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L. Introduction and summary

Consider a regular simplex constructed on the surface of a unit sphere immersed
in N-space with each of its N (N —1)/2 primary bounding angles equal to §. Denote
the vertices of the simplex by 1,2, ..., N and the simplex itself by 12 ... N. Further,

let ¢ denote the point antipodal to 4. Then a simplex such as
2 B+ ... (B+y) (8=0,1,...,N,B+y=N) has [B(B~1)+y(y—1)]/2

angles equal to 6 and the remaining By angles to m—~0. A simplex of this type will
be referred to as a skew-regular simplex. In particular, for =0 the simplex is re-
gular, while for =0, we have the regular simplex antipodal to 12 ... N. A regular
simplex is then a particular case of a skew-regular simplex. The latter simplex is
generated from the simplex 12 ... N, hereafter called the base simplex, by the pro-
jection of an appropriate subset of vertices of the base simplex with respect to the
centre of the sphere on to the surface of the sphere.

Let II be the (8+y—1)-flat through the centre of the sphere orthogonal to
the line joining the latter point and the centroid of the base simplex. Let z be the
distance of any point from IT; this distance will be regarded as positive if the point

in question lies on the same side (half-space) of Il as does the base simplex, and
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negative otherwise. We shall investigate the values of the geometrical moments of
12" ... (B+1) ... (B+7y) relative to II, represented by

D, payss (0) = fx‘dw/fdw (s=0,1,2,...), (1)

where dw denotes the content of an infinitesimal element on the surface of the sphere
(or, equivalently, the solid angle subtended at the centre of the sphere by the ele-
ment), the domains of integration in (1) being 1’2" ... 8 (B+1) ... (+y). In the
following section a generating function for the moments will be derived, which will
enable each of the (§+ —1)-fold integrals in (1) to be reduced to a univariate inte-
gral involving the error function and its integrals, provided 0 is obtuse. An important
consequence of this reduction is the rather striking result that the non-normalised
moments, defined by
Do, payis (6) = (x“’dw (s=0,1,2, ...), (2)
may be expressed as linear combinations of the contents of the edges, of various
dimensionality, of 1'2" ... 8’ (8+1) ... (8+y), for all permissible 6 (acute or obtuse).
This result is derived in section 3.
We shall also consider the moments, both normalised and non-normalised, of the
sector of the (f+y)-sphere standing on 1’2 ... 8 (8+1)... (+y) as base and the

centre of the sphere as pole, i.e.

Gp,pey:s (0)= fxsd-c/fdt (s=0,1,2, ...), (3)

and q;,5+y;s(6)=fx8dr (s=0,1,2, ...), (4)

where dr denotes the content of an infinitesimal element in (§ -+ y)-space, the domains
of integration in (3) and (4) being the sector as described.

In order to relate the above discussion more directly to the investigation in the
sections which follow, it will be convenient to refer to the class of skew-regular
simplices in terms of a system of orthogonal coordinate axes rather than (as above)
in purely geometrical terms. From this point of view the simplex 12 ... 8/ (8+1) ...
... (f+y) is represented formally as

U2 L BB+ . By ={x|xx=1, L(x)<0 (i=12, ..,58),
Lix)20 (i=B+1,8+2, ..., B+
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in which x denotes an arbitrary point in (8 +y)-space, x’x=1 the (§ -+ —1)-dimen-
sional surface of a unit sphere imbedded in (f 4 y)-space, while L, (x) =0, ..., Lg,, (x}=0
represent a sheaf of g+y (f-+y—1)flats, A,, ..., Ags,, through the centre of the
sphere, which are inclined equally to each other at an angle §. Any vertex u, ac-
cented or otherwise, of the simplex 1’2" ... 8" (B+1) ... (B+y) is & join of the line
of intersection of A, ..., Au_1, Ayi1, ..., Agy, with the surface of the sphere. The
angle between II and any of the flats A; forming the faces (f+y — 2-edges) of the
simplex, as measured by the angle between the oriented line joining the centre of
the sphere and the centroid of the base simplex 12 ... (8+y), in that sense, and
the normal to A;, oriented towards the simplex 1'2"... 8" (f+1)... (B+y), is

cosT (—=[{1—(B+y—1)ecos 6}/(B+y)]}) if i=1,2,..,8,
and m—cos ' (= [{1—(B+y—1)cos O}/(B+»T) i i=B+18+2,...,5+y.

Finally, in the concluding section some applications of the results of this paper
to the contents of certain non-simplicial regions in hyperspherical space, to restricted
multivariate normal distributions and to the distributional theory of order statistics

in samples generated by a Gaussian population will be discussed briefly.

2. Determination of univariate integrals for the generalised centroids

Consider the integral defined by

Bty

r B
I=Ip0, (5 a5 2)— f ot (%)*was*gmm) Tn-FE+ms  ©

— oo

in which the A; are real, « is real and positive and the function F(.) is defined by

s 3
F(g):(%) fe"“’du. 6.1)

It will appear subsequently that Ipg., (2 «; 0) is a generating function for the geo-

metrical moments of skew-regular (8 +y — 1)-dimensional spherical simplices with angles
cost {~1/(1+a)} and m—ocos™! {—1/(1+a)}.

In order to evaluate this generating function it will be necessary first to study the

more inclusive integral in (5) for arbitrary 4.
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On differentiation in (5) under the integral sign with respect to the A, (a stop

which is easily justified), we find, after some reduction,

axd | A g |
—%“? &+
kol 0y f ( ) AT

Bty \2 Bty
1 Bty (Z l,-) 2 Zli 22
==Y 5365 —H > - -—
( )(271)*(’3“')exp 11 atft+y| at+B+y 2(@+p+y)

B+y
oo o R [ 2 2;—6 2
. f (——) exp | —L(x+g+y) [5—}——1——— dég,

27 l a+B+y

having “completed the square” with respect to &. Integrating out with respect to

— o0

the latter variable,

x| 1 o 3 23 2 22
oh, . odpry UV @ (oz+ﬁ+y) exP{_%Q(l)”a+ﬁ+y+2(a+,3+y)}’ ©)

where @{(2) is the definite positive function in the A;(i=1, 2, , p+7v) defined by

32
Q(l)=22?—%i—y. (6.1)
Hence,
J (“)% Lo 22t # }dt
@ ) | exp{"zQ“ athiy 2athry)
Rg, p+y(2) %)

-+ z Oﬁ'ﬁ_'_y;i (z; o5 Z(D),

where Rpg.,(4) is the infinitely extended orthotope in (f - y)-dimensional t-space
defined by <3, (i=1,2,...8), 4,4 (=f+1,B+2,...,8+y), while 2¥ is the
(B +y—1)-dimensional vector with components 2, ..., Ai-1, Ait1, ..., Ag4y, so that
Cg,p+y:1(.) represents a function independent of 2, Equation (7) incorporates the com-
plete solution of the partial differential equation (6). This follows on noting that
S Copiyii (7 a3 2P) is the general solution of the differential equation & I/84, ...
.- 028:,=0. We now establish that 3 Cggipii(2; o 2®), is identically zero. For this
purpose, note that by (5)
lim =0, if i€{1,2,...,8},

Zi—>-oo

lim 7=0, if i€{8+1,8+2,....,58+7}

Aj>+o0
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For a fixed ¢ then, let 2,—>F oo, according as to whether i€{1,2, ..., ﬁ} or
i€{f+1,8+2, ..., 8+v}. This yields the relationship

Copepsi(z o A9+ lim 3 Cppiyis (3 o 29) =0,

A>Foo JFi

whence Cg g, (2, a; A7) is expressible as a sum of functions each involving f+y —2
arguments selected from the set {A;, Ay, ..., ki_1, Ais1s ..os Agys. It follows that
2. Cppiyii (2 & 2¥) may be expressed in the form

3

iZ Oﬂ,ﬂw:i (z; o Z(i)) = Z ]2 Cﬁ,ﬂw;i,i (2 o l(i’j))’

7

where summation is extended over all distinct pairs 1, j, with i<, selected from the
set {1,2,...,8+y}, and 2%” denotes the (f-+y —2)-dimensional vector (4, ..., ki_1,
Aivt, ooy Ais1, Aigas ooy Agyy), 80 that Cpgy.is(.) represents a funetion independent of

A; and };. Similarly,
2 Oppipi (2, o 29)y=> % Copryirnrlz o 2670y,

7

with ¢<j<k, summation being extended over all such triples from {1,2, ..., ﬁ-{—y},
and 2% js the (f+v — 3)-dimensional vector obtained from 2 by deleting 4;, 4; and
Zx. The latter result is obtained by allowing fixed pairs of the 1; to approach F oo
simultaneously, according as to the sets in which they are included. Proceeding in
this way, the result

iz Oﬁ‘ﬁJr?;i (2; & 7.@) = Oﬂ,/g+y;2,3,_ cu Bty (Z; a; ll) e+ Oﬁ,ﬂ+y; 1,2,... 8+y-1 (Z; o lﬂ+y)
is deduced. On allowing (8 + 9y —1)-uples of the 4, to approach their limiting values

simultaneously it is established in the same manner as in the preceding stages that
2 Capipii (% o 27) is independent of all the A;. Finally, let the 4, (1=1,2, ..., +y)

approach their limiting values simultaneously. This yields the required result

2, Cppaysi (5 25 20)=0.
Set now 2=0 in equation (7) and use (5). Then

Z2
R e RS

- _4Z2‘.wzi%—fas= 811 _
—eXP{ 2(0€+ﬁ+7’)} J‘e’f(zn) e ¥R (EY N -F (&Y dé (8)

1 o i 221t
T (2n)tE (oc+/3+y) f exp{—%—Q(t)ﬁngﬂer}dt,

R, pry
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where Rpg,,=Rgp.,(0) is the orthant
<0 =1,2,...,8), =0 (i=p+1,8+2,...,8+y).

On differentiating the last two terms in (8) s times with respect to z at z=0 and

recalling that
ds
S (e = H(§),

s
dz 2=0

where {H,(£)} is the sequence of orthogonal polynomials, normalized so that the
coefficient of & in H,(£) is 1, relative to the weight function (27)7% exp (—&2/2) for

real £, we obtain

1 ad t -1t s
¥ \a+ g+ ¢ (2 1) dt

Bp,B+y

9
~ ¥
=(=Y(xt+g+yp)y ¥ f H((a+p +y)E) (‘;—ﬂ\) e ¥ [F(EFP1-F(E)PAE (s=0,1,2,...).

Let B=(b;) be an arbitrary orthogonal matrix of size (§+y)x(f+7) such that
bgryi=(B+y)"t (j=1,2,...,8+y). This matrix achieves the diagonalisation of @.
On setting

y=Bt
we obtain

x i (/3'1"}’)%8 _ s o 3 1 _ , .
(“+ﬂ+» o | VG L) G | T Ay,

R8.B+y B, gy

where D is the diagonal matrix with diagonal elements 1,1, ..., 1, a/(x+ p+v), and
Rsp., is the image of Rsp,, under the mapping B. (R, is an infinitely extended

orthotope in y-space.) On application of the scaling transformation

x=Dty

D

we obtain further

( . )% 1o f &30 (31, dt
a+p+y) 2n) o

B.B+y

(10)

g A
et BEy) By @a)iEn By &5

Rg gty
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where Eﬁ,ﬂ +y is the polyhedral half-cone in x-space defined by

B+y-1 + ~% .
Li(x)': kzl bmxi’*l‘ [ﬂu?:l xﬁ+y<0 (’L=]., 2, ey ﬁ),

& ) at+f+y
Pbrr: Pyt x(B+ )] .
L (x)= ]Zl bkixi—i-[m] x4, 20 (G=F+1,8+2, ...,ﬁer)}.

Refer to the flat L,(x)=0 as A; (¢=1,2, ..., +y), and the angle between A; and
A, interior to R 4., as (¢j) (j=i). Then, on using the orthogonality properties of B,

ﬂ+flbibk.+‘3°+ﬂ+y 1 atp+y
cos (if)— + At alBry) o fry «fry) ] (11)
—‘%ﬁ_lbz‘ L etBry ‘( 1 ) atpty —1+a’
i a(f+y) Byl alB+y)

according as to whether ¢ and j are members of different sets {1,2,...,8},
{B+1,8+2,...,+y} or are both members of the same set. Finally, on transforming

to polar coordinates such that xg.,=r cos ¢, and integrating out with respect to r,

x ’ 1 —3Q(t) s
atB+y) (2 7)3EN € (>t)ydt

R, gty
= [ “ s ! f e ¥ P eos® bpdrdw (12)
(xt+p+y)(B+y))  2a)pe”
Bg, B4y
—_ “ _%s 1 -8 — Ig+y+ 8 S
- [(a “By) (ﬁ+y>] gy 20T ( 2 ) s’ pdo,

1'2...8°(8+D (B+y)

where dw denotes an infinitesimal element on the surface of the unit sphere x'x=1,
and 1’2" ... B (B+1)(B+2) ... (B+y) is a skew-regular simplex of the type discussed
in the introductory section, with 6 =cos™ {—1/(1 + «)}. Combining equations (9) and (12),

p(ﬁj_y)
cOSS</’>dw=(—)s[2 : ]%s )
1 BB By (B+7) P(/3+7+3)
2 (13)

2 iy

~ ¥
— f H,((a+f+p)¥E) (é%) e ¥PEFEPL-FETdE (s=0,1,2,...).

o)
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It should be noted that cos ¢ is the distance of a point on the surface of a unit
sphere from the flat II which is equally inclined to the flats A, ..., Ag,,. Therefore,

in the notation of the introductory section,

c0s® b d = Pg, p4y:s (0), (13.1)
1’.. .ﬂ'(ﬁ+l). . .(/3+y)

the non-normalized geometrical moments of the simplex 1" ... 8’ (8+1) ... (8+y) with
respect to II. Equation (13) is then at the same time a formula for these moments
in terms of a univariate integral involving simple functions. The normalised geometrical

moments are given by

Z’t;,ﬂw: s (62

LS N
e () [ Hrpepro et emorn - Fevas
=(—)S[m] F(M)’” — (14)
> e rern-royae
- (s=0,1,2, ...).

We remark that equations (13), (13.1) and (14) give simultaneously simple integral
forms for g pi,:s(0) and g p.y:s(6), defined in section 1, since the latter functions
are merely multiples of pgs.,:s(6) and pg g,,:s(0), respectively. In fact,
1
Gp.ppis (0) = r* cos® prf 7 T drdw=

0 I'...8/ BTD...(B+»

Gy P @, (19)

and
q;ﬁ,ﬂw:s(e)_ By Dopsys(0) B+y

Fevy 6 == = 7 = , v s 6 . 16
2. p+7:5 (0) Vppivio(0) B+y +5pap0000) ,3+7/+8pﬂﬁ+7 © (16)

3. Relationship of geometrical moments of simplex to contents of edges

Define A as the shift operator which increases « by 1, and B and T' as the
operators which decrease § and y, respectively, by 1. Further, let

PE1 A,
o

and L=fB—yT.
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1 m
Then P"‘EWA (m=0,1,2,...),
and "= > (-) (7;”) ,y(i)ﬁ(m—j) T ™7 k (m=0,1,2, ...),
pam

where % ™ and 4" denote the ascending and descending factorials, respectively, of

degree m in wu,
w0 = 1,

wM=u(u-+1).. (ut+tm—1) (m=l,2,...),}
u®=1,

uP=uu—1)... (u—m+1) (m=1,2,.--)-}

In passing, observe that L™ is an annihilation operator when m>pf+y.

Define for non-negative integral s, § and y, and for real and positive o
V(s o B, p)= (Zn f EePRFEFL-FETE,

where F(.) is defined in (5.1). Integration by parts gives
-1
Wi o)== V=258t PLY -1y 6=L2.) 17

The latter relationship may be used to prove inductively the reduction formulae

k
Y Q2k+1; 05, p)= 2 taxsneic(a) PLPY(0; o B, p),
=0 (k=0,1,2,...), (18)

Mw

W2k o b, p)= Go, 21 (o) (PL)mIF(O; o B, v)

where the a’s are rational functions satisfying the recursion relationships

2k + .
a2y 12,21 (O() = _06— Aok, 21 (OC) + A2k +1,2i~1 (OC + 1) (71 = 1, 2, k),

2k+2 .
o kel gip1{00) + Aoprooi(a+1) (¢=0,1,2, ... k),

Q21 +3,2i+1 (OC) =

and Aziio0(a)=1.8.5 ... 2k+1)/a ",

25 +2,2k+2 (OC) =1=agy13,2+3(e).
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The above reduction formulae for the W-functions have been derived elsewhere [6]
together with explicit expressions for the coefficients @, ,{«) as far as a@50,10 (). For
convenience, and in order to render this paper completely self-contained, we state here
the explicit forms of the coefficients as far as ag ¢ (ct):

g, 0 (a) =1,

al,l(a)= 1.

1
ag,0 () = ;, @z,2 ()= 1.

( )~%+ . =1
a3, 11 x oH_l,aa,s(“)—‘-
tao () = S (@) =1
4,0 (& ag, a4,2(a)_a a1 (x+2, Q4,4 0()** .
4 (2 1 3 ¢ 3 2
==tz ) + == Ty =1.
%1 (2) a(a+a+1)+(o¢+l)2’a5'3(a) PP R R

a()*léa )—§§+2+1+4(2+1——+—~3—~
60l@)=Tm Gen (@) ="\ + oyt e Tari e i a2 T o

4 ~—3~—+ 2 +ﬁ1—a () =1
e+l a+2 a+3 a+d’ 6.6 1% )

Qg 4 (0() 5; +

Let Vgp.,(0) denote the relative content of the simplex

V2 . B B+D(B+2) ... (B+7), e
92 B+
Vﬂ,ﬁﬂ, (9)= f dw/-——~.
VBB By r {% (ﬂ * 7))}

Then, by (13), on setting s=0,

7 3
Vogey (B)= J. (2-02-1) e EEREPI-F ) de=ot Qr)“ W (0; o B, ). (19)

~0
On substitution for ¥ (0; «; §, ¢) in (18) by means of (19),
WYEZEk+1; a 8, 9)
— k 1 L2€+1V ~1 1 ) 20
= 2, Grnan (@) 22y ¥ (21 2it1)f o @D porr |00\ = giey) RO

(k=0,1,2, ...),
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k
1 ot » 1
- < : L - 21
2, o (@) G () o V’f"ﬁ”(cos { oc+2i+1}) (1)

(k=0,1,2, ...).

Equations (20) and (21) may now be used in (14) to derive the required relationship.
For this purpose, let

Hypia(8)= Z Com +1,27+1 52”1 (m=0,1,2,...),
i=0

Hn (8)= 2 camay &Y (m=0,1,2, ...),
i=0

_; (2m - 1))

(2m)(2'" 27)
o T =gy e ) e Ty

2" (m—g)

)

Cam1,2741=(—) )m -

We then obtain

D8, B1yi2me1 (cos‘l{ ——1—}) - _ (i_)m“{(w-y) (x+B+y*

1+a 2(B+y) 7 } I‘(ﬂ+;+l+m)
(22)
minimy@ey-vy  Temeni(og @t B+y) L Vg, (cos_l{ 24+ ‘>+ oc})
' 4_ , 1
=0 Ca)2i+1+oa)ta(a+1).. (a+2z)Vﬂﬁ+y<eos 1{ T })
(m=0,1,2, ...),
and
Fﬁ+g
T R e | R i) MR e
8. 8+y:2m - =
1+« 2(B+y) P(ﬂ;rmrm)
(23)

. 1
e Tam.i (a5 0t ft9) L Vg oy (COS 1 { Tyiiix oz})

@) 2ita)ta(@+]l) ... (x+2i—1) Vﬁ,ﬁw(eos“l{—li a})

where the T'-functions are polynomials defined by

m

T2m+1,i {o; )= Z Com+1,27+1 %2741, 2i+1 () a (m=0,1, 2, ek
j=i

m

Tg,,,'i (OC; x) Z sz 25 A25, 21 (OC) xi (m:O, 1, 2, )

j=i

2 — 603807. Acte mathematica. 103. Tmprimé le 17 mars 1960
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(The upper limits of summation in (22) and (23) follow from the fact that L"=0,
for all positive integral r>pg+y.) Equations (22) and (23) provide the fundamental
relationships sought after.

In particular, for =0, the moments of a regular (f— 1)-dimensional spherical

simplex are given by

pﬂ.ﬁ;zmﬂ(cos—l{ ;})z_(a)'"“{ﬁ(wﬁ)}% F(g)

1+« 24 n F(g;_um)

min{,ﬂf B~} T2m+1,i (o o ‘*‘/3)13 (ﬂ - 1)(.3 - 2i) Vﬁ~2i—1,ﬂ—2i—1 (008—1 { _éi——i-—Q_—l—-;c})
i=0

Ca)fRit+tl+a)a(e+1)...(x+247) V,g,,g((:os‘l{—— ! })

Poupiom (cos’l{—— - }) _ (L)"‘ Vo _F_(_g)_

=0 @n) @it ta(et]l). (a+2i=1)V;,

. 1
. min{%[%ﬁ]} Tom,i(at+Bf)B(B—1)...(B—2%+1) V-2, p-2i (cosvl{-ﬁ_f_ 1 +0(})

)

(m=0,1,2,...).

The general spherical simplices of dimensionality 0, 1, 2, 3, ... are respectively a point,
an arc of a circle, a spherical triangle, a spherical tetrahedron, etc. The content of
the general spherical simplex of arbitrary dimensionality was first investigated in a
series of classic and remarkable papers by Schlifli [7] who derived a fundamental
differential recursion relationship for the content. (For further work on this problem
see Hoppe [4], Richmond [5], Coxeter [1], [2], Sommerville [8], Ruben [6], and Van
der Vaart [9], [10].) The content of a spherical triangle on the surface of a unit
sphere is given by its spherical excess, but for simplices of dimensionalities greater
than 2 the contents cannot be expressed in terms of elementary functions. However,
for the special case of skew-regular simplices the following simple recursion rela-
tionships may be derived using Schléfli’s relationship (Ruben, [6])

d 1 _ cos 6
75 Veser 0)= EIF Vs, gy (COS ! {—*1 3 oos 0:) . (26)
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Tables of the contents of regular simplices for dimensionalities up to and including
48 and for various angles # are available in [6].
As a simple application of our formulae, the distance of the centroid of a regular

simplex from the centre of the corresponding sphere is

1 }):_1{13(06-1-/3)}% F(g) Vﬂ‘"l’ﬁ_l(eoyl{_fi }) @7)

pﬂr5:1(003¥1{_1— 510 T x
R "ﬁ'ﬂ(‘m”{m })

74
(6=12,

Thus, trivially, (1)

-1 1
s -1(cos1{__l_})=_l{3(a+3)}% cos (_m)

1+ o 21 1+« ,1( 1 )
3 cos ——|—=
14+«

Since, for arbitrary 6,

k

T Vg 6)= 3 _),( )B’" T V550, (6)

i=0

&

=S = (1) Vo ey O
the numerators in equations (22) and (23) are linear functions of contents of skew-
regular simplices of various dimensionalities. However, in order to provide a more
significant geometrical interpretation of (22) and (23) we shall now demonstrate that
these simplices are, in fact, the edges of various dimensionalities of the simplex
V2 g+ (B+2)...(8+y). For this purpose, the following subsidiary two theo-

rems must first be proved:

TasorEM I. Let V2 .. (B+1)(B+2)...(f+v) be a skew-regular simplex in
(B +¥ —1)-dimensional spherical space, demarcated by a sheaf of f+v (B+y—1)-flats,
Ay ooy Mgy, with dts (B+9) (B+y—1)/2 angles given by

(c1)= 6 , 0,71 both accented or both wunaccented wertices (o'#r)
=m—0, one vertex accented and the other unaccented.

() “Trivially” from the point of view of our formulae, but even this formula is by no means

easy to derive by direct integration.
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Let {ri, ry, ..., 7%} and {s,, 8y, ..., 8;} be arbitrary subsets of {1',2, ..., 0} and
{B+1,8+2, ..., B+y}, respectively, and let the complements of the latter subsets rela-
tive to the sets from which they are selected be {t1, ta, ..., tg_qu_p} and {u;, Uy, ..., Up_j}.
Then the (f+vy—1—k)-dimensional edge

’ ’ _ T
h... t,g-(k_,-)ul ces Uy =T1 ooe T8y oo Sy,

formed jointly by the k flats A,, ..., Ar, As,s ooy Ay, s dtself a skew-regular simplex
with its (B+y—k)(B+y—k—1)/2 angles given by

(71 oo Tk-18y ... 8, 29) =i (8), p, q both accented or both unaccented (p=gq), } 28)

=g — ¢y (0), one vertex accented and the other unaccented,

where p, q, are to be chosen from the set {ti, ..., tg_qe_sy, Uyy ..., Upg), and ¢y (0) =
cos™! {cos 6/(1 —k cos 0)} (k=0, 1,2, ..., B+y).

Proof. Schlifli has shown in [7] that the angles of the edges of any spherical
simplex may be expressed in terms of the determinants of certain bordered matrices

with the angle-cosines of the simplex as elements. In fact, quite generally,

A (z 7'1 eee Sj)
€8 (M SPD= = T T A (g 7l s (29)

with
—cos (pg) —cos (pr1) o —cos (pri—;)  —cos(ps) - —cos(ps)
— cos (r1 q) 1 e —co8 (r17r_;) —cos(r1s) -+ —cos (r18))
) —~cos {ry_;q) —00S (Fre_j7r1) - 1 —COS (Tey8;) v+ — COS (i ;)
81 = ’ ’ ?

— €08 (8, q) — oS (8, 1) se —CO8 (8 7k-7) 1 <o —CO8S (8 8;)
— 08 (8, q) — 08 (85 71) s —COS (Sy7k-j) —COS (Sy8,) 1 —cos(s,s)
— cos (s;q) — cos (8;71) e —cOS (8§75 ;) —cos(s;8) 1

(29.1)



A(pri..s)=

Hence, in our

Afpri-s)=

1

— 08 (r_s p)

SKEW-REGULAR SIMPLICES IN HYPERSPHERICAL SPACE

—cos (pr1)

— cos (71 p)

~cos (s, p)
— cos (s, p)
~ cos (3;p)
case,
—cos (pq) 2
» 1
y —cos 0
Y —cos 0
—p cos B
—y cos 0
—y cos 6
1 I
u 1
u —cos 0
U —cos 0
—u cos 0
— U cos 0
—u cos 0

1

— €08 (Fr—; 1)
— 08 (8, 71)

—cos (8, r{)

— cos (s;71)

—cos 0

—cos 0
cos 0

cos 0

cos 0

—cos 0

—cos 0
cos 0

cos 6

cos 0

— 08 (P 7%—y)

— 08 (71 7%;)

1

— €08 (ry_; 8;)

~ cs (8, 75s)

— COS (8, ;)

— 08 (8 7%5)

U

—cos 0

—cos 0

cos O

cos O

cos 6

—cos 0

—cos 0

cos 0

cos 0

cos B

—u

cos

cos 0

cos 0

—cos 0

—cos 6

—p

cos 8

cos O

cos 0

—cos

—cos @

—cos (P 8,)

—cos (1 8;)

1

—Co8 (85 8)

—cos (8;8)

— ¢
cos 8

cos 0

cos 0

—cos 0

—cos

—u
cos f

cos 6

cos 6

—cos f

—cos

15

—cos (P 8y)

— Cos (7'{ )

—cos (17— )
— cos (8; &)

1 —cos(s,8)

-4
cos 6

cos 0

cos 0
—cos 0

—cos 0

—H
cos

cos 0

cos 0 |,

—cos 0

—cos 8

(29.2)

(30)

(30.1)
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where u=—cos 0, pe{1',2', ..., B},
= cos B, pe{f+1,8+2, ..., 8+y}

v=—cos 0, g€{l’, 2, ..., 8'},
cos 0, g€{f+1, +2, ..., B+y}.

f

It may be readily shown that the inverse of the kxk submatrix is (30) which is

bordered by the first row and first column is

where U and V are square matrices of size (k —j) x (£ —4) and jx§, respectively, having
all their diagonal elements equal to {1 — (k—2) cos 0}/(1+ cos 6) {1 — (k—1) cos 8} and
all their off-diagonal elements equal to cos 6/(1+ cos ) {1 — (k—1) cos 6}, while W is a
matrix of size (k— j) xj having all its elements equal to —cos /(1 + cos 0) {1~ (k- 1) cos 0}.
(W' is the transpose of W.) The corresponding cofactors in the submatrix are the
products of these values and A, where A, is the value of the determinant of the
submatrix. On using Cauchy’s expansion for bordered determinants in terms of the

elements of the bordering row and column and the corresponding cofactors,

b, . T 1—(k—2)cos
A (q 1. s,-) = —cos(pg) A, [(k 7)(1+ cos ) {1 — (k—1)cos 6}
cos 0 . 1—(k—2)cos 8

T k=7 (k—j—1)

(1+cosB) {1 —(k—1) cos0}+7(l+ cos 0) {1 — (k—1) cos 0}

cos

(1+ cos ) {1 —(k—1) cos 0}

+i(G-1) (31)

cos 0

(L+ cos ) {1—(k—1) 0036}] 1 Bo

- . kpy
- {cos (pq)+1_(k—1) cos G}Ao'

+2(k—7)

A (pry, ...,s;) is obtained from A (z ... sj) by replacing cos (pg) by 1 and setting v=pu.

Similarly, A (g 71 ...s;) is obtained from A (Z; ... 8,-) by replacing cos (pg) by —1

and setting u=v». Hence, by (29) and (31),

7 B {1—(k—1)cos 0} cos (pg)+kuy
008 (11 8P = [ " 1y cos 6 — k1% {1— (k— 1) cos 6 —k»"]E

(32)
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There are four possible cases, corresponding to the nature of the sets (accented or un-
accented) in which p and ¢ are contained. Examination of each of these cases yields
on substitution in (32),

cos (1 ... s,pq)=1—_c;c)—sczs—0, P, q belong to the same set of the
sets {t, ..., to—(i-n}s {t1s -on s Uy i) (33)
cos f .
1 koot P4 belong to different sets.

Thus, # ...t & 5% ... %, ; i & (§+y—1—k)-dimensional simplex with angles ¢, (0)
and w—d¢;(0), as given in (28) of Theorem I. This completes the proof.

In view of Theorem I, the relative content of the edge #; ... %5 @ j % ... %,—; is
Vo-temin, vk (P1 (6)).

THEOREM II. Let each edge ...t g jty...wu,; be assigned a weight +1 or
—1 according as to whether j is even or odd. Then the sum of the weighted relative
contents of all (B+y—1—k)-edges of the skew-regular spherical simplex 12" ... §/ (8+1)
(B+2)...(B+y) of Theorem I is equal to

LF Vg iy (i (0)) /K.

Proof. The weighted relative content of the edge & ... t5_gspty ... %, ; is
(=Y Va-i—s. pry—x (¢x (6)), by Theorem I. Now

M: il z (k) ﬁ(k*i) 7/ci) (=Y Vﬂ~(k—j),ﬁ+y—k ((}Sk (6)).
k! ki S0\

als)eere=(. ) ()

is the number of distinet ways in which % flats may be selected from the g1y flats
Ay, ..., Apiy, such that k—j flats are from the set {A,, ..., As} and j from the set
{Ap:1, ..., Agi,}. Since each such selection corresponds to a (f+y—1—k)-edge of
signed (weighted) relative content (—) Vg c—j. piy-r (Px (0)), the total signed relative
content of all (8+y—1—k)-edges is L* Vs 5., (s (0))/k!, as required.

Reverting now to equations (22) and (23), it appears through the last two
theorems that the r-th geometrical moment of a skew-regular spherical simplex is a

linear function of the contents of all edges having dimensionalities 0, 2, ... ,ror 1, 3, ..., r

Again,
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less than that of the simplex, according as to whether r is even or odd. (Vy, i (0) is here
interpreted as zero when k<h).

We conclude this section by discussing briefly the range of validity of the for-
mulae (22) and (23). These formulae have been proved for «>0. If then « is re-
placed by —(1+ cos 6)/cos 6 (recall that 6= cos™ {—1/(1-+«)}), one obtains ex-
pressions for pg s.,:s(0) which have been proved only for i n<6<zn. However, in
view of the geometrical significance discussed above of the formulae it is clear that
these must hold for all permissible 6, since there is no essential qualitative difference
between obtuse or acute 0, so far as the intrinsic geometrical situation is concerned.
This may be verified formally by analytic continuation. We shall not here proceed

with this verification in detail, but remark merely that in (22) and (23)

1 _ (=) cos® 0
a(e+1) ... (c+k—1) kI:Il{l_(p_l) cos 6}

p=0

has infinities at 6=z, 0, cos™ 1/2,c087*1/3, ..., cos™' 1/(k—1), while a1, 2.1(x)
and ag; 2 (), regarded as functions of 6, may be shown by induction from the re-

cursion relationships given immediately after equation (18) to have infinities at

0=, 0, cost1/2, cos ' 1/3, ..., cos™" 1/24¢
and at
0=m, 0, cost 1/2, cos™ 1/3, ..., cos™* 1/(2i—1),

respectively. Furthermore, by (26), it follows that the term Vj g, ($:(0)) in (22)
and (23) is continuous and has finite derivatives of all order in the open interval
(cos ' 1/(1+k), n). These facts may be exploited to show that the right-hand
members of (22) and (23) are well-behaved over the entire domain of pg .5 (6),
inasmuch as the infinities of the right-hand members are exterior to this domain.
The domain itself may be established from a result of Schléfli [7]. Schlifli has shown
that if all the angles of a (N — 1)-dimensional spherical simplex are acute, then the

simplex is null if, and only if,

1 —cos (12) —cos(13) -+ —cos(1LN)
—cos (21) 1 —cos(23) -+ —cos(2N)

—cos (N1) —cos (N2) —cos (N3) - 1
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Thus, the regular spherical simplex 12 ... (§+y) is degenerate, when the common
primary angle 6 is acute, if, and only if, (1+ cos 6} {1 — (N —1)cos 6} =0, that is,
f=cos™' {1/(N—1)}. Since the skew-regular simplex 1'2' ... 8/ (8+1) ... (B+7) is
generated from 12 ... (8+y) as base simplex, this means that the domain of pg s.,: s (6)
is the open interval (cos™' {1/(8+y—1)}, 7).

4. Some applications

(A) Surface and volume-contents of wvarieties of revolution generated by the rotation
of skew-regular hyperspherical simplices. The (f+y—1)-dimensional spherical simplex
e B+ (B+2) ... (+y) may be regarded as imbedded in a (f-+y)-flat.
Rotate the simplex round the (8+y—1)-flat A, lying in the latter (§+ y)-flat, as
axis. Assume that this axis is defined by f+y fixed points in a (f+y—1+r)-flat,
imbedded in its (B¢ +7)-space, which has therefore r degrees of freedom and can
rotate xround A, in such a way that each point of the simplex generates a r-dimen-
sional hyperspherical surface. The simplex itself then generates a variety of revolution
of dimensionality f+y—1-+7 and of species r (see e.g. Sommerville {8]) lying on
the surface of a unit sphere in (8- +r)-space. According to the multi-dimensional
generalization of Pappus’s theorem (see for instance [8] again), the surface-content of
the (non-simplicial) variety of revolution is the product of the content of the gener-
ating simplex and the surface-content of the hypersphere traced by the rth centroid.
The distance of the latter point from Ag is {pg iy (0)}"”. Hence, the surface-content
of the generated surface is

3r+D B+»
1—%72(;,?1‘)‘) Da. pyir (0) - %) Vs, gy (0). (34)

Similarly, consider the sector of the unit sphere in (8- y)-space constructed by
joining the vertices of 1'2" ... f/(+1)(f+2) ... (B+y) to the centre of the sphere.
Then according to the extension of Pappus’s theorem, the volume-content of that por-
tion of a unit sphere in (f -y +r)-space generated by rotation of the above sector
round A, is equal to the product of the volume-content of the sector and the surface-
content of the hypersphere traced by the rth centroid of the sector. The distance oft he

latter point from Ag is {gs, gy r (0)}"". Hence, the volume-content of the generated figure is

9 D YOS
Tt e 0) - TG@ )+ 1) Vopry(6)- (35)
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(B) The moments of the sum of components of an equicorrelated random normal vector
restricted to an orthanf. Consider a random normal N-dimensional vector y(N=pf+7v)
with zero expectation vector and with variance-covariance matrix having all its off-
diagonal elements equal to p, the common correlation between the components of the

vector. The elementary probability law of y is then
1 { 1
exp | — .
o {1 T A+ WD) TP T 210 1+ (V1))
A+ (N-2)9 2y ~e33 yz-y,-]}

1 1
TR {(I—g) (1 + (N=1)g}t P {_2 (1—p)

e
: [2 yi e Y, (Z yi)2:|} )

vy 0)=

defined over the whole N-space. Suppose now y is conditioned to lie in the orthant
Rspiy, ;<0 (6=1,2, ..., B), %>0(@=p+1,8+2, ..., 8+y). Then the probability

density function of the conditioned vector is

1
g (¥; Q):j{fN(y; 0);
where K is a normalising constant chosen so that the relation
gn (¥; 0)dy =1
Bp.pry
is satisfied. The moments of the sum of the components are

f (§y1) gN(y’ Q)dy (8=0’ 1! 27 )5

Rp. gty

and on replacing y; by y; V1— o, this reduces to

1-— 1+(N-—-1 i
Bp, p+y

(36)

1
- exp {—a[zy%—ml\%E(Zyi)z]}dyl e BYpiy
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(36) is to be compared with the left-hand number of (10). As in (10), the quadratic

form in (36) defines a set of homothetic ellipsoids having one prineipal axis along

the line of symmetry y, =y,=--- =1ys.:,, and with the remaining §+ 7y~ 1 axes of equal
N

magnitude and arbitrary, but mutually orthogonal directions in the flat > y,=0. A
1

rotation of the coordinate axes chosen so as to orient one of the transformed axes

along the first principal axis referred to above followed by a scaling transformation

reduces
N N 2 N
gy%—g(gyi) /A+(N-1)g) to 2t
Transformation to polar coordinates then gives

1 _ LGBy +s)
720+ Bry=1o) (B +y)} \ONTERY)

Pp.p+yis (cos‘l (—0) Vspsy (005_1 (—o))
(s=0,1,2, ...}

as the moments of the sum, and since the zero-th moment is necessarily 1,

K="V 5., (cos '(—p)), and the moments are

TGB+y+ .
@ @ry-0o @ L D ot (=012 L0 60

(C) The moments of order statistics in normal samples.
The probability density function of the rt¢k largest value in a sequence of n
independent observations of a Gaussian stochastic variable with zero mean and unit

variance 1is

r—1

- ¥
”(n l) (i) ST 1= F (O] (— 0 <E< o), (38)

where F (&) is as defined in (5.1) (see e.g. [3]).

The characteristic function of &, F (exp ¢t &), 7 real, is then

n—1 )
”(7 - 1) Iy nea (i3 15 0), (39)

in the notation of equation (5). From equation (8), this is equivalent to

-1 n-1

s [

- 2/2nn <7‘—1) 1 . ;ti

e T exp ~§Q(t)—w—n— dt, (40)

(2m)i"D

where @ is defined in (6.1).



22 HAROLD RUBEN

The first factor in (40), exp (—1%/2n), is the characteristic function of a Gaussian
stochastic variable with zero mean and variance 1/7 and is therefore the characteristic
function of the arithmetric mean of the n observations. The second factor represents
the characteristic function of —1/n times the sum of the components of a (n—1)-
dimensional random vector distributed initially as in a multivariate normal distribu-
tion with zero expectation vector and with a correlation matrix having all its off-
diagonal elements equal to 1/2 but constrained in the sense of (B) above to lie in
the orthant R, q ,_;. It follows that the distribution of ¢ is the convolution of two
distributions, one of which is that of the arithmetic mean of the n» observations. In
particular, the distribution of & as n—>co behaves as that of the negative arithmetic
mean of the components of the (n—1)-dimensional random vector referred to pre-
viously.

Further, in view of the discussion in (B), it appears from (40) that the moments
of & may be expressed as linear fnnctions of the geometrical moments of a (n—2)-
dimensional skew-regular spherical simplex S=1'2" ... (r—1) r(r-+1) ... (n—1) with the
angle §=27/3. The base regular simplex 12 ... (n—1) may be obtained as follows:
Inscribe a regular (linear) simplex in a unit (»— 1)-sphere with the angle between
any two flats at a vertex cos™ {1/(n—1)}. Then n regular (n — 2)-dimensional regular
simplices with common angle 27/3 result by joining the vertices of the linear sim-
plex to the centre of the sphere. These n simplices are mutually non-overlapping
and cover the entire surface of the sphere. Finally, we note from the preceding
discussion that the limiting moments of & as n—oco are simple multiples of the geo-
metrical moments of the simplex § relative to the flat which is orthogonal to the

line of symmetry of 12 ... (n—1). Specifically,

E(ES)N(_)S(2(n-—l))*sI‘(%(n—l—Fs)) 2

T'((n-1) pl(s ) (1)

These are the exact moments of the second component of &.

n
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