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1. Introduction

This paper is the first of series concerned with certain aspects of the theory
of harmonic functions of several variables. Our particular interest will be to extend
to n variables some of the deeper properties known to hold in the case of two
variables.

The study of the more fundamental properties of harmonic functions of two real
variables is'linked, by the notion of the éonjugate harmonic function, to the study
of analytic functions of one complex variable. Therefore, the investigation of the
deeper properties of harmonic functions of several variables appears, at first sight,
to be connected with either the theory of analytic functions of several complex vari-
ables or with an appropriate extension of the notion of conjugate harmonic function.
The theory of analytic functions of several complex variables, though widely studied,
does not seem to have direct applications to the theory of harmonic functions of
several real variables. On the other hand, there are known notions of “‘conjugacy”
of harmonic functions which seem to us to be both more natural and more fruitful
for the development of the latter theory. It is these notions that form the starting
point for our investigation. We begin by sketching their background.

Let us first consider a function u=w (re'®) which is harmonic in the interior of
the unit circle 0<r<1. Suppose that, for 0<r<1 and p=>1,

27

[lu(re®)Pdo<A< co. (1.1)
0
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This condition is sufficient to guarantee the existence of boundary values % (¢*%) such
that w (re'®)—>u(e?), as r—1, in an appropriate sense. In fact, as is well known,
when p>1, (1.1) implies that » is the Poisson integral of a function in L? (0, 2 x),
and wu(ref®) converges to this function almost everywhere and in the Lf-norm. On
the other hand, when p=1, (1.1) implies that u is a Poisson integral of a finite
Lebesgue-Stieltjes measure, in which case the boundary values of u exist almost
everywhere.

However, if we weaken the assumption p>1 to, say, p>0, we no longer have
these conclusions on the existence of boundary values. Under this weaker restriction,
progress has been made only by considering together with » its harmonic conjugate,
v, and, thus the (unique, up to an additive constant) analytic function F (z) whose
real part is w. More precisely, the study of the existence of boundary values has
been shifted to the case of analytic functions, F (2), of the “Hardy class” H?, p>0,
for which

2n
[IF(re®)Pdf<d<co, 0<r<]; (1.2)
0

or, even more generally, to the “Nevanlinna class” defined by the condition
2n
flog*]F(reio)ld0<A< oo, O0<r<l. (1.2")
0

It is well known that, under condition (1.2), F (¢*®) exists such that

2

[ | F(rei®)—F(c%)|?d6—>0 and F (rei%)—F (i)

0
almost everywhere as r—1. If only (1.2') holds then the pointwise convergence al-
most everywhere is the best that can be concluded.

These results on the existence of boundary values can be obtained by either of
two methods. Both of them reduce the problem from the case of analytic functions
satisfying (1.2) for p>0, or (1.2'), to the case of harmonic functions satisfying (1.1)
with p>1. The basic tool of the first method is the construction of the “Blaschke
product”, B(z), which carries the zeroes of F (z) (see [18], Chapter VIII). The second
method is based on the important fact, which has been of use in the study of func-
tions of several complex variables (see [9] and [19]), that log | F (2)] and, hence,
| F(2)|?, p>0, is subharmonic whenever F (z) is analytic. It is our intention to ex-
tend this last method to higher dimensions. Before describing this extension, how-

ever, we must introduce the suitable notion of conjugacy.
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It is well known that (at least locally) two harmonic functions,  (x, y) and

v (z, y), satisfy the Cauchy-Riemann equations in a region
Ur =Vy, Uy= — Uy (1.3)

if and only if there exists a harmonic function, % (z, y), such that the pair (v, u) is
the gradient of the function A; i.e. v=h, and w=#h, Thus, analytic functions of one
complex variable are in a natural one-to-one correspondence with gradients of harmonic
functions of two variables. We may take this correspondence as a motivation for
the notion of conjugacy we now introduce. We say that an n-tuple, F = (u;, %y, ..., %,),
of (real valued) harmonic functions of n variables, X = (z,, z,, ..., ,), forms a system
of conjugate harmonic functions (in the sense of M. Riesz), in a heighborhood of a
point, if, in this neighborhood, it is the gradient of a harmonic function % (X); i.e.
u; (X)=08h/0z, (see, for example, [6].) (1) Thus, such an n-tuple, F, may be thought
of as an extension of the notion of an analytic function of one complex variable—
that is, two real variables. This extension is by no means completely satisfactory
(for example, the fact that an analytic function of an analytic function is analytic
is no longer true for n»>3) but does have, as will be seen, several interesting pro-
perties.

As in the case of two variables, we may characterize, at least locally, a system
of conjugate harmonic functions in terms of a system of differential equations. More
precisely, the n-tuple F=(u, 4y, ..., u,) of harmonic functions forms a system of

conjugate harmonic functions if and only if it satisfies the analogue of the Cauchy-
Riemann equations

A

ui:() %ﬂ@uj

= i 14
iglaxi ’ 8xj 8.’[1’14:7 ( )

This can be written in the more compact form
div #=0, curl ¥=0. ' (1.4')

Let us now return to the boundary value problem discussed above. We first
must find a result that will replace the two-dimensional result that log | F (z)|, and,
hence, |F (z)[?, p>0, is subharmonic when F(z) is analytic. Let F=(u, u,, ..., %)
be a system of conjugate harmonic functions and denote by |F| the norm (ui-+
u3+ - +uz)t. We thus begin by asking the question: Is the function |F|? a sub-
harmonic function of the variables x,, z,, ..., ,?

(') We shall adhere to this convention of using capital letters for vectors and small latters for
scalars throughout the paper.

3 — 603807 Acta mathematica. 103. Tmprimé le 17 mars 1960
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It is an easy thing to check that if p>1, the answer is yes (and holds for arbi-
trary harmonic functions w,, u,, ..., 4, not necessarily related by the Cauchy-Riemann
equations (1.4)). It turns out that for certain values of p<1, the answer is still yes
(but the result now depends on the generalized Cauchy-Riemann equations). More

precisely, we will show (in the second section):

THEOREM A. |F|? is subharmonic if p>Z—:~?-

Very simple examples show that this result is best possible.

This property of a general system of conjugate functions is, then the basic tool
we will use in constructing a theory of H? spaces of functions of several variables.

Instead of extending the more familiar case of H” spaces of functions defined
in the interior of the unit disc we will generalize the somewhat more diffecult case
of functions defined in the upper half-plane. That is, we will extend to » dimen-
sions the boundary-value results known for functions F (z), 2=z -y, analytic for

y>0 and satisfying

[|F@+iy)Pdz<A<eco
for all y>0 (see [5] and [7}). As in the case of the circle, boundary values

F (x)=lim F(x+ty) exist, both in the norm and almost everywhere. (!) In this situa-
y—>0

tion the roles played by the variables  and y are obviously different. This difference
persists in higher dimensions and we now change our notation slightly in order to reflect
better these distinct roles. We shall consider n 41 variables, (X, y)= (), %5, ..., ,, ¥),
and, if the system of conjugate harmonic functions F (X, y) arises as the gradient of
the harmonic function % (X, y), we shall denote by u (X, y) the partial derivative of %
with respect to the distinguished variable y and by V the vector (0/dz,, 0h/0x,, ...,
8hk/8x,). This notation, then, reflects the fact that we consider the function F (X, ¥)
as defined in the region >0 and the boundary values F (X, 0)=F (X) will be as-
sumed in the hyperplane y=0. We also write v, instead of éh/0a;, k=1, 2, ..., n, and
refer to v;, v,, ..., v, as the n conjugates of u. (2) Thus, we see that the notation F (X, y)

=(u (X, y) V(X, y)) is a natural extension of that used in the two-dimensional case.

@) If p<1, pr= (f |/|p)l/p is no longer a norm since Minkowski’s inequality fails. Never-
theless, we will still refer to it as a norm as is usually done in the theory of H”-spaces. We remind
the reader that, in this case, d (f, g) = H f—g ||’,3 is a metric.

(2) Suppose p (X) is a harmonic function of the n variables X = (z,, ..., ), then %; (X, y)=

J
v (X, ) J.-a—g(X), i=1, 2, ..., n, is, clearly, another set of n conjugates of w (X, y). Conversely,
i
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With this notation, the generalized Cauchy-Riemann equations become

du, s8o_o 08 _8% . 4o o, (1.5)
oy =10 ox; 0y
ou_ov,

=—, i¥#4, 1<4, j<n.
oz, bz, 17, 1<, j<n
These equations are assumed to hold in the region y>0.

We now define the H? spaces, p>0, to be the classes of systems of conjugate
harmonic functions, F (X, y), satistying

JIF (X, pPdX<d<eo
En

for 0 <y < oo, where E, denotes Euclidean n-dimensional space.

Using the subharmonic character of |F | we obtain the extension of the basic
theorem of the classical H” spaces to the n-dimensional spaces just defined, whenever
p=(n—1)/n=(n+1]-2)/(ln+1]—1). That is, we will show that there exist bound-
ary values F(X)=F (X, 0) such that F (X, y)—>F(X) as y—0, in the norm, for
p>(n—1)/n, and almost everywhere for p>(n—1)/n. This will be done in Section 4.
There we will use properties of “least harmonic majorants” of powers of |F|, which
will reduce the problem to known facts about Poisson integrals of functions in L7,
p>1, or of finite Lebesgue-Stieltjes measures. These properties will be developed in
the third section. While the ideas of this reduction are simple (and have been used
before) there are some novel technical complications. This is due to the fact that
our underlying space, an Euclidean half-space, is unbounded. An extensionv of the
theory of H” spaces to, say, spheres would have avoided this technical complication.

Sections 5 and 6 are devoted to applications of the theory of H? spaces. The
background of the first application is the following.

Let f(X) be a function in L? (H,), p>1, and let » (X, y), y>0, be the Poisson
integral of f(X). Then, n conjugates v, (X, ¥), v, (X, ), ..., v, (X, y) of u (X, y) can
be obtained as ‘“‘conjugate Poisson integrals’”:

1 2
v, y)= - fo(X—Z)dZ,

1=1,2, ..., n

any two sets of n conjugates of w differ by the gradient of a harmonic function of X alone. This
is easily deduced from (1.5), which shows that this difference must satisfy (1.4) and the partial de-
rivatives with respect to y must all vanish. In case F belongs to the H”-space defined below, how-
ever, the set of » conjugates of w is unique.
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It is known that lim v; (X, y)=f; (X) exists almost everywhere and is a function

y—>0
in L?(E,), and the v;(X, y)’s are, in turn, Poisson integrals of the f (X)’s. The
transformations R;:f (X)—f, (X), i=1,2, ..., n, are called the n M. Riesz transforms

of f and reduce to the classical Hilbert transform when n=1. These transforms are

bounded transformations on L? (E,), 1<p; furthermore, they satisfy the identity
RE+R3+--+R = -1,

where [ is the identity transformation (see [6]).

By the use of these and other known facts it is not difficult to establish an
“isomorphism” between the thecry of H? spaces for p>1 and that of L” spaces of
functions defined on X,. Thus, in considering H? spaces for p>1, we have not really
gained much over the study of L? spaces. On the other hand, for p<1 there are
essential differences between H” and LP. For example, the M. Riesz transforms of
functions in L?, p<1, even when defined, need not belong to LP. A positive result
in this direction, when p=1 and n=1, is the celebrated theorem of F. and M. Riesz.
Our first application is the n-dimensional generalization of this theorem which we

state (somewhat unprecisely for the moment) as follows:

Let u be a finite Lebesgue-Stieltjes measure on E,. Suppose that its n M. Riesz
transforms are also finite Lebesque-Stieltjes measures. Then each of the n -1 measures

in question is absolutely continuous.

Finally, in Section 6 we extend the classical theorem on fractional integrals of
functions in H? to be n-dimensional case introduced in this paper. We now sketch
what is, perhaps, the most interesting special case of this result.

If f(X) is in L?(E,), we define the operator of fractional integration (or M. Riesz
potential, [10]), I,, by letting .

L=+ ffl(f,l;:?d Y. 0<a<n,
VacE”

where Vo=t 2% — L.

If 1<p<n/a the above integral converges for almost every X.

(1) With 7, so defined, the fractional integration. operators satisfy the semigroup property
Lo Ig=TIgip.
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When 1<p Soboleff, [13], proved the following generalization of a classical theo-
rem of Hardy and Littlewood:

The operator I, is a bounded operator from LP to L when 1/g=1/p—a/n.

This theorem is best possible in the sense that it is not extensible to the case
p=1. That is, even though I,(f) is finite almost everywhere if f is in L (H,), it is
not a bounded operator from L' to L9 where 1/g=1—a/n. In fact, it is easy to
construct functions, f, in L' such that I (f) is no longer in L?% The theory of H”-
spaces developed here, however, allows us to obtain a substitute result for this case.

Recalling the » M. Riesz transforms discussed earlier we can state part of this
result as follows:

Suppose that f is in L*(E,) and that its Riesz transforms B, (f), k=1,2, ..., n,
are also in L' (E,).(*) Then

are all in L°(E,), where 1/q=1—a/n, 0<a<n. (%)

The authors are grateful to professor A. Zygmund for several valuable sug-

gestions concerning the subject matter of this paper.

2. Proof of Theorem A
If F(X)=(u(X), ..., u, (X)) is a system of conjugate harmonic functions in

. -2 .

some region R<E, we must show that | F|’ is subbharmonic if p>g—_71. Thus, if
2 2

A= 8%2+ -1-5%5 is the Laplace operator, it suffices to show that A (|F[?)=>0 (see
1 n

[8], Chapter III). Toward this end, we begin by calculating A (| F|?) and expressing

our result in vector notation. In the following, if G'= (v, v, ..., ¥,) is another func-

tion mapping R into another region of E,, we let
F-G=u v+ upvy+ - +u,0,

be the inner product of F and G. We note that F-G=G-F. For k=1,2, ..., n

we let

(*) The exact sense in which “Ry (f) is in L1 (E,)” is used will be defined later.
(?) Hardy and Littlewood obtained this result, as well as the more general ones discussed in
the sixth section, in the special case n =1 (see [18], Chapter XII).
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ov av
=22, ..., 2.
® (8xk axk)

It is then easy to check that

2 (G-F)=G.-F+G-F.,

Ly
0 2
Thus, — |F|P= (F F)¥? =p|F|P? (Fy- F);
0y
62
hence, M]Flpzp(p——%IFI"‘4(FIk-F)2+p|F|”*2{{sz|2+(F-sz,k)}

for k=1,2, ..., n

Summing over %k and taking into account that the components of ¥ are har-
monic, we obtain

A(FPy=p(p- 2|FI“ (P F +p!F|“ !Ful (2.1)

We see, therefore, that A (|F|?) fails to be defined only when F(X)=0 (for
p<4). But, if F(X)=0 at some point X, since |F|°>0, the mean value property
of subharmonic functions (see [8], Chapter II) must hold at X. Thus, in order to
establish the subharmonicity of |F|? it suffices to show A (|F|?)>0 whenever the
latter is defined (that is, whenever F (X)=+0). Thus, we may assume that F is never
the zero vector.

The assertion, made in the last section, that |F|° is subharmonic for p>1 is,
then, an easy consequence of (2.1). For, if 1<p<2 (note that A(|FP)=0 is ob-
vious for p>2), using Schwarz’s inequality, (Fu-F)?<|Fy|*|F|?, we have

ANFP)Zpp=2)|FP™* 3 [Ful | FP4p PP 2 | Fuf (2.2)

f

n
p—1)|F[P2 3 |Fu|?>0.
%1

Since the derivation of (2.1) does not depend on the Cauchy-Riemann equations
(1.4) (only the fact that each u, is harmonic is used), we see that this result holds
for any set of n harmonic functions. The deeper result, that | F|° is subharmonic

for values of p less than 1, depends on the following lemma.
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LevMma (2.2). Suppose that

g Oqg .. O1n

M= Aoy Ogs ... Oon

An1 An2 ... Ay

n
is a symmetric mairiz with trace (= > ai,-) zero. Let || M| be the norm of M and
=1

M=V |ai,[? the Hilbert-Schmidt norm of M. (*) Then
—1
ImiE<"—=llml. ¢) (2.3)

Proof. Since ||M]|| and |||M||| are unitary invariants and M is symmetric, we
may assume that M is a diagonal matrix. Thus, we have

L0 0.0

m|0 200

00 0..4,

n
M= max {2, 2, ..., 22} and |[|M|F=3 22
i=1
Since the trace of a matrix is invariant under a change of coordinates, we also have

S =0, (2.4)

i=1

We now show, that if (2.4) is satisfied, then, for k=1, 2, ..., n

r<21(3 ), 25
i1
which is equivalent to (2.3).
By Schwarz’s inequality:
2 Hl=Z1 A< -1 (3 (2.6)
1=|=1c

Thus, by (2.4) and (2.6),

(1) By the norm of m we mean the number ! m“— sup IMAI where the supremum is
taken over all vectors A ={(a,, a,, ..., a,) such that ]A l ay |+ +la )7/ 1.
(?) The inequality ” m H < m m “l is true for any matrix
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R (SAP<o-n 3 A= {0-0 3 20—
i+k i+k i=1

Adding (n—1) A3 to both sides of this inequality and then dividing both sides by =
we obtain (2.5), and the lemma is proved.

We now return to the proof of Theorem A. It remains to be shown that
A(F|P)=0 for 1>p>(n—2)/(n—1). This last fact is derived from the lemma in
the following way: Letting
oxy 0%, ox;

m=
o0x, ¢, ox,
equation (2.1) becomes
A(FP)=p@=2)|FP M EP+p|F 2P (2.7)

Thus, the inequality A (| F|?)>0 is equivalent to |[F[?2||M||F=@2—p)| F["~*|MF?;

which, in turn, reduces to
1
2< 2 2.
mEp <zl
This last inequality, on the other hand, is certainly true if

lLmle,
I <l

(2.8)

Clearly, if (2.8) holds for some value of p<2, it will hold for all higher values of
p<2. Thus, it suffices to show (2.8) for p=(n—2)/(n—1).. That is, we must prove

-1
ImiE<==llmi

But, by lemma (2.2), this is the case if M is symmetric and has trace zero. On the
other hand, these two conditions on M are exactly the generalized Cauchy-Riemann
equations (1.4). This proves the theorem.
The following simple example shows that this result is best possible: Let
x x x
F- (%8 5),
where r= (23 + a5+ - +22)* and »n>3. Then F is the gradient of the harmonic func-

tion #*7"/(2—n), and, thus, (1.4) is satisfied by F. A simple computation yields
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A(FPP)=Q1~-n)p[(n—2)+(1—n)p]r" "2

Thus, the condition A (|F[|?)=0, for p>0, becomes (2—n)+p(n—1)>0 which re-
duces to

3. Harmonic Majorization of Certain Subbharmonic Funetions and Some
Maximal Functions

As was mentioned in the introduction, we shall reduce most of the results on
HP spaces either to theorems about the Poisson integral of a function in L (E,),
g>1, or to properties of the Poisson-Stieltjes integral of a finite measure on F,.
Thus, we begin this section by defining these integrals and stating the known facts
about them that we shall use. We refer the reader to [1], [6] and [15] (*) for the
proofs of (ii)—(vi).

The Poisson kernel for the half-space

E:‘;-(»l:{(X: y)X in En: y>0}

is the function PX,9)=——F5w asqms
(X, y cn(|X‘2+y2)§( +n
n.g(n+1)
where Cn—w'
2

This function has the following three basic properties:
@ PX, =0
@) [P(X,y)dX=1 for all y>0;
En

(i) if >0, then [ P(X, y)dX—>0 as y—0.

1X|=r

Tt is easy to see that if f is a function in L?(%,), ¢=>1, then, for each (X, y)
in BEf.y, fHZYP{(X—Z,y) and {(X —Z)P(Z, y) are integrable functions of Z in K. {3)
Thus, the function

(1) This last reference deals only with the one-dimensional case but (i) —(vi) are immediate
generalizations of this case.

(2) We consider E, as embedded in E,.1 by identifying it with {(X, y) in Bpiy: y:O}.
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m (X, y) = ff P(X—2,y)dZ= [{(X—-Z)P(Z, y)d%
Eq

is defined in E;,,. This function is called the Poisson integral of f.
If u is a finite (signed) Lebesgue-Stieltjes measure on E,, then P(X —Z, y) is

also easily seen to be integrable with respect to u. The function

m(X,y)= fP X-Z, y)du(Z)

is called the Poisson-Stieltjes integral of u.
(iv) If m(X, y) is the Poisson integral of a function in L% g=1, or a Poisson-Stieltjes
integral, then m (X, y) is harmonic in E, ;.

(v) If m(X, y) is the Poisson tntegral of the function f(X) in L?(E,), g=1, then

sup [|m (X, p|dX= [|f(X)|dX,
¥y>0 En Ey

and lim m (X, y)={f(X), both in the L* norm and almost everywhere.
y—0

(vi) If m(X, y) is the Poisson-Stieltjes integral of the measure u, lim m (X, y) exists
y—0

for almost every X in E,. Furthermore,

sup [|m (X, 9)[dX= [|dul.
1/>0En En

We recall that, for each p>0, we defined the class H? to consist of all those

systems of conjugate harmonic functions (1)
F(X) 3/)= (u (X: ?/), v (X5 .7/); cee s Up (Xa :’/))7
defined on Ej.,, satisfying

[IF (X, y)PdX <A< oo, (3.1)
Ep

for 0<y< oco. Since F satisfies the system of equations (1.5), Theorem A guarantees
that | F|", for r>(n—1)/n, is subharmonic. We shall exploit (3.1) and this property,
for appropriate values of 7, to obtain harmonic majorants of |F|". It will be shown
that these harmonic majorants are Poisson integrals or Poisson-Stieltjes integrals.
Then, an application of two basic theorems, one due to N. Wiener, the other to

A. P. Calderdén, will yield the main result on H” spaces—theorem B of Section 4.

() That is, the system satisfies the Cauchy-Riemann equations (1.5).
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We begin with a chain of lemmas leading up to the existence of these harmonic

majorants.

Lemma (3.2). Let s(X, y)=0 be a subharmonic function defined in the region

E; .1 satisfying ,
[1s (X, p)lrd X <9< o0,
En

where 1 <q<oo and C is independent of y>0. Then

s(X, y)<Cy ™9,

Furthermore, if 0<e<y<1/e, s(X, y)—>0 uniformly in y as |X|—co.

(3.3)

(3.4)

Proof. We first observe that s, being a convex function of a subharmonic function,

is subharmonic. Thus, letting @ be the volume of the unit sphere in E,,;, we have,

for (X7 :’/) in E:I:+17

[s (X, < 1 f (s{Z, hYdZds

w 7+l
|X- 2P+ (-t <y®

e [s(Z, )1 dZdt
0<t<2y

2y
C'2y

1
:wyn+1 J‘ { J[s (2, t)]qdz}dt<wyn+1

and (3.4) is established.

2
®

ClyTT< Y,

In order to prove the last part of the lemma we observe that, if

1
Ik={(X, y):k—l<|X|<k, 0<y<~+s},
€

k=1, 2, 3, ..., then
[1s(Z, y*dZ dt—>0
Ix

as k—0.
This is clear since
et+1/e

3 f[s(Z, HedZdt— f {f[s(Z, t)]‘*’dZ}dt<
k=1
I En

b .

07 (1+¢?)

€

< 0,

(3.5)
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If (X, y) satisfies e<<y<1/¢ then it belongs to I for some k. It follows that
the sphere about (X, y) of radius ¢ is contained in Iy 1 U I, U I;.1 (where I, is the
null set). Thus

1
[s (X, < [s(X+2, y+0)°dZdt
Izls+t2<52
1 k+1
<w—8":ij=z [8(Z, )YI*dZdt.

k-1
5

But, by (3.5), the last term tends to 0 as k—oco, and the last conclusion of the lemma
follows.

LeEMMA (3.6). Let m(X, y) be a harmonic function defined in E}. i satisfying

[|m (X, y)led X< 00 (3.7)
En

for all y>0, where ¢q=1. Then

a) if ¢>1, m(X,y) is the Poisson integral of a function f in L7 (E,) such that
[Hle<0;

b) If g=1, m (X, y) is the Poisson-Stieltjes integral of a finite (signed) Lebesgue-
Stieltjes measure p such that [|du|<C.

Epn

Proof. Let us first assume that ¢>1. Condition (3.7) asserts that the family
of functions m (X, y), parametrized by y>0, is uniformly bounded in the norm of
L (E,). Thus, we may select a sequence {yk}, with #,—0, such that m (X, y,) con-
verges weakly to a function f(X) in L?(E,). That is, if 1/¢+1/g,/ =1, we have

[m(Z, y)g(Z)dZ—~ [{(Z)g(Z)dZ

as k—>oco, for each ¢ in LY (E,). In particular, if we put g (Z)=P (X —Z, y) we have
we(X, y)= [m(Z, y) P(X—Z, y)dZ— [{(Z)P(X~Z, y)d 2.
Epn En
By (iv), w,(X, y) is harmoniec in E;.;. We shall now show that wy (X, y)

=m (X, y+y,). Toward this end, we first show that w, (X, y)—m (X, y,) uniformly in
X as y—0. We have, using (ii),
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we (X, ) —m (X, y)= [m(Z, y)—m (X, y)|P(X~Z,y)d Z
En

=( [ + [ )& y-—m(EX wIPX—2y)dZ

1X-z|<r  |X-2Z|>r

—I,+1,

On the other hand, since m (X, y) is harmonie, |m (X, y)| is subbarmonic and,
by (3.7), it satisfies the assumptions in lemma (3.2). A particular consequence of the
last part of this lemma is, then, that m (X, y,) is uniformly continuous in X,, for
each y,>0. From this it follows that, if » is small enough, I, is uniformly small.

On the other hand, using (3.4) and (3.7) we also have

|ILI< [ (|m(Z y)|+|Im(X, y))P(X— %, y)d %
|X=Z|zr
-l

<2Cyr [ PX-Zydz
|X-Z|2r
But, by (iii), the last integral tends to zero as y—0. This shows that wy (X, y)—
m (X, y,) uniformly in X as y—0. Consequently, for ¢>0 small enough |wk (X, &)—
m (X, y)| is small.

We see by (v) and (vi) that |w, (X, y)| satisfies condition (3.3). Furthermore, by
(iv), wy (X, y) is harmonic and, hence, |w; (X, y)| is subharmonic. Thus, both fw (X, y)|
and |m (X, y)| satisfy the assumptions of lemma (3.2). Hence, by (3.4), for y large enough,
say Yo, |we (X, yo) —m (X, 9y, + )| is small. Finally, the last part of lemma (3.2) implies
that, if e<y<y,, |w (X, y)—m (X, y+y.)| is small for | X| large, say | X|=r.

Summing up, we see that on the boundary of a region D={(X, y):|X|<r,
e<y<y,}, the harmonic function w, (X, y)—m (X, y+u,) is small in absolute value.
By the maximum vprinciple for harmonic functions, therefore, it must be as small
throughout D. By expanding D we then obtain m (X, ¥+ ) = wi (X, ).

Thus, since y,—>0 as k—oc, we obtain

m(X,y)= [[(ZD)P(X~2,y)dZ
Ep
and part a) of the lemma is established if we show that ||f]|,<C. But this last fact
is a consequence of (3.7) and (v).

Let us now pass to the case ¢g=1. We consider the family of (signed) measures,

{m}, where, for any measurable S< E,,

p (8)= [m (X, y)dX.

S
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Inequality (3.7) then asserts that the total measures of the members of this family
are uniformly bounded. Thus, as in the previous case, there exists a sequence {¥,},
with g;—0, such that u, converge weakly to a finite measure u. That is, if g is

any continuous function vanishing at infinity, then

[9@ydp, (2~ [g(Z)du(Z)

as k—oo. Letting g be the Poisson kernel and repeating the above argument we
obtain

m(X,y)= [P(X—2,y)du(2)
En

and, with the aid of (vi), the lemma is proved.

LevMa (3.8). If s(Z,y)=0 is continuous and satisfies the conditions of lemma
(3.2) 4t has a harmonic majorant, m{(X, y), in E} .. Furthermore,
a) if ¢>1, m(X, y) is a Poisson integral of a function f in L°(E,) such that
f(X)= liné m (X, y) both in the norm and almost everywhere and | f|l,<C;
Y—>

b) ¢f ¢q=1, m(X,y) is a Poisson-Sticltjes integral of a finite Lebesgque-Stieltjes

measure on E,.

Proof. For each £>0 we define

m (X, y)= [s(X—2Z,e)P(Z, y)dZ= [s(Z, &) P(X-Z, y)d 2.
En

Ep

By (v) we have
[ tm. (X, prdX<ce (3.9)

By an almost verbatim repetition of the argument in the last proof, that showed

w, (X, y)=>m (X, y,) uniformly in X as y—0, we obtain the similar result:

|m. (X, y)—s (X, &) [0 (3.10)

uniformly in X as y—0.

We can now show that m, (X, y) is a majorant of s (X, y+¢) in 5,1 (the argu-
ment being very similar to the one in the previous proof showing that wy (X, )
=m (X, y+4.)). We first note that s(X, y-+¢) is uniformly continuous since it is
continuous by assumption and, as seen from lemma (3.2), it vanishes at infinity.
From this and (3.10) we see that for y small enough, say y,, the difference s(X, y,+ &) —
m. (X, y,) is small. On the other hand, by (3.4), for y large enough, say »,, s (X, y; +¢)
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is small. Finally, by the last part of lemma (3.2), s (X, ¥ + &), in the region y, <y <y,
is small for | X| large enough, say |X|>r. Thus, since m. (X, y) is non-negative, on
the boundary of a region MN={(X, y):y,<y<y;, |X|<r} the function w(X,y)
=s(X, y+e)—m. (X, y) is bounded above by a small positive number. On the other
hand, w, being the sum of two subharmonic functions, is subharmonic. Thus, by the
maximum principle for subharmonic functions, w is bounded above by this small
positive number throughout H. By expanding R we obtain w (X, y)<0 for y>0.
That is

s(X,y+e)<m. (X, y) (3.11)
for y>0.

Now suppose ¢>1. From (3.3) we see that {s(X, &)} is a uniformly bounded
family of functions in the norm of L?(E,). From this we can deduce, as we did in
the proof of lemma (3.6), that there exists a function f(X) in L?(X,) and a null
sequence {e} such that {s(X, &)} converges weakly to f(X). Thus, in particular,
letting m (X, y) be the Poisson integral of f we have, for each (X, y) in E;.q,

me, (X, y) = Efs(z, ) P(X~Z,y9)dZ—~> [{(Z)P(X—Z,y)dZ=m (X, y)
n En
as k—>oo.

On the other hand, by (3.11),

s (X, y+e) <me, (X, y).

Thus, letting k—oco, since the left hand side tends to s (X, y) and the right hand
side to m (X, y), we obtain

s(X, yysm(X, y).

This shows that m is a majorant of s.
The fact that f(X)= lim m (X, y) both in the norm and almost everywhere then
follows from (v). "
Furthermore, since m., (X, y)->m (X, y) as k—>oo, an application of Fatou’s lemma
and (3.9) show that
fIm(X, yrdx<ce
Ey

Thus, we must have ||f||,<C. This completes the proof of part a).
Part b) follows from a similar argument. The only change that is needed, as
in the proof of lemma (3.6), is to replace the weak convergence of a sequence of

elements of the family {s(X, ¢)} to a function with the weak convergence of such
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a sequence to a measure. Consequently, we obtain a Poisson-Stieltjes integral ma-
jorizing s (X, y). Thus, the lemma is proved.

We remark that the function m (X, y) is not only a majorant of s (X, y) but
is the least harmonic majorant of s(X, y). That is, if M (X, y)=s(X, y) in E,,y and
M is harmonie, then m (X, y) < (X, y) in E;,,. This follows easily from the maximum
principle for subharmonic functions and our construction of m. This fact, however,
will not be needed in this paper.

Before stating the result of N. Wiener that was mentioned earlier we have to
introduce the n-dimensional generalization of the Hardy-Littlewood maximal function:
If f(X) is in L(E,), ¢=1, we define

ff(X)= supln (|]‘(X—I—Z)|dZ.
r>0 7

v
2] <r

The function f* is then called the maximal function of f.
The basic properties of f* that we shall need are stated in the following lemma
(see [9], [12] and [17]):

Lemma (3.12). The function f* is finite almost everywhere if f is in L (E,).
Furthermore, if q>1, there exists A, independent of f in LI(E,), such that

17 lle<< 4l #le-

We will need lemma (3.12) and a substitute result for the maximal function of

a measure. More precisely, if 4 is any finite measure on E, we define

1
u* (X)= sup - f [dp(X+2)|

1Z]<r
and we say that u* is the maximal function of the measure yu. We then have

Lemma (3.13). The function u* is finite almost everywhere.

This fact is an immediate consequence of the well-known theorem on the dif-
ferentiability of a measure (see [11]).

These two lemmas will be needed to obtain similar properties for another type
of maximal function. More precisely, we shall prove the following generalization of
an estimate of Hardy and Littlewood (see [18], Chapter IV):

Lrmma (3.14). Let ', (X)< B} 1 be the conical region, with vertex X, of all points
(Z, y) satisfying | X —Z|<ay. Suppose that m (X, y) is harmonic in E; .y and, for ¢>1,
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[lm(X, p)|*d X< 09< oo
En

for all y>0.
Let my (X)= sup |m (Z, y)|,

the supremum being taken over all (Z, y) in 'y (X).
Then,
a) if g>1, m¥(X) is in L(E,) and

l|me llo< 40,

where A depends only on a, ¢ and the dimension n;

b) if g=1, my (X)< oo almost everywhere.

Proof. The proof makes use of the idea that for Poisson integrals the approach
to a boundary point along a cone (i.e. the, so-called, non-tangential approach) is
essentially dominated by the approach along the direction normal to the boundary
surface.

Let us first assume that ¢>1. By lemma (3.6), m (X, y) is the Poisson integral
of a function f(X) in L?(E,) with ||f|l,<C. Part a) of the present lemma will then

be a consequence of the first part of Lemma (3.12) if we show
mg (X)<Bf*(X), (3.15)

where B depends only on « and the dimension #.

Toward this end, we first observe that, for |Z—X|<ay,

y
(I w— X]2+y2)%(n+l)’

@S D (3.16)

Y
(W—-ZP+yH}
where DY = max {1+ 242, 2}.

By considering the positive and negative parts of f separately we may assume
that f(X)>0. Then, an immediate consequence of (3.16) is the inequality
m(Z, y)<Dm (X, y)
for (Z, y) in I',(X). Thus,

my (X) < D {sup m (X, y)}-

y>0
4 — 603807 Acta mathematica. 103. Imprimé le 18 mars 1960
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Hence, inequality (3.15) will be established if we show that, for each y>0,
m (X, y) <K f*(X), (3.17)

where K depends only on the dimension n. This inequality is known (see, for ex-

ample, [9]), but for completeness we include its proof:

X-Z
m(X, =< fl—zllc‘zg*ya)mdz

[(X~-2)
( J‘ f ) |le+y {r(n+l)dz

lzl<v 12]>v

1
<
cn

J (X —2) dZ+— ff|z|"+1 iz.

12|y | I>v

The first term is clearly majorized by a constant multiple of f*(X). Thus, the proof
of (3.17) is completed by the following chain of inequalities:

((X-2) HX—Z)

mr 4Z=y 2 a1 04
|Z| +1 “o |Zl +1
|2]>vy 2%ty |Z| > 2ky
< z yZA(n+1) y—(n+l) ]‘(X*“Z) dZ
=0 2k Y 2]

=9n konk (2Ft1gy)~" f f(X-2)dZ
- 2k+1y>lzl

<2n 3 2—k/* (X)=2n+lf* (X
k=0

The proof of the second part of this lemma follows similar lines. From lemma
(3.6) we see that m (X, y) is the Poisson-Stieltjes integral of a finite measure u. As

before, we obtain part b) from lemma (3.13) if we show
my (X)< B u* (X), (3.18)

where B depends only on « and n. But we see that (3.15) and (3.18) are established
in exactly the same way if we note that the proof of the former depends only on
estimates on the Poisson kernel. Thus, lemma (3.14) in proved.

We will need one more result. This is the following special case of a basic

theorem of A. P. Calderén [2] that we here state as a lemma:
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LEmma (3.19) Let w(X, y) be harmonic in E)... Suppose that for a measurable
set SCH,

|w(Z, y)| <M< oo

for {(Z,y) in I'y(X), X in S. Then, for almost every X in S, lim w (X, y) exists. (1)
y—0

4. HP-spaces

Before we state and prove our results in the theory of H? spaces we introduce
some notation. If "

F(X,y)=w(X,y), VX, 9)=u(X,y), (X, 9), v,(X, 9), ..., . (X, %))
is in H? we let
M, () =MW, (v; F)=( [| F(X, p)|P d X)),
E%

for y>0.

In case there exists a vector-valued function
G (X) = (wy (X), w, (X), ..., w, (X)),

defined on E,, such that

| F (X, )= G X)|l,=( [|F (X, y)—GX) | dX)"">0
En

as y—0, we say that G(X) is the limit ¢n the norm of F (X, y), as y—0. Similarly,
we say

lim F(X, y)=G(X)
y—>0

for almost every X in E, if uw(X, y)—>w,(X) and v, (X, y)—>w, (X), k=1,2, ..., n, for
almost every X in E,. In either case, we write

G(X)ZF(X’ 0)5 wo (X):u(X: O)’ wk(X)zvlc(X’ 0),

for k=1, 2, ..., n.

The main theorem in the theory of H? spaces can then be stated as follows:

(1) Calderén actually proves that for almost every X in § lim w (Z, y) exists when the point
(Z, y) tends to X along any path in E},1 that is not tangent to E,. These non-tangential limits
will also exist for the members of H”. We restrict ourselves, however, to making the above simpler
statement.
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THEOREM B. Suppose F (X, y) is in H?, p=(n—1)/n, then
lim F (X, y)=F (X, 0)
¥—0

exists for almost every X in E,. (1) In case p>(n—1)/n, F(X,0) is also the limit
in the norm of F (X, y).

Proof. Suppose F is in HP, then, by assumption, there exists a constant K
such that

M, (y; FYSK < oo 4.1)

for all y>0. Furthermore, by theorem A, since F satisfies the generalized Cauchy-

Riemann equations (1.5), | F|® V" is subharmonic. Thus, if we let q=n—7_b~1p (then

g>1) and s(X, y)=|F (X, y)|* ", the function s (X, y) satisfies the hypotheses of
lemma (3.8). Thus, by this lemma, there exists a harmonic function m (X, )= s (X, y)
such that, if g=1 (or, equivalently, p=(n—1)/n), it is a Poisson-Stieltjes integral of
a finite measure y, and, if ¢>1 (that is, p>(n—1)/n), it is a Poisson integral of a
function f in L” (E,).

Let w (X, y) be one of the components « (X, ¥), v, (X, ), ..., v, (X, ) of F(X, y).
Then, for (Z, y) in I'y(X) (=the conical region defined in lemma (3.14)) we have

lw (Z, y)|" " <m (2, y) <m} (X).
But, by lemma (3.14), m%(X) is {inite almost everywhere. Hence, if we let

S.<E,, k=1,2, ..., be the set of all X in K, such that m¥ (X)<k, E,— U S, has
k=1
measure Zzero.
On the other hand, for each %k, the harmonic function w (X, y) satisfies the
conditions of lemma (3.19) with S=S, and M =k"""P, Thus, by this lemma,
lim w (X, y)=w (X, 0) exists for almost every X in §;. Since E,— U S, has measure

y—0 k=1

zero it then follows that lim w (X, y) =w (X, 0) exists for almost every X in E,.
y—0

This proves that
lim ¥ (X, y)=F (X, 0) (4.2)
=50

exists for almost every X in E,.
The fact that for p>(n—1)/n

| F (X, y)— F (X, 0)][,~0 (4.3)

(*) In fact, the non-tangential limit, described in the footnote on page 45, exists for almost every
X in E,.
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as y—>0 now follows from a simple argument. We first note that

|F (X, 9)—F (X, 0)P<2 (| F (X, 9)P+|F (X, 0)])
<97 ([ (X)J* + [ (X))
— 2741 [ (X2,

Since, by (4.2), for almost every X
|F (X, y)— F(X,0)]P—0

as y—>0, and the function [m} (X)]? is integrable ober E,, (4.3) is a consequence of
the Lebesgue dominated convergence theorem. This completes the proof of Theo-
rem B.

The following theorems are the n-dimensional generalization of other well-known

results in the classical theory of H” spaces.

Tusorem C. If p=(n—1)/n and F is in H? the function

p () = {M, (y; B}
is convex and decreasing. If p>(n—1)/n, y (y) decreases to zero as y—>oo.

Proof. Using the notation of the previous proof, s(X, y)=|F (X, )| V" and
g=pn/(n—1), we have

l/g

p)={ [s(&X prax}". (4.4)

Since F is in H” the function R, (y; F) is bounded and, thus, so is ¢ (y). Hence,
if we show that the latter is convex, it must be decreasing.

It is easily checked that in order to establish the convexity of y (y) it suffices
to prove that the function ¢ (Z, y)=v (y) is subharmonic in E;,;. This can be done
in the following way: Let us take for granted, momentarily, that u (y) is continuous.
Fix a point (Z,, y,) in Ej., and let S, be the sphere about this point of radius
r>Y,. Suppose g (X) is the function satisfying

{ 152+ X, yg19d X} = [g(X)s(Zo+ X, yp) A X. (1)

Then, using the subharmonicity of s (X, y),

(') Note that g (X)>0 and ||g||¢ =1, where 1/g+1/¢ —1.
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fg(X)s(Z,ﬁ-X, Y d X

Epn

1/a
b (Zy, yo)= {f[s Zy+ X, ?/o)]qu}

1
fg(X){mn+1 s(X+2, y)dZdy}dX
Sr

En
1
=w7“ fg(X)s(X—i—Z, y)dX}dZdy
Sy En
1 lq
o f{ [s(X+2, y)]“dX} dZdy
Sr En

the last inequality being a consequence of Hélder’s inequality. Thus

1
b (Z,, yo)<m fgf)(z, ydZdy.
ST

But this is the mean value property characterizing subharmonic functions
lemma (3.8) guarantees that s (X, y) is

If p>m—1)/n or, equivalently, g>1
majorized by a Poisson integral of a function f(X) in L4(E,)
Y HX—2Z)
&= f 2Pyt
We note that m (X, y)—>0 as y—>oco; for, letting 1/¢+1/¢'=1 and using Hélder’s

inequality, we have
seaes)] il

Y
<,_
m(& <, fw

dz v
{ fy(nﬂ)a' (1 + |Z|2/y2)§q’(n+1)} ”.qu

En

Y
Cp

1 dX be
zcny”"’ ; (|X|2+ 1)@+ ”f”q

which clearly tends to zero as y increases
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On the other hand, as was shown in the proof of lemma (3.14), we have m (X, y)
majorized by a constant multiple of f*(X) (see (3.17)). But the maximal function
f(X) is in L(E,) together with f(X) (see lemma (3.12)).

We have shown, therefore, that the members of the family of functions {[s (X, #)]1%}.
parametrized by y, are dominated by the integrable function [f* (X)}? and lim {s (X, %)]*=0.

Y—>0

Thus, by the Lebesgue dominated convergence theorem,

[1s(X, 9)1*d X0

as y—>oo. But, by (4.4), this implies y ()0 as y—oo. We observe that this argu-
ment also proves the continuity of g (y). Thus, the proof of the theorem is complete.

As a consequence of Theorem € we have
sup M, (; F)=lim M, (y; F).
¥>0 y—>0

As is usually done in the case of the classical H? spaces, we call this limit the norm

of F and use the notation

171, = lim M, (y; F).
y—0
In case p>(n—1)/n, an immediately corollary of Theorems B and C is the fact

| 7ll,=( [|F(X,0)PdX)"". (4.5)
E’L
Tueeorem D. Suppose p,>n—1)/n and p,=(n—1)/n, F(X, y) is in H™ and
|F (X, 0)] is in L™ (E,), then F (X, y) is in H™.

Proof. By lemma (3.8), the subharmonic function |F (X, y)|" """ has a harmonic
majorant, m (X, y), in Ej;1 such that m (X, 0)= lim m (X, y) exists both in the L%
¥—>0

norm and almost everywhere, where g¢,=p,n/(n—1). Furthermore, it also follows

from this lemma that
lm (X, 0)|le,=( [ Im (X, 01" a X(Ve<| Fli5~ " (4.6)
En

But, by 4.5)
||FH§Zﬁ‘”’" =( f|F(X, 0) Ia.(n—l)/n dX)l/ql_
ETL
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On the other hand, letting y—>0 in the inequality |F (X, y)|" """ <m (X, y),
we obtain
|F (X, 0)|" " <m(X, 0) 4.7)
for almost every X.
Consequently, by (4.6) and (4.7), we must have

|F (X, 0)|* D" =m (X, 0) (4.8)
for almost every X.
The assumption |F (X, 0)| in L" (E,), however, is equivalent to the condition
m (X, 0)=|F (X, 0)|® V" in L%(E,), where ¢,=p,n/(n—1). Since m (X, y), by lemma
(3.8), is the Poisson integral of m (X, 0) it then follows from (c) of section 3 that

[Im (X, p)]*dX< [[m(X,0)]%dX

for all y>0.
The proof of the theorem is now complete if we notice that the left hand side

of this inequality majorizes

[1F (X, y)|"d X
Epn

Remarks. 1) We note that in the statements of the theorems of this section less
was concluded in the case p=(n—1)/n than in the cases p>(n—1)/n. For example,

in Theorem B, for p=(n—1)/n we proved only that lim F (X, y) exists for almost
y—>0

every X in E, and stated nothing about convergence in the norm. Similarly, in
Theorem C, we concluded that v (y) decreases to zero as y—>co only if p>(n—1)/n.
Furthermore, nothing has been said about the properties of functions in H? for
p<(n—1)/n.

Whether or not these theorems are best possible is an open question. On the
other hand, the known facts for the classical H” spaces (when n=1) indicate that
the above theorems cannot be extended to other values of p and that the space
H®™Y* i3 atypical.

An explicit example illustrating this situation is the following. Let us make the
observation that the analogue of the space H™ V", when #>1, in the one dimen-
sional case is the Nevanlinna class N of analytic functions F(z)=F (x+iy) defined

in the upper half plane y>0 such that

[ log* |F(z+iy)|da<d<oo
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for all y>0. (This observation is motivated by the fact that the one dimensional
analogue of the fact that |F|® ™" is subharmonic is that log | F (z)| is subharmonic.)
As was mentioned in the introduction, it is known that, for functions in this space,

lim F (x+iy)=F (x) exists almost everywhere. On the other hand, even though there
y—>0

exists a natural “norm’ on N (1), there are functions F in N for which lim F (z -+ 1y)
y—0

=F (x) in the norm is false.

2) The basic tool used in the proof of Theorem C is the fact that s(X, y) is
subharmonic. As was observed in the second section, | F (X, y)|? is subharmonic when
p>=1 even if we only assume that the components of F are harmonic (that is, we
do not assume F to be a system of conjugate harmonic functions). Theorem C, there-

fore, extends to (n+ 1)-tuplets, F (X, y), of harmonic functions satisfying
JIF (X, p)lPdy<d<eo
En

for all y>0, for p>1.

3) In most of the proofs of the results of the last two sections we have tacitly
assumed that n>1. This assumption was clearly necessary when we operated with
the function | F|® ", On the other hand, very simple alterations of the arguments
used above will include this classical case. For example, if F is in H?, p>0, when
P,

|*~D" we can form the function s (z, y)=|F (z, y)

n=1, instead of considering | F
for 0<d<p. Then s(x, y) satisfies the conditions of lemma (3.2) with ¢=p/(p—6)>1;
having done this, the arguments based on this lemma are unchanged. Furthermore,
as was indicated by the first remark, in the statements of the theorems of this sec-
n~Djn

tion the space H' should be replaced by the Nevanlinna class N when n=1.

5. An n-dimensional generalization of the theorem of F. and M. Riesz.

In order to state the next theorem we must introduce the notion of the M. Riesz
transforms of functions (and measures) that was briefly discussed in the introduction.
For k=1,2, ..., n, the kth M. Riesz transform of the funection f in L?(E,) in usu-
ally defined as the following Cauchy principal-value integral (see [6])

.1 T — Y,
(B (f) (X) = Lim = f oyl ey, (5.1)

|X-Y|ze

(*) This norm in discussed, for the case of analytic functions defined in the unit disc, in re-
mark (iii) on page 47 of [16].
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where ¢, is the constant occurring in the Poisson kernel (see the beginning of the
third section). It is known that this limit exists for almost every X in E, provided
fis in LP(E,), 1<p<oo. In fact, the limit exists almost everywhere even if we
replace f(Y)dY by du(Y), where p is a finite Lebesgue-Stieltjes measure on E,.
Furthermore, as a transformation on L”(E,), 1<p< oo, each R, is bounded and maps
into L? (E,). That is, there exists 4,, independent of f in L” (#,) such that

B ()1l < A5 I
k=1,2, ..., n.
We shall also need the following anti-symmetric property of R, (see [3], where
the symmetry of the operator ¢ R, is proved, which is equivalent to (5.2) below)

[(Bef)gdX=— [}(B.g)dX (5.2)

for f in L?(E,) and ¢ in L% (E,), where 1/p+1/q=1.

Although the limit in (5.1) exists almost everywhere when f is in L' (or, as was
mentioned above, when f(Y)dY is replaced by d u(Y)), the resulting function may
fail to be locally integrable. It is therefore convenient to define R, on L', or on the
class of finite Lebesgue-Stieltjes measures, in a different sense (the so-called weak sense).
Thus, for f in L%, or for a measure y, we define R, (f), or R.(dy), k=1,2, ..., n,
as a distribution in the following way:

Let ¢ be a testing function; i.e. ¢ is in the class C* and vanishes outside a
compact subset of E,. Thus, Ry (¢) is well defined by (5.1). In fact, it is not hard
to see that R,(¢$) is a bounded and continuous function (since, by integrating by
parts, we see that R, (¢)is the convolution of the testing function (2 ¢)/(¢ ;) with
(I—n)/c,| X|*™). (1) Tt is then justified to define Ry (f) and Ry (d u) as linear functionals

on the space of testing functions by letting
[Be (1) ()=~ [ R ($)d X

and (R @w]($)=— [Ru(¢)du(X).

We note that if f is in L?(E,), 1 <p, then the distribution R, (f) is represented by
the function which is given by the usual pointwise limit (5.1).
If u is a measure we then say that the M. Riesz transform By (d u) is a measure

Ve, if for each testing function ¢

(1) If n=1 we replace this function by a constant multiple of log |X |
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En

[¢dv=— [Ri($)du. (5.3)

Having made these definitions, we can now state the following generalization of
the theorem of F. and M. Riesz:

TaEorEM E. Let p be a finite Lebesgue-Stieltjes measure on B, having the pro-
perty that each of its M. Riesz lransforms, =R, (du). k=1, 2, ..., n is also a finite
Lebesgue-Stieltjes measure on E,. Then all of these measures, u, vy, vo, ..., v,, are ab-
solutely continuous with respect to Lebesque measure. (1)

Proof. Let
w(X,y)= [P(X—2Z, y)du(Z)
Ep

(X, y)= [P(X—Z,y)dv(Z), k=12, .., n
Ey

If we can show that these n+1 Poisson-Stieltjes integrals form a system of

conjugate harmonic functions, it is then iramediate that
F X, 9) =X ), 0\ X, 9), ..., 2 (X, 9)

is in H' (in fact, [|F||, is majorized by the sum of the total measures of u, v, ... 7).
Thus, by Theorem B, the boundary values « (X, 0), v, (Z, 0), ..., v, (X, 0) are in LM (B,);
furthermore,

lw(X, y)—u (X, 0)}l,~0
and ”vlc (X: y) — U (X3 O) ||1"'9'05 k= 13 27 ey Iy
as y—0.
On the other hand, the components of F (X, y) must be the Poisson integrals
of their boundary values. This is easily established in the following way: If we let

G (X, y) be the system of harmonic functions obtained by taking the Poisson integrals
of u(X,0), »(X,0), ..., v (X, 0), then, by (v) of the third section,

lim [ |G (X, y)—F (X, 0)|dX=0.

v—0 5,

Thus, since v (y)= “G(X, y)—F(X,y)|dX
A

is a decreasing function of y (see Remark 2) in the fourth section), we must have

(*) For a different n-dimensional generalization of the theorem of F. and M. Riesz, see [4].
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[1G(X, y)—F (X, y)|dX=0

En

for all y>0. Hence, G (X, y)=F (X, y) on E;,,.
Let us restate this fact in a slightly different way. Putting,

Ao (Z)=u(Z, 0VdZ—d u(Z), d{y (Z)=v(Z, 0)dZ —dw(Z), k=1,2, ..., m,

we have [P(X-2,9dt2)=0 (5.4)
En

for j=0,1, ..., n.

But (5.4) implies that each of the measures {; is the zero measure (), which is
equivalent to saying that each of the measures u, v, ..., », is absolutely continuous
with respect to Lebesgue measure and has the Radon-Nikodym derivative = (Z, 0),
v;(Z, 0), ..., vy (Z, 0), respectively.

Thus, all that remains to be done in the proof of Theorem E is to verify that
FX,y)=u(X,y), v, (X, y), ..., (X, y) is a system of conjugate harmonic fune-
tions. Toward this end we first observe that by a simple limiting argument we can
extend (5.3) to hold for ¢ (Z)=P(X—Z, y), where (X, y) is any point of E; ;. In
doing this, we must first compute the Zth M. Riesz transform of ¢ (Z)=P (X -2, y).
This is easily done and, as is well known (see [6]), we obtain the conjugate Poisson
kernel

—1 T — 2%
en (| X—ZP+yRrery

Q(X—-2Z, y)=
Thus, from this extension of (5.3) and the expression for v, (X, y), we have
—0 (X, 9= [QX~2Z,9) du(Z), k=1,2, ..., n
. Es

From these formulas for the v, (X, y)’s, together with

1
u (X, y)= fP(X"Z, y)d[u(Z)=cg J‘(IX—le‘i'yz)%("H)d'u(Z)’
Ep

Ep

(*) This is a consequence of the fact that (5.4) immediately implies that f (X, y)d; (X)=0
Ep
whenever h (X, y) is the Poisson integral of a function in C, (=class of all continuous functions
vanishing at infinity) and that such Poisson integrals are uniformly dense in C,.
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we see by straight-forward differentiation that (u (X, v), v, (X, %), ..., v, (X, ) is the

0 0 0
R R

gradient

where % is the harmonic function

1 1
M= J(IX—Z|2+y2)W‘”d”(Z)'

En

This shows that F (X, y) is a system of conjugate harmonic functions and the theo-
rem is proved.
It is sometimes useful to rephrase this theorem in the language of Fourier

transforms:

Tureorem E'. Let p be a Lebesgue-Stieltjes measure on E, and

MEX)= [e¥Tdu(Y)

its Fourier transform. Assume that the n functions i (x,/| X|) M(X), ..., i (x,/| X)) M (X)
are also Fourier transforms of measures vy, v,, ..., v,. Then, each of the measures

M V15 Vo> oon, Yy U8 absolutely continuous with respect to Lebesque measure.

Proof. This theorem follows from the previous one if we verify that, for each

testing function ¢,

[¢dy,=— [Ru(d)du (5.5)

Let O (X)= [XY$(Y)dY.

En

Then, by the Fourier inversion formula,

1 .
¢(Y)=@n—)nfcb(X) e FYgX

(both integrals are absolutely convergent since ¢ is a testing funection).
Thus,
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] ,
u[gb(Y)dvk(Y):(z—n)—nf{ fe‘iX'Y®(X)dX}dvk(Y)

" n  En

-y Jooo | [ ranir)ax

= 2n)”f® .IXI (—X)dX.

On the other hand, if @, (X)= [ Y[Ry (¢$)](Y)d Y, then

. X
D, (X) =i ® (1)

(see [6]), and [R: ()] (X) = @ ;)n f e YD (X)d X.
Thus, ka(qS)dy:(?ly;);f{ fe-iX'YQk(X)dX}dM(Y)
1

(X X)dX
NE )nf<D( )M (- X)

f ® (X) |’;"| —X)dX.

Hence, (5.5) holds and the theorem is proved.

6. Fractional integrals defined on HP-spaces

We begin by recalling some facts about fractional integrals of functions in L” (E,),

1<p<oo. For such a function, f(X), its fractional integral of order o is the con-

volution
f(x=1),
X)= 6.1
[ ]( | Y|n o ( )
where Vo= 7£-2—0T(—) (6.2)
FrG—al)

It is easy to check that the integral in (6.1) converges for almost every X provided
O<a<n/p.
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If a linear transformation is defined on a class of functions containing L?(H,)
and, when restricted to this space, is a bounded transformation mapping into L° (&)
(p, ¢>0), we say that it is of type (p, q¢). A fundamental result of Soboleff (see [13])
can then be stated in the following way:

TaEoREM (Soboletf). I, is of type (p, q) whenever 1 <p<n/a and 1/q=1/p—a/n.
We assume the validity of this result which will be used for our extension of
fractional integration to H? spaces. In fact, this theorem and the following lemma
are the basic facts in the theory of fractional integrals of functions in L” spaces that

we shall need.

Lemma (6.2). Let f(X) be a function in LP(E,), 1<p<oo, and u(X, y) ils
Poisson integral. Then,

1 o0
D=5 [ o pra, (6:3)
where 0 <o <n/p. ’
Furthermore,
Uy (X, y)=F?7) f w(X,y+s)s*tds (6:4)

0
ts the Poisson integral of I, (f).

Proof. The function | (X, y)|, being the absolute value of the Poisson integral
of a function in LP, satisfies the hypotheses of lemma (3.2) with ¢=p (see (v) of
the third section of this paper). Thus, by (3.4), the integrand in (6.3) is absolutely
integrable.

By decomposing [ into its positive and negative parts we can reduce the prcof
of the lemma to the case f>0. With this restriction on f, our various applications

of Fubini’s theorem are justified.

Since w(X,y)= P&, y[(X-2)dZ,
E?L
we have [w X,y tdy= [{[ P& yydy}t(X-2)dzZ.
0 E, O
But a1 __l ( y a—1
.f P(Z> ?/)?/ dy_cn . (lz|2+ y2)§(n+l)y dy
[ 0

o0

Ll e ¥
_cnlz| Of (It 2)5 D dy,
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(the last equality following from the change of variables s=y/|Z| and then replacing
y for s).

o0

Hence, - 1 ( * f(X-2)
Ju(X,y)y ldy=c_,,{f(l—+'ﬁ("_ﬁ’dy} Wdz
0 0 Eqn

=T (o) [L. (H](X). (M)

Equation (6.4) is, then, an immediate consequence of the ‘“‘semigroup property”’

of the Poisson integral transform:
w(X,y+8)= [u(Z,s)P(X~2Z,y)dZ,
En

for all s, y>0. ()
Lemma (6.2) motivates the following definition: If F (X, y) is a system of con-
jugate harmonic functions in Ej.; we define its (vector-valued) fractional integral of

order o, a>0, to be

1 _ .
Fu(X, ) =L (D] (X, y>=F~(a—)fF<X,y+s)s“ 'ds ©-2)
0
whenever this integral exists. (3)

Some of the formal properties of I, (F) are contained in the following theorem:

THEOREM F. (a) The integral in (6.5) converges absolutely for each (X, y) in
E; ., provided F is in H® and (n—1)/n<p<n/a (thus, the fractional integral may
exist even if n<a);

(b) Under the same hypotheses, F, (X, y) is a system of conjugate harmonic functions;

() If F is in H?, «>0, >0 and (n—1)/n<p<n/(a+p), then I,(Is(F))
=1, (F).

Proof. (a) Let m (X, y) be the harmonic majorant of |F (X, y)|" V" obtained
in lemma (3.8). Using the notation g=pn/(n—1), we then have

[Im (X, y)rd X <0< oo
E'l

oo

) 1 f
1) The fact that =
® " Y "Twyen
0

o

(1197 oD Y follows from the formulas on pages 56 and
57 of [14].

(2) This semigroup property is well known when n=1. Its proof for general n is essentially
contained in the proof of lemma (3.6) (see, in particular, the proof that wy (X, y) =m (X, y + y&)).

(3) No confusion should arise from the fact that I, will be used to denote both the operator

acting on L? -spaces as well as the operator acting on H?-spaces.
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Thus, by (3.4), m (X, y)<Cy ™% This, however, implies

|F (X, y)| < oHeby o,

R

Hence, J- IF (X’ y+8) I pras ds< On/(n-l)f (y+8)~nlp Sc:—l ds.
0 0

On the other hand, since p<n/a and 0<a, the last integral is finite.

(b) It is easy to see that about each point of E;.; we can find a neighborhood,
contained in E;,;, and a sequence of Riemann sums that converges to the integral
in (6.5), uniformly in (X, y) belonging to this neighborhood. But any such Riemann
som is, clearly, a system of econjugate harmonic functions. Thus, each such Riemann
sum satisfies the system of equations (1.5). On the other hand, the above uniform
convergence implies that (in a possibly smaller neighborhood) the derivatives of the
members of the sequence converge uniformly (since the components are harmonic
functions). Thus

F(X,y+s)s*ds,

o

the limit of this sequence, satisfies (1.5).
(¢) We must show that

v 7 et g1 f{f - }
r(wﬁ)OfF(X’y“)s “rwrE) © ) PR vrrraeTaydn

On the other hand, the last (iterated) integral is equal to

t

fw-l{fF(X,yH)(t—r)ﬂ*ldt}dr:fF(X,yw){f(t—r)ﬂ“r“*‘dr}dt.
0 T 0 0

Thus, we need only verify that

s

f (s—rf1rldr.

4]

1 atf-1 _

I'(«+p) ') T'(B)

But this identity is well known (see [14], p. 56).

The various applications of Fubini’s theorem are justified because of the absolute
convergence of the integrals in question (see the argument for part (a)).

The main result of this section is the following theorem (in which the notion

of type (p, q) is extended, in the obvious way, to transformations acting on H? spaces).
5— 603807 Acta mathematica. 103. Imprimé le 18 mars 1960
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THEOREM G. If (n—1)/n<p<n/a (in particular, « may be grealer than n) and
1/g=1/p—a/n, then I,:F—F, is of type (p, q).

Proof. If p>1 and F (X, y)= (v (X, o), 1, (X, ¥), ..., o (X, )} is in" H?, then, as
was mentioned in the introduction, the components u (X, y) v; (X, ¥), ..., v, (X, y) are the
Poisson integrals of their boundary values. On the other hand, v, (X, 0), ..., v,(X, 0)
are the M. Riesz transforms of « (X, 0). Thus, putting together various results, men-
tioned and derived in this paper (e.g. see, in particular, the beginning of the third

anf fifth sections), we see that there exists A, such that
17 lo< 4, [l (X, 0)l5-
On the other hand, it is trivially true that
e (5, o)l <l Pl

In view of the inequalities, the theorem of Soboleff and lemma (6.2), we see that
the case p>1 reduces to the case of fractional integrals of functions in L? (E,). Thus,
we assume (n—1)/n<p<1 and that F is in H®.

Let us first consider the case n=2 and thus, restrict ourselves to {<p<1l. In
addition, let us assume that O0<a<1. Applying lemma (3.8) we obtain a harmonic
majorant, m (X, y), of the subharmonic function |F (X, y)|*. Furthermore, again by
this lemma, m (X, y) can be chosen to be the Poisson integral of a function m (X)
in L*, 1<2p<2, where ||m|§, = F|l, (see (4.8)).

We thus have, using inequality (3.17),

T Fa (X, )| < [ |F(X, y+9)|s* 7 ds
° (6.6)

<f m?2 (X, y+8)s* 'ds< sup m (X, y)f m (X, y+s)s*'ds
0 ¥>0 0
< Km* (X) L, (m)] (X,9).
Thus, a constant multiple of f |Fo (X, y)|*d X is majorized by
[ {m* (X)- (L. (m)] (X, y)}*d X.

On the other hand, since 1/¢=1/p—1ia, 2p/¢=2—ap. But p<1 and a<1, by
assumption, thus 2p/¢>1. Let r be the exponent conjugate to 2p/q (that is, 1/r+
+¢/2p=1). Thus, by Hélder’s inequality
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[17.(X, 9)|*d X < (const.) { [ {m* (X))} d x}orss {[{i1. )1 (X, 9} dX}l”. (6.7)

A simple calculation shows that

Thus, by Soboleff’s theorem,

{f {t. ) (X, ) d X} < (const.) { [ {m (X)}” dx}ee,
Substituting this in (6.7) and applying lemma (3.12) to the function m*, we obtain

JIF.(X, y)|?d X < (const.) { [ {m (X) P ax}

= (const.) || F||2.

But, since || F,||,= sup {f | F. (X, y) |‘1dX}1/q, this proves that I..is of type (p, q).
y<0

The restriction 0 <« <1 can be dropped by making use of the ‘‘semigroup pro-
perty”’
L (Ip (F)) =L (F).

For n>2 the proof remains essentially the same, but technically more com-
plicated. The necessary changes are the following: The restriction 0 <« <1 is replaced
by 0<a<(n—1), the harmonic majorant m (X, y) is the Poisson integral of a func-
tion m (X) in L*™®7D, in (6.6) we have [m (X, y-+s)]"® "V (instead of m?(X, y-+s))
and this function is majorized by [m* (X)[Y" P m (X, y+s). Once these changes have
been made the above proof goes through without change.

The following theorem, mentioned in the introduction, is now an easy corollary
of Theorem G.

TarEoREM H. Suppose f is a function in L'(E,) such that each of its n M. Riesz
transforms are also in L*(E,). (1) Then

L(f), I (B, (1)), La (By (), ..., Lo (B (f))

are all in L% (B,) whenever 1/qg=1/p—a/n, 0<a<n.

Proof. Once we show the vector-valued function ¥ (X, y), whose components are

the Poisson integrals of the functions f, R, (f), ..., B, (f), is a member of H', this

() In the weak sense discussed in the fifth section of this paper.
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theorem is an immediate consequence of theorem G. But this was shown in the proof

of Theorem E (in fact, there we assumed only that the Riesz transforms of f were

measures).
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