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1. Introduction and summary  

Consider a regular simplex constructed on the surface of a unit sphere immersed 

in iv-space with each of its iv(iv-1)/2 pr imary  bounding angles equal to 0. Denote 

the vertices of the simplex by 1, 2 . . . . .  iv and the simplex itself by 12 ... iV. Further,  

let i '  denote the point antipodal to i. Then a simplex such as 

l'2'...fl'(fi+l)...(fi+y) ( f l = 0 , 1  . . . .  ,iv, fl+y=iv) has [fl(fl-1)+y@-l)]/2 

angles equal to 0 and the remaining flV angles to ~ -  0. A simplex of this type will 

be referred to as a skew-regular simplex. In  particular, for /~ = 0 the simplex is re- 

gular, while for ~ =0 ,  we have the regular simplex antipodal to 12 ... iv. A regular 

simplex is then a particular case of a skew-regular simplex. The lat ter  simplex is 

generated from the simplex 12 ... iv, hereafter called the base simplex, by  the pro- 

jection of an appropriate subset of vertices of the base simplex with respect to the 

centre of the sphere on to the surface of the sphere. 

Let I I  be the ( / 5 + T - 1 ) - f l a t  through the centre of the sphere orthogonal to 

the line joining the lat ter  point and the centroid of the base simplex. Let x be the 

distance of any point from I I ;  this distance will be regarded as positive if the point 

in question lies on the same side (half-space) of II  as does the base simplex, and 

(1) Th i s  resea rch  was  s u p p o r t e d  b y  t he  Office of N a v a l  l%esearch u n d e r  Contract.  N u m b e r  
k~onr-266 (59), P ro jec t  N u m b e r  042-205.  R e p r o d u c t i o n  in  whole or in  pa r t  is p e r m i t t e d  for a n y  pu r -  
pose of t he  U n i t e d  S ta tes  G o v e r n m e n t .  
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negative otherwise. We shall investigate the values of the geometrical moments  of 

1 '2 '  ... fl' (fl+ 1) . . .  ( f l+~)  relative to II ,  represented by 

T~,t~+:,:~(O)= ~ x S d o ~ / f d w  (s=O, 1,2 . . . .  ), (1) 
J / J  

where d eo denotes the content of an infinitesimal element on the surface of the sphere 

(or, equivalently, the solid angle subtended at  the centre of the sphere by  the ele- 

ment), the domains of integration in (1) being 1 '2 '  . . . f l ' ( f l : b l ) . . .  ( f l + 7 ) - I n  the 

following section a generating function for the moments  will be derived, which will 

enable each of the ( f i + 7 - 1 ) - f o l d  integrals in (1) to be reduced to a univariate inte- 

gral involving the error function and its integrals, provided 0 is obtuse. An important  

consequence of this reduction is the rather  striking result tha t  the non-normalised 

moments,  defined by  

p~,~+~..8(O)= (x~dco (s=O, 1,2 . . . .  ), (2) 

m a y  be expressed as linear combinations of the contents of the edges, of various 

dimensionality, of 1' 2' ... fl' (fl + 1) ... (fl +~) ,  for all permissible 0 (acute or obtuse). 

This result is derived in section 3. 

We shall also consider the moments,  both normalised and non-normalised, of the 

sector of the ( f l+y)-sphere  standing on 1 '2 '  ... f l ' ( f l + l ) . . .  ( f l+7)  as base and the 

centre of the sphere as pole, i.e. 

q~,~+r:s(O)~ f xSd~/  f dT: (s=O, 1,2 .... ), (3) 
3 / J  

and q~,~+~: ~ (0) = f x ~ d~ (s = O, 1, 2 . . . .  ), (4) 

where d~ denotes the content of an infinitesimal element in (/~ + ?)-space, the domains 

of integration in (3) and (4) being the sector as described. 

In  order to relate the above discussion more directly to the investigation in the 

sections which follow, it will be convenient to refer to the class of skew-regular 

simplices in terms of a system of orthogonal coordinate axes rather  than (as above) 

in purely geometrical terms. From this point of view the simplex 1' 2' ... fl' (fi + 1) ... 

... (fl + y) is represented formally as 

l ' 2 ' . . . f l ' ( f l + l ) . . . ( f l + 7 ) = { x l x ' x = l ,  L , ( x ) < 0  ( i = 1 , 2  . . . . .  fl), 

L,(x)>~O ( i = ~ + 1 , ~ + 2  . . . . .  ~+ r ) /~  
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in which x denotes  an a rb i t r a ry  point  in (fl +~) -space ,  x '  x = 1 the  (fl + y -  1)-dimen- 

sional surface of a uni t  sphere imbedded  in (fl + ~)-space, while L 1 (x) = 0 . . . . .  L~+v (x) = 0 

represent  a sheaf of fi + ~  (fl + 7 -  1)-flats, A 1 . . . . .  As+r, th rough  the  centre of the  

sphere, which are inclined equally to each other  a t  an  angle 0. Any  ve r t ex  u, ac- 

cented or otherwise, of the  s implex 1 ' 2 '  ... f l ' ( f l + l ) . . .  ( /~+y)  is a join of the line 

of intersect ion of A 1 ... .  Au-~,Au+~, ..., A~+u wi th  the  surface of the  sphere. The  

angle between 1] and  any  of the  flats At forming the  faces (fl + ~ -  2-edges) of the  

simplex, as measured  b y  the  angle be tween the  oriented line joining the  centre of 

the sphere and  the  centroid of the  base  s implex 1 2 . . .  (fi § 7), in t h a t  sense, and  

the normal  to At, or iented towards  the  s implex 1' 2' ... fi' (fi + 1) ... (fl + ~,), is 

cos -~ ( - [ { 1 - ( 3 + r - l )  c o s 0 } / ( $ + ~ ) ] ~ )  if i = 1 , 2  . . . . .  ~,  

a n d  7 / : - c o s  -1 ( - [ { 1 - ( ~ §  cos 0)/(]~§ �89 i f  i = ~ § 2 4 7  . . . . .  ~§  

Finally,  in the  concluding section some appl icat ions of the results of this paper  

to the contents  of certain non-simplicial  regions in hyperspher ical  space, to res t r ic ted 

mul t iva r ia te  normal  dis t r ibut ions and  to the  d is t r ibut ional  theory  of order stat ist ics 

in samples  genera ted  by  a Gaussian popula t ion  will be discussed briefly. 

2. Determination of univariate integrals for the generalised centroids 

Consider the in tegral  defined b y  

ct �89189 ) I-[ [ 1 - F ( s  (5) I=--I~,~+~ (z; ~; 2 ) =  e~e ~ 1 fl+l 
-oo 

in which the  2t are real, ~ is real and  posi t ive and  the  function F(.) is defined b y  

(5.1) 

I t  will appea r  subsequent ly  t h a t  /~,~+u(z; a; 0) is a generat ing funct ion for the  geo- 

metr ica l  m o m e n t s  of skew-regular  (fi + y - 1)-dimensional spherical  simplices wi th  angles 

cos -1 { - 1/(1 + ~)} and  ~ -  cos -1 { - 1/(1 + ~)}. 

I n  order to  evalua te  this  generat ing funct ion i t  will be necessary first  to  s tudy  the  

more  inclusive integral  in (5) for a rb i t r a ry  2. 
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On differentiation in (5) under the integral sign with respect to the 2~ (a stop 

which is easily justified), we find, after some reduction, 

~ . 1 ~ , ~ 2  . . .  ~8+7-- (-- e z~ ~ e -�89 ~17 --e-~(i+~)~d~(2 7~) ~ 
- c / o  

/8+7 \2 ~+r 

= (-), exp - �89 ~ ~ - ~ (~)~(~+~) ~+~+~,]  ~+ /~+r  2(~+~+) , )  

/~+r 

exp - � 8 9  ~ + - -  - - [  ~d~, 
-oo ~ +/~+)'1 ] 

having "completed the square" with respect to ~. Integrating out with respect to 

the latter variable, 

(~+~ I ( ~ ) ' ~  { z~).~ z ~ } 
c~'l"-cq)-~+r (_)~,(2~) �89 ~+~-t-~, e x p - � 8 9  ~ + / 3 + 7  ~-2(a+/3+~,) , (6) 

where Q(2) is the definite positive function in the ;~ ( i= 1, 2 . . . . .  fi + y) defined by 

Q (2) = 5: 2~ (Z ~'~)~ (6.1) 

Hence, 
, z ~ ti z 2 } 

+ 5 C~,z+~:~ (z; ~; 2(% 
(7) 

where R~,r is the infinitely extended orthotope in (fl+y)-dimensional t-space 

defined by t~<2~ ( i = 1 , 2  . . . . .  fl), t~>/X~(i=fl+l,  fil + 2  . . . . .  f l+y) ,  while 2 o) is the 

( f l+y-1)-d imensional  vector with components 21 . . . . .  2~-1, 2~+1 . . . . .  2~+r, so that  

Cg,~+r.~ (.) represents a function independent of 2~. Equation (7) incorporates the com- 

plete solution of the partial differential equation (6). This follows on noting that  

Cg,~+~;~ (z; ~; 2 (~ is the general solution of the differential equation ~r I/~]~ 1 ... 

... ~2r We now establish that  Y~Cz,~+r.~(z; ~; 2(~ is identically zero. For this 

purpose, note that  by (5) 

lim I = O, 
2f -~-  oo 

lira I = 0, 
~i--) + :r  

if i e {1 ,2  . . . . .  fl}, 

if i e { ~ + l , ~ + 2  . . . . .  ~ + r ) .  
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For  a fixed i then, let 2 ~ - ~ c o ,  according as to whether  i E{1 ,2  . . . .  ,fl} or 

i E {fi + 1, fl + 2 . . . .  , fl + ~}. This yields the relationship 

C~.~+r;i(z; ~; 2d))+ lim ~C~.~+r;j(z; ~; 2d))=0,  
2~:-.~. T oo ] # i  

whence Cz,~+r; ~ (z, ~; 2 d)) is expressible as a sum of functions each involving f i + y - 2  
arguments  selected from the set {21,22 . . . . .  2~-1,2i+1 . . . . .  2~+,}. I t  follows tha t  

C~.~+r:i(z; ~; 2 d)) m a y  be expressed in the form 
i 

Y G,~,., (~; ~; ),('>)= 5. 5 c,~,,~+~,.,,j (~; ~; ).(""), 

where summat ion is extended over all dist inct  pairs i, j, wi th  i <  }, selected from the 

set {1, 2 . . . . .  f l + y } ,  and ),(~'J)denotes the ( f i + y - 2 ) - d i m e n s i o n M  vector  (21 . . . . .  ~ ~, 

2i+1 . . . . .  2s-1, 2s+1 . . . . .  ~+y),  so t ha t  C~,Z+7:i.j(. ) represents a funct ion independent  of 

2~ and 2j. Similarly, 

Y. G.,~+~,:, (~, o~; 2<b = 2: 2 : 5  c'~,~+:,:,.j.,~ (~; o~; ),(',J"% 
~ j k 

with i<j<lc,  summat ion  being extended over all such triples from {1, 2, " - - , f l+7} ,  

and 2 d'J'k) is the (f l+y-3)-dimensional vector  obtained from 2 by  deleting 2~, 2s and 

2~. The la t ter  result  is obtained by  allowing fixed pairs of the 2, to  approach T- co 

simultaneously,  according as to the sets in which they  are included. Proceeding in 

this way, the resul t  

C~,~+~:~(z; ~; 2 (~))= C~,~+~;2,~ ..... ~+r(z; ~; 20 ~ . . . .  + C~,~+~:~,~ ..... ~+~_~ (z; ~; 2~+~) 
i 

is deduced. On allowing ( f l + y - 1 ) - u p l e s  of the 2~ to approach their  l imiting values 

simultaneously it  is established in the same manner  as in the preceding stages tha t  

Cfl,~+r:i(z; ~; 2 (~ is independent  of all the 2~. Finally,  let  the 2i ( i=1,2  . . . .  ,fl+~/) 
i 

approach their  l imiting values simultaneously. This yields the required result 

~ C~,~+r:~ (z; ~; 2(i))=~0. 

Set now ). = 0 in equat ion (7) and use (5). Then 

Z 2 

e x p {  2(~- f l+~)} . l f l ,  fl+r(z; ~; O) 

- o ~  

- exp - ~ - O ( t )  c r  dr, 
(2~)~ <z+~) ~ + f l + r  

~fl, fl+r 
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where Rz,~+v----R~,~+v(O ) is the orthant 

t,<<.o(i=,,2 . . . . .  ~), t,>~o(i=~+,,~+2 . . . . .  ~ + r ) .  

On differentiating the last two terms in (8) s times with respect to z at z=  0 and 

recalling that  

~z- ~ (e - ~ ' + ~ )  = H~(~), 
Z ~ 0  

where {H,(~)} is the sequence of orthogonal polynomials, normalized so that  the 

coefficient of ~ in H~(~) is 1, relative to the weight function (2~)-�89 exp ( - ~ / 2 ) f o r  

real ~, we obtain 

(27r)�89 (~ :r �89 
l +~+?,) f e_�89 t 

~,~+r 
oo 

= ( - ) ~ ( a + f l + v )  -~' H,((a+~+V)*~) ~ 
- o o  

(9) 

~e-~ '~ ' [F(~)]~[1-F(~)]~d~ (s=0 ,1 ,2  . . . .  ). 

Let B = (b,j) be an arbitrary orthogonal matrix of size (fl + V)• (fl + ~,) such that  

ba+v,j=(fl+7) -�89 ( j = l ,  2 . . . . .  f l+~).  This matrix achieves the diagonalisation of Q. 

On setting 
y = B t  

we obtain 

o~+~+~,] - ( - f ~ )  e-iQ(t)(~ti)Sdt= a + ~ +  i (27r) �89 e-�89 

where D is the diagonal matrix with diagonal elements 1, 1 . . . . .  1, ~ / ( a + f i + ~ ) ,  and 

R~,~+r is the image of R~,~+ r under the mapping B. (Rp,~+v is an infinitely extended 

orthot0pe in y-space.) On application of the scaling transformation 

x=D�89 
we obtain further 

+/~+~) 1 
(2~) ~(a+~ : f  e-~(t)(5t~)s dt  

1 f e_iX, Xx~+~dx, 
(2 z) t~+~) 

~,~+v 

(lo) 



SKEW-REGULAI% SIMPLICES IN HYPERSPHERICAL SPACE 

where R~.~+v is the polyhedral half-cone in x-space defined by 

Rp,~+ r : fl+?-I [~(~  + 
L~(x)= ~. bk~xt+ >i0 k=l ~-~--~]  Xfl+7 

(i = 1, 2 . . . . .  ~), 

( i =  fl + l ,  fl + 2 . . . . .  fi + ? ). 

Refer r the flat L~(x)=0 as A~ ( i = 1 , 2  . . . . .  f l + y ) ,  and the angle between A~ and 

Ar interior to R~.~+r as (i?') ( ]# i ) .  Then, on using the orthogonality properties of B, 

fl+?'-�94 ( X + f l + y  1 + ~ + f i + ?  

e~ (i?)= +---P+r-I~ b~ + cr ( 1 - ~ + 7 ) + ~ 1 6 2  - - 1 + ~ '  
~_~ ~ (/~ + ~,) ~ (/~ + ~,) 

(11) 

according as to whether i and ] are members of different sets {1,2 . . . . .  fl}, 

{/~ + 1, fl + 2 . . . . .  fl + 7} or are both members of the same set. Finally, on transforming 

to polar coordinates such that x~+~= r cos r and integrating out with respect to r, 

o ~ §  e �89 

[ ~ ]-�89 1 fe_~r,#+.~+~_lcos~r ~ (12) 

~ ] -�89 
1_ 2t(~+,+~_2) F (fl + ? + s ) (2 ~)~(~+~) 2 f c~ r d ~, 

1'2'.. .~, (~+1) (5+r) 

where do) denotes an infinitesimal element on the surface of the unit sphere x 'x = 1, 

and 1'2' ... fl' ( f l + l ) ( f l + 2 ) . . .  ( f i+?)  is a skew-regular simplex of the type discussed 

in the introductory section, with 0 = cos -1 { - 1/(1 + ~)}. Combining equations (9) and (12), 

1%..fl'(fl+l)..- (/~+V) 

\ 2 /  - ~  

r ( ~ + ~ +  2 s) (13) 

+~,)~) ~ e ~[F(~)]~[1-F(~)yd~ ( s=O,  1 ,2  . . . .  ). 
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I t  should be no ted  t h a t  cos r is the  distance of a point  on the  surface of a uni t  

sphere f rom the f lat  I I  which is equal ly  inclined to the  flats A 1 . . . .  , A~+ w Therefore,  

in the no ta t ion  of the  in t roduc to ry  section, 

f r (0), (13.1) COS s d o  

1 ' . . . f l "  ( f l + l ) . . .  (fl+~,) 

the  non-normal ized geometr ical  momen t s  of the s implex 1' ... fl' (fl + l) ... (fl + ~) with 

respect  to II .  Equa t ion  (13) is then  a t  the  same t ime  a formula  for these momen t s  

in t e rms  of a univar ia te  integral  involving simple functions. The  normalised geometrical  

momen t s  are given b y  

t 
p~,~+~.~ (0) 

p~, ~+~: s (0) = P~,~+~: o (0) 

L 2 (fl + y)/ 
r (  t ~+7+~)2  

Hs ((~ + fl + y) t  ~) e �89 ~' IF  (~)]Z [1 - F (~)]r d 

f e -�89176 [F(~)] p [1 - F (~ ) ] ,  d~ 

( s = 0 ,  1, 2 . . . .  ). 

(14) 

We remark  t h a t  equat ions (13), (13.1) and  (14) give s imul taneously  simple integral  

forms for q~,~+r:s(O) and  q~.~+,:s(O), defined in section 1, since the la t ter  functions 

' 0 (0), respectively.  I n  fact,  are merely  mult iples  of p~.~+v:~( ) and Pz,~+r:~ 

1 

o f  / q~.~§ ) =  r s cos s ~ + ~ '  ldrdco f l+y+~p~.~+~.~(O),  (15) 

0 1 ' . . .  fl' (fl+ 1 ) . . .  (,8+~.) 

and 

_q'~,~+,:~(O) # + r  p~.z+~:~ (0) f l + r  
q~,~+~:~(0) , 0 = ' 0 - - -  (0). (16) q~,~+y:o( )  f l+y  +sp~,~+~,:o( ) f l + y +  s p~'~+~':~ 

3. Relationship of geometrical moments of simplex to contents of edges 

Define A as the shift  opera tor  which increases ~ b y  1, and  B and r as the 

opera tors  which decrease fl and y, respectively,  b y  1. Fur ther ,  let 

p 1 A, 

and L--ZB-rr. 



S K E W - R E G U L A R  SIMPLICES IN  I - IyPERSPt tERICAL SPACE 

1 
Then  1 a'n-~ 7_ (,,) A m ( m = 0 ,  1, 2 . . . .  ), 

where u -(m) and U (m) denote the  ascending and  descending factorials,  respect ively,  of 

degree m in u, 

u (-~ 1, 

u - ( m ) = u ( u  + l) ... ( u §  

u (~ = 1, 

u ( m ) = u ( u - - 1 )  ... ( u - - m +  1) 

( m = l ,  2 . . . .  ) ,} 

( m = l ,  2 . . . .  ) .} 

In  passing, observe t h a t  L m is an  annihi lat ion opera tor  when m >f i  §  

Define for non-negat ive  integral  s,/~ and  7, and  for real  and posi t ive 

1 f ~ S e _ � 8 9  ' ~F(s; ~; fl, y)- (2~)~ 
-oo 

where F ( . )  is defined in (5.1). In tegra t ion  b y  par t s  gives 

~ F ( s ; o ~ ; f l , ~ ) = s - l ~ F ( s - 2 ; ~ ; f l ,  y ) §  y) ( s = 1 , 2  . . . .  ). (17) 

The la t ter  relat ionship m a y  be used to prove  induct ively  the  reduct ion formulae  

k 
~ F ( 2 k +  1; ~; fl, y) ~ 2i+1 . = a2~c+1,2i+1 ( ~ ) ( P L )  ~ F ( 0 ,  g ;  fl ,  ~ ) ,  

i=o 
k 

a p 2~ �9 F ( 2 k ; . ; ~ , ~ , ) =  ~ ~ , ~ ( . ) ( I ~ )  ~F(O;~;r 
~ 0  

(k = 0, 1, .,') ...), ( is)  

where the  a ' s  are ra t ional  functions satisfying the  recursion relat ionships 

2 k + l  
a2k+2,2i  ( ~ )  : - - - -  a2k,  2t ((Z) -~- a2k+1,2i_  1 ((Z -~- 1) (i = 1, 2 . . . .  k), 

~Z 

and 

2 k + 2  
a2k+3,2~+l (~)  = - - -  a2k+1,2i+l  (~) -~-a2k+2,2 i  (~  + ] )  

a2k+2.o (~) = 1.3.5 ( 2 k +  1) /~ z+l, 

( i = 0 ,  1, 2, ... k), 

a2~+2,2k+u (a) = 1 = a2~+8,2k+~ (~). 
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The above reduction formulae for the xF-functions have been derived elsewhere [6] 

together with explicit expressions for the coeff icients  a~,a(~ ) as far as a~o,~o(~). For 

convenience, ~nd in order to render this p~per completely self-contained, we state here 

the explicit forms of the coefficients as far as a~,~ (a): 

ao. o (~) = 1. 

a l l  (~) = 1. 

1 
a~,o (~)=~, a~,2 (so)= 1. 

2 1 
as, ~ (~) ~ - § 1, as, a (~) = 1. 

a~.o (~) 
3 3 2 I 
~ ,  ~ (~) = ~ + ~ + ~ - ~ ,  ~,~ (5) = 1. 

§  3 4 3 2 I 
(~+ 1) ~, a~.. ~ j  = ~ + - ~ - / + - ~  + ~ , ' '  ~5,5 (~) ~ 1. 

15 a6,~(~z)=5(~ 2 1 ) + _ 4  ( 2 + I ) 3 

a~,, (5) 
5 4 3 2 1 

--~ + ~ i  + ~-~-~ + ~  + ~ - ~ '  ~~ (5) -- 1. 

Let V~m+y(O ) denote the relative content of the simplex 

r 2 '  ... ~ ' (~+ 1)(~+2) ... ( f + r ) ,  i.e. 

2 ~�89 V~'fl+7(O)= f 6 ~ ( ' 0 / F  {�89 (/~ § ~)}" 
1 ' ,  ..fl' (,~ + 1 ) , . .  (fl+~) 

Then, by (13), on setting s = O ,  

Vam+~,(O) ~ e - ~ [ F ( $ ) ] Z ~ l - F ( ~ ) ] r d ~ = ~ i  (2~)~(~-1)~F(0; 5; ~, ~,). (19) 

On substitution for ~F (0; ~; ~, y) in (18) by means of (19), 

W ( 2 k +  1; ~; ~, r)  

k 1 L~§ ( { 
= ~ a2k+i,2i+l (5) Vfl.fl+y co8 -1 ~0 (2~) ~§189 (g+ 2 i +  1) ~ g-(2i+l) + 2 i + 2 (2O) 

( ~ = 0 ,  1, 2 . . . .  ), 
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T (2 k; ~; fi, ~) 

= ~ a~.~ (~)(2~)~+~(~_1~ (~+ ) i )~  ~-~ L~V~+~ oos -a 
~=o  ' ~ + 2 i + 1  

( ~ = 0 , 1 , 2  . . . .  ). 

(21) 

Equat ions  (20) and (21) may  now be used in 

For  this purpose, let 

Ham+l($)= ~ C2m+a,2]+l} ~j+l ( m = 0 ,  1, 2 . . . .  ), 
t=0 

H2m(~)= ~ c2m,21~ 2j (m=O, 1, 2 . . . .  ), 
i=0 

�9 (2 m § 1) (2m-2h, ( _ )m-j (2 m) (2m-2h 
C~m+~,~j+~=(--)"-' 2,,,_.~(~_--j~ i C~m,~j= -2m_j(~_j)!. 

We then obtain 

~98,,8+y;2m+t ( 0 0 8 - 1 { - - ~ } )  = -- ( ~ - - ~ m + l ~ ( l ~ § 2 4 7 2 4 7  �89 
[2 (~ + r)/  [ r (  f l + y + 1 2  

(14) to derive the required relationship. 

+~ 
(22) 

ml, ~m,t~(~+,-1)l~ T2m+l,~ (~; ~ + fl § ~) L2~+1V~,~+r (c~  1 }) 
X 2 i + ~ + ~  

( m = 0 , 1 , 2  . . . .  ), 
and 

rain {m. t�89 

i=0 (11} )  ( 2 ~ ) ~ ( 2 i + a ) � 8 9  ... ( a + 2 i - 1 )  V/~.~+ r cos -1 -1~-~.~ 

where the T-functions are polynomials  defined by  

T2m+l ,  i(o~; x ) =  ~ C2m+l" 2]+1 a21+1, 2i+1 ((~)X1 
i=i 

Tzm, i (:r x) = Z cem. 2j aej. 2~ (~) x J (m = 0, 1, 2 . . . .  ). 
i=i 

2 -- 603807. Acta mathematica. 103. Imprim6 le 17 mars  1960 

( m = 0 ,  1, 2 . . . .  ), 

(23) 
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(The upper limits of summation in (22) and (23) follow from the fact that  L r=  0, 

for all positive integral r > f l + y . )  Equations (22) and (23) provide the fundamental 

relationships sought after. 

In particular, for y = 0 ,  the moments of a regular (fl-1)-dimensional spherical 

simplex are given by 

[/~ + 1  x 
rt-7-+m ) 

(24) 

min{m,[�89 fl2i_l(COs_l{ - 1 }) 

p#, fl: zm 

~=0 (27c) i ( 2 i + l + a ) � 8 9  cos -1 -- 

(eos-I [ -- 1~})  : (~)rn V~ F F (~) (V=) 

min;m, t�89 Tu,n.~ (a; a + fl) fl ( f l -1 )  ... ( f l -  2 i § l) V~-2,.t~-2, (cos-l { 
y 

(25) 

1 1) 2 i +  l +c~ 

/ 
(m=0,  1, 2 . . . .  ). 

The general spherical simplices of dimensionality 0, 1, 2, 3 . . . .  are respectively a point, 

an arc of a circle, a spherical triangle, a spherical tetrahedron, etc. The content of 

the general spherical simplex o f  arbitrary dimensionality was first investigated in a 

series of classic and remarkable papers by Schli/fli [7] who derived a fundamental 

differential recursion relationship for the content. (For further work on this problem 

see Hoppe [4], Richmond [5], Coxeter [1], [2], Sommerville [8], Ruben [6], and Van 

der Vaart [9], [10].) The content of a spherical triangle on the surface of a unit 

sphere is given by its spherical excess, but  for simpliees of dimensionalities greater 

than 2 the contents cannot be expressed in terms of elementary functions. However, 

for the special case of skew-regular simplices the following simple reeursion rela- 

tionships may be derived using Sehl~fli's relationship (Ruben, [6]) 

doV~'~+~(0)=4~ V ~ . ~ + ~ k ( ] ] c o s  -a 1 - 2  cos0 " (26) 
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Tables  of the contents  of regular  simplices for dimensionali t ies up to  and  including 

48 and  for var ious  angles 0 are avai lable  in [6]. 

As a simple appl icat ion of our formulae,  the  distance of the centroid of a regular  

s implex f rom the centre of the corresponding sphere is 

Pfl, fl;1 (COS-l(--1 Wfl--l'fl-l(Cos-l{-- (27) 

Thus, tr ivially,  (1) 

P3.3; 1 

( f l = l ,  2 . . . .  ). 

(cos 1(- 1-~}) = 1 ~3(~+3)~ 
- 2 / ~ J  

cos ( ) 
(1) 

3 cos  1 - ~ - 7 ~  

Since, for a rb i t r a ry  0, 

L k Va, a~ ~, (0)=j~o(  - )J Bm-J l  "j Vz, t~+~, (0) 

k 
= y  

i=0 
fl(m-j)y<j) V~ (m-j>.~+v m (0), 

~he numera to r s  in equat ions (22) and  (23) are hnear  funct ions of contents  of skew- 

regular simplices of var ious  dimensionalities.  However ,  in order to provide  a more  

significant geometr ical  in te rpre ta t ion  of (22) and  (23) we shall now demons t ra te  t h a t  

these simplices are, in fact,  the edges of var ious  dimensionali t ies of the s implex 

1' 2' ... fl' (fl + 1) (fi + 2) ... (fl + y). For  this purpose,  the  following subsidiary  two theo- 

rems mus t  first  be proved:  

T ~ E O ~ E M  I. Let 1' 2' ... fl' (fi + 1) (/3 § 2) ... (/3 + y) be a skew-regular s implex in  

(fi + ~ - 1)-dimensional spherical space, demarcated by a shea/ o / f l  + y (fl § y - 1)-/lats, 

A 1 . . . . .  Az+v, with its ( f l - 4 - T ) ( f l + y - 1 ) / 2  angles given by 

( a ~ ) =  0 , a, ~ both accented or both unaccented vertices ( a # ~ ) , l  

= ~ -  O, one vertex accented and the other unaccented. 

(1) "Trivia l ly"  f rom the  poin t  of view of our  formulae,  b u t  even this  formula  is by  no means  

easy to derive by  direct integration.  
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Let  {r'l, r~ . . . . .  r'~_j} and  {sl, 8~ . . . . .  sj} be arbitrary subsets o/ (1 ' ,  2 ' ,  . . . .  8 ' }  and  

(fl + 1, 8 + 2 . . . . .  8 §  respectively, and  let the complements o/ the latter subsets rela- 

tive to the sets from which they are selected be {t;, t~ . . . . .  t~_(~_j)} and {ul,  u 2 . . . . .  ur_i}. 

Then  the (8 + ~ - 1 - k)-dimensional  edge 

l i i i 

tl ... t f l - ( k - j )  u I �9 � 9  uv-j  ~- rl ... r k -  t 81 . . .  8j, 

/ormed jointly by the k fiats A . . . . . . .  Ar~_~, A~ . . . . . .  A~j, is itsel/ a skew-regular s implex  

with its (8 + 9 ~ - k) (fl + ~ - k - 1) /2  angles given by 

(r~ ... r'k_j s 1 ... s j p  q) = Ck (0), p ,  q both accented or both unaccented (p =4: q), 
(2S) 

J = x -  ~ (0), one vertex accented and the other unaccented, 

where p, q, are to be chosen / tom the set (t~, t' . ,  = . . . .  ~-(k-i), ul ,  .. u,_j},  and r (0) 

cos -1 {cos 0 / ( 1  - ~  cos 0)} ( k = 0 ,  1 ,  2 . . . . .  8 + y ) .  

Proo/. Schl/ if l i  h a s  s h o w n  in [7] t h a t  t he  ang les  of t he  edges  of a n y  sphe r i ca l  

s i m p l e x  m a y  be  e x p r e s s e d  in  t e r m s  of t h e  d e t e r m i n a n t s  of c e r t a i n  b o r d e r e d  m a t r i c e s  

w i t h  t h e  ang le -cos ines  of t he  s i m p l e x  as  e l emen t s .  I n  fac t ,  qu i t e  gene ra l l y ,  

w i t h  

q 
cos (r; ... s j p q ) -  ( A ( p  r; . . .sj)  A (q r~ . . . s j )}~ '  (29) 

i i 
- c o s  (pq)  - cos (p  r l)  . . . .  cos (p rk - j )  

p ! t 
- -  C O S  ( r l  g )  1 . . . .  C O S  ( r  1 rk-j) 

: : : : 

- -  COS ( r • _ j  q )  - -  c o s  ( r ; _  i r [ )  - - -  1 

�9 ! 
- -  C O S  ( 8 1  q )  - -  C O S  ( 8 1  r l )  . . . .  C O S  ( 8 1  r k - t )  

! r 
- -  COS (82 q) -- COS (82 r l)  . . . .  cos (82 rk-]) 

: : : : 

i t 
- -  cos (s i q) -- cos (8 t r t)  . . . .  cos (s i rk - l )  

- cos ( p  sl) . . . .  cos ( p  8j) 
t ! 

- cos (rl  81) . . . .  cos (rl  sj) 

: : : 

�9 ! 
- cos  ( rk - j  81) . . . .  cos ( r~- i  sj) 

1 . . . .  cos (sl sj) 

- cos (s 2 81) 1 - cos (s 2 sj) 

: : : 

- -  C O S  ( 8 j  8 1 )  " ' "  1 

(29.1) 



A ( p  r~ . . .  sj) = 

S K E W - R E G U L A I %  S I M P L I C E S  I N  l c I Y P E R S P H E R I C A L  S P A C E  

1 

--  c o s  (r~ p )  

--  c o s  ( r k - t  p )  

- c o s  (s l  p )  

- c o s  ( s 2  p )  

- c o s  (st p )  

- c o s  (pr~) . . . .  c o s  (pr'k_j) - c o s  (ps1) 
t ! 

1 . . . .  c o s  (r~ rk-t) - -  COS (r l  s 1) 

: : : : 

- -  c o s  ( r k - j  r l )  " "  1 - c o s  ( rk-y  sx) 

t 
- c o s  (s l  r~) . . . .  c o s  (s l  rk_ j )  1 

t t 
- c o s  (s2 r l )  . . . .  c o s  (s~ r~_j)  - c o s  (s2 s~) 

: : : : 

- -  COS (Sj r~) . . . .  COS (Sj rk_ j )  - -  COS (Sj 81) 

H e n c e ,  i n  o u r  c a s e ,  

- c o s  (pq) 

A ?'1 " ' "  8] = ?) 

# # . . .  # - #  - #  

1 - c o s  0 . . . .  c o s  0 c o s  0 c o s  0 

- cos  0 1 . . . .  c o s  0 c o s  0 c o s  0 

: : : : : : 

- c o s 0  - c o s 0  . . .  1 c o s 0  c o s 0  

c o s 0  c o s 0  . . .  c o s 0  1 - c o s 0  

c o s 0  c o s 0  - . .  c o s 0  - c o s 0  1 

: : : : : : 

c o s 0  c o s 0  . . .  c o s 0  - c o s 0  - c o s 0  

15 

. . . .  c o s  (psi) 
! 

. . . .  c o s  ( r l  sj) 

: 

t 
. . . .  c o s  ( r k - j  sj) 

. . . .  C O S  ( 8 1  8 ] )  

1 - c o s ( s  2s j )  

: 

�9 "" 1 

(29 .2 )  

�9 "" C O S  0 

�9 "* C O S  0 

: 

�9 .- c o s  0 , (30)  

. . . .  C O S  0 

. . . .  C O S  0 

: 

�9 "" 1 

A (p  r ' l ' "  s j ) =  

1 

# 

# 

- #  

- #  

- #  

# 

1 

- -  C O S  0 

- -  C O S  0 

Cos 0 

C O S  0 

C O S  0 

# . . .  # - / ~  - / ~  

- c o s  0 . . . .  c o s  0 c o s  0 c o s  0 

1 . . . . .  c o s  0 c o s  0 c o s  0 

: : : : : 

- c o s 0  . . -  1 c o s 0  c o s 0  

c o s 0  . . .  c o s 0  1 - c o s 0  

c o s 0  . . .  c o s 0  - c o s 0  1 

: : : : : 

c o s 0  . . -  cosO - c o s O  - c o s 0  

�9 "" C O S  0 

�9 "" C O S  0 

: 

�9 "" C O S  0 

. . . .  C O S  0 

. . . .  C O S  0 

: 

�9 "" l 

, ( 3 0 . 1 )  
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where # = - cos O, p E {1', 2', . . . .  fl'}, 

= cos o, v e { ~ + l ,  ~ + 2  . . . . .  ~ + r } ,  

~ =  - c o s  o, q e { l ' ,  2', . . . .  fl'}, 

= cosO, q e { ~ + l , t ~ + 2  . . . . .  ~ + r } .  

I t  m a y  be readily shown tha t  the inverse of the k•  k submatr ix  is (30) which is 

bordered by  the first row and first column is 

U : : W  (w iv), 
where U and  g are square matrices of size ( k -  j )x  ( k -  j) and j x j, respectively, having 

all their diagonal elements equal to {1 - (k - 2) cos 0}/(1 + cos 0) {1 - ( I : -  1) cos 0} and 

all their off-diagonal elements equal to cos 0/(1 + cos 0) {1 - (k - 1) cos 0}, while W is a 

mat r ix  of size (k - j) x j  having all its elements equal go - eos 0/(1 + cos 0) {1 - (k - 1) cos 0}. 

(W' is the transpose of W.) The corresponding cofactors in the submatr ix  are the 

products  of these values and A0, where A 0 is the value of the  determinant  of the 

submatrix.  On using Cauehy 's  expansion for bordered determinants  in terms of the 

elements  of the bordering row and column and the corresponding eofactors, 

(P ) [  cosO){1-(k-1)coso}l-(k-2)c~ A r ' l . . . s ,  = - c o s ( p q )  A 0 -  ( k - J ) ( 1 +  

cos 0 1 - (k - 2) cos 0 
+ (k - j) (k - ?" - 1) (1 § cos 0) {1 - (k - 1) cos 0} § j (1 + cos 0) {1 - (k - 1) cos 0} 

COS 0 

+ ?" ( J - 1 )  (l + cos O) { 1 -  (k - 1 )  cos O} 
(31) 

COS 0 
] t tv A 0 + 2 (k - ?') (1 + cos 0) { l ~ ( k  - 1) cos 0) 

{ ~ }• = -  cos (p q) + l _ (k _ l) cos 0 

( ) A (f  rl . . . . .  sj) is obtained from A p rl ... sj by  replacing cos (p q) by  - 1 and setting v = ~. 
q 

Similarly, A (q r; ... sj) is obtained from A (~r; ... 8,) by replacing cos (pq) by  1 

and sett ing # = v .  Hence, by  (29) and (31), 

, { 1 -  ( k -  1) cos 0} cos (pq)+k#v 
cos(rl...sjpq)-[{l_(k_l)cosO_k/~2}{l_(k_l)cosO_kr~}]l. (32) 
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There are four possible cases, corresponding to the nature  of the sets (accented or un- 

accented) in which p and q are contained. Examina t ion  of each of these cases yields 

on subst i tut ion in (32), 

COS 0 t 

cos (rl ... s jp  q) - 1 - k cos O' p, q belong to the same set of the 

t t 

s e t s  {t 1 . . . . .  t /3- ,k- i )} ,  { u  1 . . . . .  U~/-i}, 

cos 0 
1 -  k cos 0 '  p' q belong to  different sets. 

(33) 

Thus, t; . . .  t'~ (k j> Ul . . .  U?_] is a (fi + y - - 1 - / @ d i m e n s i o n a l  simplex with angles Ck (0) 

and ~ - r  as given in (28) of Theorem I. This completes the proof. 

I n  view of Theorem I, the relative content  of the edge t~ ... t~ (k j) ul ... u,_j is 

V~_<~_j>,~+~_ ~ (r (0)). 

TI~EOI~EM I I .  Let  each edge t'l . . .  t~-(k-])U 1 ...U~_] be assigned a weight + 1  or 

- 1  according as to whether ] is  even or odd. T h e n  the s u m  o/ the weighted relative 

contents o] all  (fl + y - 1 - k)-edges o/ the skew-regular  spherical  s imp lex  1' 2' . . .  fl' (fl + 1) 

( f i+2)  ... ( f l + y )  o/ Theorem I is equal to 

L ~ vt,,~,+~, (r (0))/~ !. 

Proo]. The weighted relative content  of the edge t~ . . .  t'~_(~_j)u 1 .. .  u~• s is 

( - ) J  V~-(k j),~+r-k (r (0)), by  Theorem I. Now 

L~V~.~+~,(r 1 ~ /k\fi(,~ 
Again, 

is the number  of dist inct  ways in which /c flats m a y  be selected from the fl + y flats 

A1 . . . . .  As+ r, such tha t  k - j  flats are from the set {A 1 . . . . .  As} and j f rom the set 

{A~+I . . . . .  As+r}. Since each such selection corresponds to  a ( f l + 7 - 1 - k ) - e d g e  of 

signed (weighted) relative content  ( - ) J  V~-(~-j).~+v-k (~k(0)), the to ta l  signed relative 

content  of all (fi + y - 1 - / @ e d g e s  is L ~ V~,~+~ (~k ( O ) ) / k t ,  as required. 

Rever t ing now to equations (22) and (23), it appears through the last two 

theorems t h a t  the r-th geometrical momen t  o/ a skew-regular  spherical  s i m p l e x  is  a 

l inear ]unction o/ the contents o] all  edges having  d imens ional i t ies  O, 2 . . . . .  r or 1, 3 . . . . .  r 
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less than that o/ the simplex, according as to whether r is even or odd. (Vh.k (0) is  here 

interpreted as zero when k <  h). 

We conclude this section by discussing briefly the range of validity of the for- 

mulae (22) and (23). These formulae have been proved for zr I f  then ~ is re- 

placed by  - (1 + cos 0)/cos 0 (recall tha t  0 =  cos-1 { -  1/(1 § one obtains ex- 

pressions for p~.~+v:s(0) which have been proved only for � 8 9  However, in 

view of the geometrical significance discussed above of the formulae it is clear tha t  

these must  hold for all permissible 0, since there is no essential qualitative difference 

between obtuse or acute 0, so far as the intrinsic geometrical situation is concerned. 

This may  be verified formally by analytic continuation. We shall not here proceed 

with this verification in detail, but  remark merely tha t  in (22) and (23) 

1 ( _ )k c o s  ~ 0 

a ( : r  ( a + k - - 1 )  - - k - 1  

I-i {1 - ( p -  1) cos 0} 
p=0  

has infinities a t  0 = ~ ,  O, cos -1 1 / 2 ,  COS - 1  1 / 3  . . . . .  COS -1 1 / (k - -  1), while a2j+l.2~+l (~) 

and a2j.~ (:r regarded as functions of O, may  be shown by  induction from the re- 

cursion relationships given immediately after equation (18) to have infinities at  

and a t  

0 =7/:, 0, COS -1 1 / 2 ,  COS -1 1 / 3  . . . . .  c o s  - 1  1 / 2 i  

0 = ~ ,  0, cos -1 1 /2 ,  cos -1 1 / 3  . . . . .  cos  -1 1 / ( 2 i -  1), 

respectively. Furthermore,  by  (26), i t  follows tha t  the term V~.~+~,(r in (22) 

and (23) is continuous and has finite derivatives of all order in the open interval 

(cos 1 1 / ( l + k ) ,  u). These facts m a y  be exploited to show tha t  the right-hand 

members of (22) and (23) are well-behaved over the entire domain of p~.~+r;~(0), 

inasmuch as the infinities of the right-hand members are exterior to this domain. 

The domain itself may  be established from a result of Schl~fli [7]. Schl/ffli has shown 

tha t  if all the angles of a (N-1) -d imens iona l  spherical simplex are acute, then the 

simplex is null if, and only if, 

_ cosl(21) - cos (12) - cos (13) . . . .  cos (1 N) 
1 - cos (23) . . . .  cos (2 N) 

i : : : : 

l - c o s ( N 1 )  - c o s ( N 2 )  - - c o s ( N 3 )  ... 1 

= 0 .  
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Thus, the regular spherical simplex 12 ... ( f l+~)  is degenerate, when the common 

pr imary  angle 0 is acute, if, and only if, ( l + c o s O ) ( 1 - ( N - 1 ) c o s O } = O ,  tha t  is, 

0 = cos -1 { I / ( N -  1)}. Since the skew-regular simplex 1' 2' ... fl' (fl + 1) ... (fl + ~) is 

generated from 12 ... (fl + y) as base simplex, this means tha t  the domain of p~.~+~;~ (0) 

is the open interval (cos -~ { 1 / ( f l + y - 1 ) } ,  z).  

4. Some applications 

(A) Sur/ace and volume-contents o/ varieties o/ revolution generated by the rotation 

o/ skew-regular hyperspherical simplices. The (fl + ~ - l)-dimensional spherical simplex 

1 '2 '  ... f l ' ( f l § 2 4 7  (fi+Y) may  be regarded as imbedded in a (fl+~)-flat.  

Rota te  the simplex round the (fi + y - 1)-flat A0, lying in the latter (fl + y)-flat, as 

axis. Assume tha t  this axis is defined by  fi + y fixed points in a (fi + y -  1 + r)-flat, 

imbedded in its (fl § y + r)-space, which has therefore r degrees of freedom and can 

rotate round A 0 in such a way tha t  each point of the simplex generates a r-dimen- 

sional hyperspherical surface. The simplex itself then generates a var iety of revolution 

of dimensionality f i + ~ - l §  and of species r (see e.g. Sommerville [8] ) ly ing  on 

the surface of a unit sphere in (fl §  § r)-space. According to the multi-dimensional 

generalization of Pappus 's  theorem (see for instance [8] again), the surface-content of 

the (non-simplicial) variety of revolution is the product  of the content of the gener- 

ating simplex and the surface-content of the hypersphere traced by  the r th centroid. 

The distance of the latter point from A0 is {P~,~+r;r (0)} ~/~- Hence, the surface-content 

of the generated surface is 

2 7~ Vr+]) 2 ~�89 
F(�89 + 1)) P~'~+r:' (0) �9 F(�89 V~.Z+~ (0). (34) 

Similarly, consider the sector of the unit  sphere in (f i+y)-space constructed by 

joining the vertices of 1 '2 '  ... fl' ( f l + l ) ( f l + 2 )  ... ( f l+y)  to the centre of the sphere. 

Then according to the extension of Pappus 's  theorem, the volume-content of tha t  por- 

tion of a unit sphere in (fi + y + r)-space generated by  rotation of the above sector 

round Ao is equal to the product of the volume-content of the sector and the surface- 

content of the hypersphere traced by  the r th centroid of the sector. The distance oft he 

lat ter  point from A 0 is {q~, ~+r: r (0)} 1/r. Hence, the volume-content of the generated figure is 

2 ~�89 +]) y~�89 

F(�89 (r + 1)) q~,~+~:r (0) �9 F (�89 ( f l+y)  + l) V~,~+v (0). (35) 
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(B) The moments o/the sum o/components o/an equicorrelated random normal vector 
restricted to an orthant. Consider a r a n d o m  normal  N-dimensional  vec tor  y ( N = f l + ~ )  

wi th  zero expecta t ion  vector  and  with var iance-covar iance ma t r ix  having all its off- 

diagonal  e lements  equal  to 5, the  common  correlation between the  components  of the  

vector.  The e lementa ry  p robabi l i ty  law of y is then  

1 
/:N (Y; 5) - (2 ~)�89 {(2 - ~)) N-la (2 + ( N -  1) ~)}t exp  - 2 (1 - 5) (1 + ( N -  2) 5)" 

�9 [(2 + ( N - 2 ) ~ )  ~ Y ~ - 5  ~+~ Y~YJ]} 

=(2~)�89 �89 --2(1 5)" 

�9 ~ y ~  I + ( N _ I )  5 

defined over  the whole N-space.  Suppose now y is condit ioned to lie in the o r than t  

R~. ~+~, y~ ~< 0 (i = l ,  2 . . . . .  fl), y~ >/0 (i = fl + i ,  fl + 2 . . . . .  fl + Y)- Then  the  p robabi l i ty  

dens i ty  funct ion of the  condit ioned vec tor  is 

1 
gN (Y; 5) = K/N (Y; 5), 

where K is a normalis ing cons tant  chosen so t ha t  the  relat ion 

f g~(y; 9 ) d y = l  
n~. ~+r 

is satisfied. The  m o m e n t s  of the  sum of the  components  are 

n~. ~+~ 
(s=O, 1,2 . . . .  ), 

and on replacing y, b y  y, V 1 -  9, this reduces to 

(1 - e)~' {(1 - e)/(1 + ( N -  2) 5)}~ ( 
(2 ze) �89 K J 

hE. ~+r 

(~ y~)~" 

[5  y~ �9 exp { - ~  9(V.y~)~]}dyl ... 1 + ( N -  1) dYe+r" 

(36) 
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(36) is to be compared with the left-hand number  of (10). As in (10), the quadrat ic  

form in (36) defines a set of homothet ic  ellipsoids having one principal axis along 

the line of s y m m e t r y  Yl = Y2 . . . . .  y~4 ~, and with the remaining fi + )p - 1 axes of equal 
N 

magni tude  and arbi trary,  bu t  mutua l ly  orthogonal  directions in the flat ~.y~ = 0. A 
1 

rotat ion of the coordinate axes chosen so as to  orient one of the t ransformed axes 

along the first principal axis referred to above followed by  a scaling t ransformat ion 

reduces 

y~-@ y~ / ( 1 + ( N - I ) 0 )  to ~x~. 
1 1 

Transformat ion to polar coordinates then gives 

~ { 2  (1 + (# + r - 1)e) (~ + r ) } ~  
r ( � 8 9  

r (�89 (~ + r ) )  P~'~+~;~ (c~ ( - q)) V~.~+~ (cos -~ ( - q)) 

( s = 0 ,  1, 2 . . . .  ) 

as the moments  of the sum, and  since the zero-th momen t  is necessarily 1, 

K =  V~.~+v(eos-l(-~)),  and the moments  are 

c R ~  ~ W r ( � 8 9  + s ) )  
{ 2 ( 1 + ( f l + 7 - 1 ) @ ) , ~ _ , ,  j F ( � 8 9  ) pz .z+7:~(cos-~(-9))  ( s = 0 , 1 , 2  . . . .  ). (37) 

(C) The moments of order statistics in normal samples. 

The probabi l i ty  densi ty  funct ion of the r t h largest value in a sequence of n 

independent  observations of a Gaussian stochastic variable with zero mean and uni t  

variance is 

n e - ~  < ~  ~ ) ,  (3S) r ~ [ F  (~)]~-~ [1 - F (~)]~-~ ( - ~ < 

where F (~) is as defined in (5.1) (see e.g. [3]). 

The characteristic funct ion of ~, E (exp iT ~), T real, is then 

in the nota t ion of equat ion (5). From equat ion (8), this is equivalent  to 

e T~/2n r - 1 i 
(2 ~)~(n-1) exp - ~ Q (t) - i T 

Rr-1, n-1  
where Q is defined in (6.l). 

dt,  

(39) 

(40) 
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The first  fac tor  in (40), exp  ( -  v2/2 n), is the  charac te r i s t ic  funct ion  of a Gauss ian  

s tochas t ic  va r i ab le  wi th  zero mean  and  var iance  1In  a n d  is therefore  the  charac te r i s t i c  

func t ion  of the  a r i t hme t r i c  mean  of the  n observat ions .  The  second factor  represents  

the  character is t ic  func t ion  of - 1 / n  t imes  the  sum of the  componen t s  of a ( n - 1 ) -  

d imensional  r a n d o m  vec to r  d i s t r i bu t ed  in i t ia l ly  as in  a m u l t i v a r i a t e  no rma l  d i s t r ibu-  

t ion with  zero expec t a t i on  vec tor  a n d  wi th  a corre la t ion  m a t r i x  hav ing  al l  i t s  off- 

d iagona l  e lements  equal  to  1//2 b u t  cons t ra ined  in the  sense of (B) above  to  lie in 

the  o r t h a n t  Rr - l . n -1 .  I t  follows t h a t  the  d i s t r ibu t ion  of ~ is the  convolu t ion  of two 

d is t r ibu t ions ,  one of which is t h a t  of the  a r i t hme t i c  mean  of the  n observat ions .  I n  

par t i cu la r ,  the  d i s t r ibu t ion  of ~ as  n--> co behaves  as t h a t  of the  nega t ive  a r i t hme t i c  

mean  of the  componen t s  of the  ( n - 1 ) - d i m e n s i o n a l  r a n d o m  vec to r  referred to  pre- 

viously.  

F u r t h e r ,  in view of the  discussion in (B), i t  appea r s  f rom (40) t h a t  the moments 

o/ ~ may  be expressed as linear /nnctions o/ the geometrical moments o/ a ( n -  2)- 

dimensional skew-regular spherical simplex S =  1' 2' ... (r - 1)' r ( r +  1) ... (n - 1) with the 

angle 0 ~ 2 ~ / / 3 .  The base regula r  s implex  12 ... ( n - l )  m a y  be ob t a ined  as follows: 

Inscr ibe  a regular  (linear) s implex  in a uni t  ( n - 1 ) - s p h e r e  wi th  the  angle  be tween  

a n y  two f la ts  a t  a ve r t ex  cos -1 ( 1 / / ( n - 1 ) } .  Then  n regular  ( n - 2 ) - d i m e n s i o n a l  regula r  

s implices wi th  common angle 2g / /3  resul t  b y  jo ining the  ver t ices  of the  l inear  sim- 

p lex  to  the  centre  of the  sphere.  These n simplices a re  m u t u a l l y  non-over lapp ing  

and  cover the  ent i re  surface of the  sphere.  F ina l ly ,  we no te  from the  preceding  

discussion t h a t  the  l imi t ing  momen t s  of ~ as n--> ~ are  s imple  mul t ip les  of t he  geo- 

met r ica l  momen t s  of the  s implex  S re la t ive  to  the  f la t  which is o r thogona l  to  the  

line of s y m m e t r y  of 12 ... ( n - 1 ) .  Specifically,  

E ( ~ )  ~ ( - )~ r (~ (n  - I + s) l  

These are the  exact m o m e n t s  of the  second componen t  of ~. 
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