvious. 

LEMMA 4.2. Let H denote a finite subgroup o/ G. In  order that (1) holds and 

that A + B is obtained from an H-coset by deleting one element co, it is necessary and 

sufficient that A is an aperiodic subset O/ some H-coset, while B is o/ the /orm 

B = c o - . ~  ~ (a+ H) (aEA).  I /  so, (1) holds with the equality sign. 

Proof. Necessity. Clearly, A §  is aperiodic, hence, A is an  aperiodic subset 

of the coset a + H  (aEA).  Moreover, f rom (1), [B]>~ [ H ] -  [A] = [B'], where B ' = % -  

- . 4  N (a+H).  I t  is easily seen tha t  B c B ' ,  hence, B = B '  and (1) holds with the 

equal i ty  sign. 

Sufficiency. P u t  A + B = C. Clearly, C Ec 0 + H,  c o ~ C, [C] < [H] = [A] + [B]. Sup- 

pose tha t  [C] ~< [H] - 2. Then, from Theorem 3.1, [F] ~> 2 where F = H (C). Thus, A 

being aperiodic, [A + F]  > [A], hence, [A + F] + [B] > [H]. Bu t  then C = (A + F)  + B 

would occupy the full coset co+ H,  contradict ing c o ~ C. This proves L e m m a  4.2. 

Now, let us consider the case tha t  (1) holds with A + B  as an  ari thmetic pro- 

gression of difference d ~: 0. The following lemma shows tha t  also A and B are in 

ari thmetic progression provided tha t  [A + B ] <  [ H ] - 2 ,  where H denotes the cyclic 

group generated by  d. On the other  hand, the sufficient conditions of L e m m a  4.1 

and Lemma 4.2 show tha t  this is no longer t rue if [A + B] = [H] or [A + B] = [H] - 1. 

LEMMA 4.3. Suppose that (1) holds and that A + B is in arithmetic progression 

of difference d ~: O. Suppose further that [A + B] <~ n -  2, where n denotes the order o/ 

the element d. Then also A and B are in arithmetic progression of difference d. More- 

over, in (1) the equality sign holds. 

Proof. Let  H denote the cyclic subgroup of G generated by  d, [H]=n<~ ~ .  

Replacing A by  - a o + A  (%EA)  and B by  B - b  o (boEB), we m a y  assume 0 E A ,  

0 E B ,  thus, OEA + B c H ,  A c H ,  B c H .  I n  this proof,  all sets considered are subsets 

of H,  thus, / )  will denote the complement  of D in H.  Fur ther ,  a set D is said to 

be in ari thmetic progression iff it is of the form ( jd;  ?=7"o . . . . .  j 0 §  The case 

n =  ~ being ra ther  trivial (A § B filling the entire interval  between the sum of the 

smallest and the sum of the largest elements in A and B), we shall assume n < ~ .  

Fur ther ,  we shall  need the following lemma. 
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17/ P, Q are non-empty sets, [P + Q] < n, P + Q in arithmetic progression then 

[P  + Q] ~> [P] + [Q] - 1 .  

For,  it is easily seen tha t  P +  Q cannot  possibly be periodic, thus,  the assertion 

follows from Theorem 3.1. Actually,  we need this lemma only for the special case 

tha t  also P is in ari thmetic progression. For  this ease, we have the following ele- 

P={ jd ;  i=O, 1 . . . . .  k - l }  

and  P+Q={]d;  i = 0 ,  1 . . . . .  m - l } ,  

where k ~ m < n ,  md~.P+Q. 

Now, P + q d = { j d ; j = q  . . . . .  q + k - 1 } c P + Q  implies t ha t  q is one of the integers 

0, 1 . . . . .  m - k, hence, [Q] ~< m - / c  + 1 = [P  + Q] - [P] + 1. 

Let  us proceed with the proof of L e m m a  4.3. P u t  A + B = C ,  thus,  C - B ~ A ,  

hence, f rom (1), 

[C - B] ~< [~i] ~< [C] + JR] - 1. (2) 

Moreover, C be ing  in ari thmetic progression, also C is in ar i thmetic  progression, 

[C] >~ 2. I t  suffices to prove tha t  C -  B is in ari thmetic progression. For  then, from 

[C - B] < [,zi] < n and the above lemma, [C - B] >~ [C] + [B] - 1. I-Ienee, in (2) and (1] 

the equali ty signs hold, thus,  A = C - B  is in ar i thmetic progression, consequently,  

A and (similarly) B is in ar i thmetic  progression. 

On the contrary,  suppose tha t  C - B  is the  union of the ar i thmetic  progressions 

-zi 1 . . . . .  ~ik, where k is minimal, k~>2. Le t  bEB, l ~ < i < ] ~ < k ;  because C - b  is in arith- 

metic progression and k is minimal, C , - b  cannot  have elements in common with both 

~i~ and e{j. Consequently,  put t ing  

B,= {b: beB, .g, n (C-b)  +r 

the sets B 1 . . . . .  Bk are non-empty  disjoint sets with union B. Moreover, C -  Bi = A~, 

hence, f rom the above lemma, 

[C] + [Bd - 1 < [A~], (i = 1 . . . . .  /c). 

Adding these relations, we find 

/c ([C] - 1) + [B] ~< [C - -B]  ~< [C] - 1 § [B], 

f rom (2). But  [ C ] - 1  >~ 1, hence, /c~< 1, a contradiction.  

men ta ry  proof. 

Shifting P and Q, 

let 
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COROLLARY. Suppose that [A] ~> 2, [B] ~> 2, [A + B] < [A] + [B] - 1. Suppose further 

that each element g~=O in G is of order >~[A+B]+2. Then A , B  and A + B  are in 

arithmetic progression with a common difference d. 

REMARK. For the special case tha t  G is a cyclic group of prime order, this 

result is due to Vosper [8] and was rediscovered by  Chowla and Straus [1]. In  [9] 

Vosper gave a simplified proof which can easily be modified so as to yield the above 

corollary. 

Proof. G has no subgroups F with 2~<[F]<~[A+B],  hence, A + B  cannot be 

quasi-periodic, thus, from Theorem 2.1 and Theorem 3.1, A + B  is in arithmetic pro- 

gression. Now, apply Lemma 4.3. 

The following is concerned with the case tha t  A + B is quasi-periodic. 

DEFINITION. Let  A, B be finite non-empty subsets of G. Then P (A, B) shall 

denote the (possibly empty) collection of pairs (F, C") such that:  

(i) F is a finite subgroup of G of order [F]~>2; 

(if) C" is a proper non-empty subset of A + B  and is contained in some F-coset; 

moreover, the complement C' of C" in A + B is the union of one or more F-  

cosets. 

(iii) I f  A + B is periodic then C" itself in an F-coset, while rc (A, B ) =  1 holds for 

at  least one element c EC". 

Further,  for (F, C")EP(A,  B), let @ (F, C")>~ 1 denote the number  of representations 

of a C" as a sum 5 + 5  with 5EaA,  $EaB, (a denoting the quotient mapping G->G/F). 

Finally, let P1 (A, B) denote the collection of all the pairs (F, C") in P (A, B) for 

which @ (F, C") = 1. 

Note tha t  P (A, B) is non-empty if and only if either A + B  is quasi-periodic 

but  not periodic or if A + B is periodic (but not the coset of a cyclic group of prime 

order), while rc (A, B ) =  1 holds for at  least one element c. Hence, from the Theo- 

rems 3.1 and 3.2, if P (A, B) is non-empty then [A + B] ~> [A] + [B] - 1. 

LEMMA 4.4. Consider a pair A, B o/ non.empty finite subsets o/ G satisfying 

[A + B] = [A] + [B] - 1 (3) 

and suppose that P (A, B) is non-empty. Let (F, C") be a fixed pair in P (A, B), put 

@ (F, C")=@, and let (IC"=5~+$~ (i= 1 . . . . .  @) be the @ different representations o/ 

(~C" with 5~EaA, biEaB ((~ denoting the quotient mapping G->G/F). Finally, let 

A~=A N (a-15~), B t = B  N ( a - l b i ) ,  i =  ] . . . . .  Q. Assertions: 
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(i) Clearly, each o/ A 1 . . . . .  A o is contained in an F-coset, such that di[[erent A~ are 

contained in di//erent F-cosets. Moreover, the complement A '  o/ A 1 U ... U A e in 

A satis/ies A ' +  F =  A'.  Analogous results hold /or B 1 . . . . .  B e. 

(ii) Clearly, C" is the union o/ the non-empty sets A~4. B~ (i= 1 . . . . .  ~). Moreover, 

permuting the indices i/ necessary, 

and 

[11] 4. [B1] = [C"] 4- 1, 

(thus, [Ad < IF], [Bd < IF], i = 2 . . . . .  q). 

some c o E C", ~ ,  (A1, B1) = ~o (A, B) = 1. 

(iii) Finally, 

(4) 

lAd + [Bd = [F] (i = 2 . . . . .  ~), (5) 

Further, i[ A 4, B is periodic then, /or 

[ a A  + ~B]  = [(~ A] 4, [(rB] - ~). (6) 

Pro@ Suppose tha t  A'4 .  F @ A ' ,  thus,  [A*]>[A], where A * = A  U (A '+  F). But  

(A" + F ) + B c C '  §  4.B, 

thus, A * + B = A + B  and v c ( A * , B ) = v c ( A , B )  for each cEC".  From (3), [ A * + B ] <  

< [A*] 4, [B] - 1, hence, f rom the Theorems 3.1 and 3.2, A* 4- B = A + B is periodic 

while v~(A*, B)>~2 for each c E A 4 . B .  But  if A 4 , B  is periodic we have v~(A*, B ) =  

=v~ (A, B ) =  1 for at  least one c E C", a contradiction. This proves A ' +  F = A ' .  

We now assert that ,  after a proper permuta t ion  of the indices, 

[A1] 4. [B1] ~< [C"] + 1, (7) 

and [Ad 4, [B~] ~< [ F ]  (i  = 2 . . . . .  0).  (8)  

Suppose first tha t  C" = (A 1 + B1) U "" U (AQ + Be) contains an element c with vc (A, B) = 1. 

Then c is contained in only one of the sets A~+Bi  (say) in A I + B  1, such tha t  

vo(A 1, B 1 ) = I .  Now, (7) follows from Theorem 3.2 and  (8) f rom Lemma 4.1 and 

c ~ A ~ + B i  ( i = 2  . . . . .  ~). 

On the contrary,  if such an element c does no t  exist then A + B and, hence, 

C" is aperiodic. For  the moment ,  suppose tha t  

[Ad 4, [B~] ~> [C"] 4. 2 (i = 1 . . . . .  e)- (9) 

Then, f rom Theorem 3.1, Ci=A~+B~ would satisfy 

[Cd + [H (C~)] ~> [C"] + 2 (i = 1 . . . . .  O)- 

Bu t  C" is the union of C 1 . . . . .  Ce, hence, from the Corollary to Lemma 2.2, [C"]  + 

+ [H (C")] ~> [C"] + 2 and C" would be periodic, a contradiction. 

6- -  603807 Acta mathematica, 103. I m p r i m 6  le 19 m a r s  1960 
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Therefore, (9) is false and (7) holds after a proper permutat ion of the indices. 

Finally, C" being aperiodic, C" and, thus, Ai+B~ is a proper subset of C " + F  

([F]~>2) and Lemma 4.1 implies (8). This completes the proof of (7) and (8). 

From the definition of A~, Bi, A'  and B', 

Z ([A~] + [B,]) = [A] - [A'] + [B] - [B']. (10) 
i = l  

Further,  A '  is the union of [ a A ] - ~  cosets of F,  B '  is the union of [ a B ] - ~  cosets 

of F, while A + B =  C (say) is the disjoint union of C' and C", C' being the union 

of [ a C ] - 1  cosets of F.  Hence, from (10) and (3), 

Q 

~. ([A,] + [B~]) = (o - 1) [F] + [C"] + 1 + 2 [F], (11) 
iffil 

where 2 = Q + [a C] - [aA] - [aB].  (12) 

I t  follows from (7), (8) and (11) tha t  2~<0. On the other hand, 5 = a C "  satisfies 

v+((rA, a B)=~,  hence, from Theorem 3.2, ;t~>0. Consequently, 2 = 0 ,  proving (6). 

Finally, (7), (8) and (11) imply (4) and (5). This completes the proof of Lemma 4.4. 

LEMMA 4.5. Suppose that (3) holds and that P ( A ,  B) is non-empty. Then either 

A + B is a coset o/ a /inite group, or A § B is obtained /tom a coset o/ a /inite group 

by deleting one element or P1 (A, B) is non-empty. 

Proo/. Consider a pair (F, C " ) E P ( A ,  B) with IF] maximal. Observe tha t  the 

complement D (say) of A + B  in A § 2 4 7  is given by  

D = d " n  (e+F) (c C C"), 

thus, D is contained in an F-coset. Further,  D is empty  if and only if A + B  is 

periodic. 

I f  ~ (F, C") = 1 we are ready, thus, suppose tha t  ~ (F, C") >~ 2. I t  f611ows from 

(6) and Theorem 3.1 tha t  the set ( r (A+B)  is periodic, ~ denoting the quotient map- 

ping G--+ G/F.  In  other words, there exists a finite subgroup H of G / F  of order 

[H]~>2, such tha t  a (A + B )  is the union of (say) m~> 1 cosets of H. Consequently, 

A + B +  F is the union of m cosets of the group - 1 H  = K (say). Here, [K] = [H] [F] > [F], 

thus, K contains F as a proper subgroup. Finally, the complement D of A + B in 

A + B +  F is properly contained in some K-coset. I t  follows from the maximal  char- 

acter of [F] tha t  m = l .  Hence, A + B  is obtained from a certain coset g + K  of K 

by deleting a subset D of a certain F-coset contained in g +  K. 
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I f  [D] ~< 1 we are ready,  thus,  assume [D] ~>'2, hence, A + B is aperiodic. Now 

consider ~ minimal  group F 1 having the following properties: (i) F I ~ F c  K; ( i i )D  is 

contained in some Fl-eoset.  Thus, [F1] ~> [D] >~ 2. Let  C~" denote the par t  of A + B in 

the coset D + F 1, thus,  

C~' = (A + B) N (d + F1) = D N (d + F1), 

(d E D). Each  Fl-coset  different from D +  F 1 and  contained in g + K  is also contained 

in A + B .  Finally, A + B  being aperiodic, C~' is non-empty ,  consequently,  

(F~, CI') E P (A, B). 

Let  Q (F, C~')~01. I t  suffices to prove tha t  01= 1. 

On the contrary,  suppose tha t  Q1>~2, F rom L e m m a  4.4, applied to the pair  

(F1, C~'), there exist non-empty  sets A2, B 2 with [Ae]+[B2]=[F1] and such tha t  

A 2 + B 2 = C  2 (say) is contained in C~'. Now, consider the group H(C2), satisfying 

C 2 + H (Ca) = C 2. We have C 2 c C~' while C~' in tu rn  is a proper  subset of d + F 1 (d E D), 

consequently,  H (C2) is a proper subgroup of F 1. On the other hand, from Theorem 3.1, 

[C~ + H (03)] + [H (02) ] >~ [A2] + [B2] = [F~] = [d + F,] ,  

showing tha t  C 2 = C  2+H(C2)  and, hence, C~' contains all but  at  most  one of the 

H(C2)-cosets contained in d +  F1, d E D. Consequently,  the complement  D of C~' in 

d + F ~  (d E D) is contained in an  H(C2)-eoset , a contradiction,  in view of the minimal 

character  of F v This proves L e m m a  4.5. 

REMARK. Suppose tha t  (3) holds and tha t  A + B  is periodic bu t  not  the eoset 

of a finite group. I f  r~(A, B ) -  1 has a solution c (that is if P ( A ,  B) is non-empty) ,  

then L e m m a  3.3 easily implies (H, c + H) E P1 (A, B), where H = H (A + B). This yields 

a second proof of L e m m a  4.5 for the (easiest) case t h a t  A + B is periodic. 

L~MMA 4.6. Let A,  B be [inite non-empty subsets o/ G satis/ying (3) and 

roe (A, B) = 1 /or some c o E A + B. Let K denote a /inite subgroup o/ G and suppose that 

either (i) A + B = c o + K,  while ~c I (A,  B)  = 1 /or some c 14- co; or (ii) A + B is obtained 

/rom c o + K by deleting one element c 1. 

Then either both A and B are in arithmetic progression el di//erence d = c 1 - c  o or 

P1 (A, B) is non-empty. 

Proo/. Suppose tha t  (i) holds and let e l = a l + b  1 (a 1 E A,  b 1 E B). Then a EA ,  

a ~: a 1 imply  - a + c 1 E/? N (B + K). But  [A] - 1 = [K] - [B] = [/? 0 (B + K)], hence, (*) 

each element in /~ N ( B + K )  can be wri t ten as - a ' + c  1 with a' E A.  Now, suppose 
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t h a t  (ii) holds.  F r o m  cl ~ A + B we have  - A + c~ c B N (B + K) .  B u t  [A] = [K] - [B] = 

= [ / ~  C / ( B + K ) ] ,  hence (*) holds also in th is  case. 

L e t  co=ao + b o (ao E A,  bo E B ). Then  a E A,  a:~a o i m p l y  - a  + co E B N (B + K), 

hence, from (*), (c 1 - co) + a E A.  Le t t i ng  F denote  the  cyclic subgroup  of K gene ra t ed  

b y  d = ct - c o =~ 0, [F]  ~> 2, i t  follows t h a t  the  subse t  A of a 0 + K ,  (similarly,  the  subset  

B of b 0 + K),  is the  union of a number  of F -eose t s  and  an  a r i t hme t i c  progress ion of 

difference d conta ined  in a 0 + F  (or b 0 + F ,  respect ively) .  

I t  remains  to  consider  the  case t h a t  F is a p roper  subgroup  of K,  thus ,  

(F, C") E P (A, B), where C " =  (A + B) N (co+F) . Suppose  t h a t  Q(F,  C")>~2 and  let  

(r denote  the  quo t i en t  m a p p i n g  G ---> G/F.  Then,  there  exis t  e lements  ~ E ~ A, b E ~ B 

such t h a t  ~ c o = 5 + b ,  ~4=aao, b ~ a b  o. B u t  then  the  F -cose t s  A'=cr-15,  B ' = ~ - l b  are 

con ta ined  in A and  B, respect ive ly ,  while c o E A '  + B ' ,  thus,  vc, (A, B) >~ VCo (A', B') = 

= [F]~> 2, a cont rad ic t ion .  This  proves  L e m m a  4.6. 

5. T h e  m a i n  structure t h e o r e m  

D E F I N I T I O N .  The  pa i r  (A1, B1) of n o n - e m p t y  f ini te  subsets  of the  group G is 

sa id  to  be an  elementary pair if a t  leas t  one of the  fol lowing condi t ions  ( I ) - ( IV)  

holds t rue .  

(I) E i t he r  [A~]= 1 or [B1]= 1. 

(II)  A I and  B 1 are  in a r i t hme t i c  progress ion with  a common difference d, where d 

is of order  /> [ A I ] +  [ B 1 ] -  1; (hence, A 1 + B  1 is an  a r i t hme t i c  progress ion of  dif- 

ference d while ~c(A1, B 1 ) -  1 holds for a t  leas t  one c E A 1 + B1). 

( I I I )  F o r  some f ini te  group H,  each of At ,  B 1 is con ta ined  in an  H-cose t  while 

[A1] + [B1] = [H] + 1; (hence, A 1 + B 1 is an  H-coset) .  Moreover,  precisely one ele- 

m e n t  c satisfies re(A1, B1)=  1. 

(IV) A 1 is aper iodic .  F u r t h e r ,  for some f ini te  subgroup  H of G, A 1 is con ta ined  in 

an H-cose t  while B 1 is of the  form B 1 = g o - ~  1 N (a+H)  (a EA1); (hence, from 

L e m m a  4.2, A I + B  1 is ob t a ined  f rom go+H b y  de le t ing  the  e lement  go). More- 

over,  no e lement  c satisfies ~c(A1, B I ) =  1. 

Observe  t h a t  each of the  condi t ions  ( I ) - ( IV)  implies  

[A 1 + B1] = [A1] + [B1] - 1. 

T H ~ O R E ~  5.1. Le$ G be an abelian group, [G] ~> 2, and let A,  B denote /inite 

non-empty subsets o/ G. Then a necessary and su//icient condition, in order that 

[A + B] = [A] + [B] - 1 (1) 
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and, moreover, 

(2) i/ A + B is periodic then vc(A, B ) - -1  ]or at least one c, 

is the existence o] a non-empty subset A 1 of  A, a non-empty subset B 1 o/ B and a 

subgroup F o/ G order [F]>~ 2, such that: 

(i) The pair (A1, B1) is elementary, each o/ A i ,  B 1 is contained in an F-coset. 

(ii) The element 5= a (A 1 + B1) has 5 =  (~A 1 ~- (~B 1 as its only representation o / the /orm 

5 = ~ + b, 5 ~ a A, b E (I B. Here, a denotes the quotient mapping G--> G/F.  

(iii) The complement A '  o] A 1 in A satis/ies A '  + F =  A',  similarly, the complement B' 

o] B 1 in B satis/ies B' + F =  B' (hence, /rom (ii), the complement C' o/ A 1 ~- JB 1 in 

A + B satis/ies C' + F = C'). 

(iv) Finally, [aA + a B ]  - [ a A ]  + [aB] - 1. 

This theorem will be obtained by combining Lemma 4.4 and: 

LEMMA 5.2. Let A, B be finite non-empty subsets o/ G satis/ying (1 )and  (2). 

Then either the pair (A, B) is elementary or P1 (A, B) is non-empty. 

Proo]. We may assume [A]~>2, [B]>~2 (thus, [A+B]>~2),  otherwise, (A, B)i~ 

elementary of type (I). Let  us first consider a number of special cases. 

(i) Suppose that  A + B is a coset of some finite group H. Then A + B is periodic, 

thus, from (2), there exists an element c o with ~c~(A, B ) =  1. If no other such element 

exists (A, B) is elementary of type (III). Otherwise, from Lemma 4.6, either (A, B) 

is elementary of type (II) or P1 (A, B) is non-empty. 

(if) Next, consider the case that  A §  is obtained from a eoset of a finite group H 

by deleting one element go. If no element c o exists with ~c,(A, B ) = I  then, from 

Lemma 4.2, (A, B) is elementary of type (IV). Otherwise, from Lemma 4.6, either 

(A, B) is elementary of type (II) or Pi  (A, B) is non-empty. 

Let  us now treat  the general case. From [A]>~2, [B]~>2, (1) and Theorem 2.1, 

either A + B  is in arithmetic progression or A + B  is quasi-periodic. Suppose tha t  

none of the above cases (i), (if) occurs. If A + B  is in arithmetic progression then, 

from Lemma 4.3, (A, B) is elementary of type (II). If A + B is quasi-periodic then 

P ( A ,  B) is non-empty, hence, from Lemma 4.5, PI(A ,  B) is non-empty. This proves 

Lemma 5.2. 

Proo] o] Theorem 5.1. The stated conditions are sufficient. For, from (iii), we have 

[A + B] = [A 1 + Bt] + (~ [A + B] - 1) [F], 

similar formulae holding for A and B. :But, (At, B1) being an elementary pair, 
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[A 1 §  = [A1] + [B1] - 1, hence, (iv) implies (1). Moreover, (2) holds. For, suppose 

tha t  A + B is periodic, thus, (A1, B1) cannot be elementary of type (IV), hence, in 

view of (if), ~c (A, B)=vc  (A1, B1)= 1 for at  least one element e E A 1 + B 1. 

Thus, suppose tha t  the non-empty finite sets A, B satisfy (1) and (2). I f  (A, B) 

itself is an elementary pair then the assertions of Theorem 5.1 trivially hold with 

A I = A ,  B 1= B, F =  G. Hence, in view of Lemma 5.2, we may  assume tha t  P1 (A, B) 

is non-empty.  :Now, consider a pair (F, C " ) e P a ( A ,  B) with [2"] minimal and let a 

denote the quotient mapping G---->G/F. From Q(F, C " ) =  l,  a C" has a unique 

representation as a C " = g + $  with g E a A ,  bE(rB.  Consider the non-empty sets 

A I = A N ( ( r  -1~) and B I = B N ( ~ - I ~ ) ,  thus, A I + B  1 = C ' '  and each of A1, B I is con- 

tained in an F-coset. We assert tha t  F, A~, B~ satisfy the assertions of Theorem 5.1. 

Here, (if) is obvious while (iii) and (iv) follow from Lemma 4.4. I t  remains to 

prove that  the pair (A1, B1) is elementary. For this, it suffices to verify tha t  

P1 (A1, B1) c P1 (A, B). (3) 

For, each (Fa, C'1") E P1 (AI, B1) satisfies [FI] < [A 1 + B1] ~< [F], thus, [F] being minimal, 

(3) implies tha t  P1 (AI, BI) is empty. Moreover, from Lemma 4.4, 

[A 1 + Ba] = [A1] + [B1] - 1. 

Finally, if A 1§ B I =  C" is periodic then A + B  is periodic and C" contains an ele- 

ment  c with re(A, B)=vc(A1,/31) = 1. I t  now follows from Lemma 5.2 tha t  (A1, B1) is 

an elementary pair. 

Consider a fixed pair (F1, C;') e P1 (A1, B1)- We must  show tha t  (F1, C~') e P1 (A, B). 

In  the first place, C~' is a proper non-empty subset of A 1 + B 1 and, hence, of A + B .  

Further,  the complement of C~' in A I + B  1 is the union of one or more Fl-cosets. 

But  A 1 + B  1 is contained in an F-coset, thus, F 1 is a subgroup of F. Moreover, the 

complement of A 1 + B 1 in A + B is a union of F-cosets, consequently, the complement 

of C~' in A §  is a union of Fl-cosets. Further,  if A + B  is periodic then A I + B  1 

is periodic, hence, C~' contains an element c with 

~c (A1, B1) = rc (A, B) = 1. 

Finally, we must  show tha t  

C'1" § F 1 = (a + F1) + (b § 2"1)' (4) 

a E A, b E B, uniquely determine the cosets a + F 1 and b + F1. From C~' c A 1 + B 1 = C", 

(4) implies C" + 2' = (a + F) + (b + F), hence, from (if), a E A 1 and b ~ B 1. But,  from 
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(F1, C~')EPI(A1,.B1) , the relation (4) with a e A  1 and bEB  1 does indeed uniquely 

determine the cosets a + F  1 and b + F  1. This completes the proof of Theorem 5.1. 

For G as an abe]ian group, let FIG (N) denote the class of pairs (A, B) of non- 

empty  finite subsets of G satisfying 

[A + B] < [A] + [B] - 1, [A + B] < N. 

For each N >  0, this class IIa  (N) can be constructed by  applying Theorem 3.4 at  

most once and Theorem 5.1 at  most  log 2 N times. More precisely: 

(i) Theorem 3.4 shows how to obtain all the pairs (A, B) in Ha(N)  for which 

A + B is periodic, provided that,  for each finite subgroup F of G of order [F] ~> 2, 

one already knows the class of all the pairs (A, B) in Ha/F(N/[F])  for which A + B  

is aperiodic. 

(ii) Theorem 5.1 shows how to obtain the pairs (A, B) in Ha (N) for which A + B 

is either aperiodic or contains an element c with ~'c (A, B) = 1, provided that ,  for each 

finite subgroup F of G of order IF]/> 2, one already knows the class of pairs (A, B) 

in IIa~v((N/[F]}) for which A + B  contains an element c with vc(A, B ) = I ;  (here, {~} 

denotes the smallest integer >~ ~). 

In  fact, the following more explicit construction yields all the pairs (A, B) of 

non-empty finite subsets of G for which (1) and (2)hold. This is an easy consequence 

of Theorem 5.1; observe tha t  the pair (A1, B1) in the formulation of Theorem 5.1 is 

elementary of type (IV) if (and only if) vc (A, B)=~ 1 for each c E G. 

Construction: choose r>~l groups G 1 . . . . .  G~ such tha t  GI=G and Gi+I=GJFj 

where Fj denotes a finite non-trivial (2<~[Fj]<[Gj]) subgroup of Gj, ( ] = ]  . . . .  , r - l ) .  

In  the following manner, one now constructs, for i =  r, r - 1  . . . . .  1, a pair of non- 

empty  finite subsets Pi, Q~ of G~. I f  r = l  one chooses P I = P I ' ,  QI=QI"  as an ar- 

bi trary elementary pair of subsets of GI=G , thus, assume r~>2. Then one first 

chooses the subsets P,, Q, of G, such tha t  (P,, Qr) is elementary of type (I), (II) or 

(riD, [P~ + Qr] >~ 2. 

Let l~<? '~<r-1  and suppose that,  for i = ] + l  . . . . .  r, the subsets Pi, Q~ of G~ 

have already been chosen in such a manner tha t  v~ (P~, Q~) = 1 holds for a t  least one 

c E Pi + Q~. Now, select any  element c from Pj+I + QJ+I having only one representation 

as c = p + q  with pEP j + I ,  qEQj+I. Further,  (a denoting the quotient mapping 

Gj--->GjFj=Gj+I), choose a subset P / '  of a - l p  and a subset Q~' of a-~q in such a 

manner tha t  the pair (P~', Q~') is elementary if ?'= 1, elementary of type (I), (II)  or 

( I I I )  if j >  1. Now, let Pj=P/ 'U a-lP~.+l and Qj=Q~'U a-lQ*~l where P ' l ,  @*+1 
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denote the sets obtained from P/+l, Q]+I by deleting 1o or q, respectively. This com- 

pletes the construction. Finally, let A = P1, B = Ol. 

Here, ~c (A, B) = 1 holds for at least one element c E A + B if and only if (P[', Q;'), 

is not elementary of type (IV). Further, A + B  is aperiodic if and only if PI"+ QI" 

is aperiodic. 

The above results leave one seemingly important question unanswered, namely: 

what is the precise structure of the elementary pairs of type (III)  and (IV)~. But  

note that  Theorem 5.1 remains valid of one modifies the definition of "elementary 

pair" by replacing in (III)  "precisely one" by "a t  least one" and omitting in (IV) 

the condition that  no element c satisfies ~c(A, B ) = l ;  (one needs only to verify that  

the conditions (i)-(iv) of Theorem 5.1 are still sufficient for (1) and (2)). Further, 

adopting this modified definition, the above construction again yields the full class 

of pairs (A, B) satisfying (1) and (2). From this point of view, there remains only 

the problem to determine the structure of the pairs (A, B) of subsets of a finite 

group H such that  [A] + [B] = [H] + 1 while re (A, B) = 1 holds for at least one element 

c E H. But it is easily seen that  the following construction yields precisely all such 

pairs: choose B as an arbitrary non-empty subset of H and let A = ( c - / ~ ) U  {a} 

with c E H, a E H arbitrary. 

6. Elements having few or many representations 

Let A, B be non-empty finite subsets of an abelian group G such that  

e = [A] + [B] - [A + B] ~> 1. 

Let nr denote the number of elements g E G having precisely r representations of the 

form g = a + b  (aEA,  bEB).  From Theorem 3.2, we have n r = 0  if 0 < r < 0 .  In  this 

section, we shall prove the curious fact that  also nr= 0 if Q < r < n o (which is non- 

trivial only if n o > ~ + 1). 

As an illustration, let G be of finite even order, let F be a subgroup of G of 

index 2 and let F 1 = x + F (x E G, x ~ F). Take A as the union of iv and the elements 

al . . . . .  aa in F 1 and take B as the union of 2' and the elements b~+l, ..., b e in F 1 

(0~<a<~<[F] ) .  Then A + B = F U F  1, further, ~g(A,B)=Q iff gEF1, thus, no=IF] ,  

finally, vg(A, B)>~[F]=no for each element g in the complement F of F 1 in A + B .  

Note that  each element c with rc CA, B ) = 0  is such that, in each of its representa- 

tions c = a + b (a E A, b E B), either a E {a 1 . . . . .  a~} or b e { b ~  . . . . .  be}. This phenomenon 

always occurs when no> 2 0, cf. Theorem 6.2. 

We shall first consider the case ~ = 1. 
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THEOREM 6.1. Let A,  B be  a pair o/ finite non-empty subsets o/ an abelian 

group G, such that 
[A + B] = [A] + [B] - 1. (1) 

Let c I . . . . .  c~ (n~> 0) denote all the di//erent elements in A + B having only one repre- 

sentation as cj = aj + bj (aj 6 A ,  bj E B). Assertion: 

(~) I /  n = 0 the set A + B is either periodic or can be made periodic by adding one 

element. 

(fl) I /  n =  1 the set A + B is either periodic or can be made periodic by deleting 

one element. 

(~) I /  n>13 then either a 1 . . . . .  a n or b s . . . . .  b~. Moreover, v c ( A , B ) > ~ n  /or 

each c E A + B  with c # c j  ( ] = l  . . . . .  n). 

Proo/. One m a y  assume tha t  either A + B is aperiodic or n >7 1, thus,  (5.2) holds. 

F rom Theorem 5.1, there exist non-empty  sets A l c A ,  B s c B  and a subgroup F of G, 

[F] >~ 2, satisfying the assertions (i)-(iv) of Theorem 5.1. F rom (ii), 

v~(A, B)=vc(A~ ,  B~) i/ c 6 A I + B I ,  (2) 

hence, n >1 m, where m denotes the number  of elements c 6 A s + B~ with vc (As, B1) = 1. 

Moreover, (for 1 <~p<~n), 

% = a v + b ~ r  1 implies that As={ap}  or Bl={bv};  (3) 

(such an  element % exists iff n > m). For,  if % ~ A 1 + B 1 then  either av $ A 1 or b v ~ B 1, 

(say) av ~ A  1. F rom (iii), a p + F c A ,  hence, l=vcp  (A, B)~> [(by+ F)N B], thus, 

(by + F)  N B = {by}, 

hence, f rom (iii), B s = {bp}. This proves (3). 

Suppose first t ha t  n = 0; then  m = 0 and (As, B1) mus t  be e lementary of type  

(IV). This proves (~) in view of (iii). Next ,  suppose tha t  A + B is aperiodic and n = 1. 

I f  m = 0  then, f rom (3), [ A s ] = l  or [ B s ] = l ,  hence, m>~l ,  a contradiction. Thus, 

m =  1, while A I + B  s is aperiodic, consequently,  (A1, Bs) is e lementary either of type  

(I) or of type  (II) ,  in fact, [A s]=[B 1]=I  , t h a t  is, A s + B  s consists of a single ele- 

ment .  This proves (/~) in view of (iii). 

Finally,  suppose tha t  n~>3. We assert  t h a t  (*) there exist two elements % # %  

(l~<p, q~<n), such t h a t  either av=aq or bp=bq. First, if m < n  there exists an ele- 

men t  c~, = ap + b v ~i As  + B1, hence, f rom (3), B s = {by} (say), thus,  f rom (2), no t  only 

c v bu t  also each element cq in A s + B  1 is among  the  elements c j = a j + b j  with bj=bv.  



84 J . H . B .  KEMPERMAN 

On the other  hand,  if m=n>~3 then  (A1, B1) is necessari ly e lementa ry  of t ype  (I), 

(say) B 1 consists of a single e lement  b, hence, f rom (2), each of the  m >~ 3 elements  

in A I + B  1 is an  e lement  c j=a j+b j  with bj=b. This proves  (*). 

For  definiteness, suppose t ha t  cv#cq are such t h a t  bp= bq, thus, [C"] ~> 2, where 

C" denotes the set of those elements  cj ( j =  1 . . . . .  n) for which b j=  bp. I f  B '  denotes 

the  set obta ined f rom B by  deleting by, the set A + B '  is precisely the complement  

of C"  in A + B .  Thus,  f rom (1) and  Theorem 3.2, 

2 ~< [C"] = [A] + [B'] - [A + B' ]  ~< vc (A, B ' )  ~< ~ (A, B), 

for each e lement  c E A + B' .  I t  follows tha t ,  for j = 1, ..., n, cj ~ A + B',  thus,  cj E C",  

t h a t  is, b~=bp. Finally,  uc(A, B)>~ [C"]=n  for each e lement  c in the complement  

A + B '  of C " = { e  I . . . . .  ca} in A + B .  This proves  Theorem 6.1. 

T E E O R E ~  6.2. Let A,  B be a pair o/ finite non-empty subsets of an abelian group 

G, such that 

[A + B] = [A] + [B] - ~ with 0 ~> 1. (4) 

Let c 1 . . . . .  c a (n>~O) denote the different elements in A + B  satisfying v g ( A , B ) = ~ .  

Assertion: 

(i) We have re(A, B)>~n /or each element c EA  + B with c+cj  ( j =  1 . . . . .  n). 

(ii) I f  n > 2~ there exist different elements a 1 . . . .  , ao in A and different elements 

b~+l . . . . .  bQ in B ( O ~ a < ~ ) ,  such that, for each j = l  . . . . .  n, the ~ representations 

c j=a  + b of cj are of the form 

c j=av+b7 ) (v=  1 . . . . .  (r), c j=a~)+b,  ( # = a + l  . . . . .  ~), 

where a(~)~A, b(,J)EB, a~)+a~, b(j)~:b, (l<~r<<.a, a+l~<,u~<Q).  

We shall f irst  p rove  a special case. 

LEMMA 6.3. Let H denote a ]inite subgroup of the abelian group G, A and B 

subsets o/ some H.coset, such that 

[A] + [B] = [H] + Q with 0 >t 1, (5) 

thus, A + B is an H-coset. Finally, let c 1 . . . . .  ca denote all the different elements satis- 

/ying vg (A, B)=Q.  Then the assertions (i) and (ii) of Theorem 6.2 hold. Hence, from 

(i), [A] >~n, [B] >/n if n < [H]. Moreover, [A] = [H] or [B] = [H] // n=[H].  
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Pro@ Without  loss of generality, we m a y  assume tha t  both A and B are con- 

tained in H, thus, A + B = H .  Let  A, B denote the complements  of A, B in H.  

Then, for each g E H, 

vg (A, B) + ~g (A, B) = rg (A, H) = [A], 

v~ (_/i, B) + vg (A, /~) = [B] -- [H] - [B], 
hence, f rom (5), 

ug (A, B) = O + ~ (~i, /~) ~> 0- (6) 

Consequently, vg (A, B) = e iff vg (A, B) = O iff g ~. A + B, thus, A + / ~  is precisely the 

complement  of {cl, ..., cn} in H,  hence, 

[A + B] = [H] - n. (7) 

I f  n = [HI then either A is empty,  thus, A = H, or B is empty,  thus, B = H. L e m m a  

6.3 being obvious in these cases, we m a y  assume tha t  ~i a n d / ?  are non-empty.  F rom (5), 

[./i] + [/~] = [H] - q, (8) 
hence, from (7), 

[A + B]  = [~i] + [B]  - (n - 6)- (9) 

From (6), (9) and Theorem 3.2, 

vg (A, B ) = 6  +ug(~I, B)~>~+ ( n - ~ ) = n  

for each element g in the complement  A + B  of {cl, ...,cn} in A + B = H ,  proving 

assertion (i). 

Now, assume n > 2 0 .  F rom (9) and Theorem 3.1, there exists a subgroup F of 

H of order [FJ/> n - 6 > 6, such tha t  

[A + B] + [F] = [A + F]  + [/~ + El,  

hence, f rom (7) and (8), 

consequently,  
[HI + IF] > [ i i +  F]  + [/~ + F] />  [HI - 6 > [H] - IF], 

[~i + F ]  + [• + F ]  = [H].  ( ]o)  

Further ,  let a 1 . . . . .  a~ denote the different elements of A N ( . i f+F)  and let bo+l . . . . .  b~ 

denote the different elements of B fl ( /~+ F),  hence, 

[~i + F ]  = [_#] + a ,  [B  + F ]  = [B] + (~ - a) ,  

thus,  f rom (8) and (10), T = ~ .  
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Let  c=c~ be such t h a t  vc(A, B)=~; let c=a+b with aEA,  bEB. I f  a + F ~ A :  

b + F = B then  vc (A, B) ~> [F] > ~, a contradiction. Hence, either a E .~ + F or b 6/~ + F ,  

t ha t  is, either a coincides with one of the elements a 1 . . . .  , a ,  or b coincides with one 

o f s  elements bo+l . . . . .  b e, bu t  no t  both, otherwise, vc(A, B)< O. This proves asser- 

t ion (ii). 

Proo/ of Theorem 6.2. Wi thou t  loss of generality, we m a y  assume n~> 1. Let  

H ( A + B ) = H ,  thus,  A + B  is a union of H-cosets, and let z denote  the quot ient  

mapping G----> G/H. Applying Theorem 3.1, we have 

and 

[vA + vB] = [ v A ]  + [ z B ]  - 1 

[(A + H) N .~] + [(B + H) fl B] = [H] - ~. 

(11) 

(12) 

Let  us first consider the case [H] =~.  F rom (12), both  A and B are unions of 

H-cosets,  hence, for each g 6 G, we have vg(A, B) = ~.v~0 (zA,  TB). Thus, 

n = n 1 [H] = n 1 Q, 

where n I denotes the number  of elements c f i~A + T B satisfying vc(vA, T B ) =  1. I n  

view of (11), applying assertion (~) of Theorem 6.1 to  the  pair  of subsets TA, ~ B  

of G/H, the assertions (i) and (ii) easily follow. 

I t  remains to  consider the case [ H ] # Q ,  thus, [ H ] > ~ ,  f rom (12). Le t  ?" be fixed 

( l~<? '<n) ,  thus,  vci(A, B ) = Q .  F r o m  Lemma 3.3, the element zcj  has only one re- 

presentat ion as zcj=Sj+bj with 5 j E z A ,  bjEvB. I n  other  words, introducing the 

non-empty  sets 
Aj= A fl ~-15j, Bj= B N v-l bj, 

(each contained in an  H-coset) ,  we have 

cEcj+H, c=a+b (aEA, bEB) implies aEAs, bEBj. (13) 

Moreover, f rom (12), cf. the proof of Lemma 3.3, 

[A,] + IBm] = [/-/] + ~, (14) 

Aj + Bj = cj + H, while the complement  A~ of Aj in A is a union of H-cosets,  similarly, 

the complement  B~ of B t in B. 

Suppose first tha t  [ B j ] = [ H ] > ~ ,  thus,  f rom (14), Aj consists of ~ elements 

a I . . . . .  a e (say). Le t  C" denote  the complement  of A~ + B  in A + B, thus,  C" is pre- 

cisely the set of those elements ck (k=  1 . . . . .  n) which have all their ~ representa- 
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tions of the form ek = a~ + b~ ~), (b~ k) E B, i = 1 . . . . .  ~). F rom (13), [C"] ~> [H] > ~, while, 

f rom (4), 
[A; + B] = [A + B] - [C"] = [A;] + [B] - [C"]. 

Hence, f rom Theorem 3.2, 

vc(A, B ) ~ v c ( A j ,  B)>[C"]>q i/ cEA'j+B. 

I t  follows t h a t  none of c 1 . . . . .  c~ is in A~ + B, thus,  C"  = {e I . . . . .  e~}, proving assertion 

(ii). Moreover, re(A, B)>~[C"]=n for each element in the complement  A~+B of C" 

in A + B, proving assertion (i). 

A similar reasoning applies when [Aj] = [H]. Thus, it remains to  consider the case 

tha t  [Aj] < [H], [Bj] < [H] ()'= 1 . . . . .  n). Bu t  the complement  of each Aj = A  (1 ~-1 e~j 

in A is a union of H-cosets, hence, Aj does not  depend on ?', similarly, Bj does not  

depend on j. I t  follows tha t  ckEek+H=Ak+Bk=Aj+Bj  (k=l  . . . . .  n), hence, from 

(13), e 1 . . . . .  cn are precisely all the elements satisfying vg (Aj, B j ) =  ~. I n  view of (14), 

applying Lemma 6.3 to the pair Aj, Bj, one immediate ly  obtains assertion (ii) and 

further, vc (A, B) = rc (As, Bj) >/n for each c e Aj + By with e =# cy (] = 1 . . . . .  n). Moreover, 

[At] < [H], [By] < [H] and L e m m a  6.3 imply  [Aj] >~ n, [By] >~ n. Hence, if 

c=a+blAy+By  (aeA,  bEB), 

then  either a + H ~ A ,  [(b + H) (1B] >~ n or vice versa, thus, ve(A, B)>~n, proving as- 

sertion (i). This completes the proof,  of Theorem 6.2. 

Consider a pair  of non-empty  finite subsets A, B of an abelian group G. Note  

tha t  vg (A, B) ~< [B] for each g E G. Le t  m~ (i = 0, 1 . . . .  ) denote the number  of elements  

g E G satisfying % (A, B) = [B] - i. 

THF.ORV.M 6.4. Suppose that ~ > 0 ,  where 

= m o - [A] + [B]. (15) 

Then m~=O i] either O<i<~ or ~<i<m~. 

Pro@ We shall first assume tha t  the group G is finite. Let  .~ denote the 

(finite) complement  of A in G. One m a y  assume t h a t  ~i is non-empty,  otherwise, 

A = G and mi = 0 for each i > 0. Obviously, ~ (A, B) + rg (~,  B) = [B], hence, m~ is also 

equal to the number  of elements g with v~(A, B ) =  i. Especially, m 0 equals the num- 

ber of elements not  in A + B ,  thus,  f rom (15), 

[_4 + B] = [•] + [B] - 4. 
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I t  follows f rom Theorem 3.2 t h a t  m~=O if 0 < i < ~ .  Moreover,  if ~ > 0  then,  f rom 

asser t ion  (i) of Theorem 6.2, vc(A, B ) > ~  implies  vc(~,  B)>~m~, hence, m ~ = 0  if 

2 < i < m ~ .  

The case [G]=  co can be reduced  to  the  previous  case b y  app ly ing  the  fol- 

lowing l emma wi th  D as a n y  f ini te  subset  of G conta in ing  A,  B and  A + B .  

LEMMA 6.5. Let G be an abelian group, D a /inite subset o/ G. Then there exists 

a /inite group G 1 and a homomorphic mapping T o/ the group G o generated by D unto 

G1, such that T maps D unto T (D) in a 1 : 1  /ashion. 

Proo]. Le t  D '  denote  the  set of all non-zero differences d 1 - d  2 of e lements  dl ,  d 2 

in D. B y  Zorn ' s  l emma,  there  exists  a max ima l  subgroup  H of G o d i s jo in t  f rom D' .  

Le t  G I =  Go/H and  le t  T denote  the  quo t ien t  ma pp ing  of G o un to  G 1. F o r  dl, d e in D, 

dl:~d~, we have  d l ~ d 2 + H  , thus,  T(d l ) :~T(d2)  , showing t h a t  T is 1 : 1  on D.  

F u r t h e r ,  G 1 is genera ted  b y  the  f ini te  set  T (D), hence, G 1 is of f in i te  o rder  if 

each e lement  in G 1 is of f ini te  order.  Suppose  t h a t  g E G 1 is of inf ini te  order .  Be- 

cause T ( D ' )  is finite,  we have  +_ng ~ T ( D ' )  for n>~no, n o suff ic ient ly  large. B u t  then  

H ' = T  l { j n0g ;  ? '=0 ,  + 1 ,  . . .} would  be a subgroup  of G d i s j o i n t  f rom D '  and  con- 

ta in ing  H as a p roper  subgroup.  This  is impossible,  H being maximal .  
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