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Introduction.

Generalized harmonic analysis represents the culmination and combination
of a number of very diverse mathematical movements. The theory of almost
periodic functions finds its precursors in the theory of Dirichlet series, and in
the quasiperiodic functions of Bohl and BEsclangon. These latter, in turn, are
an answer to the demands of the theory of orbits in celestial mechanics; the
former take their origin in the analytic theory of numbers. Quite independent
of the regions of thought just enumerated, we have the order of ideas associated
with the names of Lord Rayleigh, of Gouy, and above all, of Sir Arthur Schuster;
these writers concerned themselves with the problems of white light, of noise,
of coherent and incoherent sources. More particularly, Schuster was able to
point out the close analogy between the problems of the harmonic analysis of
light and the statistical analysis of hidden periods in such scientific data as are
common in meteorology and astronomy, and developed the extremely valuable’
theory of the periodogram. The work of G. I. Taylor on diffusion represents
another valuable anticipation of theories here developed, from the standpeint of
an applied mathematician of the British school, with preoccupations much the
same as those of Schuster.

The work. of Hahn seems to have a much more definitely pure-mathematics
motivation. To the pure mathematician in general, however, and the worker in
real function theory in particular, we owe, not so much the setting of our pro-
blem, as the chief tool in its attack: the famous theorem of Plancherel, the proof
of which Titchmarsh has extended and improved.

It may seem a little strange to the reader that the present paper should
contain yet another proof of this much proved theorem. In view, however, of
the centralness of the Plancherel theorem in all that is to follow, and more
expecially of the fact that the proof here given furnishes an excellent introdue-
tion to the meaning and motivation of our proofs in more complicated cases,
it has seemed worth while to prove the Plancherel theorem in full.

"The germs of the generalized harmonic analysis of this paper are already
in the work of Schuster, but only the germs. To make the Schuster theory
assume a form suitable for extension and generalization, a radical recasting is

necessary. This recasting brings out the fact that the expression
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Q) ——llm—ffx+t dt (0. 1)

T—w 2

plays a fundamental part in Schueter’s theory, as does also

Slw)— L f T il o2

Accordingly, section 3 is devoted to the independent study of these two expres-
sions, and to the definition of S(u) under appropriate assumption as the spectrum
of fla).

There are some interesting relations between the total spectral intensity of
Slz) as represented by S(u) and the other expressions of the theory. Some of
these demand for their proper appreciation a mode of connecting various weighted
means of a positive quantity. The appropriate tool for this purpose is the general
theory of Tauberian theorems developed by the author and a.pphed to these
problems by Mr. S. B. Littauer. _

These latter Tauberian theorems enable us to correlate the mean square
of the modulus of a function and the »quadratic variation> of a related function
which determines its harmonic analysis. The theory of harmonic analysis here
indicated has been extended by Bochner to cover the case of very general func-
tions "behaving algebraically at infinity. A somewhat similar. theory is due to
Hahn, who is’,‘ however, more interested in questions of ordinary convergence
than in those clustering about the Parseval theorem.

The theory of generalized harmonic analysis is itself capable of extension
in very varied directions. Mr. A. C. Berry has recently developed a vectorial
extension of the theory to #» dimensions, while on the other hand, the author
himself has extended the theory to cover the simultaneous harmonic analysis of
a set of functions and the notions of coherent and incoherent sources of light.
‘A third extension depends on the replacement of the translation group, funda-
mental in all harmonic analysis, by another group.

To prove that the theory is not vacuous and trivial, it is of importance to
give examples of different types of spectra. We do this, both by direct methods,
and by methods involving an infinite series of. choices between alternatives of
equal probability. The latter method, of course, involves the a,ssuinption of. the
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Zermelo axiom: on the other hand, it yields a most interesting probability theory
of spectra. This theory may be developed to cover the case where the infinite.
sequence of choices is replaced by a haphazard motion of the type known as
Brownian.

The spectrum theory of the present paper has as one very special applica-
tion the theory of almost periodic functions. It is not difficult to prove that
the spectrum - of such a function contains a discrete set of lines and no cont-
inuous part, and to deduce from this, Bohr's form of the Parseval theorem. The-
transition from the Parseval theorem to the Weierstrassian theorem that it is
possible to a.pprbximate uniformly to any almost periodic function by a sequence
of trigonometrical polynomials follows essentially lines laid down by Weyl,
though it differs somewhat in detail.

 Besides the well-known generalizations' of almost periodic functions due to
Stepanoff, Besicovitch, Weyl, and the author, there is the little explored field
of extensions of almost periodic functions containing a parameter. These have
been used by Mr. C. F. Muckenhoupt to prove the closure of the set of the
Eigenfunktionen of certain linear vibrating syétems.‘ ‘This is one of the few
applications of almost periodic functions of a fa,irlylr general type to definite
mathematicophysical problems. Our last section is devoted to this, and to related

matters.

CHAPTER I
1. Plancherel’s theorem.

Plancherel’s theorem reads as follows: Let fx) be quadratically summable

over (—oo, ) in the sense of Lebesque — that s, let it be measurable, and let
f|f(90)|2d90 (1.01)

exist and be finite. (i.e. f&L,). Then

A— Vz T

g(w) =Lim, ff x)e"dx (1.02)
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(where 1.i.m. stands for »limit in the mean») will exist, and

4

fy—Lim. f g(w)e= du. (1. 03)

A=

Sy
g(u) is known as the »Fourier transform>» of fl@). To prove this, let us put

_ [ fle) if|x] < A,

Sl =17 if || = 4.

(1. 04)

Let us represent f,(x) over (—2 A, 2 4) by the Fourier series

inx

Falo) = D ane 4 (1. 03)

Then

[ rnii@az= [ fiaryiias

24 . .
© . inmx (z+3) .inns

=Zandn e 24 ¢ 4k

- in
= > ad|an]?e? 4. (1. 06)

This series of equations merits several comments. First, the infinite inte-
grals which appear are infinite in appearance only, as the integrand vanishes
beyond a certain point. Secondly, the period chosen for the Fourier representa-
tion of fa(x) is twice the length of the interval over which f4(zx) may differ
from o, so that one period of f4(x+§) may overlap not more than one corres-

ponding period of fy(£). Third, the function f Sfalx+8) f4(5) d& has a Fourier

development which possesses only positive coefficients, and is absolutely and
uniformly convergent, as follows at once from the Hurwitz theorem. The
positiveness of the Fourier coefficients of this function forms the point of de-

parture for the greater part of the present paper.
16—29764. Acta mathematica. 55. Tmprimé le 7 avril 1930.
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It follows at once that

p? 24 . 2N+1
» o sin =" w(x—y) _ B
fA(x+§)ﬁt(§)d§=A}'_l_Ig Al T ee=y —dy | faly+5)fa(§dE (1.07)
- sin T Y
4 A

—w —2 A —0

However, Lebesgue’s fundamental theorem on the Fourier coefficients, to the
effect that they always tend to zero, yields us

- 24

lim -1 [ sin 2N F1 r(z—y)
N-—-.m4A 411 Ly

54 a4 T

Ay [ fuly+ 8905 =0, (r.08)
Combining these two relations, we see that

flf(x)lgdx=f|fa(x)|*dx

+1

_ 2A8in" T ——my v o
~ lim ‘—f e f Faly+ B4 ®) dE

N—w 7T
—24
2N+1
® 44 " ol
=A}im }tfdyfcos uyduff,i(y+§)ffi(§)d§
—® [} —®

:51_” duffA(n)dnf]A(g)eiu(q—g)dg

=~21;rfdu ff(n)é""’ldnr- (1. 09)

—m —

The inversions of the order of integration are here justified by the fact that
all the infinite limits are merely apparent, and are introduced to simplify the
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formal work of inversion. If we replace f4(x) by the function fg(x)—f4(x) which
has essentially the same properties, we see that

flf de-fmx Pda«__fdu

In case f|f(ac)|” dzx exists,

lim fdu ff ””ldn——ff ”“ldnl : (1. 11)
B, A—x

and we may use Weyl's lemma to the Riesz-Fischer theorem to prove that

[f e""ldn—-ff e““ldnl (1. 10)

glu)=Lim —— ff ) e dy (1. 12)

A—» V2 7T

exists, and is »quadratically summable>. Combining this definition of g(«) with

fly(u)lﬂdu=fmlf(w)l’dw- (1. 13)

That is, the integral of the square of the modulus of a function is invariant

(1. 09), we see that

under a Fourier transformation.
To complete the proof of Plancherel's theorem, it is merely necessary to
show that for functions f(x) of some closed set,

A

fla)=Lim " f 9oe) =02 (x. 14)

A vparticular choice of flz) is the following:

0; [z<e] .
fla)=11; [e<z<§] (1. 15)
o; [B<al.
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Here
[? Tuf fue
I . e ——-p
g(u)=__ e"‘"dx——--—_ - (I. 16)
VZ T ZU/VZ T
a
Hence
A ' . )
Lim, — glu)e ™ du=1i.m. L i‘“’"’)—“(”“"*’; du
A= VZ T A—x 27T U
A
Lim. - sin u(8—2x) —sin u(a_x)du
A'—-u:o. 27 w
—A

— fle) (L)

except possibly at the two points ¢ and B, a set of zero measure. This completes
the proof of Plancherel’s theorem. '
Plancherel states this theorem somewhat differently. He essentially defines

g(u) as

glu) = dqunfdnff ) e d. (1. 18) |

If we retain our definition, it follows from an elementary use of the Schwarz
inequality that

©-

fy(v)dv=]7;—7v fdvjﬂv)e""”dv- (1. 19)

To see this, les us reflect that

Iafug(v)dv—V;T;t-:f'dnff(n)e"”ﬂdv VM fdv[f f] e"”ldnl
S O

= lim

B+

af
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wupm ][+ e

::u{[Jf+JZ1Lﬂnn2d§F1

and since f [f@) |2 dy is finite, it follows that

A u
I .
—_— d 'v"ld =
A_mlf dv Vznf nff(n)e v
—A 0

oof

125

From this (1.19) follows at once. Since a summable function is almost every-

where the derivative of its integral, the transition to Plancherel's form of the

definition is immediate.

It follows at once from Plancherel’s theorem that if fl(x) and f(x) are

quadratically summable,

Ao Vé_
and
4
Fy(u) =1l.im. L ff,(x) e dx
A— Vz T
-4

exist, and that

[170 2 Fran= JIVCRY I

and

.ﬂﬂwiwwww=fmwi%wwm

Combining the last four formulae with one another, we have

. 20)

. 21)

. 22)

. 23)
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f F ) Fy (o) du = f Sl o) d. (1. 24)

This we may know as the Parseval theorem for the Fourier integral. Since

Fy(—w) = lim. = ff x) et dx (1. 25)

A—eo Vz 7

we may deduce at once that

fFl(u)Fg(—u)du:ffl(:c)fg(x)dx. (1. 26)

Since furthermore
Fylv—u)=Lim. -, =— ffg x) e et (1. 27)
A~ Vz 7T _

it follows that

fF u) Fy(v—u du——ff1 r) e d. (1. 28)

As a consequence, if f;(z)f(x) is quadratically summable, its Fourier transform is

w0

VvafFl(u) Fylv—u)du. (1. 20)

—

This theorem lies at the basis of the whole operationfﬂ calculus.

2. Schuster’s periodogram analysis.

The two theories of harmonic analysis embodied in the classical Fourier
series development and the theory of Plancherel do not exhaust the possibilities
of harmonic analysis. The Fourier series is restricted to the very special class
of periodic functions, while the Plancherel theory is restricted to functions which

are quadratically summable, and hence tend on the average to zero as their
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argument tends to infinity. Neither, is adequate for the treatment of a ray of
white light which is supposed to endure for an indefinite time. Nevertheless,
the physicists who first were faced with the problem of analyzing white light
into its compoments had to employ one or the other of these tools. Gouy
accordingly represented white light by a Fourier series, the period of which he
allowed to grow without limit, and by focussing his attention on the average
values of the energies concerned, he was able to arrive at results in agreement
with the experiments. Lord Rayleigh on the other hand, achieved much the
same purpose by using the Fourier integral, and what we now should call
Plancherel’'s theorem. In both cases one is astonished by the skill with which
the authors use clumsy and unsuitable tools to obtain the right results, and one
is led to admire the unfailing heuristic insight of the true physicist.

The net outcome of the work of these writers was to dispel the idea that
white light consist in some physical, supermathematical way of homogeneous
monochromatic vibrations. Schuster in particular, was led to the conclusion
that when white light is analyzed by a grating, the monochromatic components
are created by the grating rather than selected by it. Thus a great stimulus
was given to the investigation of the sense in which any phenomenon may be
said to contain hidden periodic components. The successful completion of this
investigation is also due to Schuster.

Schuster sums up his conclusions as follows®; »Let y be a function of {,
such that its values are regulated by some law of probability, not necessarily
the exponential one, but acting in such a manner that if a large number of
¢t be chosen at random, there will always be a definite fraction of that number
depending on f; only, which lie between ¢, and ¢, + T, where T is any given
time interval.

»Writing

b+ T L+ T
A =fycos xtdt and B=fysinxtdt,

t 4
and forming

R= VAt B,

the quantity R will, with increasing values of 7, fluctuate about some mean

value, which increases proportionally to V7T provided T is taken sufficiently
large.
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»If this theorem is taken in conjunction with the two following well-known
propositions,

(1) If y=cosxt¢, R will, apart from periodicé,l terms, increase proportion-
ally to T';

(2) If y=cosit, A being different from x, the quantity R will fluctuate
about a constant value;

it is seen that we have means at our disposal to separate any true periodicity
of a variable. from among its irregular changes, provided we can extend the
time limits sufficiently. . .. The application of the theory of probability to
the investigation of what may be called »hidden» periodicities . . . may be further
extended . . .»

While Schuster's statement is perhaps not in all respects clear, it contains
the germs of all subsequent generalizations of harmonic analysis. First among
these is the emphasis on the notion of the mean. The operator which yields

L+ T t+T

A, =1lm : | ycos xtdt or B, =lim ~—,— ysinxtdt (2. 01)
T+ T T—x 1

4 . t -

annihilates all functions y(f) made up in a purely fortuitous or haphazard man-
ner, as well as all trigonometrical functions other than cos x¢ or sin x#, respectively.
Hence we may take A, and B, to indicate the amounts of cosx¢. or sin xf
contained in y. As a simultaneous indication of these two quantities, neglecting
phase, Schuster takes V A*+ B® which he supersedes in his later papers by the
somewhat simpler expression A} + B}.

It is possible to lend a certain plausibility to this later choice of Schuster

as contrasted with his earlier, by considering the expression

p(x) = lim Tffx—f—t ' (2. 02)

T—x 2
If
N
= Z @y ehnt (2. 03)
1
we have

N
= Z | QAn I2 e’?‘n“’, (2. 04)
1 .
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Accordingly,
T

o(An) = an|? =T1Ln:c 2L1’ fq)(a;) e n® g, (2. 038)

=T

This function ¢(f) differs from f(f) in that every emplitude of a trigonometric
term in f(¢) is replaced by the square of its modulus.

The expression |an|® is necessarily positive. It is, however, unobservable in
any actual case, as we only have a finite interval of time at our disposal. Let
it be noted that if we put

LT f Fla+ 0 dt (2l. 06)
and —:
¢ =37 [ 9'ria)e iz, (2. o7)

it is not necessarily true that ¢'r is non-negative. On the other hand, if we put

Sa®)=fO) 1 t] < 4]; fa(f)=0 otherwise (2. 08)

and
palx JfA (@w+8) falt)dt (2. 09)

then
QA(]/n):EIj fqu(x) "“n"doc— |ff,1 e~ ‘dtl = o. (2. 10)

—®

This suggests an improved method of treating the approximate periodogram of
a function under observation for a finite time.

The periodogram of a function — that is, the graph of the discontinuous
function ¢(i,) or its approximate continuous analyses @4(4,) — contains but a
small amount of the information which the complete graph of the original func-
- tion is able to yield. Not only do we deliberately discard all phase relations,
but a large part of the original function — often the most interesting and im-
portant part — is thrown away as the aperiodic residue. The chief reason for

this that any measure for a continuous spectral density becomes infinite at a
17—29764. Acta mathematica. 55. Imprimé le 7 avril 1930.
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spectral line, while any measure for the intensity of a spectral line becomes zero
over the continuous spectrum.

This is a difficulty, however, which has had to be faced in many other
branches of mathematics and physics. Impulses and forces are treated side by
side in mechanics, although they have no common unit. We are familiar in
potential theory with distributions of charge containing point, line, and surface
distributions, as well as continuous volume distributions. The basic theory of
all these problems is that of the Stieltjes integral.

Let us put

@D

Su) — - fq;(x)f’fi"‘-dx. (2. 11)

27 T
—®

Here the term 1 is introduced to cancel the singularity which we should other-
wise find for z==0. We have formally and heuristically '

kel

eiz (ute) _ pix (u—e)
S(u+0)—S(u—o) = lim fw(a:) e —dz

P 2 M

—_—0

«©

—lim = ¢(x) guz SILEL 4

=0 7T x

= lim L f de f w(x) eiux S_ll_li_x dx
70 Ty X
0 —x

/i fup 1 —COS N
== ]im ! f¢(.ﬁv)6’ »—%Qn—dx

07T

Now,
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is a positive function assuming the value 1/2 for x=o0, with a graph with a
scale in the x direction proportional to T, and with a finite integral. Hence,
it does not seem amiss to consider S(u+0)—S(w—o0) except for a constant factor,
as the same expression as ¢(u). We shall later verify this fact in more detail
and with more rigor. On the other hand, again formally,

S= " fq;(x)emdx. (2. 14)

—0

Thus in case @(x) is of too small an order of magnitude to possess a line
spe'ctfum, S(u) still has a significance. We shall interpret its derivative as
meaning the density of the continuous portion of the spectrum of f{(¢).

The graph of S(u) shall be called the integrated periodogram of f(i). We
shall show later that under very general conditions, it may be so chosen as to
be a monotone non-decreasing curve. The amount of rise of this curve between
the arguments indicates the total intensity of the part of the spectrum lying
between the frequencies. This shift of our attention from the periodogram itself
to the integrated periodogram, which is monotone but not necessarily every-
where differentiable, is as we have said of the same nature as the shift from
g (x) in

[ ) gla) dx (2. 15)
to a(x) in

f 1) dala). (2. 16)

I wish to remark in passing that the formulae for the integrated period-
ogram are at least as convenient for computational purposes as the formulae of
the Schuster analysis, that the monotony of the intergrated periodogram avoids
the possibility of overlooking important periods by an insufficient search, while
it gives an immediate indication of empty parts of the spectrum which need no
further exploration; and that the computation of g(x) and S(«) may be performed
by such instruments as the product integraph of V. Bush. I also wish to call
attention to a practical study of these modified periodogram methods by Mr. G.
W. Kenrick of the Massachusetts Institute of Technology.
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CHAPTER II.
3. The spectrum of an arbitrary function of a single variable.

The present section is devoted to the rigorous delimitation and demonstra-
tion of the theorems heuristically indicated in section 2. Let f{f) be a measur-
able function such that

(3. 01)

T—»

exists for every x. This is the sole assumption necessary in the present section.
By the Schwarz inequality

p(a) < lim ——lf|fx+t|2dtf|f |2dt (3. 02)

It follows from this that @(x) is bounded. To show this, it is only necessary
to prove that

T T .
im [V obat=lim 7 [Ir0Pdt=gl) (309
S r

We have

7/ If(w+t)l”dt—-ﬁf 70 at

—T+zx

- —-—flf Pdt——flf )| at

—T+z -

< f|f |’dt+—f| Dt
T—

< flf pat— = [17@pa
—T—z —f—[:l:

T—2

~|(++ %) 505 flf P at— (1= 5) 57y [ 0P at]. 600

—T—z ) —T+a:
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Hence

T ' T
tim |7 [ Ve orae— 7 [1rorad
—7 -7

T+x T—r

< lim (1+ %) E(Tl+x)f|f(t)|2dt—-(1—%)XTI:x)f|f(t)|2dt =o.
Therefore |
|p(x)| < plo),

and @(x) is bounded.
Ag before, we put

rab) =37 [fularafugat

By the Schwarz inequality

lgale) = 4 I/ [Vste o at [ 1o ar

133

(3. 05)

(3. 06)

(3. 07)

(3. 08)

and @4(z) is uniformly bounded in = and A4 for all values of A larger than

some given value. Furthermore, if z > o,

A—z

pule) =g [ flerofar

. A A
=fsz(x+_t)f"(t)dt—;!A-ff(x+t)f(t)dt.

—4 a—z

(3. 09)

We shall have a similar formula in case x is negative. We have further-

more



134 Norbert Wiener.

I—ffx+t dt<—|/f|f I?'dtflf )P dt

= f] o) |2dt|. (3. 10)

flf |”dt| | (5. 11)

A—x

Since

it follows at once that

A

lim ga(e) = lim - | flo+ ) di=gp ). 3. 12)

A—® A= 2 A
—4

Thus @(z) is the limit of a uniformly bounded sequence of measurable functions,
and is measurable. Since it is also bounded, it is quadratically summable over
any finite range, while @(x)/x is quadratically summable over any range excluding
the origin. It is, moveover, easy to prove that

@(r)=1Lim. pa(x) (3- 13)

A
over any finite range, and that

P _ 5, 220

X A=—o X

(3. 14)

over any range excluding the origin. Hence,

() 22ET 1 im. Palx) SImET,

x A—x x 7

(3. 13)

In as much as the Fourier transformation leaves invariant the integral of the
square of the modulus of a function, and hence-leaves invariant all properties
of convergence in the mean, ' '

N - : ®
Lim. q)(x)we""’dx=l.i.m. Palr)—
N—oe A—®

—N L —w

sin px e
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e g
=Lim. | g4(x)e* dxfcos Exd&
A=
— 0
_ §14LI:1 fdgfqu 8’ w+d)a 4 of (u—i x] dx. | (3 16)
0

The inversion of the order of integration is justified as usual by the fact that
the infinite integral is only apparently infinite. This, let me remark parenthetic-
ally, is the case also in the next set of formulae.

The last expression is the limit in the mean of a real non-negative quan-
tity, for

@0

f@PA(x)e"""dx: ;A/e”xdwffi (@+8) fal) dt

LAffA (t)dtffA(x+t)ef~Idx

= 2—1}1 f‘/_:q (t) dtffA(W) ei’('w—t) duw

e 2
Salw) e dwl = o. (3. 17)

The limit in the mean of a function is determined with the exception of a set
of points of zero measure, but the limit in the mean of a non-negative function
may always be so chosen as to be non-negative. If we make this choice,

N

Lim. () 2REL

Ne—x

—N

R Y )

evwdr=o. (3. 18)

The expression
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exists, as the Fourier transform of a quadratically summable function. More-

over,
1
. 1 e1.ﬂlly__ 1
0y (u) = ;vftp(x) e dw (3. 20)
—1
exists. If we put
o(u)=0,(u) + 0;(u) (3. 21)
we have
A
o(u+u)—o(u—p)= l.i.m.y—ifqa(x) %HE e dx = o. (3. 22)
A—x

—A

Of course, when we say that a limit in the mean is non-negative, we merely
mean that it can be so chosen. Thus the expression ¢(#) is monotone, or at
least can be so chosen, for example, by putting

U

o(u)= dd_u fa(u)du (3 23)

0

at every point where the latter expression is defined. Here we introduce (3. 23),
because ¢(u) is now almost everywhere the limit of the difference quotient of

° u+te
f a(u)du? namely, ;I; f o(u)du, which is monotone as a consequence of (3.22).
ue .
Thus, except at a set of zero measure, o(u) is the limit, not merely the limit in
the mean, of a set of monotone functions, and is monotone. Elsewhere, at a
set of zero measure, we put '

o(u) == — [o(u+ o) + o(u—0)]. (3: 24)

N |-

It follows that o(u+ u)—o(u—pu) is of limited total variation over any finite
interval. We shall show in the next paragraph that

lim [o(x + ) — o{u—p))

H—

is finite, and that hence o(u+pu)—o(u—u) is of limited total variation over
(—o0, o). Tt is moreover, quadratically summable, as the Fourier transform of
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a quadratically summable funection. It tends to 0 as u— 4+ and hence, by a
theorem of Hobson®, we have

% [o(u+0+u)—o(u+o—u)+ a(u—o+u)—a(ﬁ—o—y)]

In particular, if u=u=v/2,

alo-+0) +o{v—0l] — L [o{+0) +o{—o)] = .- f @ dz. (3. 26

N |-
)
el

If therefore we define

St == [p@) = (3. 27)
W= on | Py 05 3- 27
S(u) will exist, and -

S(u)—0o(u) = constant. (3. 28)

4. The total spectral intensity.
It is manifest that lim [S(u+u)—S(u—p)), or as we shall write it, S(o)—
”—‘m
—8(—e0), if it exists, is a measure of the total spectral intensity of f(x) We
shall prove that this quantity exists and is finite.

We have
A .
I—f[a(u%—'y)-—a(u wldu = ——fdy,l im. (x)gly‘xemdx. (4. o1)
A B—+o X
0

The limit in the mean is here taken with %« as the fundamé.ntal variable, and

with ¢ as parameter. It is not difficult to deduce.from the boundedness of

fd!‘fl s,sm y.xdx

that we may invert the order of integration, and get
18—29764. Acta mathematica. §5. Tmprimé le 7 avril 1930.



138 Norbert Wiener.

B

A
. —cos Az
- f olu+ ) —olu—p] du= -1 Lim. f 0(2) AL e g (4 02)

0 r
—B

To show this, let us remark that

: , A c '
SN UL e gy L LY
f| Afd“lgl_.lffq)(x) - e dr nAfd,ufqa(x) e dx
o =c
B —C

f|fdy11m f—*—f]q)(x)m BL iz g
B—x
c B

adn

du

B
< 2A2fdufdulfllm[f+f]q) sm"xemdx
B—x
.' A ® g
:-n:—Afd_yfdu Li.m. [f f] “””” ¢ g
1] —®
dy[f f] |2 sin’ fxdx. (4. 03)

" Inasmuch as this latter expression tends to o with increasing C,

du

4 c '

L smp, Tuz — 17 L Sln ‘ul‘ zux
nAfd“IBLT fq)(x “ettdyx léilf'ﬂAfd”fw(x) - dx

0 0 —C
_ B 4
l. 1 el"Id . d
=Llim = [ (o) xfsmuxu
—B 0

thus proving our statement. _
Our limit in the mean may be replaced by an ordinary limit, as this limit
exists, owing to the boundedness of g(x). Therefore
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A ®

y— I I——cosAx gluz
,}f;zf[ ol ) —otu—p) dp = lim /,quo(w) AT gur gz,

—a0

139

(4. os)

It follows from the monotony of o(u+u)—a(u—p) in u that we may write

im o) —olu—a) = lim 1 [ (%) 417002,

H—n A=—r0 7T
I I—cosx
ST
T «*

—x

(4. 06)

This yields us the existence of ¢(cc)—a(— ) and hence, according to the last

paragraph, of S(«)—S(—). We have

Hence for sufficiently large 4

| 8(e0)—8(—)~g ()]

o —A‘/’

<= max|q) |lf f] Coszdx-{l-:naxl/ §)— o) + e.
<A

]

Since A is arbitrary,

| (20 )—S(— ) —g| |<|x|m|«p' —p0)l.

In case @(z) is continuous at the origin,

(4. o7)

(4. 10)
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However, @(x) need not be continuous at the prigin, even if f{t) is everywhere
continuous. Thus let f{f)=sin %
Then
T

PR S
¢(0) Th—I.I:o 7 | sin*t dt
-

_ 2
= lim f I—ﬂs 2t dt

['—mc

TV 2

. V2 ,
=——Jlim — cos uidu
2 T T

0

(4. 11)

I
2

@®©

since f cos u®du is a Fresnel integral, and equals—;1/»75~
0
On the other hand, if x & 0, we have
T
e L . 2 3 42
p(x) TILIEC Tfsm(t+x) sin t*dt
—T
T
= lim - -I—f[— cos (2 2+ 2 tr+ x%) + cos (2 tx + x?)] dt.
T—s0 4 T
-7

The second part of this mean obviously vanishes. Hence

T

@(x) = _71'-1-1.1:0 2}1—, cos (2t + 2 te+x) dt

-T

U

= — lim N
= Lll—rfiZU- cos(u-i 2)du

0
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]

®
2 2
=0 [cos 5y f cos u? du—sin S | sin u? du]
0

= 0. (4. 12)

sincefcosugdu=fsinu’du:é.l/1:.
0 0
Thus @(z) vanishes almost everywhere, S(u) vanishes identically, and

@(0) = S(0)—8(—w). (4. 13)

5. 'Tauberian theorems and spectral intenmsity.

In a recent paper, the author has proved the following general Tauberian
theorem: Let M,(x) and M,(x) be two functions bounded over every ramge (g, 1/s),

which are O —I——g) at 0 and . Let M,(x) be measurable and mon-negative,.
z(log ) .
and let

fM,(x)xwdx+o. [— o0 < o < 0] (5. o1)

Let My(x) be continuous, except for a finite number of finite jumps. Let Slx) be a
measurable function bounded below and such that

(a) llloxﬁc] f(l:c) x)dx= A fM
(b) f flaa) My(w) dw is bounded. o< i< o]
Then '

Jim f )My o) = 4 f M, () de. (5. 02)

Here c is put into brackets to indicate that at these points it may be
consistently substituted for o. There is manifestly no restriction in assuming
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S(®) non-negative, as the theorem, if true for a given f(x), is unchanged as to
its -validity by the addition to f{x) of a constant. The theorem assumes a more
understandable form under the transformations

x:—_eE’ l:e_"l;

& M(e) = N,(0); o My (eh) = N2<§>.} (5. 03)

It then becomes: Let N,(§) and N,(&) be two bounded functions which are O(£2)
at +oo. Let N,(§) be measurable and non-negative, and let :

fo(E)e‘“EdE#o. o[ <u<wo] (5. 04)

Let N,(&) be continuous, except for a finite number of finite jumps. Let g(£) be a
non-negative measurable function such that

@ sim [N @gas =4 [ m@as

(5 | [ o9 ¥ s i vownded. [—n << o)
Then B |
(o lim [ gy Was=4 [ Wgas. (5. os)

The proof proceeds as follows: We shall symbolize by C the class of all
functions N,(£), bounded and O(5~% at + «, and continuous except for a finite
number of finite jumps, for which (c¢) is a consequence of (a) and (b) for all
non-negative measurable functions g(§). Among the functions in C are all func-
tions N,(§) of the form

N5 = f N, () Rlg—8 dn (5. 06)

for which f | R(n)|dn converges, inasmuch as the double integral
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f R()dg f oln—E—0) N,(&) &

—0

is absolutely convergent, so that

f Ny(8) glg—8) d = f gln—8) dE f N(C+HRQ) AL

— f R g f olr—E—0) N,(8) dE, (5. 07)
and - o
tim [ N,@ol—8as=lim [ Rz [ oln—5~ N0 as
—4 f R at f N©aE—4 f N (8)ak. (5. 08)
A vparticular example of such a function is furnished by
] |
Mg = [ i) iau o9
B

where w,(«) is continuous over (—B, B), while its first derivative is continuous
except for a finite number of discontinuities of the first kind, and

v3(B) = »(—B) =o. (5. 10)

To prove this, let us reflect that N,(f) and N,(§) are quadratically summable by
agsumption, and that

) = f (g e as (5. 11)
exists, as well as '
E
V(W) = Lim. f FEN(E) e dE. (5. 12)
k—x

—¥
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By our hypothesis (5. 04)

(1) + o. —o <u<w] (513
Let us put
p(00) = vy ()7, (u). (5. 14)
Inasmuch as u(u) is absolutely continuous, its derivative may be computed- by the
rules, and ) : : :
sy Vi)' () —vy(0) o', () :
K Pl 18
I now say that we shall have
B
R() — f ) e du
—B
B
I VN ot _
——Z.—;fy.(u)e”du. (5. 16)
. —B
Inasmuch as
B
f w () € du (5. 17)
—B
is quadratically summable,
JECIEI (5. 18)

exists. Since the integrals involved converge absolutely,

B
fN R(n— §dn—fN dnf (u) evr—=8 du
Y _

@

B
fu “"“dqu Veun dy

B

f;z u)e ™ du
-—B

B

f vy () e du = I, (8. (5. 19)

[

f
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This justifies our evaluation of R({), and proves that N,(§) belongs to C. The
following are particular cases which may be probed to belong to C in this

manner:
B
Tr(E) = f eIl —e B e % du
—h
B
::f[e“"—'e_}’] cos Eudu
e
B
1
== | ¢ *sinfudu
)
0
_1=¢cosBE ¢~ sin B -
- I+§2 E(I+§2) (5 20)
Again,
T, lulysi
i wjysinu _ . -
Qs(§) = ;f(l - f) =€ du
-B
B(S+1)
1—0(;szdz
e
B{s—1)
. 1 +0(‘)- [BE— + ] (5. 21)
nBE—1) =B(E+1) B - '

If we already know certain members of the class C, we may obtain new
members of the class in the following manner: Let V(&) be a function continuous,
except for a finite number of finite jumps, such that, when any positive & is
given, we can find two members of C, V,{(£) and V,(£), such that

Vi(§) = V(E) = V(8 (5. 22)
while

f (Vo — V(8] a8 < e. (5. 23)

Then V() itself belongs to €. For

19—29764. Acta mathematica. 55. Tmprimé le 7 avril 1930.
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th (1—8) V(e dE— Af (§>d§|

K 0

< im f gln—8) V;(©) dE— 4 f AGLE
+m | [ olg—8 v as—a [vigas
— —»
<24de. (5. 24)

and since ¢ is arbitrarily small, this limit is 0. Furthermore, any linear combina-
tion of a finite number of members of C belongs to C.
As a particular case, we have

[1+(1+B)e 2~ Tp(§) < §z < [1—{1—=B)e "7 Ts(%). (5. 25)
Inasmuch as
lim (1 + B) e~ % = o, (5. 26)
B—eo ’
it follows at once that 52 belongs to C. An exactly similar proof will show
that the same thing holds of
b ___
(E—q)*—r"
Again,
lim Q4(§) = sgn (§+ 1)—sgn (§—1) = V(§), (s. 27)

A—x

and this convergence is uniform except in the neighborhood of + 1 while we
always have for B> o

Q48 < (§2 ) O7er (147, ©) and (—e, —1—17) [4 large enough] (5. 28)

Furthermore,

f QB AE= 4. (5. 20)
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Let us put
(14+n) Qu(E(1—7)) = V,(8); ]

1

(1=1) QuE(r+1) — ey = V’(g)'l (5. 30)

We can so determine a large A when 7 and B are given, that for that 4 and
all larger ones, '

ACER(CES AE) (5. 22)
We have
JGERCTEEES B (5. 31)

—®

which we may make arbitrarily small. Hence

sgn (§+ 1) — sgn (§—1)
belongs to C. As an immediate consequence, since
sgn (§+a) —sgn (£+5)

may be shown by the same means to belong to C, any step function vanishing
for large positive and negative arguments belongs to C, and hence any function
continuous except for a finite set of discontinuities of the first kind, and vanishing
outside of a finite interval, since the latter function may be penned in between
two step functions enclosing an arbitrarily small area.

Now let N,(£) be a bounded function which is O((~% at + «, and which
is continuous except for a finite number of finite jumps. TLet

| ¥, (5)| < P/E+1), (5. 32)
for all £, We put
N, (8); [1§] < M|
1AGE , .
e {~P/(§2+I); 151 = M] 5-33)

Vz(g):{Nz@); 5] < 2] (5. 34)

P/E +1). &= M]

The functions V,(5) and V,(%) are sums of functions of C and functions of the
form + P/(§*+1) which also belong to C. Hence, they themselves belong to C.
We have
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Ve(§) > Ny(8) > V,(8) (5. 35)

and

@®

f V(&)= V,(8)] dE < 2 Pw—tan—1 M] (5. 36)

—0

which we may make as small as we like. Hence N,(f) belongs to C. This
concludes the pi‘oof of our generalized Tauberian theorem.

As a corollary of our Tauberian theorem, Mr. S. B. Littauer has given a
proof of the following theorem of Jacob: If f(t) is a measurable function, inte-
grable in every finite interval of (0, ®) and if for some given a (0 < a < 1)

T
(a) j,f_&flf(t)ldt< B for every T,
]
T
(b) lim i%z (t)dt = A;
0
_then
g gin ¢t
© tim® [ A0 (B2 ae= 4,
-0
where
20-1(1—g)
Te="""" " na
Ir(z+e) cos —=

Furthermore, if f(t) is measwrable and non-negative (or bounded below), (¢} implies (b).

The particular case of this theorem where ¢=o0 had already been treated
by Bochner, Hardy, and the present author.

In all theorems of this type, there is a close relation between the theorem
which one obtains by letting 2 become infinite and that which one obtains by
letting A become o. This is to be explained by the fact that the general Tau.-
berian theorem assumes a perfectly symmetric form when we make the substitutions

w=ef; A=en; M,y (c)=N,(8) ¢ My(x)=N,(8) & (5. 03)
If we take
M,(z)[or My(x)l =1 if 0 < x < 1; =0 otherwise;
(. 37)

My(a)for M) =+
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in our general Tauberian theorem, since f M, (x) e**dx =+ o0 and f M,(x) e dx =0,

we may deduce the conclusions of the theorem. We thus get the following
result: Let

N | fla)} < B. o<z < ]
Then the two propositions,
l ——
(o) lim 7 ] e
and
(b) : lim - ff COS” de=A
T—07C

are equivalent.

In the particular case where f(x) is replaced by ; (p(z)+ @ (—x)], we see that

. I xry\1—cCcosx
dmtim [ pfe) 5 58

implies, and is implied by

A=lm— | ¢(x)da. (5. 39)
e—02¢&
We have (see (3. 27)) -
® o A .
fe_“" d S(u) = lim L | gitugy l.i.m.f o () SILEZ i gy
p—027TU . A—e x
—_0 —x —A4
=lim - ; () sin ud = @(4), (5. 40)
u—o 2'

except possibly at a set of points of zero measure. To see this, it is only
necessary to reflect that it follows from the definition of the Stieltjes integral
that if e(x) is of limited total variation over (—oo, ),

w®

ff( Vde(x —11m2fu+2ne[ a(ut(zn+1)e)—a(u+(2n—1)e)]

s—-0
-0
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= Zl_lgzie du_if(u+ 2ne)e(u+(2n+1)e)—a(u+(2n—1)s)

= lim - ff(u) [a(u+e)—a(u—e)] du. (5. 41)

=02 ¢&

Let us put

0

D(h) =fe_”"d;5’(u). (5. 42)

—®

This function will be defined for all real arguments, and we shall have

«©

lD(l+s)—¢D(l)=—2ife_m(l+§) sin 2 dS. (5. 43)

C —w

Since the function sinué/2 is uniformly bounded, and tends to o over every

finite range of % as e¢—o, while e (HE) has modulus 1, it follows that

(D(l+e)—(D(l)_ is less than the sum ‘of two terms, one of which is the total
variation of S(u) over a region receding towards infinity, while the other is less
than the total variation of S(x) multiplied by a factor tending to o. Hence

lim [@(2 +¢)— @A) =o. (5. 44)
Thus the function @(J) is continuous, and indeed, this proof shows it to be
uniformly continuous. Hence

z+e z+e
tim 1 f p@as=tm L [ o as— o) (5. 45)

This gives another proof that

1im2—‘; @ (8 dE = S(o0)—8(— ), ~ (5. 46)

—8&

and indeed proves considerably more.
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It is thus possible to dispense with Tauberian theorems for this part of
the theory. There is another point, however, where they play a more essential
role. That is in the study of the generalized Fourier transform of a function.

T
- Let lim 2— | flx)|?dx exist. Then
T—©

_ T .

[ [t flergr.
- fx—d f LAQF+A-B I
= f e d — f 7l de + f 2 f g1 d

1

= 0(1). (5. 47)

[er]l]mTa?lzdx (5. 48)

exists. It follqws from this that

Consequently

Yulu) = nl,f m. ff Sm ”xe’“dﬂc (5. 49)
exists, and that
Yp(w) = s(u+p)—s(u—p), (5. 50)

where

A
e,'?’?;_ flz) e
(1) anf dx + nllln;[f+f] = dx. (5. 51)
1 A

s(u) has a somewhat artificial appearance, due to the fact that it is necessary
to avoid the consequences of the vanishing of the denominator at the origin.
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We shall see later, however, that we always actually work with v, (u) rather
than with s(u).
As a result of the Plancherel theory,

L —slu—)|? du — — s SIn* v
g [Vt il au= o [P (55

It follows from this by an immediate application of the Tauberian theorem
associated with the names of Bochner, Hardy, Jacob, Littauer, and the author,
and already proved in this section, that

hm--—fls u+u)—su—p |2du—11m -—-—flf(xl dx. (5. 53)

u—02

- The meaning of (5.53) is that ¢f flx) #s quadratically summable over every finite
range, and flx)/x is quadratically summable over any infinite range excluding the
origin, then of either side of (s.53) exists, the other side exists and assumes the
same value. '

This formula is worthy of some detailed attention. If s(u) is of limited
total variation, we shall always have

o [1stu 0 —stum L n = ¥ (5. 54)

Accordingly, if in addition

hm f|f z)|Fdx +o, (3. 55)

the function s(u) cannot be uniformly continuous. Again, if

v s(u) = An, [ln <u< ln;—l} (5 56)
we shall have :

oo

lim [ |s(utp)—s(u—w) P du = 3| duri—4al, - (5. 57)
u—02 '
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T—»

T
so that lim > IT f [f(@)|dx represents the sum of the squares of the moduli of
_r

the jumps of s(u). Let it be noted that if f(x) is a periodic function with the
period 2 7,

T .4
. I 1 5
lim -1 f ) dz =" j /@) de, (5. 58)
.y ’ —

while if

an = élﬁ ff(l‘) ez (I(L', (5 59)
then
[et-u)

Wulu) = s(u+p) — s(u—p) = Zan- _ (5. 60)

[—p}+1

Thus our formula (5.53) is a generalization of the Parseval formula for the
Fourier series, though it is not a direct generalization of the Parseval formula
for the Fourier integral. For the Fourier integral,

o«

lim — | | s(w+p)—s(u~u) |2 du = o, (5. 61)
n—0 2 pt :

-—®

although s(«) exists, and indeed becomes the integral of the Fourier transform
of f(x). In this case, s(u) is of limited total variation over every finite interval.

6. Bochner’s géneralization of harmonic analysis.

The study of the function s(u) and its generalizations was first undertaken
by Hahn, although, as we shall see later, on a basis insufficiently general to
cover the needs of physics. The present author developed the theory for funec-
tions f(z) with a finite mean square modulus, but the complete generalization
of the theory is due to Bochner.

We have so far been interested in the problem of proceeding from f(x) to
s(z). The question now arises, can we go backward, and determine f(z) from

s(x)? We should formally expect
20—20764. Adca mathematica 55. Imprimé le 8 avril 1930.
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@

flx) = fe_"’?‘ds(u), (6. o1)

-—0

though the integrﬁl in question cannot be an ordinary Stieltjes integral, as s(u)
is not in general of limited total variation. _

We may, however, develop this integral by a formal integration by parts,
and we get

A

f i ds(u) = o475 A) — 4% 5(— A) + iz f () = o

—A —A

- —rAx[znff ¢ dEtLim T Lf+f]f(§)f%’d§]

—B

el fra ey 1 [ [ o
virfemaf s fra® g [ [ [ o]

B 4
—Liw L 18 [e )6 4 i f awww] ag

B—w 27t. Z§
—BR —A

=lim — ff smA(§— )d§. ' . (6. 02)

B—x 7T

Even this expression fails in general to converge in the mean as 4—cw. A
natural device to choose to compel the desired convergence in the mean is to

replace this integral by its Cesaro sum, and to investigate the behavior of

D A

%fdAf =it ds(u ff ‘—"OS D 1—eos DiE—a) . 6. 03)
0 —A4
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This is the familiar Fejér expression for the partial Cesaro sum of a Fourier
series, at least in form. The classical Fejér argument will prove that at any
point of continuity of f{x) we shall have

= lim —— f 78 I_COS D 1=cos D(E—x) (6. 04) -

D—w ﬂD

and indeed, that this will in any case .-be true almost everywhere. To proceed to

Dh_.“iﬁ dAf 0 d s(w) — f(z) (6. o)

. —1 ®
requires only the reflection that [ f + f ]J%? dt converges.

In a manner similar to that in which we have proved

, _
fe—fwde w)=Llim. — ff S‘“‘” “)dg 6. 02)
B—w 7€ .
iy
we may show that
4
—iwu ] 1 ¢is—e'hs d (6. 06)
fe s()—BLTZTmff§+x i £ . 0
2

4
as a function of A and P. Thus, except for an additive constant, f e ds(u)
P

bears to f(x+£) the relation which s(4) bears to f(£). Similarly, to

A

flx) + f(t+x) there corresponds j (1 £ e ) ds(u)
- ° . P N - ’ .
and to ' (6. 07)
, 4
fl@) £ if(t+x) there corresponds f (1 + Ze= ™) ds(u).
P
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By an obvious linear combination of the formulae relating to these four func-
tions separately (cf. (1.24)), we obtain

© ute

lim - j [ f o g )] St &) —s(u—e)] du
e—02¢&
—® uU—s ) r
.1 SN
—711_1.1; 5T Sla+1) flz) de=g(?). (6. 08)
“r
Here, by definition,
ute . u+e
e ds(v) = et gy + g) — —"’("—‘)s(u——e)+itfs(v) e dy
- = e (s(u+e)—s(u—e)) B
u..+s % -
+ it{f[s(-v)—s(u+e)] e dy + f[s(v)—s(u—e)] e""’dv}. (6. 09)
However; we have . .
ute
I; [ f et ds(v)— e (s(u + e)—s(u—e))]
4 ( )3 ( ) i (w-t &) (5+¢) i (u—¢) (§+1)
el u+ & _el u—¢g) 3 —z'ulilj & ; __ez u—e”‘;
_131_212 zsff§+t —F € E¥t ]d
=lim, -—- f§+t t(u+s),(__ _eid) _ei(u—s);:(vl___e__iit) d§
T he 2 ¢ EE+t ETE+t
] 5+
=11 r s sn}_ﬁ_g_ sin e(§+1¢
_1;:2.nff(§+t)ez [ 1ef ooty ]d;-. (6. 10)
B
Now,

sin 6§  sin &(E+1)
ek e(E+1) |

_2§sm Ztcose(§ + t) + tsin &
eE(E+1)

2t

<
£+t

and also < 2. (6. 11)
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Thus, by the use of a Fourier transformation, it follows at once that
ute

f:; fe"“"ds(v)—e_""‘(s(u +&)—s(u—é)) 2du == O(1).

—®  u—

Inasmuch as we may readily show that

®

dim | |s u+e)—s(u—e Pdu=o,
&0

and since’

®

p(t) = limlfe_”“ls(u—i;e)»s(u—e) [*du
—02¢&

-—1

o H%te

+ lim - f [ f e ds(p) — (s (u+e>—s(u—e»] 5+ &) —s(u—2)] du,

e—02¢&
—® tu—e

it follows by an elementary use of the Schwarz inequality that

@®

g)(t)=limife‘”"' |s(u+e&)—s(u—e)|® du.
&0

—0

This formula holds in the same sénse as (5. 53) for each t independently.
We may deduce from (6.06) the analogous formula

fdyf —_— fzsmlud o)

by an easily justified inversion of the order of integration. Furthermore,

A

iAS__ ptP5 .
fdleLTZ—“ fﬂ§+ E §e dg

2

B -
1 45— ¢iPs

.
=lim. — ——g—d§ff(§+?/)d!/,
. —2
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(6. 14)

(6. 17)
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as may be deduced from the fact that

Nf If@;y . flf

tend uniformly to o with increasing N for all y in (—A, 4). Thus to

A
f Slz+y)dy there corresponds f 2 %1;1 2sindu .

P

in the same sense in ‘which to f{x) there corresponds s(4). It follows from

(s.53) that
T 2 \
2 8in Au N -
‘l,,lllio—z—[; f——d dA_}l_I.Ii,szIfﬂx—*'y)dy (6 18)
=r 24
As in (6. 09),
M sina A4 +p) A(d—p)
2sin Au 28in A(4 +p) _zsind{d—p) 0
o dslu) = Atn s(4+p) i s(d—u)
A—u
A+ e in 1
2 sin du
—fs(u)tn( u—) d_u, (6. 19)
A—p
and as in (6. 10),
s sina in 1.4
1 [ 2sindu 2 sin A~
o [ R et~ 2 (4
A—n
A+u 2 . 4
u‘[ds( )fe—"‘"‘da»zfe—""-4 dals(Ad+u)—s(4d—n)
A—u —i —2 ' ’
\ £ sinpEto) o
_ gio smy sin u +G]
deIBl_'I:: ~ ff§+a w10 d (6. 20)
)

because (6. 10) holds uniformly over a finite range of ¢, because of the fact that
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sin pf _ sin p(+0)

wE T ou—g |~ | (6. 21

uniformly over such a range. Hence, as in (6. 12), we may show that

© A+p
. . .
fi 28im 2t g0y — 28 A A (4 +y)—s(A——y)]| 44— 00); (6. 22)

u
—w® A—p

and by an argument exactly similar to that leading to (6. 15), we obtain
4 8in? Ay

L — _I_ 48 —slu—u) It
Tll_riszlfﬂx-f-y dy dx hm } i Vsfu+ ) —su—p) Pdu (6. 23)

—7 2 —o

Sfor each L independently, in the same sense as that in which we have proved (5. 53)
and (6. 15). '

We now proceed to the part of the theory that is specifically Bochner's.
We wish to discuss the harmonic analysis of functions which are no longer bounded

1

. T
on the average .(for so we may interpret the finiteness of lim 5T | fl)|2d ),
TT’W

-7
but instead have on the average an algebraic rate of growth as the argument
proceeds to * oo, That is, we assume the existence of

.0

g
lim — f | £a) P dx (6. 24)
T. 21"
—T

and we shall take » to be a positive odd integer. By arguments following
identically the lines laid down for n=1, we show that

[f f]'f“, emotr 69
[t

exists. We can then show the existence of

and hence that
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Zﬂf St [(f ) 'xd”]d”_?rl;lﬂ [ f * f ]f(”)'(‘ij%idx-

If we now put
n+1 - . _ : ’ _
o) o) 5 )

",'H n+1

gin 2 J7% 4
mx
l.iim. ff "H —dux,

27 peso

we can show by a Plancherel argument that

L

.J

—©

ni1

A2 (s(w)

M

sin"*! ux
fl-f * nH dl’)

It is easy to show that for any function F(x),
: gl F(Ty)
I 1 Y)
_Tan(x) dx = _Tn T dx f(j' )n-—l-/ dy
0 0 ’ 0

Inasmuch as
fy"_l dy = 1/n,

0

F(x)/na" ! = G(z), .

if we put

- (6.-28)

(6. 31)

(6. 32)

the above integral is a mean of @, in the sense in which means enter into our

general Tauberian theorem. Furthermore,

n+1 ~ . imn+1 n+1,, > imn+1
2" _~f Fla) sinlpx 2 nfG(x) sin ,‘uxdx
T x .

:E"+1

a1y n sm"“u
=— fG(y/u) " dy

0
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and if we put
2"ty msin"“y
— f 7 dy = Py, (6.' 34)
0
then
2n+1 sinn-H‘ux
oy ) i 4% (6. 35)
is another mean of the quantity G. If we set
na™ 1 o <z < 1 . 2" sin g
M, (x)[or M,(x)]= ’ M,(x)[or M,(z —; (6. 36)
defor 20 = {7510 =5 = o or 2 = 2
then
Wy = —"— 6.
fM ' dx +W+ (6. 37)
As to
fMQ(a:)x"“dx,
0
we have
fsin"“z'x""_’ dx
0
_ n+I sin® x sm 2 + sm 3_11;__ -
2"t In—1 n+3' n—3 n+5' —5nt7,
2 2 2 2 2
Hence
fM 2) g dg— 470+ 1L
Py
! 2 + M sin®x 2™ 2 dx. (6. 38)
n—1,n+3 n—3 nts5, n—5nt7, ] .
2 2 2 2 2 2 0

We have already seen that
21 — 29764. Acta mathematica. 55. Imprimé le 12 avril 1930,
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a0

fsxin2 x 2 2dx = o. (6. 39)

0

Thus the question of the possibility that

fM,(x).x"" dx

should vanish depends on the possibility of the vanishing of

I 21‘u——1 . 3m -—~1
n—lln+3' n—3 n+5'+_“:75_ ) (6. 40)
2 2 2 2 2 : 2

It is. easy enough to prove that this cannot vanish for n=1, 3,5, 7,9, 11 but
“the author has not yet been able to produce a proof in the general case. .

In case this expression does not vanish, we may apply our Tauberian
theorem, replacing flx) by |f({@)|P+]f(—=)|>. We shall assume to begin with
that f(x) vanishes in the neighbourhood of the origin. Then

T
. I
Jm i [ ae= 4 6. 41)
7
and
ha : sin"t! px
‘ltlino Pn‘u Au2 s(u)| du :(}1:'.(1) ITm:_[tflf )P = 1 dx (6. 42)

are equivalent. _
We have put flx) =0 in the neighbourhood of the origin to be sure of the
boundedness of

sin"*px
T f el dz - ana 13;.‘" f ) P A g 6. 43

17”1

In any case,
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will not be changed if f(x) is made to vanish in this neighbourhood. Moreover,

B B '
int+l .
o [V e < e [ 1@ e 6. 44
—B ~—B
Thus .
. I d has
i 7z | 87 ol

will not be changed either, and we may always write:

lim- 5 — [
w—o Pnpr,

o

T

n+1 2 .
Te o e Tim L 2

A, .s(u)l du Tlmalo 2T"f|f(ac)| dzx. (6. 45)

T

We now come to the problem of returning from s(x) to f{z). We should
expect formally '

@

n+1 n—1 '
Sf() =fé—i"’d 2 s(u)fdu ? .. (6. 46)
Again, we need to interpret
fe—'ius;d 2 S(u)/du P)

-—0

by an integration by parts, and again some form of summation is necessary to
get a more manageable expression. One method is the following: Let us replace

-]

nt1 nt
fe"'""d 2 s(u)/du ?

—0

®
n+1 n~—1

f ez g 2 g(o) fdu (6. 47)

and let us investigate its behavior as A — 0. This expression is to be interpreted

+
by 2T formal integrations by parts, which convert it to
2
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©

nt1 nt1 ni1 -
(~1) 2 fsg(u)d 2 (gmh—tuz)/dy 2 dy. (6. 48)

—_—

It then becomes obvious that this expression will have the same limit in the

mean as
B

f 85 (u) (wc)ﬁy e dy [B— ] (6. 49)

—B

It here will, however, be f(z) if |x] > 4, and will be o otherwise. To see this,

nt1 nt1
2 d? -
we need only compare + (e 7) with — — ¢ % A similar resalt holds
da ? de ?

for s,(#), and the final result is that over any finite interval not including the
origin,

-]
n+1 n—1

flo)=1Llim. | e —iweg > sy)/du? . (6. 50)
i—0 .

7. The Hahn generalization of harmonic analysis.

Up to the present we have concerned ourselves rather with questions of
convergence in the mean than of ordinary convergence. Retaining our previous

notation, in the case where n=1, we may raise the further questions: when does

A

f e ds(u)

—A

exist for all » as an ordinary Stieltjes integral, rather than a generalized Stieltjes
integral such as we have treated in the last section? When does

A

lim | e ™= ds(u)
A—®
—4
converge in the ordinary sense? These questions furnish the vital link between
the generalized harmonic analysis of Hahn, and that developed here. In the
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second problem of this section, it is at present not likely that we can obtain
conditions that are both necessary and sufficient. The necessary and sufficient
answer to the first question is manifestly that s(u) should be of limited total
variation over any finite interval. We have

B
1 eivx__eiua:
siv)y—slu) = lLim. — —_—
s(0)—s) = Lim. = [ A1) = da
—B

. I p‘HI__ emx
Lim, =~ | f
B—w 27T

B ’ —B
v B fuB —ivB __ ,—iuB
=lim — {e ZB" ff(g)d§+e Bl.]; ff(§)d§

B—w 27T

B x
: } vr—1 UL —
4 Zf [z 9;5_7_ o zuj}?,_l ei"“’] dxff(g)dg}, (7. o1)
—B 0 )
If now we assume that
- f AOAE= 0z, (7. 02)
0
it follows that
. wr—1 tuxr-—1 ,
=sz(x)[ o & — g~ e“”‘] dx. (7. 03)

Inasmuch as by our assumptions

fﬁ( )ezu.t dw and fﬁ(x) eiumdx
il? x
1

1

converge and represent functions with quadratically summable derivatives, s(u)
is of limited total variation over any finite region. Thus (7.02) is a sufficient
condition for the answer to our first question to be in the affirmative.

Let us now suppose our first question affirmatively answered. The formal
4

integration by parts by which we have defined f ¢*ds(u) in the general case

—A
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may now be carried out, and all our quasi-Stieltjes integrals become ordinary
Stieltjes integrals. If, on the other hand, s(u) is not of limited total variation,
Hahn adopts a generalized definition of the Stieltjes integral identical in content

with that here given. In either case, we have already seen that

4
f_i”ds u)=1lim. — ff s1nA§ 7)d§,

B 7T
—A

and that

Aw)=lim f Gk "‘zgzj)—(g—@ ac.

. 1 1—cos 2 A((—x)—2 A(§—x) sin A (E—=x)

_ }_ff(§+%)1 cqg@_:zwsmwdw

w

— L [ [r(e+ ) —no] meonme R g

+f(§)fI—coszw—-zwsglﬂd

w

—[ff][()]—
|~ D .

Thus a sufficient condition for

«©

f e ds(u) — f(2)

—

(7. 04)

(7. 05)

(7. 06)

(7. 07)
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is that f(x) should satisfy locally one of the sufficient conditions for the conver-
gence of a Fourier -series, and that

[ [+ ] comense

or what is the same, that

o«

e

—®

ldw (7. 08)

exist. This condition thus constitutes a sufficient solution of the Hahn problem.
To such a function we may add any function with a .convergent Fourier series,
without destroying the fact that it solves Hahn's problem.

Another condition under which (7.07) holds is that f{z) should be of the

form

g9(@) - hix)

where g(x) is periodic, and h(x) bounded and monotone at * o, and that f(x)
should _satisfy ome of the sufficient conditions for the convergence of a Fourier
geries to its function. As in the previous case, the proof of his assertion made
by Hahn depends simply on the fact that the second term of the last line of
(7.06) will then vanish with increasing D, while the first term is asymptotically
equal to the difference between the Cesaro and ordinary p.artia,l sums of the
Fourier integral of the function f(z) mutilated by being made to vanish outside
the interval (—D, D). It then follows from the Fejér theorem and the fact
that the conditions for the convergence of such a Fourier integral and of a
Fourier series are the same, that Hahn's theorem holds.

The class of functions for which s(u) exists as an ordinary Stieltjes integral
is too marrow to cover the physically interesting cases of continuous spectra.
To see this, let f{x) be a function for which @(x) and S{u) exist, and let

fole) =5 [ A+ dE. (7. 09)

Let us suppose that
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Ts 2

@ (z) = lim l'ff (x+ 8 ™) dt (7. 10)

exists for every z, and hence that

S (u) :qu)(n)(x)‘i' ~z,_l dx (7. 11)

27T x
—w»

exists. Then

¢"(a)=lim —T-ifdgfdcffﬁmg flE+0) at
7 ] :
_ 1 _
=) 25 [ atete sy
- -1
d§f (x—y)d

—q —n—5

:frf{”fq’(x_y)dy” fﬂxw)dy—f§[¢(x+n+§)—q>(x—n+§)}d§}
. 29
:ﬁfqv(x—y)(zn—lyl)dy; (7. 12)

A—w

A
Sy + p)— SO (y—p) = :_zl'i'm' [q)('rz) () f%” ¢
-A

27 A—y .
sinux |
— _ d — i bt m:r-d
Lim s | Ga—ly) yfw(w y)—,  eda
—27 —A—Yy
x)dx | (29— Sm u(x-f—u) et =t dy
Ao 47"’7 +y
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4 uty 27
- 1 .
:1/':_'2:- g—nnzfy’(w)dxf dwf(z n_lyl)ezw(ﬂy) dy
—4 ulu ~&n
1w:r _
= Li.m. f dxfe I Coszwn)d
A—r> 47[1/
u—p
ﬂ.+“ A
. 1 1‘_‘008 2 w‘l7 pzug-__l
“tim s [ [ gt
R —a
utp © .
__1 1—go§_2_zl;_1zd o )91Kx_‘dx
4 w 1
11-—‘”, _y
' ure
S Rl e _ ([sin’nw _
2 J 8w f iS00 . 13)
b U—up

8 (u + e} — s (u—e) =L.i.m. — ff('l Smwje‘"’”d

A—x 7T

sinex .
——lAl_E P fdgfj (x4 8§ ——e**dx

)
wu+e

f a f 5% ds{u) by (6. 06 (7. 14)

-1 u—e

Although this is not in general an ordinary Stieltjes integral, we may integrate
by parts and then invert the order of integration, and thus obtain

ute Ll ute
st + e)—s(’”(u—e)=2—l1~7fds(u)j e g == —ISI;I:uds(u). (7. 13)
U—¢€ - U—e

Hence, by (5. 53) and (6. 23),

T ®
. °
M (o) = lim —— D) P da = lim — | &5 T —slu—sI?
@'"(0) Thul ZTflﬂ z) |t dx = hm”e Tl |s(u+e)—s(u—e)Fdu. (7. 16)

-—D0

22—~29764. Acta mathematica. 55. Imprimé le 14 avril 1930,
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By (7. 14),
P = s [ o sl as
"
21 A

zizéledl[;—lfw@)dst], (7. 17)

—4

which in combination with (5. 47) leads us to

lim @ (o) = S{0)—S(— ). (7. 18)
n—0
In other words,
o . 2
lim lim — | E2 1| s(u+ &) —s(u—e) P du = S(w0)—S(—x). (7. 19)
—0 c—02 & n-u
If we now assume that
lim @) (0) = g(0), (7. 20)
7—0

it follows from (7. 21), (7. 22), and (5. 54) that

a©

N __sin®nu Y T
lg{ﬂzsf[l T ]ls(u+s) s(u—e)|Pdu=o, (7. 21)

—_xo

or since sin nu/nu tends to 1 as —o0

A

lim lim—l—[f + f]ls(u+e)—-s(u—e)|2du=o. (7. 22)
A—m —02 €
A —®

If p(z) is a continuous function, not only shall we have (7.20) as a conse-
quence of (7.17), but all the functions ¢(x) will be continuous, as follows from
(7. 12). Then, by (6. 15), we shall have

a0 @

lim;—s e s(u+e)—s(u—e) |Fdu zfe_“"dS(u). (7. 23)
=0

—» —x
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It follows at once that if P(u) is a trigonometrical polynomial, or the uniform
limit of such a polynomial,

@ ]

lim - f Plu) | s(u-+ &) —s(u—s) |* du — f Plu) dS(w). (7. 24)

—® —®

For the transition to the case where P(x) is a uniform limit of a polynomial

we need only make appeal to the boundedness of

=0

1in121—£f|s(u+s)—~s(u—s) I* du. (7. 25)

Hence, by Fejér's theorem, P(u) may be any continuous periodic function, and
because of (7.22), any continuous function differing from o only over a finite
range, as the change in the left side of this expression due to making P(«)
artificially periodic tends to o as the period increases.

It follows at once that under the hypotheses:

(a) ¢(’1)(m).exists for every x and 7;
(b) ' p{x) is continuous;
if
B8
lim;—‘S | s(w+e) —s(u—e) | du=o0, (7. 26)
e—0

a

over any interval, S(u) is a constant over any interior interval. Thus if s(«) is
of limited total variation over any finite interval, and is continuous, S(u) reduces
to a constant, and the spectrum of f(x) vanishes. In other words, the very
natural hypotheses (a) and (b) are inconsistent with the existence of a continuous
spectrum, provided s(u) is of limited total variation. To see this, we need only
notice that almost everywhere

S(ug)— S(u,) = limLfIS(u+£)-—s(u-—e) P du
02 &

%y

= sum of squares of jumps of S{(u) between u, and us. (7. 27)
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Thus the expansion of f(x) in an ordinary Stieltjes integral is not adequate
to the discussion of such continuous spectra as occur in physics, inasmuch, as
in these cases, as we shall see in section 13, conditions analogous to (a) and (b)
are fulfilled.

CHAPTER III.
8. Harmonic analysis in more than one dimension.

The elementary function of harmonic analysis in one dimension is ¢**. In
n dimensions, this is replaced by

ei (uy g+ - - - Huyay)

which we may write vectorially
¢U-X)

where the vector X represents the argument of the function to be analyzed, and
the vector U the vectorial frequency. If we keep the term (U.X) invariant,
and X varies cogrediently, U varies contragrediently. Thus the familiar duality
relation between Fourier transforms is intimately connected with the point-plane
duality of geometry. This is why the relation between position-coordinates and
momentum-coordinates in modern quantum physics appears as a Fourier duality,
while the same relation appears in the theory of relativity as the relation between
a certain cogredient tenmsor and a certain contragredient tensor.

Practically the whole generalized theory of harmonic analysis so far deve-
loped is susceptible to a generalization to » dimensions. This generalization has
been carried out by Mr. A. C. Berry, who has been kind enough to furnish me
with the following summary of his Harvard doctoral thesis.

It is necessary to introduce certain notations at once and to make a few
preliminary remarks. Let there be given a real n-dimensional space and, in it,
some fixed reference point, or origin, 0. If X is an arbitrary point of this space,
the symbol X shall be used to denote not only this point, but also any real
n-dimensional vector equivalent to the directed line segment O0X. Let f(X) be
any complex, measurable function defined for all such real arguments X. Here-
after it will be assumed that all functions with which we start satisfy these
requirements. If B is any measurable point-set, then
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ff(X)d Vx (8. o1)

shall mean the %-dimensional volume integral, in the sense of Lebesgue, of f{X)
taken over the region R. Since, in general, r-dimensional »spheres» will be
employed as regions of integration, it will be convenient to use the notation
(r; X) to signify a sphere of radius » and having its center at X. The vector
interpretation of X enables us to write

ff(X)d V= ff(X+ Y)d V. (8. o2)
(r; Y) (r; 0)
The »volume» or measure, of an n-dimensional sphere of radius r is known to be

'”2 o
. (8. 03)
T(— + I)
2

which quantity, hereafter, shall be denoted by the symbol v(+). Thus the
average of a function f(z) over a sphere of radius » about the point Y is

(r; )

Corresponding to the theorem, in one dimension, that a function is almost
everywhere the derivative of its integral, there is here the fact that, for almost
every Y,

lim - [f VAV x= hm— fIX+Y)dVy=f(Y). (8. 03)

r=—0 U r—o U
(r Y) (r 0)

For any positive integer m it readily follows that, almost everywhere,

tm L f AV, - f iV, [ FX)avy,

r—0 [U N
(r; Y) (r; X3) (r; X3)
= ﬁmm;)}m-fd Vx, - dVX,ff(X1+X,+ -+ Xnt+ Y)d Vx,
r—s( .
(r; 0) (r; 0) (r; 0)

== f(Y). (8. 06)
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The classical Stieltjes integral, for functions of a single variable,

a0

[ izt

—_—0

may be defined under suitable conditions as the following limit:

hm—ff 2f@lx+r)—plc—r)}dz. (8. 07)

—02T

If one denotes by (r; z) that interval of length 2+ which has its center at the
point z and if one constructs the following function of an interval:

M(r; x) = p(x+7r)—@lx—r), (8. 08)

then this limit may be written in the form

lim — f S(@) (8. 09)

027

which may be called the Stieltjes integral of the point-function f with respect
to the point-set-function M. Proceding by analogy we shall call the expression

hm ff X)dVy, (8. 10)

when it exists, the Stieltjes integral of the n-dimensional point-function f with
respect to the region-function M, and shall denote it by the symbol

ff(X)dXM- (8. 11)

w®

It will be necessary to introduce a generalization of this integral in order to
handle certain region-functions M to appear later. If the expression

ff M(r; X)dVx (8. 12)
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exists it shall be called the mth Stieltjes integral of f with respect to M and
will be denoted by

f SX) . (5 13)

o

A function f{X) shall be said to be quadratically summable over all space,
or g. s. over o, provided it satisfies the requirements laid down above and
provided that

f|f(X) Pdvx (8. 14)

exists. A one-parameter family of functions f3(X), each of which is q. s. over
o, is said to converge in mean to a function f(X), also q. s. over », as n— oo if

Jim (U@ Pave=o ®. 1)

We are now in a position to discuss the harmonic analysis of a given
function f(X). The fundamental theorem is, of course, Plancherel’s theorem on
the Fourier transform. In n dimensions this reads as follows:

If f(X) is q. s. over o, there exists its Fourier transform

R—o

g(U)=1im. (?71;)1'/2ff(X) FX VG Ve (8. 16)
. R

where the expanding region R is selected from an arbitrary one-parameter family
of regions which are such that ultimately R covers and continues to cover almost
any given point of space. All such transforms are equivalent; i.e. any pair of such
Sunctions can differ at most on a set of zero measure. Furthermore, g(U) 4s q. s.
over © and satisfies the equality

f lg(U)d Ve = f ()P d Tx. 8. 17)

For any integer m = I, there exists as an absolutely convergent integral
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AV -

m

dVTzf (_T -I-T'f""—i‘Tm-l-U)d171'1

2nn/2ff {fe’(x T)dVT} GV, (5. 18)

(r; 0)

(r;0) (r; 0)

which yields the following explicit formula for g(U):

g9(U) = lim —— FIXW X DaVr me"(X'U)dVX; m=1,2,...; (8.19)
]m,

—0 2 ﬁnﬂ

this limit existing for almost every U. Conversely, g(U) possesses a Fourier
transform and this is f(—X):

) =Lim i f (U)X 0 4Ty, (8. 20)

R—» (2 T
R

An equivalent statement is that F(X) is the Fourier transform of g (U). As
above, we may write explicitly, for almost every X,

S(X) = hmi,(?:v')n/—z [_—(;)]—mfy(U){fe_i(U’T) d VT}me—"(X'U) dVy, m=1,2,.... (8.21)

@ (r; 0)

Finally, if f£,(X) and f;(X) are each q. s. over «, and if ¢g,(U) and g,(U) are
their respective Fourier transforms, then

f FUXK)gy(X)dVx = ffﬁ(U)gl(U)d V. (8. 22)

We are thus possessed of a harmonic analysis of any quadratically summable
function. For a given such function f(X) this consists in associating with almost
every vector frequency U a complex amplitude g(U). It is suggestive to imagine
this ¢g(U) as the density of a complex mass distribution in the U space. The
converse procedure by which we rebuild the given f(X) from this mass distribu-
tion may be described formally as follows: We begin by multiplying the density
of this distribution by the factor,

e-—i(X- U)
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thus altering the complex phase of the density in an simply periodic fashion.
This done, we calculate the total mass of the resulting distribution and find it
to be f(X).

Now, there exists a very important class of functions to which exactly
this harmonic analysis cannot be given, namely the n-tuply periodic functions.
If such a function f(X) be also q. s. over an arbitrary finite region, it is known
to possess an n-tuple Fourier series representation:

F(X) ~ 3 ap (X Ur); (8. 23)

where the summation is effected for all points U, which are vertices of a certain
rectangular network. This analysis can also be interpreted as a mass distribu-
tion. Here, however, the spread is not continuous but consists of masses ax
concentrated at the corresponding frequency points Uy Yet the process by
which f(X) is reobtained is again that of calculating the total mass of a distri-
bution. .

If one seeks a uniform method of treating these two types of mass spreads;
one naturally is led to construct a region-function: the total mass in an arbitrary
region. Knowledge of this function is equivalent to knowledge of the particular
distribution in question. The advantage derived in employing it is that it is of
the same order of magnitude for the various types of spreads whereas the densities
are not. We shall see that this region-function can readily be calculated. To
effect a return to the given function f(X) we shall employ the Stieltjes integral
which will simultaneously correctly modify the complex phases of the spread
and determine the total resulting mass. Let us note how easily all this is
carried out. _

However, we can handle at once a more general problem. Let f(X) be a
function such that, for some integer m, the product

f(X){ f e"(X‘T)dVT}m (8. 24)

(r; 0)

is ¢. 8. over w. Let the Fourier transform of this product be denoted by

R:

s U) = Lim Lo f f(X){ f X1 g VT}"' FXVGYe. (8. 23)
r (r; 0)

Hence
23 — 29764. Acta mathematica. 55. Imprimé le 14 avril 1930.
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R—w

2 0) R

{f"”“dm} “m(;)—mf"’""‘x'”’M‘m’( 0)dVy. (8. 26)

Integrating the above expression we obtain the result:

f(X){ FE1 g VT}md Vx

(85 Y) (r; 0)
2(7;)—/] {f XU VX}erM(m(r; U)avy.  (8.27)
® (s;0)
Now since
Hm[;(—,},)Tqﬁ{fei(X.T)dVT} =1, (8 28)
r—0

(r; 0)

and sinee f(X) is summable, it follows that

[rmavs=tim et ci [ [ vavid e omee v 6.2

(& Y) ® (8 0)

The right hand side is precisely an mth order Stieltjes integral. We have, then,

ff X)dVx= . )nlzf{fe_“x'”’dVx}e_“Y'U) dm M, (8. 30)

(s; Y) © (s 0)

and, therefore, for almost every X,

p-ting o [ [ marecnman. s

® (s; 0)

~ That the function M™(r; U) constitutes a harmonic analysis of the given
S(X) is established by the following considerations. It is a matter of simple
calculation to show that if f(X) is itself q. s. over co, MW (r; U) exists and has
for its value the total mass in the sphere (r; U) of a distribution of density
g9{U). 1t is similarly easy to show that if f(X) is possessed of a Fourier series
development, M®W(r; U) exists as a limit in the mean and is equal to the sum
of those Fourier coefficients a; which correspond to frequency points U lying
in (r; U). As we have seen above, MU (r; U) determines the mass distributions
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which constitute the harmonic analysis of f(X). In the same fashion M* (r; U)
determines MW (r; U); ete. '

While, then, we are justified in considering that M™ (r; U) is a harmonic
analysis of f(X), we must yet determine for what class of functions f(X) the
region-function M will exist'at least for some integer m. It can be shown that'
the function

AE-1) g VT (8. 32)

(r; 0)
n+1

is bounded for all X and is of the order of | X| ? for large va,lnes of | X|.
This at once establishes the fact that if, for some positive p, the quotient

S(X)
THXT (8. 33)

is q. s. over o, then a value of m can be determined for which M™ will exist.
Furthermore, a generalization to » dimensions of a Tauberian theorem such as
given by Jacob readily shows that if f(X) is q. s. over all finite regions and is
such that for some positive p the expression »

f'f )P d Vx (8.k 34)

(rO

is bounded for sufficiently large values of r, then it too belongs to the class in
question. An n-tuply periodic function is included in this last type of function
S(X). Essentially, then, the functions which we can harmonically analyze are
those which are »algebraic on the average» as | X|— . - v

When we come to the study of the energy spectrum of a given function
f(X) we again subject the funetion to a harmonic analysis but not in such great
detail as before. In the corresponding mass spread we are no longer interested
in the complex phase of the various masses and densities present, but solely in
their absolute values, or, more precisely, in the squares of these absolute values.
Obviously, again, there will be different orders of density, or, as we may say,
different orders of energy in the component oscillations. For the functions of
the class described above there will exist for some value of £ = o the limit

p(X) ff AT—X)d Vr. (8. 35)

T, 0)
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The harmonic analysis of this latter function will show that its mass distri-

bution consists of the squares of the absolute values of the highest order den-

sities that appear in the distribution corresponding to f(X). Terms of lower

energy level do not appear. Thus, the total mass of the distribution corresponding

to @(X) does not necessarily coincide with althdugh it will never exceed the

total energy which could be calculated from the spread associated with f(X).
Precisely as in the one-dimensional case it can be shown that

. I 2
901 = glo) = tim o (AT V. ®. 30

(r; 0)

From this boundedness it follows that the product

gp(X){ ef<X-T)dVT} (8. 37)

is q. 8. over «, and hence that there exists M (r; U) formed with respect to
@(X). This function is at present only defined as a limit in the mean. Tt is
desired to show that it can be so defined that for any given U it will be a
monotonic non-decreasing function of r. This is carried out as when n=1 by
a series of limiting-processes which do not alter any monotonic properties. To
begin with one shows that if

@o(X) = [7)(‘8—)],6 f STV AT — X)d Vi

) (T in 5 o) o
_[f(T); [Tin(s50
L) { 0; [T elsewhere]
then
Pp(X) = Lim @s(X). (8. 39)
Furthermore one notes that
[menar.e— W| [#nernard'=o 6.4

precisely as in the one-dimensional case. From this it follows that the function
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.Ms(f'; U) = (2 :'E) f@-S(X){fei X-T) q VT} ¢ U g Vx
® (r; 0)
I

=(7;)7,deTf¢s(X)e"(X'T)dVX (8. 41)

(r; U) ®

for given U is monotone non-decreasing in r. It is readily seen that

M(r; U)dVy=1lm | Myr; U)dVy, (8. 42)
S—®

(«'; U . ('; U’

and hence that for given #' and U’ the integral on the left has the same mono-
tone property with respect to . Finally since, for almost every U’,

M(r; U')=lim —— fM U)dVy, (8. 43)

r—o ¥

we see that, in so far as it is thus defined, M (r; U) has the desired property.
Since the point-set on which M is not defined constitutes at most a set of zero
measure, it is a simple matter to define M for all » and U so that for each U
will be a monotonic non-decreasing function of 7.

The total spectral intensity of f(X), or more accurately, the total spectral
intensity of those components which are associated with the maximum energy
level, is given by the limit

lim M(r; U), (8. 44)

77—

if this exists. Omne fairly readily shows that

M(r; U) < ¢lo), (8. 45)
and, because of the monotony, hence that the limit in question exists and lies

between o and (o). The details of the argument whereby one next shows that

| lim M(r; U)=lim (Lr,)fq)(X)d Vx < ¢lo) : (8. 46)

r—r® -0

(~'; 0)

will be omitted here to avoid too much complication.
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9. Coherency matrices.

The spectrum theory of our earlier sections is a theory of the spectrum of
an individual function. There are, however, many phenomena intimately con-
nected with harmonic analysis which refer to several functions considered simul-
taneously. Chief among these are the phenomena of coherency and incoherency,
of interference, and of polarization.

It is known to every beginner in physics that two rays of light from the
same source may interfere: that is, they may be superimposed to form a darkness,
or else a light more intense than is ordinarily formed by two rays of light of
their respective intensities. On the other hand, two rays of light from inde-
pendent sources or from different parts of the same source never exhibit this
phenomenon. The former rays are said to be coherent, and the latter to be
incoherent. Although it is mathematically impossible for two truly sinusoidal
oscillations to be incoherent, even the most purely monochromatic light which
we can sensibly produce never coheres with similar light from another source.

The physicist's explanation of incoherency is the following: the interference
pattern produced by two sources of light depends on their relative displacement
in phase. Now, the relative phase of two sensibly monochromatic sources of
light is able to assume all possible values, and since light probably consists in
a series of approximately sinusoidal trains of oscillations each lasting but a
small portion of a millionth of a second, this relative pbase assumes in any
sensible interval all possible values with a uniform distribution which averages
out light and dark bands into a sensibly uniform illumination.

This explanation of incoherency is unquestionable adequate to account for
the phenomenon which it was invented to explain. Nevertheless, it is desirable
to have a theory of coherency and incoherency which does not postulate a
hypothetical set of constituent harmonic trains of oscillations, which at any rate
must become merged in the general electromagnetic oscillation constituting the
light. The present section is devoted to the development of a theory of cohe-
rency which is as direct as the theory of this paper concerning the harmonic
analysis of a single function, and indeed forms a natural extension of the latter.

- In interference, the components of the electromagnetic field of the constit-
uent light rays combine additively. Accordingly, the theory of coherency and
interference must be a theory of the harmonic analysis of all functions which



Generalized Harmonic Analysis. 183

can be obtained from a given set by linear combination. Let us see what the
outlines of this theory are.

We start from a class of functions, fi(t), in general complex, and defined
for all real arguments between — o and . For the present we shall assume
this. class of functions to be finite, although this restriction is not essential. Let

SO=a,fi(t)+as fo()+ - +anfult) (9. o1)

be the general linear combination of functions of the set. We shall have

ZZaﬂakhm ——ff, (t+2)filt)dt (9. 02)

Jy k=1

@(7) h

in case the latter limits exist. The necessary and sufficient condition for this to
exist for all linear combinations f{t) of functions of the set is that

@il —llm —Iff] t+1 (9. 03)

should exist for every j, k, and z. Then

= 2 24 T giela).- » (9. 04)
ik
Again, we shall have formally
Sl = ;Infw(f)q—wﬂdhz S, o™ an .09
where we may write 3}
Set) = 35 [ o) de (9. 06)

If @ji(z) exists for every j, k£, and =, we may readily show that each Sji(u) exists.
Clearly

T .
@rjle ——l1m fﬂt+rj, dt—hm-‘Tfﬁ(t—x)fk(t)dt=@k(—w) (9. 07)
—T
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and

«w

i) = I f g~ d ,__f G ‘“"*Idf—‘ (W), (9. 08)

27 —1T

-0

so that the matrix

I () ]

is Hermitian. This matrix determines the spectra of all possible linear combina-
tions of f(f),..., fa(f). Since it determines the precise coherency relations of the
functions in question, we shall call it the coherency matrix.

Let us subject the functions fi(f) to the linear transformation

= D\ ar filt). v (9. 09)
k .
Then
T
.1 - _
vl =tim -7 [ (4902t = 3 Sasimnt) 610
T ! m )
and

AUT__ LTI
ZTHC 2 nf’(”yk e ! dT == 2 Z ajlakm Slm, (9 )

Thus the new coherency matrix || Zjx()]] may be written

My || i) |} - M, (9. 12)
where
~ M, = a:ll, (9. 13)
and
M, =l ay]|- (9. 14)

In case the transformation with matrix M, has the property
M,-M,= M,  M,=1, (9. 15)
it is said to be wnitary. For such transformations,
W Zell = DLy - ] Spell - LT . (9. 16)

A matrix ||a|| is said to be in diagonal form if all the terms a;. for
which j == k are identically zero. By a theorem of Weyl®, every Hermitian matrix
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may be transformed into a diagonal matrix by a unitary transformation. Since
we may regard a diagonal matrix as representing a set of completely incoherent
phenomena, this transformation is of fundamental importance in the characteriza-
tion of the state of coherency of the functions determining the matrix. Together
with the numerical values of the diagonal elements of the diagonal matrix, it
indeed consitutes a complete characterization of the state of coherency of the
original function. In the case the values of the diagonal elements are distiﬁet,
this characterization is indeed to be carried through in but a single way.

The production of incoherent functions is a simple matter, when we have
once settled the existence theory of functions with given types of spectra. Let
£i(#) be any bounded function such that ¢(r) and consequently S(u) exists. Then if

folt) = fi(8) e, (9 17)

we have

T T
i % [ At A0t =im 2y [ Az a0
—T -7 ‘

T— T—

T
o Clete|—1¢]
= lim —; t+z t) ex (St
T~«=2Tff‘( Vil p( Vitre| + V[t]
—T

)dt, (0. 18)

T P e N Y )
and hence, since lim exp ¢ —— —— =) =1,
(i p( Vel + V7|

9722('[) = ?11(77) (9- 19)
and

Spa(0) == Sy, (w). (9. 20)

On the other hand, if for example f(f)=¢'*,
P1lT —1“.’; 2 1. [fl t+1)f, —”’"ﬁ_dtzo;] (9. 21)

813(w) = Sy () = 0. I

Thus the coherency matrix of f,(¢) and f,(¢) is
24 — 29764. Acta mathematica. 55. Imprimé le 14 avril 1930.
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' 0
8y () (9. 22)
o . 1
The coherency matrix of V2 f£,(f) and o is
2 o
811 (w) ; (9. 23)
o 0
that of f,(f) and f,(t) is
‘ 1 I
811 () ; , (9. 24)
I 1 .
that of f;(¢) and <f,(f) is
I —1
811 (w) . . (9. 25)
Z 1

Let it be noted that the coherency matrices of real functions are in general

complex. Thus if

fLt) = fi(t+2), (9. 26)
we ha,ve
9722('[) = ?11(");
guld) = im 7 [ le+i A0 (0. 27)
= @y (z+4);

and hence

Sps () = 8y, (u);

-]

eiut_ 1 V 3 . (9 28)
S ()= | @ule+i) l-,[—df"—* e 48y (v) + Spp(— )
giving the coherency matrix with derivative
1 i e—irl
81 (w) (9. 29)
eivl I

In opt';ics, coherency is generally considered for light of one particular fre-
quency. From that standpoint, the coherency of a set of functions f(t), ..., fa(t)
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with continuous differentiable spectra may be regarded as determined for fre-
quency # by the matrix

Si(u), .., Sin(w)
; (9. 30)
Sni(w), ..., Sialw)
or in the case of functions with line spectra, by
Sll (u+ 0)“‘811 (’M/'*O), ‘e ey Sln(u"}'o)—'SIn(u“—’o)
0 . . . . . . . . . . (9. 31)

Sn1(u+0)—Sn1(#—0), ..., Spn(#+0)—8Sun{u—o0)
We may regard these matrices in a secondary sense as coherency maftrices.
Coherency matrices of two functions are of particular interest in connec-
tion with the characterization of the state of polarization of light. As everyone
knows, this characterization is identically the characterization of the state of
coherency between two components of the electric vector at right angles to one

another. With this interpretation, matrix (9.22) represents unpolarized light,
matrix (9. 23) light polarized completely in one plane, while

[o] O
(9. 32)

o} 2

represents light completely polarized in a plane perpendicular to the tirst. Matrix

I —1
—1 I
represent light polarized respectively at 45° and at 135° to the first direction.
Matrix (9.25) and matrix
1 ?
— I

represent respectively light polarized circularly in a counter-clockwise and a

(9. 24) and matrix

(9. 33)

(9. 34)

clockwise direction.
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When the matrix of completely polarized light, whether linearly, elliptically,
or circularly polarized, is brought into diagonal form by a linear unitary trans-
formation, the resulting diagonal matrix will have only one element distinct
from 0. On the other hand, completely unpolarized light has the diagonal terms
equal. This suggests as a measure of the amount of polarization of the diag-
onal matrix

, (9. 35)

or of any other matrix equivalent to it under a unitary transformation, the

quantity
a—b. (9. 36)
If we subtract from our original diagonal matrix the completely incoherent
matrix
a+b
2
, (9. 37)
a+b
2
which is invariant under every unitary transformation, we get the matrix
a—b
2 ° \
: (9. 38)
b—a
o)
2

which may be regarded as a representative of the quantity a—#&. This suggests
that given any coherency matrix

A B+ C:
_ : (9. 39)
I B+ D
we may take A+ to represent the intensity of the corresponding light, and
the matrix
=D p_o
2
D (9. 40)
B+ 04 —g;
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as its polarization. Thus horizontal polarization is represented by the matrix

I o)
; (9. 41)
(o] —1I
polarization at 45° by the matrix
o I
; (9. 42)
I )
and circular polarization by the matrix
o] )
_ (9. 43)
—7 o

These are the same matrices which Jordan, Dirac and Weyl have employed to
such advantage in the theory of quanta. )

Since the most general Hermitian matrix of the second order may be written
a+f y+de o
y—0t a—f

it appears that all light may characterized as to its state of polarization by

I O I o [O |

=q + 8 +7 +d

s (9. 44)

0 1 0 ~—I 1 o —i ol

given the total amount of light it contains, the excess of the amount polarized
at 0° over that polarized at 9o°, the excess of the amount polarized at 45° over
~that polarized at 135° and the excess of that polarized circularly to the right
over that polarized circularly to the left. This characterization is complete and
univocal. The total intensity of the light may be read off any sort of a photo-
meter. The excess of light polarized horizontally over that polarized vertically
may be determined by a doubly refracting crystal in one orientation, and the
excess of light polarized at 45° over that polarized at 135° by the same crystal
in another orientation. It is possible furthermore to devise an instrument which
will read off the amount of circular polarization in the light in question. The
three latter instruments possess some very remarkable group properties with
respect to one another. Either portion of the light emerging from any one of
the instruments will behave towards the other two exactly like unpolarized light.
Rotation of the plane of polarization of the light through 45° will change the
reading of the first of the last three instruments into that of the second, and
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the reading of the second into minus that of the first, leaving the reading of the
third unchanged. There are precisely analogous unitary transformations inter-
changing any other pair of the three instruments, leaving the reading of the
remaining instrument untouched. These transformations together with their
powers and the identical transformation form a group. _

A fact concerning polarized light which is so apparently obvious that it is
generally regarded as not needing any proof is that all light is a case or limiting
case of partially elliptically polarized light. It is nevertheless desirable to prove
this statement. Completely elliptically polarized light with the coordinate axes

as principal axes has a coherency matrix of the form

A? —AB:
;o (9. 45)

A Bz B?

and hence partially polarized light with the same principal axes has a coherency

matrix of the form

A*+D* —ABi
P= . (9. 46)
AB¢ B+ D?
We wish to show that the general coherency matrix
a y—d1
M= _ (9- 47)
y+di 8
may be transformed into this form by a real unitary transformation in such a
way that
' T.M.T'=P.
To do this, we need only put
cos @ sin @
T= ; where tan 2 ¢ = Y. (9. 48)
singp  —cosg «—8

Thus the axes of polarization of M are 1 and 2 directions when we replace

Si(d) and Ja(t) by

9:() = fi(t) cos @ + fo(t) sin @;
(9. 49)

95(8) = —£3(t) cos @ +£,(t) sin @;
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the »lengths» of these axes are respectively

a= (et atr 0+ e a5 |
(9. 50)
B g4+ 80— L=+ ar ) ]

and the percentage of polarizdtion

o1 - 52" o 50

The connection between coherency matrices and optical instruments, which
we have already mentioned in the case of polarized light, is of far more general
applicability. An optical instrument is a method, linear in electric and magnetic
field vectors, of transforming a light input into a light output. In general, this
transformation, in the language of Volterra® belongs to the group of the closed
cycle with respect to the time, in the sense that it is independent of the posi-
tion of our initial instant in time. Such a transformation leaves a simple harmonic
input still simply harmonic in the time, although in general with a shift in
phase. _

An example of an optical instrument is a microscope. This may be regarded
as a means of making an electromagnetic disturbance in the image plane depend
linearly on a given electromagnetic disturbance in the object plane. Telescopes,
spectroscopes, Nicol prisms, ete., serve as further examples of optical instruments
in the sense in question. Among these, a particularly interesting ideal type is
the conservative optical instrument, in which the power of the input and the
power of the output are identical. This power depends quadratically on the
electric and magnetic vectors, so that a conservative optical instrument has a
quadratic invariant for the correspdnding transformations. When only terms of
the one frequency of ¢ are considered, this quadratic positive invariant becomes

Hermitian, and has essentially the same properties as the expression
xlz_vl+x2532+ +xnin ‘ (9‘ 52)

which is invariant under all unitary transformations of «,, ..., xs. Thus the

theory of the group of unitary transformations is physically applicable, not only
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in quantum mechanics, where Weyl has already employed it so successfully, but
even in classical optics. It is the conviction of the author that this analogy is
not merely an accident, but is due to a deep-lying connection between the two
theories.

In quantum mechanics, while all the terms of a matrix enter in an essential
way into its transformation theory, only diagonal terms are given an immediate
physical significance. This is also in precise accord with the optical situation.
Every optical observation ends with the measurement of an energy or power,
either by direct bolometric or thermometric means, or by the observations of a
visual intensity or the blackening of a photographic plate. Every such observa-
tion means the more or less complete determination of some diagonal term.
The non-diagonal terms of a coherency matrix of light only have signifiance in
so far as they enable us to predict the energies or intensities which the light
will show after having been subjected to some linear transformation or optical
instrument. This fact that new diagonal terms after a transformation cannot
be read off from the old diagonal terms before a transformation, without the
intervention of non-diagonal terms, is the optical analogue for the principle of
indetermination in quantum theory, according to which observations on the
momentum of an electron alone cannot yield a single value if its position is
known, and vice versa. The statement that every observation of an electron
affects its properties has the following analogy: if two optical instruments are
arranged in series, the taking of a reading from the first will involve the inter-
position of a ground-glass screen or photographic plate between the two, and
such a plate will destroy the phase relations of the coherency matrix of the
emitted light, replacing it by the diagonal matrix with the same diagonal terms.
Thus the observation of the output of the first instrument alters the output of
the second. In this case, the possibility of taking part of the output of the
first instrument for reading by a thinly silvered mirror warns us not to try to
push the analogy with quantum theory too far.

Coherency matrices form a close analogue to the correlation matrices long
familiar in statistical theory. If we have a set of n observations =W, 2, ... zt
all made together, and this set of observations is repeated on the occasions
1, 2, ..., m thus yielding sets ", ..., a™; a0, ..., z{; ..; .. 20, ..., 2 the

correlation matrix of these observations is
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m - m m
Z(x§c1))2, Z xl(cl) x;g)’ ...... , Z xgcl) x}:n)
1 1 1
m m ™m
z xgcz) xg)’ Z( x;g))2, ...... , Z oc,(f) xscn)
! . 1 - (9. 53)
m m ' T m
Z xs:l) x}cl), 2 x;cn) xsf)’ ...... , Z(xgcn))z
1 1 1

This symmetrical matrix represents the entire amount and kind of linear rela-
tionship to be observed between the different observations in question. The
further analysis of the information yielded by a correlation matrix depends on
the nature of the data to be analysed. Thus if the two observations of each
set are the x and y coordinates of the position of a shot on a target, the rota-
tions of the % and y axes have a concrete geometrical meaning, and the question
of reducing the matrix to diagonal form by a rotation of axes is the significant
question of determining the ellipse which best represents the distribution of
holes in the target. On the other hand, if the quantities whose correlation we
are investigating are the price of wheat x in dollars per bushel and the marriage
rate y, rotations have no significance, as there is no common seale, while on the
other hand, the significant information yielded by the matrix must be invariant

under the transformations
z, = kx; '
(9. 54)

y=1ly.

The so-called coefficients of correlation and of partial correlation and the lines
of regression of x on y and of y on x have this type of invariance.

Correlation matrices and their derived quantities are the tool for the
statistical analysis of what is known as frequency series, series of data where
no such variable as the time enters as a parameter. In the study of meteorology,
of business cycles, and of many other phenomena of interest to the statistician,
on the other hand, we must discuss time series, where the relations of the data
in time are essential. The proper analysis of these has long been a moot point
among statisticians and economists. As far as it is linear relationships which

we are seeking for, it is only reasonable to suppose that coherency matrices
25—29764. Acta mathematica. 55. Imprimé le 14 avril 1930.
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must play the same rdle for time series which correlation matrices play for
frequency series. In statistical work, the group of transformations which will

most frequently be permissible is as before
9:(t) = A Ai(1);
g:(t) = Bf(8).

Under this group, the significant invariants of the Hermitian matrix

(4 and B real (0. 55)

Sii(w)  8i,(w)
(9. 56)
85, (w) S, (u)
are
r(u) = S}, () [S1, (w) S;, ()]~ (9. 57)

which we may call the coefficient of coherency of f; and f; for frequency u, and

1 . g n

) = SV g g SRS,

the coefficients of regression respectively of f; on f; and of f; on f;. The

modulus of the coefficient of coherency represents the amount of linear coherency

between f;(t) and f,(f) and the argument the phase-lag of this coherency. The

coefficients of regression determine in addition the relative scale for equivalent
changes of f, and f,.

The computation of coefficients of coherency and of regression is to be

done in the steps indicated in their definition. In the case where only a finite

set of real data are at our disposal, distributed at equal unit intervals from o

to n, say %y, Ty, ..., Tz and ¥, ¥y, ..., Yn, the steps of our computation are:

n—k

I
(Pr) =~ ; T Tjtr;

n—~k
I
(prhe = ;xjw (%
o<k =< (9. 59)

n—k

I
(el = ; Y Tj+ks

n—k

I
(@) = — ;yi Yitk;
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n

Z{[(¢k)21 + (Wk)m] cos ku-+e [(q)k)zl—(‘])k)m] sin k“}_ (‘Po)xz/z

’(u): ” n Y2 n e (9 60)
2 [Z(mk)n cos 70%-(900)11/2] [2 (r)ys cOS k“"‘(wo)zz/z]

[ n P
Z (Svk)n cos ku—(po);./2

o, (w) = r(u) 7 =
2(99/.-)22 cos k“—(¢o)22/ 2
| o | (0. 61)
[~ n e
Z (@r)ss cos ku—(qo)ss/2

0'2(’0//) = F(u) = 2 = 1"
Z (W)u co8 k“"(?o)u/zJ

In case we have at our disposal methods for performing the Fourier transforma-
tion, we may compute these coefficients directly from graphs. Several devices
for this purpose are now being developéd in the laboratory of Professor V. Bush
in the Department of Electrical Engineering of the Massachusetts Institut of
Technology. v

10. Harmonie analysis and transformation groups.

Inasmuch, as the theory of Fourier series forms a special chapter in the
theory of expansions in general sets of normal and orthogonal functions, it is
reasonable to expect that the theory developed in the present paper is but a
special chapter in the theory of general orthogonal developments. An attempt
to translate the present theory into more general terms, however, incurs at once
somewhat serious difficulties. This is due to the fact that the theory of the

Fourier series involves only one fundamental Hermitian form,
4
1 _
Eff(x)f(w)dx, (10. o1)
—n

the closely related theory of the Fourier integral involves only the analogous

form
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jf(x)f(x)dl‘; (10. 02)
while the present paper involves besides this latter form the singular quadratic
form _

T
M) = Jim 'y [ o) e (10. 03)
T—x
=7

The forms (10.02) and (10.03) are quite independent of one another in their
formal properties, but the complex exponentials ¢** stand in close relation to
both of them: to (10.02) because if a < b, ¢ <d,

© b d
f dz J ez dy f ¢ dv = 2 v [length common to (a, b) and (¢, d)]; (10. 04)

- ¢

and to (10.03) because
T
lim — [ e emivr gg — NG (10. 03)
T—m 2 1 [u=1].
In the classical Plancherel theory, only the first form is in evidence; in the
Bohr theory of almost periodic functions, only the second; in the theory of the
present paper, the two play an equal rdle.

Weyl has developed in some detail the relations between the theory of
unitary groups and the theory of periodic and almost periodic functions. The
groups which he introduces are one parameter groups of linear functional trans-
formations leaving (10.03) invariant. The Weyl theory is manifestly not suscept-
ible to an extension to more general, forms of harmonic analysis, unless a way
is found to take cognizance of the invariance of (10.02) as well. This is the
purpose of the present section.

Let us restrict the functions f(x) which we discuss in the present section
to those for which

L)
. +x2dm (10. 06)

—x®

is finite. Let
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(o5 llzl>4

(10. 07)
fa el =4

Salz) =

and let s4 be the transformation leading from f(x) to fa(x). Let T be a trans-
formation which is 1inear,~ and with an inverse, and is defined for all functions
flx) subject to the finiteness of (10.06). Let T preserve (10.02) invariant, and
in case (10.03) is finite, let '

f |(Tsi—s4T)f() |t dee = o(A). . (10. 08)
Then since -
Tim L f Lal9) g1 ) (10. 09)
and -
I}l_{léf Ts;fi'(x)_ 3‘45{4133) 2dm= o, (10. 10)
it follows that -
M T A=) zllfiéf %155_) 2dx=MI(|f(x)|2). (10. 11)

The transformations 7' form a group. If 7, and T, are of this form,

f (T, Tysa—sa T, Ty ) ! deo
=fl[(TszsA—TlsATz)+(T15'AT2_3AT1T2)]f(x)I2dx
Sz] |TszsA—TlsATg)f(x)deJrzf|(TlsATz—sATng)f(x)Fdx

=2f|(TzsA—sAT2)'f(x)|gdx+ 2[|(TlsA-sATl) T.flx)|? d=. (10. 12)
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Furthermore,

f|(T_‘SA"SAT_I)./(w)|gd$=f|(8A—TSAT")f(x)|2dx

:fl(TSA—“SAT)T”‘lf(x)lgdx. (10. 13)

Thus the product of two transformations satisfying (10.08) and the inverse of a
transformation satisfying (10.08) likewise satisfy (10.08).
An example of a transformation satisfying (10.08) is

T fle) = fla+ 1), (10. 14)

for

-]

fI(TASA—SA TH flx) |Pdx

—o»
A

< f (fe— A=) |2+ | e+ A—2) [ dz—o(A). (10, 13)

[

If T satisfies (10.08) and (10.02) is invariant under it, we shall call it properly
unitary. Let us consider a one parameter group consisting of all properly unitary
transformations U* where

Utte = U* U+, (10. 16)
Let f(x) be such that '

9 (t) = M. [(U*f(@) /(=) (10. 17)

exists for every ¢{. Clearly, by the Schwarz inequality,

¢ (t) = [M: (| U flz) I¥) M (| /() )

© "
= [q’(O)Ali_Ig 2 f 4 U ()P dx]

= p(o). (10. 18)
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It follows that ¢(f) is a bounded function, and that

t

at (10. 19)

B
1 sin (uy— u,)#/2 z("’J’"*)
S (uy, “2)'_11;__]-:‘; n_f9’(t) n e
—&

exists when w,—u, is given as a quadratically summable function of u,+u,. For
this one need only apply Plancherel’s theorem.
Let us put

-]

70 =34 [ 105 ) a7 0 (10. 20

—®

If condition (10.17) holds for every ¢, we have

«®

90 =tim L | (o0 U (0) a7 d 0. 21)

which we may readily reduce to the form

@(t) =lim @.(t) | (10. 22)

A—®

by means of (10.08). We may easily prove g(t) not to exceed gp4(0) and hence
to be uniformly bounded in 4 and ¢, for

lim @4(0) = ¢(0). (10. 23)

A—r0

'Let us now introduce a mnew assumption concerning U® Let the trans-
Sormation W taking fl(x) into U%f(a) (a fixed) preserve (10.02) ¢nvariant. Than if

V(@) = Wsaflz) (10. 24)
we have, by the new assumption and (10. 20),

o0

palt) = f U (051 fle) U s fla)

=2—szqp(9c+t)t,_u(x)dx. : (10. 25)
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As we may readily see (cf. (1.29)) @a(f) is absolutely integrable over (—oo, o),
and

@

Pat) = f palf) e dt (10. 26)

—®

exists, and is real and positive. Indeed, we might have replaced our new
assumption by the assumption that

:—rfe""‘dtf[U‘f(x)]f(w) dx (10. 27)

is positive-definite, and exists for every quadratically summable f(x).:
Thus it appears that

. (Lt
Safuy, uy) = ;;f%(t) gll}_gu_giu_,)t/je ( 2 )tdt (10. 28)

exigts, is monotone in #, and u, and has the property that
Sy, wg) + Salug, ug) = Sa(ug, uy). (10. 29)

To see this, we need only reflect that

Ug

8. (uy, u2)=fPA(u)du. (10. 30)
Now "
gl D2 s g Sl t)O2, (10. 31)
8o that
S(uy, ug) =Lim. Sq(u,, us). (10. 32)
A—o®

From this we may readily conclude that
Sy, wg) + S(us, ug) = S(uy, ug), (10. 33)

and that S{u,, u,) may be so defined as to be monotone in both arguments and
increasing in u,. S(u,, u) is the analogue to S(u,)—S(x,) in our earlier sections.
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‘We have
1 I 1—cosut"
;fS(—u, u)du—ﬂ () tz—dt. (10. 34)
0 —w
Hence
1 I—cosut
8(—o0, =) :2}1}}; o (t)——tz——dt. (10. 35)
As in (5. 47)
8(—w, 0)= lim o) di. _ (10. 36)
g—0 2 &

We thus have arrived at a spectrum theory closely paralleling the theory
here developed for trigonometric expansions. Thus for the general case of
harmonic analysis, it is the group theory of transformations satisfying (10.08)
and (10.24) which is important, rather than the recognized theory of unitary
transformations.

Transformations U! with the properties demanded in this section make
their appearance in physies in connection with the Schrodinger equation, which
often has its Eigenfunktionen also Eigenfunktionen of an operator analogous
to Ut. A more specific instance of U!fl(z) is

Ut f(x) = 4t flx +1). (10. 37)

CHAPTER IV.

11. Examples of functions with continuous spectra.

The theory of harmonic analysis which we have so far developed has as
one of its purposes the analysis of phenowmena such as white light, involving
continuous spectra. We have not yet proved our theory to be adequate to this
purpose, for we have not yet given a single instance of a continuous spectrum.
This lacuna it is the purpose of the present section to fill. To this end, we
shall only consider functions f{(f) which over every interval (, »+ 1), n being
an integer, assume one of the two values, 1 and —1. For such a function, the

existence of
26—29764. Acta mathematica. 55. Imprimé le 15 avril 1930.
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T

@ (%) = lim LT Flt+) f(0) dt

T—vx
—T

for all arguments will follow from its existence for all integral arguments, in-

asmuch as, if x lies between # and n+1,
T T
| e+ de =2 | flt+n+1)f0) dt
2T 2T
—7 —T

+“2‘—T_xff(t+n)f(t)dt, (11 01)
-7

so that
T

q;(ac)=1imi f(t+x)f(t)dt%(x+n)¢(n+I)+(n+1—x)q)(n). (11. 02)

T—osz

-7

An example of a function of this sort is given below, where the sequence of
signs represents the signs of f{f) over the intervals both to the right and the
left of the zero point:

+ =

+, +; +, —; —, +; —, — repeated twice

ok b b, s, s s s 5 b (11 03)
: —, —, +; —, —, — repeated four times

+, +, +, +; +, +, +, —; +, +, —, +; ete. repeated eight times

Each repetition of a row is here counted as a separate row. In each row, all
the possible arrangements of » symbols which may be either + or — occur arranged
in a regular order. Thus in each row, the possible arrangements of p pluses
or minuses occur equally often, except for the modification incurred by the
possibility that such an arrangement may overlap one of the major divisions
indicated by a semicolon in the above table. These semicolons become more
and more infrequent as we proceed to later rows in our table, and do not affect
the asymptotic distribution of sequence of p signs.
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Thus the possible sequences of p signs occur with a probability approaching
1/2? at the end of a comported row. However, the ratio of the number of terms
in a row to that in all previous rows approaches zero, so that the effect of
stopping at some intermediate point in a row becomes negligible. In other words,

(number of repetitions of a particular sequence of p terms in first n)

lim ‘= 1/22.  (11.04)
n

Hence
T

I
lim ST ft+m)f(t)dt=o0. [m=an integer=o] (11.05)
T—w»

-7

Inasmuch as obviously

lim —I—fo(t)]’dtz I, (11. 06)

T 2 T
—T
we see that ol
1—|zl; lz]=1]
T) = 11. 07)
s B i (
It follows that
’ © . 1 u
I e —1 1 sin uax 1 [ 1—cosv
= =— —g)——dx=— | — . .08
S(u) anw(x) iz dx n[(l x) - dx i 3 dv. (11.08)
% 3 v
. . . : ., TI—cosu
Thus the function f{f) has a continuous spectrum with spectral density U

This fact that the spectrum has a spectral density is an even more restrictive
condition than the condition that it should be continuous. ’
Every monotone function is known to be the sum of three parts: a step
function with a denumerable set of steps; a function which is the integral of
its derivative; and a continuous funection with a derivative almost everywhere
zero. This latter type of function has been ignored as a possibility in spectrum
analysis. With both line and continuous spectra we are familiar, but the
physicists have not considered the possibility of a spectrum in which the total
energy of a region tends to zero as the width of the region decreases, but not
proportionally in the limit to the width of the region. Nevertheless, functions
with a spectrum of this type do exist, as Mr. Kurt Mahler has proved. I am
incorporating into this paper an extremely ingenious note of Mr. Mahler, already



204 Norbert Wiener.

published in the Journal of Mathematics and Physics of the Massachusetts In-
stitute of Technology, giving an example of this kind.
Let £ be a simple g-th root of unity, ¢ being any positive integer greater

than 1. Let £ be the conjugate complex number, so that
| EE=1. (11. 09)
We define the arithmetical function ¢(n) by the functional equations
el0)=1;

olgn + 1) = Foln) for [lzo’ 1,2,---»9——1] (11 10)

n=0,1,2,...

We have thus defined ¢(n) unambiguously for every positive integer n. We
may write

e(n) =giw (11. 11)

where ¢(n) is the sum of the digits of » in the g-ary system of notation.
Our problem here is to give an asymptotic evaluation of

n—1

2 o) e(l+k), (11. 12)

for arbitrary positive integral values of % and large values of n. If k=o0, we
have the obvious formula

Sy(n) = n. (11.13)
We shall use this as a basis on which to determine

n—1

Z e(l)o(l+1). (11. 14)
We may deduce at once from our fundamental equation (11. 10) the functional
equations of S,(n), namely
8,(0)=
Silgn+)=E&8;(n)+((@—1)n+ & (=0, 1,...,q—1] (11.15)

As is obvious, these equations determine §,(n) unambiguously.
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We now see, however, that the series

sir-sfi-[ oG-l <ol oo

satisfies' the same functional equations (11.15) as 8,(n) and hence is identical
with S;(n). We thus have '

S O F L B Y R A

Now let

F=n<qgtl (11.18)
We see that

so-sfa-[ 1L T

a q 7
= 1\ 1
—-—’ng(l—-—?l) _é_ + O(1) + Ofr), (11. 10)
q
or by (11.18) oy g
1(n)—qé__1n+0(log n). (11. 20)

Formulae (11.13) and (11. 20) are only special cases of the corresponding formula
for arbitrary . We obtain this in the following manner.
Since

Sk(gn +1) = Sklgn)+ O(1), l=o0,1,2,...,q—1] (11.21)

we need only consider S’k(qn). For this we have the formula
Syxr1(gn) 8 {(g—2) Sx(n) + A Skr1(n)}. (11. 22)
We define a sequence o(k) by the functional equations
| olo)=1

o(gK+ ) =B (9—}%(1() + ga(m x)). (11. 23)
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Then it is always true that

Si(n)=o{k)n + O (log n). : (11. 24)

To begin with, we have proved this theorem for #=o0 and ¥=1. Formula
(11. 23) shows, however, that we may prove (11.24) in general by a mathematical
induction with respect to %. ’

o(k) is a very complicated arithmetical function. For small values of its
argument (K=o, 1, -+, ¢g—1, A=0, I, ---, ¢g—1) we have

o(h) = & (g—A)+@G—1)E

= S =,

q—§
o(Kq+ 3) = EKH(q"'K)(q—l)"“((K_I)(q—l)_"" (g—K—1)A)E+ KAE®
alg—9)

(11. 28)

It is natural to extend our definition of o(k) to negative values of £ by the
formula ‘ ‘

o(— k) =o(k). . (11. 26)

Formula (11.24) is then true for negative as well as for positive arguments.
It is natural to investigate the functions

n—1

Te(m) =, o)l +#) | (11. 27)

0

which arise from ¢ in the same fashion as S arises from ¢. We shall confine
ourselves to the case

A g=2;§=8§=—1
We have here the equations
olk) = o(k); l
o(2 &) = o(k); (11, 28)
Sty _ SRl J
2

Hence we have the following formulae:
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n—1 . '
T2 k(2 m)= Z (elzm)olzm+2k)+o(zm+1)o(2m~+2Ek+1)) (r1.
m=0
n—1
=5 (a(m) sln+ B) + (e(m)+o(m+ 1) (o(m+ &) +olm+k+ 1))) (11,
m=0 ' 4
or ‘
Tan(2 ) — gf,c(n)'— i Tys(m) — i Ti1(n)] < const. (1.
and further

Tort1(2 n)="i1 (o(zm)o(2m+'2k+ 1)+o(zm+1)a(2m+2k+2)

m=0

_ _"21 (G(m)'a(m+k)+ «2:(_m+k+ 1), a(m)+<27(m+ 1)0(
or |

The array

{...,0n), ..., o(1), 000), 0(1), ..., 0(%), ...}={ .., a=n, ..., a—1, ay, @, . . ., Oy o

defines a function
Idn if |t—n| < 1/8

=1, (11,
o if for no », |t—n|<1/8
and ,
o (o) —:Tlin;ﬁ, ff(t+r)f(t)dt=ia([fr + i]) Q(z—— [r+ i]) (11.
where -
ol 1—4]||; [——<x<—]
| ° i==<i]
We have .
W=, [ o0t an (11

where S(u) is of limited total variation. Then

@

Slute)—S(u—s) = £ f o) 5 e, (11,

—0

mv+k+1)) (1.

IT2k+1(2’ﬂ)+Tk(7’l)+Tk+1('ﬂ)| < const. (II.

207

29)
30)

3"1)

32)

33)

34)

35)

. 36)

37)
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Hence by (6. 15)

<0

lim -Lfe_i’“lS(?4 +&)—S{u—e) P du = lim -
= ° T—x 2 2

—w® p—

If¢(x-i—r)(p(x)dx. (11. 38)

Hence if the finite or denumerable set of discontinuities of S(u) are at u,, us, . ..

and have values A,, 4,, ..., respectively

o«

Dl 4x[ = lim 2—Iéfe—"”‘|S(u+e)—S(u——£) Pdu=
—0
1

—®0

T
1
=Tl_1_'nala 3T plz+v) plx)dx
-7
and exists for every ». However,
T T n
lim —— (x+r»)plx)de = < Hm - [”+i](—)R(v — [v +
T 2 T Q ¢ I6 =t O n 2
-7
where
1
2
Re)= [ o) @+a)ay
1
T2
so that
lim Zin)
n—w N

exists for every £. If we put

n— 0 n n—ow N

@ (k) = lim Tiln) _ lim— Ela(l) o(l+k)

we may conclude from our equations for 7% that

wk—1)+6 wk) +w(k+ 1)

w(2k) = —;

8

w2kt 1) — — “(kﬁi:,’(,ki 1,

(11.

. 40)

41)

. 42)

. 43)
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It follows that if

then for every %

Ti(n) = o(n)
As o(2 k)=alk), 6(1)=—1/3, we see that we cannot have
lim ¢{(k) = o,
k—x
and hence we cannot have
lim ¢(z) = o.

It is thus impossible that

for then we should have by (5.43), (5. 46)

L]

T— % T—r0

lim ¢(z) = lim f S’ (u) e** du = o.

—m

On the other hand, as
w(o) = o,
we must have

5—»026

limLfl S(u+e)—S{u—e)|Pdu = o.

(r1.

209

. 45)

. 46)

. 47)

. 48)

. 49)

. 30)

. 52)

53)

It follows that S(u) is a continuous function which we have already seen not
to be the integral of its derivative. This theorem of Mahler thus leads to a

new type of spectrum.
27 — 29764. Acta mathematica. 55. Imprimé le 15 avril 1930.



210 Norbert Wiener.

12. Speectra depending on an infinite sequence of choices.

In the last section we gave concrete, well defined examples of functions
with various continuous types of spectra. The present and the following sec-
tions are devoted to the generation of such functions by methods which instead
of always yielding functions with continuous spectra, almost always yield such
functions. The distinction is precisely analogous to that between rational mechan-
ics of the classical kind and statistical mechanics. Theoretically, all the mole-
cules of gas in a vessel might group themselves in a specified half of its volume;
practically, such a contingency is unthinkably improbable. ‘

The notion of probability is a new element not occurring in classical
mechanics, but essential in statistical mechanics. It applies to a class of con-
tingent situations, and has the essential properties of a measure. So too the
idea of »almost always» in harmonic analysis depends on some more or less
concealed notion of measure. In the present and the ensuing sections, we shall
assimilate this notion of measure to that of Lebesgue, so that »almost always>»
- will translate into »except for a set of Lebesgue measure zero».

Consider a sequence of independent tosses of a coin. By a sequence, we
mean a record such as, »heads, tails, heads, heads, tails.» For such a finite
sequence, the probability is 2—", where n is the number of tosses. That is, it is
the same as the measure of the set of all the points on (o, 1) with coordinates
whose binary expansion begins .1o110. This mapping immediately suggests a
definition of probability for infinite sequences of tosses. The probability of any
set of sequences of tosses is defined as the Lebesgue measure of the set of
points whose binary representations correspond to sequences of tosses in the set,

5 We can

in such a manner that 1 corresponds to »heads» and o to »tails».
even represent sequences infinite in both directions by binary numbers in such
a way as to define the probability of a set of sequences, by having recourse to
some definite enumerative rearrangement of such a sequence.

If we have made »probability> a mere translation of »measure», »average»
becomes the equivalent of »integral>. We are accordingly able to use the entire
body of theorems concerning the Lebesgue integral in the service of the calculus
of probabilities. |

We have not yet, however, correlated with our sequence of throws func-

tions susceptible of a harmonic analysis. To do this, we take a certain zero
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point on a doubly infinite line to correspond with the zero point of our doubly

infinite sequence of tosses, and if the nth toss is a head, we define f{f) to be 1

for n<t<m+1; if a tail, to be —1. The question we wish to ask is: what is

the probability distribution of spectral functions S(u) for these functions f(t)?
We have, taking f{f)=a, for n<t<n+1,

I
A ff(t+ m)f(t) dt = 2—72 (am—n aA—n+ An—n+10—nt+1t + Anyn—r an_l). (12. OI)

Since the distribution of each a, between negative and positive values is sym-
metrical and independent of that of every other,

n

Average ;;ff(t—km)f(t)dt:—-

—n

[o if m = o;

(12. 02)
ll if m=o.

When m=o0, this average is indeed identically 1. In every other case, when m
is an integer,

Average {:;”ff(t+m)f(t)dt}2

I
= Average o (@men Gnt = + Gmgnet Bna)?

I
= Average 4722_ (d;,,—n a’;,, + -+ a:h,+n—1 d:—l)

=1/2n, (12. 03)

since the averages of all the non-square terms vanish. Hence
E‘Liff(t+m)f(t)dt>x4 (12. 04)

over a set of values of f(f) with total probability

A

<.,
2nt

(12. 03)
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Since the sum of these latter quantities forms a convergent series, with remainder

after n terms tending to o as » increases, we must have

n?

lim —I?F flt+m)f()dt< A, (12. 06)

=t O
_”2

except in a set of cases of arbitrarily small and hence of zero probability. Hence
except in a set of cases of zero probability,

nd

lim % flt+m)f()di=o. (12. 07)

Py O

—n?

Here the procedure to the limit runs through integral values of n. This

can be generalized at once. Let P be bounded, and let

nt < T <(n+1)

Then
T . n?
I n I 1
ﬁdel——Tmdel+2— f j]Pdl
—T —~n2
. n? s (1)
n I
L (pars fp,u de/l] o<9<1]
—n? —{n+1)?
. n? ( )2 (n41)2 9 n?
_r 1 flnty)” 1T o
_Tzandl-h?[ T 2t Pdd— 7 2n2f}’ol,1].(12.08)
—n? '—(TL+1)' —n2
Thus if
lim ——-del—
n—wx 2N
then
T
lim — | Pdi= (12. 09)
T—
—T

We thus see that in case m is an integer‘ other than zero, we almost always have
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T

lim — | fit+m)f(H)dt=o. (12. 10)

T—-»oozT

-
As in (11.07), we may conclude that

o; (x>1)

ole) = 1—zx; o<z<1) (12"“)
1+x; (—1<z<o0)
(

0; (—1<2)

1 %
I T —1 I sin ux 1 1—ecosv
S(“)——z—;fqo(x) z’x_dx_;f(l—x)kx—dx—;f_zﬂ dv. (12. 12)
0 0

These propositions are true, not always, but almost always. Thus a haphazard
sequence of positive and negative rectangular impulses almost always has the
spectral intensity

1 1—cos v
- —— (12. 13)

‘7T v

which is numerically identical to the square of the Fourier transform of a single
rectangular impulse. To see this, we need only reflect that the Fourier trans-
form of such an impulse is

1

2 .
I ) 2 sin u/2 I-—COoS %
_femdx:]/_ _=|/__~2 . (rz. 14)
Van T u TU

1
2

It would not be a difficult task to generalize this remark to impulses of
other than rectangular shape. The essential generalization to make this fact of
physical interest is, ‘however, to eliminate the equal spacing of the individual
impulses, to reduce the sequence of impulses to such an irregularity as is found
in the Brownian motion. This is the problem of our next section. The prin-
cipal difficulty is that the fundamental Lebesgue measure to which we reduce
our probabilities is mnot so obviously at hand.  There is no continuous infinity

of choices which bears an obvious analogy to that involved in building up a
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binary fraction. Nevertheless, the distribution involved in the time paths of
particles subject to the Brownian motion can be reduced to a Lebesgue measure,
certain functions connected with these paths can almost always be analysed
harmonically, and their spectra will almost always have a certain fixed distribu-
tion of energy if frequency. In other words, the properties of the distributions
and functions -of this section furnish an excellent working model for those to
be expected of the functions discussed in the next section.

13. Speetra and integration in funetion-space.

From the very beginning, spectrum theory and statistics have joined hands
in the theory of white light. The apparent contradiction between the additive
character of electromagnetic displacement in the Maxwell theory and the observed
additive character of the quadratic light-intensities is on the surface of things
irreconcilable. .The credit for resolving this antinomy is due to Lord Rayleigh.
He considers the resultant of a large number of vibrations of arbitrary phase,
and shows that the mean intensity of their sum is actually additive. He says,
»It is with this mean intensity only that we are concerned in ordinary photo-
metry. A source of light, such as a candle or even a soda flame, may be
regardéd as composed of a very large number of luminous centres disposed
throughout ‘a very sensible space; and even though it be true that the intensity
at a particular point of a screen illuminated by it and at a particular moment
of time is a matter of chance, further processes of averaging must be gone
through before anything is arrived at of which our senses could ordinarily take
cognizance. In the smallest interval of time during which the eye could be
impressed, there would be opportunity for any number of rearrangements of
phase, due either to motions of the particles or to irregularities in their modes
of vibration. And even if we suppose that each luminous centre was fixed, and
emitted perfectly regular vibrations, the manner of composition and consequent
intensity would vary rapidly from point to point of the screen, and in ordinary
cases the mean illumination over the smallest appreciable area would correspond
to a thorough averaging of the phase-relationships. In this way the idea of the
intensity of a luminous source, independently of any questions of phase, is seen
to be justified, and we may properly say that two candles are twice as bright

as one.»
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Thus Rayleigh’s statistics of light is a statistics in which the quantities
distributed are amplitudes of sinusoidal vibrations. Such a theory involves a
preliminary harmonic analysis, perhaps of a somewhat vague nature, but definite
enough to be useful in the hands of a competent physicist. There is an alterna-
tive approach to spectrum statistics, which is of a more direct nature. Imagine
a resonator — say a sea-shell — struck by a purely chaotic sequence of acoustical
impulses. It will yield a response which still has a statistical element in it,
but in which the selective properties of the resonator will have accentuated
certain frequencies at the expense of others. It seems on the surface of it
highly plausible that the outputs of two such resonators will almost always be
additive as to intensities rather than merely as to amplitudes. .

»Chaos» and »almost always» — there lies an entire statistical theory
behind these terms. The simplest phenomenon to which the name »chaos» may
be applied with any propriety is that of the Brownian motion. Here a small
particle is impelled by atomic, collisions in such a way that its future is entirely
independent of its past. If we consider the X-coordinate of such a particle,
the probability that this should alter a given amount in a given time is inde-
pendent (1) of the entire past history of the particlé; {2) of the instant from
which the given interval is measured; (3) whether we are considering changes
that increase or changes that decrease it. If we make the assumption that the
distribution of the changes of x over a given interval of time is Gaussian, it
follows as Einstein has pointed out that the probability that after a time f the
change in x should lie between x; and x,+dx, is

I
—————te—“"l/d dx,. (13. o1)
e

Here ¢ is a constant which we may and shall reduce to 1 by a proper choice of
units. The particular manner in which ¢ enters results from the fact that

@K

. o . e
y———— ¥4 Wt —= fe be L dux. (I3 02)
Vr(t,+t,) =Vt t,

-—w

This fundamental identity is tantamount to the statement that the probability
that 2« should have changed by an amount lying between x, and x,+dx, after
a time ¢ ¢, is the total compound probability that the change of x over time
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¢t, should be anything at all, and that it should then migrate in a subsequent
interval of length {, to a position between x, and x, +d=z,.

A quantity z whose changes are distributed after the manner just mentioned
is said to have them normally or chaotically distributed. Of course, what really
is distributed is the function x(f) representing the successive values of . (There
is no essential restriction in supposing z(o)=0.) Thus the conception of a purely
chaotic distribution really introduces a certain system of measure and consequently
of integration into function-space. This gives us the clue to the statistical study
of spectra. We determine the response of a resonator in terms of functionals
of the incoming chaotic disturbance. We then ask, »What is the distribution
of various quantities connected with the spectrum of this response, as determined
by integrating these quantities over function-space with respect to the original
chaos?> Let it be remarked that the theory of integration appropriate to this
problem is that developed by the author in his »Differential-space», and not the
earlier theory of Géteaux, which forms the starting point of most researches in
this direction.

Before we can attack these more difficult problems we must establish out
theory of integration on a firm basis. To do this, we shall establish a corres-
pondence between the set of all functions and the points on a segment of a
line A B of unit length, and shall use this correspondence to define integration
over function-space in terms of Lebesgue integration over the segment. Let me
say in passing that in my previous attacks on this problem, I have made use
of a somewhat generalized form of integration due to P. J. Daniell. This form
of integration, at least in all cases yet given, may be mapped into a Lebesgue
integration over a one-dimensional manifold by a transformation retaining measure
invariant. In as much as the literature contains a much greater wealth of
proved theorems concerning the Lebesgue integral than of theorems concerning
the Daniell integral — although the latter are not particularly difficult to es-
tablish — it has seemed to me more desirable to employ the method of mapping.
This method of mapping is an extension to infinitely many dimensions of a
method due to Radon.

The method of mapping consists in making certain sets of functions x(t),
which we shall call »quasi-intervals», correspond to certain intervals of A B. Our
quasi-intervals will be sets of all functions z(f) defined for o =t¢<1 such that
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xfnl S x(t,,) anQ.

ot <ti<t, < - <t,<1). ' (13. 03)

By our definition of probability, the probability that x(f) should lie in this
quasi-interval is

a2t (t 1) (tg—15) - '(tn_tn—l)]—mfdgn [d§1n :

Tn1

exp [—53 1= 3 (6 gk_m(tk—tk_l)—l] . (304
2
Clearly, if the class of all functions z(¢f) be divided into a finite number of
quasi-intervals — some of which then must contain infinite values of xs; or ane
— the sum of their probabilities will be 1.
The quasi-intervals with which we shall be more specially concerned are
the quasi-intervals I(n; &y, k,, ..., ks») for which

th =h2", (1<h=2% l

Zp1 == tan (kamw2—");

(13. 03)
|

Zn2 = tan (ky+1)m2—");

where %, is some integer between —2"1 and 2" !—1, inclusive. For the
probability that xz(f) should lie in this interval let us write

‘P{I(n; klv Tty kﬂn)}'

Let us notice that I(n; ki, ..., k) is made of a finite number of quasi-intervals
I(n; 1, ..., l;n+1), and that the sum of the probabilities belonging to the latter
gives the probability belonging to the former.

Let us now map the four quasi-intervals I(1; %,, k,) on the segment 4B,

assigning to each in order an interval with length equal to its probability. Let
28—29764. Acta mathematica. 55. Imprimé le 16 avril 1930,



218 Norbert Wiener.

us map the quasi-intervals I(2; k&, ks, &, k,) into intervals of the segment AB,
translating probability into length, and in such a manner that if I(2; I, ly s, 1)
forms a portion of I(1; %, %), their images stand in the same relation. If we
keep this process up indefinitely, we shall have mapped all the quasi-intervals
I(n; ky, ks, - .., kyn) into intervals of AB in such a way that probability is trans-
lated into length, and that the end-points of the intervals of A B form an every-
where dense set.

Up to this point, our mapping has mapped quasi-intervals on intervals. We
wish to deduce from it a mapping of functions on points. As a lemma for
this purpose, we shall show that the functions x(f) for which for any ¢, and 4,

that are terminating binaries,
|o(t)—w(t)] = a0 bl t—ts (13. 06)

may be enclosed in a denumerable set of quasi-intervals such that the sum of
the probabilities of these quasi-intervals is O(h—™) for any . ‘
To show this, let us represent #, as the binary fraction

O'alagas...an".
and f, as the binary fraction

Let #, be a number whose binary expansion may be made to agree with that
of ¢, up to and including a; and with that of ¢ up to and including b. We
shall choose #; so that j is as large as possible, even though this may necessitate
the use of an expression for f, ending in [ll--- to agree with the smaller of
the quantities #, and #, and of a terminating expression for #, to agree with the
larger. The interval from ¢, to # will then be expressible in the form

000 -0C+1Ci+2° ",

where there are j consecutive o's after the final point, and every ¢ is O or I.
The interval from ¢, to ¢ may be expressed in a similar manner. In other
words, the interval from #, to ¢, may be reduced to the sum of a denumerable
set of intervals from terminating binaries to adjacent terminating binaries of the
same number of figures, such that there are not more than two intervals in the
set of magnitude 2—7* where %k is any positive integer, and such that every
interval is of one of these sizes. '
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Now clearly,
[t,—t | = 27 (13. 07)

Hence, if it is for particular values of ¢, and # in question that (13.06) is
fulfilled,
[2(t)—x(ts) | = 40 b - 2 @1+

> f - 2tk (1 — g =14
=2 hz 2—hit, (13. 08)
J+1
If we now appeal to our analysis of the interval (¢, %), we see that for some

interval from m-2—* to (m+1)-29* where m and k are integers and
o<m< 2tk we shall have

m m+1
z 2.’i+k —x 2.7+k

Thus if for any pair of values ¢, and ¢, that are terminating binary fractions,

> f - 2 UHRA . (13. 09)

fa(t)—alt) | = g0 Rt —t, |, (13. 10)
then for some integers m and 7 (m < 29
|xlm 2 —x(m+ 1) 27| > h - 2~ (13. 11)

It merely remains to determine the measure of a denumerable set of our quasi-
intervals I(n; %y, ..., kyn) containing all the functions z(¢) for which, for some
m and ¢, (13.11) holds.

To begin with, let m and 7 be fixed. Since our selected quasi-intervals
ultimately divide the range of values of x(m2—7) and of x((m+1)2) to an
arbitrary degree of fineness, there is no trouble in proving that the functions
satisfying (13. 11) may be enclosed in a finite set of selected quasi-intervals of
total probability not exceeding

w w©

xﬂ
2 — 2
&+ e 2 idr=c¢+ — e—”?dx (13 12)
| Z T Vﬂf ’
B o—ild h-oilt

where ¢ is arbitrarily small. If we sum for m and #, we get as the sum of the
probabilities of all our enclosing sets a quantity not exceeding
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o

* il

77+ZV e dx
=177
rooil4
© i+l ;
< 2 e"”’“_

Vn

i=1
©  Hitl—nif—4n
<30 (13 13)
for sufficiently large k. As usual 7 represents an arbitrarily small quantity.
Expression (13.13) clearly can be made to vanish more rapidly than any given
negative power of & as h becomes infinite.

Let us now reconsider our mapping. If we leave out the ends of our
intervals, which form a denumerable set of measure o, every point on 4B is
uniquely characterized by and uniquely characterizes an infinite sequence of
intervals, each containing the next, and tending to o in length. If we reject a
denumerable set of quasi-intervals of arbitrarily small total probability, the
remaining quasi-intervals and portions of quasi-intervals all contain functions
satisfying the condition of equicontinuity

Ix(tl)"x(t2)| < 40h|t1_t2 |1I4’ (13. 14)

so that if we modify AB by the removal of a set of points of arbitrarily small
outer measure, as well as by the removal of the end-points of our intervals,
every point of AB is characterized by a sequence of intervals closing down on
it, by the succession of corresponding quasi-intervals, and by the uniquely deter-
mined function z(f) common to this sequence of quasi-intervals and satisfying
(13.14). It follows at once that except for a set of points of zero measure, we
have determined a unique mapping of the points of AB by functions satisfying
(13.14) for some .h. Thus any functional of the latter functions determines a
function on the line, which may be summable Lebésgue.. In the latter case, we
shall define the average of the functional as the Lebesgue integral of the cor-
responding function on 4 B.

Among the summable functionals are the expressions

P(a(ty), z(ty), . . ., x(ta)),
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where P stands for a polynomial. This is readily seen to be the case when the
expressions i, ..., {, are terminating binaries, and the extension to other values
follows from the equicontinuity conditions we have already laid down. To see
this, let us note that we have already given information enough to prove that
the upper average (corresponding to upper integral) of

[max [2(f)]I"
is finite. This functional will, however, simultaneously dominate
Pla(ty), 2(t), ..., x(t))

in which we suppose P of the nth degree, and the set of approximating funec-

tionals
Plx(tyy), x(tis), ..., x(ta);
‘P(x(t"’ﬂ)7 .’L'(tmz), vy x(tm"))’
in which ¢, ..., ftun, ... are terminating binaries, and lim tmnztn; That these

MR

functionals are actually approximating functionals results from the fact that

Plyy, ..., yn)

is continuous, and that z(f) is almost always continuous. Now, there is a theorem
to the effect that if a sequencé of functions uniformly dominated by a Lebesgue
summable function converges for each argument to a limit, and if the Lebesgue
integrals of these functions converge to a limit, this limit is the Lebesgue inte-
gral of the limit function. This proves our theorem.

In case ¢, =< =<--- <t,, the average of P(x(t,), ..., 2(t,)) is readily seen to be

ki

n * [t {te—t,) - (ta— tn.—Z)]_llzfd'gl o fdgn P, ..., gn)"

- exp [—§? tl—lwi(gk—gk_l)?(tk—tk_l)“l]. ' (13. 13)

2

In particular, if # <¢,,
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Bl £ s 3V
Average (o(6)olt) = j“d;‘[glge LT e dg,
l l
—t/2. (13. 16)
and if <t <t,<¢,,
N

Average (x(t,) 2(t;) w(ty) x(t) = AV bt 1))

f s, f &, f a5, f de, s exp (— 51— BBE_GEE Bob
_th, th

. . (13. 17)

The expressions just given are absolutely summable. Accordingly, by the
familiar rules for inverting the order of integration, if «,(f), ay(f), ay(t), e,(t) are
of limited total variation over (o, 1),

1

Averagefx(t)dal()f()da2 fdal fdaq fd02 fda,)
*}[ (1) — eyt d%()‘[ (1)) e )

=_:[;ﬂqm—mnmam—%w

1

={[mm—mmmm—mmm; (13. 18)

2
0

1 1 1

Average j H day(t) f 2(t) day() f 2(t) da () f 2(t) day(t)
—f de(t fd% f( +g)das(u)fda4(v)

u



+ fl %dal(t) fl dey(s) j.(s + %) dey(u) fl dag(v)

+22 other terms representing different orders of «,, a,, a3, o

Generalized Harmonic Analysis.

- fgd.,l(t) f Lal f “ gy f tet
1 f £ gt f Gyt f day f da o)
+1 f  dayl f L0 fdw(s) f de(v)
£l j “ daylw) f de ) f gdal(t)t f day(s)
1 f “ dayu) f £ eyt f day) f da (5
o1 f ' dalmf “ Gyt f gt f danl

+ all other terms representing different orders of «,, ay, a4, @,

I

2

4

+1 f (1) — e (8] g (1) — e (4] it f (1) — ety 8] [ra (1) — g o)) s

1
+ =

fl 0 f day (s) fl % ey fl day(v) + ete.

[[“1(1) —a(t)] les(1)—as ()] dt [ [ag(1)—ay(s)] [a(1)—ay(s) ds

223

: f (1) — ey (8] ey (1) — (8] it f (1)~ g 6] ey (1) — g (8)] ds. (13. 10)
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The point of this last argument is that
)
2 2

t o tu
2 2 2

may be written

Lsy
2

N %
N ®

and that we may then take advantage of the existence in our expression of all
permutations of «,, @y, @, @, to relabel our variables s, ¢, u, v so as to add the
terms of our expression together again in a more symmetrical way, and
represent it as a sum of three products of integrals such as we have already
evaluated.

Up to the preseut, we have been considering probabilities depending on a
basis function x(f} defined over (o, 1). For the purposes of harmonic analysis,
we wish to replace this by a basis function defined over (—o, ). We may
do this as follows: Let

1
- cot— 1(—)
n

§(zr) = V;fx(t)d cse nt—w(;l; cot=1(— )) Vit+a@+ax(i/2). (13. 20)

1

As z(t) is almost always bounded, this will almost always exist. Then

71: cot—1 (—8)

a

Average (§(ﬂ)—§(a))2:gfcscg ntdt—;é:—, (13. 21)

1 —1
= cot —
co (—a)

in the case that §>e«. This is merely a particular case of (13.18). In the case
that (e, #) and (y, ) do not overlap, a similar argument will show that

Average (5(8)—&(a)) (5()—&(d))=o. (13. 22)

Thus &(zr) has essentially the same distribution properties as x(f), but over
(—o, ) instead of (o, 1). :

We might, of course, have defined our distribution of £(z) originally, without
any recourse to that of x(¢{). In any case, we should have had to make use of
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the fact that this distribution has certain equicontinuity properties, and these
are somewhat easier to develop over a finite than over an infinite interval. The
function £(z) represents the result of a haphazard sequence of impulses, uniformly
distributed in time, extending from —oo to o, in such a way that their zero
value is taken to be at z=o0. It is consequently immediately available for a
harmonic analysis such as we discuss in this paper, while x(¢) is itself immediately
adapted only for a Fourier series analysis.

Now let 3(z) represent the characteristic response in time of some resonator,
the so-called indicial admittance. It may be real or complex, but we shall assume

9)V 144 to be of limited total variation over (—o, ) and & to be quad-
ratically summable. As an immediate consequence of these assumptions,

H(—o)=8(e0)=o0. (13. 23)
‘We have

@

f E0)d9(0)=V = f d9(z) [ f x(t)d esc t—x (:—r cot—1 (—f)) Vi+e +x(1/2)]

—» 1
2

1
= V?vfx(t) [9(~cot wt)d ese wt+ ese widd(— cot i)
0

1

= V;fw(t)d[&(—cot nt) esc wi]. (13. 24)

0

Hence if &,(z7), 3,(z), ¥4(2), and &,(z) satisfy the conditions we have laid down
for 3(z),

© 1

Averagef§(fv)d 31(r)f§(¢)d1‘}2(7) = %fﬂ: esc? wt 9, (—cot wt) Iy (—cot wi)di

0

—0

@©

—L f (@ dr; (13. 25)

—_— -

29—29764. Acta mathematica. 55. Imprimé le 29 avril 1930.
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Averagef 7)d9,( f§ 7)d 3l fg 7)d Iy(z f§ 7)dd,(t

] o«

1 7). (1) dT 7))\t dT

_1;[191( ) el )d_;[ss( )34(2)d

+ Lf& ( )03(1)d'rf3z(7)194( )d

+5 [msaas [amamar (13. 20

We thus have succeeded in generalizing our theorems concerning the averages
of products of linear functionals to the case where the basis function has an

infinite range.
We wish to apply these results to the harmonic analysis of an expres-

sion f §(z)d3(z+1). To do this, we must evaluate the following averages:

Average fdlfg 7)d 9 r+lf§ I(o+2)

dl Average [fg 7)dF(z+A) f§ 0)d 9 a+l)]

T

T o
= d).f|3(r+l)|2dz

—-—T —o

=! f | 9(0) |t . (13. 27)

T

(Here as in what follows, the inversion of the operators 2IT dz and Average

-T
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is permissable, since the integral to which our mapping process leads us is

absolutely convergent.)

T © @ 0
Average [ﬁj dlf§('z)d0(7+l)f§(a)d3(a+l)— ;—f|3(1) Fdr]2
-7 —» —®» —»
= Average - Tgfdlfd”jg d0r+1f§ d8o+).f§ o)dda+u)-

—T —»

o

-_f§(ﬂ)d%‘}(ﬁ+u) —i[—flﬁ(r)lgdzr

T T ® ©
221-%2 dljdul{‘f&(r+l)5(r+ wdz| + |f0(r+l).9('r+ pldz
—T —T —o —x
3 T fdlfdu{ f Iz +u)de

+ f D)9z +w)de
[ fo() Hr+u)d

= — 5T f du{
The function in the bracket in the last expression will be summable since %(z) is,

}
2 2',
I

2]. (13. 28)

J

If 't+u

as we see from (1. 28).
It follows that for any positive number 4,

T [ ®
n | _x 2 :
|2dellf§(1)d0(r+l)l 2f|9(¢)| do| < 4 (x3. 20)
—T —n —
except for a set of values of z(f) not exceeding
(o] (30t | (13. 30)
ST ul 7) 3t +u)dr S (r+u)d 13. 30

in outer measure. Let T now assume the successive values I, 4, 9,... Then
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the probability that (13.29) fails to be satisfied for some T from 1/n® on does
not exceed the remainder of the convergent series

SA,,f:lu{ fa() Hat+u)d If Ho+w)d .2}[1+;+;—)+~-]- (13. 31)

Inasmuch as this remainder is arbitrarily small, we almost always have

L n? ® g @
lim I‘—,fdxlfg(r)ds(zu)l —1f|0(z)|2d¢ <4 (13. 32)
n—o |27 : 2
Since, however, 4 is an arbitrary positive quantity,
hml fdl|f§ d01+l|——f|3 7)|2dz|=o. (13. 33)

As in the preceding section, we may conclude that

fdllfg 7)d*z+ 1) | =lf|0(r)|zd'r, (13. 34)
T—oao 2

except in a set of cases of zero probability.
Let us now consider

fdlfg 7)d I (r+4) fg f Hz+A)dA, : (13. 35)

for rational values of 4, 9(z) being subject to the conditions already laid down.
Let us put

@®

f§(z)d8(z+l)= ). (13. 36)

-—a

We have almost always, for any denumerable set of values of A, as for example,
for all rational values of A,
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Thm— dllffﬂ.+,u dyI fd't

—_—® .

fAs(ﬁL ,L)dur. (13. 37)

This results from the fact that the sum of a denumerable set of null sets is a
null set. As before, let us put

e""—l
s(u) anf ——-dx +—7—rlM1_'12 [f f] —d:v (13. 38)

It then follows from (13.34) and (13. 37), with the help of (6. 23), that we shall
almost always have

lim -~f|su+e——s u—e) [P du= - f|3 (7) [P d=, (13. 39)

—0

and (for all rational A4)

o« @ A
: 2A 2

liml—fﬂl—;—ﬁ|s(u+e)-s(u—-e)|’du=I-fdr f0(1+[t)d[t (13. 40)
e—0 2 & w 2

—®© —a —dA
Now let us put

o
)= L lim. ftp et du. (13. 41)
Ver o _

Then
A =
f&(r+y)dy=l/f—vfw(u)s—u—l#e‘“’du. (13. 42)
—A4 —a

Thus if 9(z)V'1+® is of limited total variation and 9(z) is quadratically summ-
able, we almost always have for all rational A

© A ®
2 : 2A
fdf f3(1+ u)dul =f|w(u)lzé—s£%‘du- (13. 43)
A —®

— —

In other words, we almost always have for all rational A4,
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®

2
i [ 05  dto otaamo, (12
and
hmflvls u+e)—s(u—e) | — |yl lg}du— (13. 45)
£

Thus we almost always have

-+

limfP { |s(u+&)—s(u—e)|* — |wlu |2}du=o, (13. 46)

in case
: : n A sin® No
PW:ZJ%FﬂQ (13. 47)

1
it follows from (13.43) that we may even replace P(u) by

Q{u) = uniform limit P,{w) {13. 48)

N—>m

where P,(u) is of the form given above for P(«). Thus by the Weierstrass
theorem, @(u) may be the quotient by #® of any continuous periodic function
with any period. Since we can approximate by such a function ¢ to any con-
finuous function vanishing at + oo, our sole condition on @ may be replaced by

Qu)=o(1) at w=+ oo, (13. 49)

Even: this does not represent the utmost extension of our theorem. It
follows at once by subtracting from 1 a § vanishing outside of a finite range that

lim lim[f f_w][— s(u+e)—s(u—e) |2 — | ywu Iz}du =0. (13.50)

N g~

Thus a bounded modification of @ for large arguments produces a decreasing
effect as the range of modification recedes to infinity, and we have as our sole
condition to be imposed on the continnous function ¢ that

Q(ﬁ)——-O(ﬂ at uzlioo.‘ _ | {(13. 51)

A case of peculiar importance is where ¢ %= Q(u). Here
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] K

lim - fe_""“|s(u+e)——s(u— &P du = lfe*""“|1,l;(u)|”du. (13. 52)
—0 2 & 2

— —a

This exists for every » for almost all z(f). Thus by (6. 13),

€«

gy =1 f e (a) |F o, (13. 53)

—_

and ¢@(v) exists for every » for almost every z(f). As in section 3, let us put

©

1 * eiu:r.'__I
Sw=37, [ 9@ tax, (13. 54)
so that we get by (5.42), (5. 45)
plr) = f e 15(u). (13. 53)

-—a0

We have already shown ¢ and S to exist on the assumption that @(») exists
for every ». We have, by (13.53) and .(13. 55), for almost all x(f)

o«

f e—fvud[sw) -1 f |w(v)|2dv] —o. (13. 56)

—0

By processes now familiar (cf. (13. 46)), we. can replace e~ by functions ¢ which
are merely continuous and bounded. We here make use of the absolute con-

vergence of (13.56). Hence the average of S(u) — % f | (@) |Fdv vanishes over
every interval, and -

. 1

st~ [ lvwPar=o (13. 57)

and consequently
, 1
8) = S|l . (13. 58)

except for a set of values of a zero measure. Inasmuch as S’(u) is the spectral
density of f(x), we see that as a consequence of our assumptions that $(z) is
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quadratically summable and of limited total Variation When multiplied by Vite

the spectral density of f E()d3(v+4) is half the square of the modulus of the

Fourier transform of 9. Another way of phrasing this fact is: if a lwpar reso-
nator 1s stimulated by a uniformly haphazard sequence of impulses, each frequency
responds with an amplitude proportional to that which it would have if stimulated
by an impulse of that frequency and of wnit energy. An even simpler statement
is: the energy of a haphazard sequence of tmpulses is uniformly distributed in fie-
quency. This law of distribution bears a curious analogy to that predicted for
white light by the incorrect Boltzmann law of radiation. The physical conditions
which lead to this law of distribution of emergy in frequency are that the
sequence of impulses in question should be distributed over every interval of
time in a Gaussian manner, that their past should not influence their future,
that very many should occur over the smallest period of time to be investigated,
and that the modulus of the Gaussian distribution of these impulses for a given
time interval should depend only on the length of this interval. These conditions
are approximately realized in the case of the Schroteffekt, where an electrical
resonating circuit is set in vibration by the irregularities in the stream of elec-
trons across a vacuum tube. It might also be realized in the ease of an
acoustical system set in oscillation by such a noise as that of a sand blast.
Theoretically this equipartition of energy might be used in the absolute calibra-
tion of acoustical instruments.

Just as the average of an expression depending on a single function x(t)
may be reduced a Lebesgue single integral, so a similar average depending on
two independent functions x(f) and y(f) may be reduced to a Lebesgue double
integral. On the assumption that 9,(z) and 9,(z) satisfy the conditions we have
already laid down for 9(r) and that

1
- 1~
ﬂcot (—7)

Eo)=Vnm [x(t)d esc wt—x (i_ cot™! (——'r)) + z(1/2);
" (13. 59)

1
= eot—1{—
nco (—2)

'77(1)=V7—vfy(t)d csc'nt——y(:;cot“l(—z)) + y(i/2); |

1/2
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F1,00) = —=Lim. fuh a(u)e du (13. 60)

VZ 7T M—»

it is easy to prove by methods substantially identical with those already employed

that
T—-nolcﬁf|f§ 7)dI,(t+A) + j () d9qy(z +4)

—T ~—>

2

da (13. 61)

almost always has a certain definite value. Inasmuch as a normal distribution
for z(¢) implies the same for —x(f),

hm——fl fg D9 (c+1) + f(z)d32(1+l)|2d/1 (13. 62)
T_.QCZT

almost always has the same value. ‘Subtracting, we almost always have

T 2

lim - [fg D3, ( z+lf (r)d52(1+l)]dl=o. (13. 63)

If we work in a similar manner with

2
lim —- flfg DA, (w+1) + f (1)(132(r+).)| n (13. 64)
T—‘wz,p

—T —=

we see that almost always

Tlg#, [fg )49, z+ljn(fz)d32(1+l)]d/l=o. (13. 63)

Hence almost always

Tl_l_%“f[fg 2)d 9 ( 1+xf ()d52(¢+z)]d}.=o (13. 66)

—T —»

30—29764. Aecta mathematica. 55. Imprimé le 29 avril 1930.
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o€t

and the coherency matrix of f £(¢)d9,(t+4) and f n(z)d3,(r+ A) is almost always

—_—

;‘l‘px(“)lz o
(13. 67)
o N EACL |

As a direct consequence, if the motion of a particle is independently haphazard
in two directions at right angles, and if this motion influences a resonator with
the same characteristics in the two directions, the coherency matrix of the motion
of the resonator is unpolarized.

In the opinion of the author, the chief importance of this section is in
showing in a systematic manner how the Lebesgue integral may be adapted to
the mneeds of statistical mechanics. It is no new observation that sets of zero
measure and sets of phenomena, not necessarily impossible, of probability zero,
are in essence the same sort of thing. It is not, however, a particularly easy
matter to translate any specific problem in statistical mechanics into its precise
counterpart in the theory of integration. The author feels confident that methods
closely resembling those here developed are destined to play a part in the
statistical mechanics of the future, in such regions as those now being invaded

by the theory of quanta.

CHAPTER V.

14. The spectrum of an almost periodie function.

The last paragraph was exclusively devoted to functions with continuous
spectra; we now come to the most important known class of functions with
spectra that are discrete. This is the class of almost periodic functions, the
discovery of which is due to Harald Bohr. Let f{x) be a continuous function,
not necessarily real, defined for all real values of o between —o and . Ife
is é.ny positive quantity, Bohr defines 7. to be a translation number of f(z)

belonging to ¢, in case for every real w,

[flz +zd—flz)] <. (14. o1)
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In case, whenever, ¢ is given, a quantity L. can be assigned, such that no inter-
val (@, a+ L) is free of translation numbers 7. belonging to ¢, f(x) is said to be
almost periodic. Bohr's most fundamental theorem is: the necessary and sufficient
condition for a function f(x) to be almost periodic is that for any positive quantity e,
there exist a finite set of complex numbers A, A, ..., Ax and a set of real numbers
Ay, Ay, ..., Aq, such that for all x

<. (14. 02)

@)= 3 dpiie

The next few sections of this paper are devoted to the proof of this
theorem. In this proof we shall avail ourselves of the following theorems of
Bohr concerning almost periodic functions, which are susceptible of a completely
elementary proof:

Any finite set of almost periodic functions is simultaneously almost periodic,
~in the sense that for any ¢ L. may be assigned for the whole set at once, in
such a manner that in any interval (a, a+ L), there is at least one translation
nuwmber 7., such that for every function f(¢) in the set, and every ¢,

|At+2) — A < e. (14. 03)

Hence any continuous function of a finite number of almost periodic functions
yields an almost periodic function, as for example the sum or the product of a
finite number of almost periodic functions. The limit of a uniformly convergent
series or sequence of almost periodic functions is almost periodic. Every func-
tion that is periodic in the classical sense is almost periodic, and the same is

true of
A6t (14. 04)

in case X|A.| converges. Every almost periodic function is uniformly continuous.
If f{¢) is almost periodic,

M{f)=lim + f flde (14. 05)

exists as a uniform limit in 2. If f{¢) is almost periodic, so is

@(t) = M { flx + t) flz)}. (14. 06)
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(Here and later the symbol under the M indicates the variable on which the
averaging is being done) If f{t) is a real non-negative almost periodic function,
and M{f}=o, f({) is identically zero.

If f(t) is almost periodic, then since ¢(f) is also almost periodic, it is
continuous. Let us form

S(u)= Ifq)(x)ﬂu._xdw. (14. 07)

@(0)=8()—8(—x). (14. 08)

Let the discontinuities of S(u) be at w=1,,4,,... These form a denumerable
set, as S(u) is of limited total variation, and indeed monotone. Let

an==8(A,+0)—8(Ay~0). (14. 09)

All these coefficients a, are positive, and
Dan < 8(w)—8(—»)= M{|f]?}. (14. 10)
1

Let us form the function

7(8) = @(t) — Dy axe™t, (14. 11)
0 .
As a simple cbmputation will show (cf. (4. 05)),

I-fy(x)-—z.——-dx:S(u)—Sl(u), (14. 12)

where S;(u) consists of the sum of all the jumps of S(u) with abscissae less than
u, together with half the jump (if any) with abscissa u. Hence

Sylu) = - f @)  (419)

rx
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is a continuous function of limited total variation, say V. Let the total varia-
tion of Sy(u) over the ranges (—o, —B) and (B, ») be V(B).
We have

1
7 f | Sp(u+ &) —Sy(u—e)|* du

S@E&(v)l[i—‘L.—f]lSz(“‘*‘S)—'Sg(u—eHdu

+max|S (v+e)— S’v(v—e)|-2-1-éj | Sy(ee+ &) — Sy(u—e) | du

—Adxme= 4

d+e  A+3s Adbs —d—-3
et T
’ A—e  A+s A+3e - —d—3
—d—3e .
+f+ "'J|Sz(“+5)_sz(u_8)|d“ig%x_gl_fsvz(v+a)_sz(v—8)l218
Sy

2.4
—d+e —A+3¢ —d4+ lT &

+f+ +f]IS2(u+e)—Sz(u—€)|d“

—d—e —d+e ([2:1] _2)5
— Thax |€Sz(v) l f{l S,(u+ A+e)—S,(u+A—e)|+]|Syu+A+3¢)

—S,(ut+A+e)|+ -+ | Slu—A+e)—Syu—A+e)| + | Sylu—A—e)
—S,(u—A—3¢)| + -} du+max|Sy(v+e)—Sy(v—e)|

—Adsv=s4d

: :ef-{ | Sylu—A +&)— Sy(u—A—e&)| + | Sylu—A+36)—Sylu—A+e)|
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l du

SR IS,(u~A + [2:1] e) — 8, (u——-A + [284]5—2 e) ]

<2 V(A—2¢&) max|S,(v)] + V max | Sy(v+&)—S,(v—é)]. (14. 14)
—d=r=4d

Since the function S() is uniformly continuous over any finite range, this gives us

lim Eléf|S,(u+e)—Sg(u—s)|”duS2 V(4 —n) max | S,(v)]. (14. 18)
t—0

However, V(4—n) tends to zero as A tends to infinity, and may be arbitrarily
small. Hence

o«

1im2—18 | Se(u + &)— Sy(u—e) [P du=o. (14. 16)
t—0

Applying (5. 53), we get

T
.1 2 9,
lim 2Tfly(t)l dt=o. (14. 17)
~T

Since, however, y(f) and |y(f)|* are almost periodic, we must have

7({t)=o, (14. 18)
which yields us
S(u) = 8, (u) (14. 19)
and -
Pt) = D are™ 4t (14. 20)
1

Thus S(x) is a step function, and the spectrum of an almost periodic function
is a pure line spectrum.

15. The Parseval theorem for almost periodic functions.

A further result is
M{p(t)e*t} = a. (15. 01)

If we remember the uniformity properties of the means of almost periodic
functions; this yields
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T U
_ I Fint . I o p )
a Tlg.lizfl fe k dt}ll}:n ; Ufj(x+t)j(x)d.z
“r v

U T

1 = . 1 .

=1 i g —idL T : - i Ay (X+2)

Jlim Ufj(x)e k delﬂliszf(x"*-t)e dt
—U —T

v T
— ~I_ £ —idLx 3 _I s
lim L fla)e e do lim L f fgeivdy
— “r
= | M { flx)et2=} |2, (15. 02)

Hence
ML/ = (o) = S(x0)—S(— o)
= 8§y (o0 )—8,(— )

— 3| M{ fla) e (15. 03)

This is a precise analogue to the Hurwitz-Parseval theorem for periodic functions,
and is the well-known fundamental theorem of Bohr.

16. The Weierstrass theorem for almost periodic fanctions.

The present section 16 is devoted to the proof of the approximation theorem
for almost periodic functions, which tells us that the necessary and sufficient
condition for a function to be almost periodic is that it can be expressed as the
uniform limit of a trigonometrical polynomial. The main idea of the present
proof is due to Weyl, although the form of the argument is much changed
from that on his paper. The essence of the proof is that harmonic analysis is
not applied directly to the almost periodic function discussed, but to certain
related functions derived from what Bochner calls the Verschiebungsfunktion of
the given function. In the discussion of the many different extensions of almost
periodic functions, there is a function in each case amalogous to this Verschie-
bungsfunktion which is almost periodic in the strict Bohr sense. As we shall
see in the next section, this enables us to carry over to these more general cases
practically the entire Bohr approximation theorem redefined to suit each particular
definition.
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Let f(¢) be almost periodic. Consider

g(w)=m?x | Ax+8O—f@)]. | (16. or)

We have
l9(@+2)—g(@)| < max || fle+t+0)—f()] — | flwt+ )=/
= max |fle+t+o)—fla+1)]

::mthx|f(t+r)—f(t)|. ‘ ‘ (16. 02)

Hence any translation number for f(f) pertaining to & is a translation number
for g¢(t) pertaining to e, and g(f) is almost periodic. Tt is this function which
Bochner calls the Verschiebungsfunktion of f{#).

We have already indicated the fact that any continuous function of an
almost periodic function is almost periodic. Let H.(U) be befined as follows:

1; [0 =U=<¢/2]
HS(U)*[ _2U [/2<U< & | (16. 03)

L. le=U ]

Let |
i) = gl | (16. 04)

Since H.[g(x)] is somewhere positive, and it is everywhere non negative and
almost periodic, M,H.[g(x)] cannot vanish. Hence .(x) exists and is almost
periodic. '

Let - -
Jelw) = M {f{t) el —1t)}. (16. 03)

The existence and almost periodic character of f.(x) are proved without difficulty.
The definition of 1, ensures that

[fl) =] < e ~ (16. 06)
if Y.lr—t)40. Hence, since f.(x) is a mean of these values of f(f),

max |f{z)—fi(x)| < e (16. 07)
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Similarly, if
SOw) = M f() pe(z 1)}, (16. 08)

f©(z) exists and is almost periodic, and

max | /(@) —fi(z)] < e. | (16. 09)

Hence, by (16.07) and (16. 09),

max | f19(x)—flz)| < 2¢. (16. 10)
We have ‘

SOD)=M{ple—t) ML flz) elt—1)}). (16. 11)
Bearing in mind the uniformity properties of almost-periodic functions, we have

S (@) =M flo) My (e —t) et—1) ). (16. 12)
However, by (14. 20),

M {pule—t) gilt—r)} = 3 apetist (16. 13)

o

where all the coefficients ar are positive, and Zak converges. Hence
1

1900 = 0410 Smeine . (16. 1)

Since

< max |f(r)|, (16. 15)

T
| ;II_' f Sz) et dy
=T

it follows that we can invert the order of M and =, and that

SOa)= S etz ML f(x) ). (16. 16)
- |

Inasmuch as

| M { () ¢~} | < max | flz)], (16. 17)

f¥(x) is the sum of a uniformly convergent series of trigonometric terms. That
is to say, we can choose N so large that
31—-29764. Acta mathematica. 55. Imprimé le 29 avril 1930,
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max | f19(r) Zake““ M{ flz)e “’I“}, =, (16. 18)
and hence that

max Zake”k’M’f( e M) < 36, (16. 19)

In other words, we have proved Bohr's approximation theorem, to the effect
that it is possible to approximate uniformly to any desired degree of aceuracy

to an almost periodic function by means of trigonometrical polynomials.

17. Certain generalizations of almost periodic functions.

It will be noticed that in the proof of the Weierstrass theorem for almost
periodic functions, the spectrum of the function to be analyzed was not directly
introduced, but rather that of the auxiliary function y.(f). In many cases, when
the function f{f) is not almost periodic in the classical sense, an auxiliary func-
tion W.(t) may be defined, which will be almost periodic in the classical sense,
and which may be employed to establish the approximation theorem for f{¢), in
whatever sense this theorem may hold. It would be possible in this manner to
establish the approximation theorems for the almost periodic functions of the
generalized types of Weyl, Besicovitch, Stepanoff, and others, but one example
will suffice to show the power of the method, and to this we shall confine
ourselves. This example, which is due to Mr. C. F. Muckenhoupt, is that of
functions almost periodic in the mean.

We shall confine our attention to functions flr, ) defined over the range
(—o <t< o, z,< 2 <ux), quadratically summable in x, and continuous in the
mean in ¢ in the sense that

1i_n%f|f(.z-, H—fle, t+1) Pdz—o. (17. o1)

We shall say that =. is a translation number of f(x,t) pertaining to ¢ in case
for all ¢,

£y

| A, t+ ) —flx, &) Pdx < & (17. 02)



Generalized Harmonic Analysis. 243

In case, given ¢, we can always assign a finite quantity L., such that each
interval (4, 4+ L.) contains at least one translation number z, pertaining to ¢,
then flx,t) is said to be almost periodic in the mean. 1 case flx,t) is almost
periodic in the mean, Mr. Muckenhoupt's theorem is:

Given any positive quantity ¢ there can be assigned a trigonometrical polynomzal

l\Y
Ps(.’I/', t) = Z An(x) eiAnt, (17 03)
1

such that
’ A, (x), Ag(x), Ceey An(x) (17, 04)

are all quadratically swmmable, and for all t,
flf(x, t) — Pz, )P dx < &°. (17. 05)

There are a number of elementary theorems which Mr. Muckenhoupt proves
along lines not differing in any essential way from those followed by Bohr in
the proof of the corresponding theorems for functions almost periodic in the
original sense. Thus every function almost periodic in the mean is bounded in
the mean, in the sense that

f|f(x, P dx ' (17. 06)

is bounded; and is uniformly continuous in the mean, in the sense that

L1
lim maxf | fle, )—fle, t+7) P dx = o. (17. 07)
=0 T<eg J

In this and subsequent formulas, the maximum value indicated by »max»
need not be actually attained. Any finite set of functions almost periodic in the
mean are simultaneously almost periodic in the mean, in the sense that, given e,
an L, may be assigned in such a manner that every interval (4, 4 + L) contains
at least one 7. which is a translation number pertaining to ¢ of all the functions
of the set. Hence the sum of two or more functions almost periodic in the
mean is almost periodic in the mean. Similarly, the product in the ordinary

sense is almost periodic in the mean. The uniform limit in the mean of a set
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of functions almost periodic in the mean is itself almost periodic in the mean.
If f(x,t) is almost periodic in the mean,
a+T
I'Ti_'.lil' %fﬂ;’c, t)dt (17. 08)
exists as a uniform limit in the mean in @, and is independent of . We shall
represent it by the symbol

M{ flx, 1)} (17. 09)
Mr. Muckenhoupt now puts
g(t)=maxf|f(rr,t+z)——f(x, 2P da. (17. 10)

Clearly

lo(t+5)—9(0)] < max [ ILffn ¢+ 5+, A= |Se, 42—/l )l o
< m?,x{f”ﬂx, t+z+2)—flx, 2)|+| Mz, t+2)—fl=, 2)||® d:c}m

. mfmx{f”f(x, t+e+2)—flx, 2)|—| flx, t+2)—flx, ,e')”gdav}l./2 (17. 11)

To evaluate this, let us consider the maximum of each of the integrals under

the radical sign separately. The first does not exceed

16maxf|ﬂx,z)|2dw; (17. 12)
the second does not exceed
ma.x-f|f(x,r+z)—f(w, 2)Pdx. (17. 13)

Ly
Hence we may write
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lg(t+2)—g(t)] < 16 [mzxx f | Az, 2+ 1) — flz, z)|2dx]”2

-[mgx f | fte, Z)de]x_/z (17 14)

If 7. is a translation number of f(z, ) pertaining to &, we have

|olt-+2)—0l0)| = xée[mgx f /i, z)r*dx]l,” (17. 15)

so that any translation number of f{z, ) pertaining to ¢ is a translation number
of g(t) pertaining to

) 7 1/2
I6s[maxf|f(ac, 2) |2dx]. (17. 16)
Thus ¢(f) is almost periodic in the classical sense, and is distinct from o unless

fle,?) is independent of ¢ in the sense that Sz, t)=flx, t;) almost everywhere.
As in the last section, let

1 : [o =U< &2
B0 =120 == . (17. 17)
o . e =U |
and let
Pelt) = ﬂfﬂ[ﬂ% (7. 18)

As before, H.[g(#)) is dictinct from o, and .(x) exists, and is almost periodic.
As before, we put

fley 0= Ml ) pilt—), (17. 19
F9le, 8 = ML, ) ilt—a). (17. 20)

and

A proof precisely parallel to that of (16. 10) and (16. 12) shows that
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maxflf(x, H—fx, )P dx < 45! (17. 21)
and that K
SO, §) = Mo flx, 0) M [e(t—a) e (z—o)]]. (17. 22)
As before,
Myl o 2 o (17. 23

o0
where all the a's are positive, and D) a: converges. Hence
0

f(e)(x, t) = M, [f(xy 0) i ake“k(t_a):l . (17 24)

We have

Ty

lim f
Ne—w»

%o

2

dx

Mz I:f(%, 0‘) 2 dke“k(t"—‘tf)]
N

N—+x

® 2 o ’
< lim [2 ak] maxf|f(x, 0)|*dx = o. (17. 23)
N 7y :

Hence since

Sa

0

converges, we can invert the order of M and I in (17.25), and get

n

SOz, ) = Lim. Zake“k‘M[f( o) e—th], (17. 26)

Ne— o

This convergence in the mean is uniform with respect to £. Combining (17. 25)
and (17.26), our theorem is proved.

This theorem has an interesting dynamical application. Really significant
dynamical applications of almost periodic functions have been rather scarce, as
no one has yet produced an example of an almost periodic function entering
into a dynamical system with a finite number of degrees of freedom in which
the frequencies or exponents are not linearly dependent (with rational coefficients)

on a finite set of quantities. However, dynamical systems with an infinite number
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of degress of freedom are familiar enough in connection with boundary value
problems, and in these, it is well known that the solution may involve an infi-
nite linearly independent set of time frequencies. Mr. Muckenhoupt has succeeded
in showing, under certain very general conditions, that the solution of such a
problem is almost periodic in the mean with respect to the time, the space vari-
ables playing the rdle above assigned to x. In this proof, the existence of an
integral invariant such as the energy is of the utmost importance, as is also
the condition that when all the coordinates and velocities of the system are less
in value than some given constant, the energy is also necessarily less than
some constant.

Let us consider as an example a vibrating string, whose density and ten-
sions are functions of position, but not of time. Let the mass density be gu(x)
and the temsion 7'(x). The equation of motion is then

2T 3| = wa gt (17. 27

We consider the ends to be fixed, giving us
y(wo) = ylz)) = o, (17. 28)

and we take 7' and p, as is always physically the case, finite and positive. We
shall also suppose them to have bounded derivatives of all orders.
Thus the total energy of the system is

B — i—f[ﬂ(x) (g—g)+ () (%)] dx. | (17. 20)

To

If we assume density and tension independent of the time, we have

0E, _ 0y 0% Oy _‘92] '
YR [“(x)at oe T TW5 50t 4% (17. 30)

or by (17.27),

0L, _ {‘9_?/ 9 [T(x)%] + T(a:)g—;/c b—%(g—%)}dx

. [T(x)g—z g—’g] —o. (17. 31
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Thus the total energy is invariant, as was to be expected from physical considera-
tions. |

Inasmuch as 0"y/0t" also satisfies equs;,t;ion (17.27) and boundary conditions
(17.28), we see that all the expressions |

Xy

E,= éf [u(ac) (Zﬂ;r—{)gnL T(x) (g:;;yn)z] dx (17. 32)

To

are invariants, at least if y(z,!) is sufficiently often differentiable. We shall
term E, the (n+ 1)st energy of the system.
Let us now take dy/dt and dy/dx to be continuous, and let

E,<E; pux)=M, Tx)=T.
Clearly E, = o, and

Ty

dy\*? 2E, 2E
f((’)t) da M M (17. 33)

o

%y

2
Similarly, f (g—z) dx is bounded, provided only the first energy F, is finite.

To

Furthermore, since

1201/ -] 4 . 0’/ 2
- i <7 —J :
Yy []ardac] _fdxf(dx) dr, (17. 34)

by the Schwarz inequality, y is bounded. Similarly, if £, is also bounded,

Ty xy

o\ (Y ¥ 4y
f(@tz) dx, f((?;fdi) dr, and f(o’x” dx (17. 35)

will be likewise; in the last case, as a result of (17.27); if E, is also bounded,

Ty x xy

08_1/ 2 ! 03:,/ 2 ) 031/ 2 ' Lo 08,'/ g

%o o To %o

will be, and so on indefinitely.
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Let us now introduce

(v, y) = lf[ly—yl I+

as the distance between two functions, y(x, ) and y,(x, ). If we write

dy Oy, |®

Oy _ 09, "
Fy v , | ]dx (17. 37)

ot

2ninr o« Qniny

?/"’Z, An(t)em; gy~ ZB,,(t)ez""“ ;

we may approximate wuniformly to (y,y,) by

'Il N 2 'n'n_u- 2 . N 2 nzn X "
(A, — Bp)es—o (1 + - 4w ) + A'y— B et daf 17. 38
][2 ) S (17. 38)

for all functions y and y, for which E, and F, are finite, since then

Ty

S taio- mar= 5 f (o2

— 7o

(17. 39)

I1

© . , 1 2 XLy ()2 : o
én |An(t) Bn(t)l __ (2,1) f(() ()t) dw

Lo

are uniformly bounded. Now, a bounded region in space of m dimensions may .
be divided into a finite number of compartments such that the distance between:
two points in the same compartment does not exceed ¢&. Hence we can divide
the entire class of functions y(r, t) for which E, and F, are finite into a finite
number of classes such that the distance between two functions in the same
class does not exceed e.

Let us do this, and let us discard every class which is not actually repre-
sented by y(r,f) for some value of ¢, Then we may assign a time-interval L',
within which y(c,f) enters every class that it ever enters. Then, whatever <
may be, we may determine 7z, between o and L', such that

(ylx, 9), ylz, o)) <e. (17. 40)
Since
y(x) t)—.y(x) t+1_"1)
32— 29764. Acta mathematica. 65. Imprimé le 3 mai 1930,
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satisfies the differential equation (17.27),

G f "[mx) (ke _owtetin vy

To

+ T(x) (‘?y(g‘ij t_ ﬂ’?v,i)ﬁ"‘?'))%] dx (17. 41)

is invariant, and since for ¢t =1,
€ < (max p+max T)(y(x, 7)), y(r, 7))
< (max u+max T)e, (17. 42)

it follows that for all ¢,
¢ < (max p+max T)e, (17. 43)

~and hence by (17.34) and (17.37)

|y (e, ) —y(x, t+7—17)| < l/z w‘};% (max pe+ max T)e . (17. 44)

Since for every 7, there is a value of 7, between o and L'., there is a
value of 7—z, over every interval of length L’.. Thus y(r,¢) is an a almost
periodic function taken with respect to the time, uniformly in i, and is a for-
tiorz almost periodic in the mean, in case K, and F, are finite. It follows that
we may so determine A,(z), y .,. Aulx); 4,, ..., A5 that for all ¢,

;

&

n 2

yle, ) — D Aule) 60| die < e, (17. a3)

1

It is possible to go further than this, as Mr. Muckenhoupt has done, and
to show that the method we have given for obtaining fi(r, 1), f*(z, t), and
Ag(x) !4 assures us that all the functions

i) & Mt

are solutions of the original differential equation, or that the functions
Axlx)

are all solutions of the ordinary differential equation

d

o (1) A4 (@) + 43 w(e) Axle) = o; (17. 46)
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— that is, are what is known as Eigenfunktionen of the dynamical problem.
This proof rests on the fact that each one of these functions may be obtained
from its predecessor, and ultimafely from fl(x, t), by a process of weighted averaging
in the variable ¢ which transforms every‘ solution of a linear differential equation
with coefficients constant with respect to the time into another solution of the
same equation, or at least of the corresponding integral equation. Hence, if
o, o) = F(a); 22020

of the vibrating strihg. We may write

=0 is a possible set of initial conditions for the motion .

P —Llim S A, (17. 47)

n—w®

where the A4(z) are in general Eigenfunktionen of the problem that depend on n.
Thus if the set of possible initial conditions of the string is closed, as we may
show to be the case by direct methods, every quadratically summable function
may be expanded in terms of a denumerable set of Eigenfunktionen, and the
Bigenfunktionen may be shown to be a denumerable closed set. k
The methods of Mr. Muckenhoupt are susceptible of extension to the treat-
ment of a much wider class of Eigenfunktion problems, in any finite number

of dimensions. The detail of this extension awaits. further investigation.

Bibliography.

“The works and papers covering the various theories belonging to general har-
monic analysis fall into several imperfectly related categories. Among these are:

{1) The various papers written from the physical standpoint, with the explicit
purpose of clearing up obscure points in the theories of interference, of coherency,
and of polarization. '

(2) Directly related to these, the various memoirs connecting with the Schuster
theory of the periodogram. . ’

(3) A group of memoirs preceding the Bohr theory of almost periodic functions,
applying various extensions of the notion of periodicity in -celestial mechanics and
other similar fields.

(4) Papers written from the point of view of the mathematician, and dealing
with trigonometric series mnot proceeding according to integral multiples of the
argument,.

(5) The Bohr theory of almost periodic functions, and papers directly inspired by it.



252 Norbert Wiener.

(6) Papers dealing with haphazard motion, and using ideas directly pertinent
to genéralized harmonic analysis.

(7) The Hahn direction of work, treating generalized harmonic analysis from the
standpoint of ordinary convergence, rather than from that of convergence in the mean.

(8) The papers assuming essentially the standpoint of the present author, in
whose work the generalizations of the Parseval theorem play the central role.

(9) Papers dealing rather with the rigorous theory of the Fourier integral itself
-than with its generalizations.

(10) Papers. not dealing directly with generalized harmonic analysis, which it
is desirable to cite for one reason or another.

In citing any paper, it will be indicatéd to which of these categories it belongs.
Each paper will furthermore be quoted in the footnotes by the name of its author,
together with an index number given in the bibliography. '

A. C. BERRrY 1. Doctoral dissertation, Harvard, 1929. Unpublished. (8)
—-—— 2. The Fourier transform theorem. Jour. Math. and Phys. Mass. Inst. Tech-
nology 8, 106—r18. (1929). (8)
A. BesicovircH 1. Sur quelques points de la théorie des fonctxons presque périodiques.
C.R. 180, 394—397. (1925). (s)
—— 2. On Parseval’s theorem for Dirichlet series. Proc. Lond. Math. Soc. 23,
25—34. (1926). (5)
—— 3. On generalized almost periodic functions. Proc. Lond. Math., Soc. 24,
495—512. (1926). ()
A. BesicovircH and H, Bour 1. Some remarks on generalizations of almost periodic
functions. Danske Vidensk. Selskab. 8, No. 5. (1927). " (s)
~—— 2. On. generalized almost periodic functions. Journ. Lond. Math. Soec. 3,
172—176. (1928). {5)
G. D. BirkHOFF. Dynamical systems.. Am. Math. Society, New York, 1927. Pp.
218—220. (5)

S. BocHNER 1. Properties of Fourier series of almost periodic funetions. Proe.

Lond. Math. Soc. 26, 433. (1923). , ()
—— 2. Sur les fonctions presque-périodiques de Bohr. C.R. 180, 1156. (1925). (5)
—— 3. Beitriige zur Theorie der- fastperiodischen Funktionen. Math. Ann. 96,

119—1I47. {1926). : (5)
—— 4. Beitriige zur Theorie der fastperiodischen Funktionen. Math. Ann. g6,
383—409. (1926). (5)
—— 5. Uber Fourierreihen fastperiodischer Funktionen. Berliner Sitzungsberichte,
26. (1926). ()
—— 6. Konvergenzsﬁtze fiir Fourierreihen grenzperiodischer Funktionen. Math.
Zeitschr. 27, 187—z211. (1927). . (5)

—— 7. Darstellung reellvariabler und analytischer Funktlonen durch verallgemeinerte
Fourier- und Laplace-Integrale. Math. Ann. 97, 632—674. (1926—7). (8)



Generalized Harmonic Analysis. 253

S. BocHNER 8. Uber gewisse Differential- und allgemeinere Gleichungen, deren
Losungen fastperiodisch sind. 1. Teil. Der Existenzsatz. Math. Ann. 102,

489—504. (1929). (5)
S. BocHxeEr and G. H. Harpy. Note on two theorems of Norbert Wiener. Jour.
Lond. Math. Soc. 1, 240—242. (1926). (10)

P. Bonur. Uber die Darstellung von Funktionen einer Variabeln durch trigonome-
trische Reihen mit mehreren einer Variabeln proportionalen Argumenten. (Dor-

pat, 1893). : (3)
H. Bour 1. Sur les fonctions presque périodiques. C.R. Oct. 22, 1923. (5)
—— 2. Sur l'approximation des fonctions presque périodiques par des sommes
trigonométriques. C.R. Nov. 26, 1923. (s)
~--— 3. Uber eine quasi-periodische Eigenschaft Dirichletscher Reihen mit Anwen-
dung auf die Dirichletschen I Funktionen. Math. Ann. 85, 115—122. {4)

~ ~— 4. Zur Theorie der fastperiodischen Funktionen. Acta Math. 45, 29—127. (124). (5)
-—-- 5. Zur Theorie der fastperiodischen Funktionen. II. Acta Math. 46, 101-—

214. (1923). _ : (s)
—-— 6. Zur Theorie der fastperiodischen Funktionen. III. Acta Math. 47, 237 —
281. (rg926). : (s)
—— 7. Einige Sitze tiber Fourierreihen fastperiodischer Funktionen. Math. Ztschr.
23, 38—44. (1925). : (s)
—--- 8. Sur une classe de transcendantes entiéres. C.R. 181, 766. (19253). (s)
—— 9. Sur le théoréme d'unicité dans la théorie des fonctions presque-périodiques.
Bull. Sci. Math. o, 1—7. (1926). (s)
—— 10. On the explicit determination of the upper limit of an almost periodic
function. Jour. Lond. Math. Soc. 1. (1926). . (5)
—--- 11. Ein Satz iiber analytische Fortsetzung fastperiodischer Funktionen. Crelle,
157, 61—65. (s)
—--- 12. En Klasse hele transcendente Funktioner. Mat. Tidsskrift, B. Aarg.
1926, 41—45. (s)
- -— 13. Allgemeine Fourier- und Dirichlet-Entwicklungen. Abh. aus dem math.
Sem. d. Hamburgischen Univ. 4, 366—374. (1926). (s)

——- 14. Fastperiodische Funktionen. Jahresb. d. D.M.V. 33, 25-41. (rgzg). (s)
----— 15. En S@®ining om Fourierreekker for nwstenperiodiske Funktioner. Mat.

Tid. B. Aarg. 1924, 31—37. (s)
—— 16. Uber die Verallgemeinerungen fastperiodischer Funktionen. Math. Ann.
99, 357—366. (1928). . (s)

H. Bour and O. NEUGEBAUER. Uber lineare Differentialgleichungen mit konstanten
Koeffizienten und fastperiodischer rechter Seite. Gott. Sitzb. 1926, 1—-13. ()
E. Borrer. Les probabilités dénombrables et leurs applications arithmétiques. Rend.
di Palermo 27, 247---271. (1909). (ro)
J. C. BurkiLL 1. The expression in Stieltjes integrals of the inversion formulae of
Fourier and Hankel. Proc. Lond. Math. Soc. 25, 513—524. (1926). (7)



254 Norbert Wiener.

J. C. BURkiLL 2. On Mellin’s inversion formula. Proc. Camb. Phil. Soc. 23, 356

——360. (1926). . ‘ ' (7)
V. BusH, F. D. GAGe, and H. R. STEWART. A continuous integraph. Jour. Franklin
Institute. 63—84. (rgz7). " (r0)
V. BusH and H. L. HazeN. Integraph solution of differential equations. 575—615.
(rg27). ' : (10)
CARSE and SHEARER.- A course in Fourier's analysis and periodogram analysis for
the mathematical laboratory. London, rgrs. : (2)

P.J. DANIELL 1. A general form of integral. Annals of Math. 19, 279—294. (1918). (10)
—— 2. Integrals in an infinite number of dimensions. Ann. of Math. 20, 281—

288. (r919). (10)
—-— 3. [Further properties of the general integral. Ann. of Math. 21, 203—220.
(r920). (x0)
W. DorN. Fouriersche Integrale als Grenzwerte Fourierscher Reihen. Wiener Sit-
zungsber., 1926, 127—147. (7)
A. EINSTEIN. Zur Theorie der Brownschen Bewegung. Ann. der Phys. (4) 10,
372—381. (1906). (10)
E. EscLaNGON 1. Sur une extension de la notion de périodicité. CR. 135, 891—
894. (1902). \ (3)
—— 2. Sur les fonctions quasi périodiques moyennes, déduites dune fonction quasi
périodique. C.R. 157, 1389—1392. (r913). (3)
~—— 3. Sur les intégrales quasi périodiques d'une équation différentielle linéaire.
C.R. 160, 652—6353. (1913). (3)
—— 4. Sur les intégrales guasi périodiques d'une équation différentielle linéaire.
C.R. 161, 488—489. (1913). . ’ ’ - (3)
J. FAVARD 1. Sur les fonctions harmoniques presque-périodiques. C.R. 182; 737.
(1926). : ()
——— 2. Sur les equations différentielles & coefficients presque-periodiques. Acta
Math. 51, 31—81. (1927). (5)
P. FRANKLIN ¥ = Almost periodic recurrent motions. Math. Ztschr. 30, 325-—331.
(1929). ‘ . (s)
-—— 2. The elementary theory of almost periodic functions of two variables. Jour.
Math. Phys. M.I. T. 5, 40-—55. (1925). » (5)
—— 3. The fundamental theorem of almost periodic functions of two variables.
Jur. Math. Phys. M.I. T. 5, 201—23%. (1926). ’ (s)
——— 4. Classes of functions orthogonal on an infinite interval, having the power
of the continuum. Jour. Math. Phys. M.I. T. 8, 74—79. (1929). (s)
—— 5. Approximation theorems for generalized almost periodic functions. Math.
Ztschr. z9, 70—87. (1928). (s)

G. L. Gouy. Sur le mouvement lumineux. Journal de physique, 5, 354—362. (1886). (1)
H. HauN 1. Uber die Verallgemeinerung der Fourierschen Integralformel. Acta

~Math. 49, 301—353. (1926). (7)



Generalized Harmonic Analysis. 255

H. Haux 2. Uber die Methode der arithmetischen Mittel in der Theorie der verallge-

meinerten Fourierintegrale. Wiener Sitzungsber., 1925, 449—470. (7)
G. H. Harpy, A. E. INGHAM, and G. PéLYA. Notes on moduli and mean values.
Proc. Lond. Math. Soc. 27, 401—409. (1928). (10)
E. W. HoBsoN. The theory of functions of a real variable and the theory of Fourier
series. Vol. 2, second edition. Cambridge, 1927. (9)
8. Izumr 1. Uber die Summierbarkeit der Fourierschen Integralformel. Téhoku Jour-
nal 30, 96—110. (1929). - . (7)
—— 2. On the Cahen-Mellin's Inversion Formula. T6hoku Journal 30, r11—114.
(1929). » . (7)
M. JacoB 1. Uber ein Theorem von Bochner-Hardy-Wiener. Jour. Lond. Math.
Soe. 3, 182—187. (1928). - (19
—— 2. Uber den Eindeutigkeitssati in der Theorie der verallgemeinerten trigono-
metrischen Integrale. Math. Ann. 100, 279—294. (1928). ()
—-— 3. Uber den Eindeutigkeitssatz in der Theorie der trigonometrischen Integrale.
Math. Ann. 97, 663—674. (1927). - {9)
G. W. KenrICK 1. Doctoral dissertation, Mass. Inst. Technology, 1927. _ (8)

—— 2. The analysis of irregular motions with applications to the energy-frequency
spectrum of static and of telegraph signals. Phil. Mag. (7) 7, 176—196.

(1929). (8)
E. H. LiNrooT. Generalization of two theorems of H. Bohr. Jour. Lond. Math.
Soe. 3, 177—182. (1928). : (s)
S. B. L1TTAUER. On a theoremi of Jacob. Jour. Lond. Math. Soc. 4, 226—231.
(1929). (r0)
K. ManLER. On the translation properties of a simple class of arithmetical func-
tions. J. Math. Phys. Mass. Inst. Technology 6, 158—164. (1927). - (8)

C. F. MuckeNHOUPT. Almost periodic functions and vibrating systems. Doctoral
dissertation, Mass. Inst. Technology, 1929. J. Math. Phys. Mass. Inst. Tech-
nology 8, 163—z200. (1929). _ (5)

M. PLANCHEREL 1. Contribution & I'étude de la répresentation d’une fonction arbitraire
par des intégrales définies. Rendiconti di Palermo, 3o, 289—335. (1910). (9)

—— 2. Sur la représentation d'une fonction arbitraire par une intégrale définie.
C.R. 150, 318—321. (1910). - (9)

—— 3. Sur la convergence et sur la sommation par les moyennes de Cesaro de

z

lim ff(:r) cos xydx. Math. Ann. 76, 315—326. (1915). (9)

T=w

a
H. PoINcARE. Lecons sur la théorie mathématique de la lumiére. Paris, 1889g. (1)
S. PoLLARD 1. The summation of a Fourier integral. Proc. Camb. Phil. Soc. 23,
373382, (19:26). -~ (9)
—— 2. On Fourier's integral. Proc. Lond. Math. Soc. 26, 12—24. (1927)_. (9)



256 Norbert Wiener.

S. PoLLARD 3. Identification of the coefficients in a trigonometrical integral. Proc.

. Lond. Math. Soc. 25, 451—468. (1926). ' (9)
A. PringsHEIM. Uber neue Giiltigkeitsbedingungen der Fourlerachen Integralformel
Math. Ann. 68, 367—408. (1910). (9)

J. Rapox, Theorie und Anwendungen der absolutadditiven Mengenfunktionen. Wien.
Ber. 122, 1295—1438. (1913). : (10)
Lord RAYLEIGH 1. On the resultant of a largé number of vibrations of the same
" pitch and of arbitrary phase. Phil. Mag. 10, 73—78. (1880). (6)
—— 2. Wave theory of light. Ency. Britt., 1888. Cf. especially § 4. (1)
—-— 3. On the character of the complete radlatlon at a gwen temperature. Phil.
‘Mag. 27, 460. (1889). (1)
—— 4. Rontgen rays and ordinary light. Nature, 57, 607.  (1898). (1)

—— 5. On the spectrum of an irregular disturbance. Phil. Mag. 5, 238—243. (1903). (6)
- —— 6. Remarks concerning Fourier’s theorem as applied to physical problems.
Phil. Mag. 24, 864—869. (1912). ' ‘ ()
~———= 4. On the problem of random vibrations, and of random flights in one, two,
or three dimensions. Phil. Mag. 37, 321—347. (1919). : (6)
—— 8. On the resultant of a number of unit vibrations, whose phases are at
random .over a range not limited to an infegral number of periods. Phil.

Mag. 37, 498—s15. (1919). - (6)
F. Riesz. Sur la formule d’inversion de Fourier. Acta litt. ac Sci. Univ. Hung. 3,
235—241." (1927). (9)
H. L. Rietz. Mathematical statistics. Chicago, 19z7. (10)
R. Scamior 1. Uber divergente Folgen und lineare Mittelbildungen. Math. Ztschr.
22, 89—152. (1923). : (10)
—— 2. Uber das Borelsche Summierungsverfahren. Schriften der Koningsberger
gelehrten Gesellschaft, 1, zo2—256. (1923). _ (10)
—— 3. Die trigonometrische Approximation fiir eine Klasse von verallgemeinerten
fastperiodischen Funktionen. Math. Ann. 100, 334—356. (1928). (s)
I. ScHOENBERG 1. Uber total monotone Folgen mlt stetiger Belegungsfunktion. Mat.
Ztschr. 30, 761-—768. (1929). (8)
—— 2. Uber die asymptotische Verteilung reeller Zahlen mod 1. Mat. Ztschr. 28, 177
—200. (1928). (8)

A. ScHUSTER 1. On interference phenomena. Phil. Mag. 37, so9—3545. (1894). (1)
~—— 2. The periodogram of magnetic declination. Camb. Phil. Trans. 18, 108. (1899). (2)
—— 3. The periodogram and its optical analogy. Proc. Roy. Soc. 77, 136—140 (1906). (2)
—— 4. The theory of optics. - London, 19o4. : (1)
—-— 5. On lunar und solar perlodlcltles of earthquakes. Proc. Roy. Soe. London
61, 455-—465. (1897). ' (2

—— 6. On hidden periodicities. Terrestrial Magnetism 3, 13. (1897). (2)
~———- 7. The periodogram of magnetic declination. Trans. Camb. Phil. Soc. 18
‘ (

107——135. (1900). 2

~—



Generalized Harmonic Analysis. 257

H. StrINHAUS. Les prd})abilités dénombrables et leur rapport & la théorie de la

mésure. Fund. Math. 3, 286—3[0. (1923). (IO)
W. StepaNoFr. Uber einige Verallgemeinerungen der fastperiodischen Funktionen.
Math. Ann. go, 473—492. (1925). , (5)
G. SzEGO. Zur Theorie der fastperiodischen Funktionen. Math. Ann. 96, 378—382.
(1926). (s)
G. I. TayLor. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20,
196—212. (1920). : ' ‘ (6)
E. C. TirceMARsH 7. A contribution to the theory of Fourier transforms. Proc.
Lond. Math. Soc. 23, 279—289. (1924). (9)

——- 2. Recent advances in science mathematics. Science progressgr, 372—386.(1929). (5)
C. DE 1A VALLEE PoussiN 1. Sur les fonctions presque périodiques de H. Bohr.

Annales de la Societé Scentifique de Bruxelles, A, 47, 141. (1927). (s)
—-— 2. Sur les fonctions presque périodiques de H. Bohr. Note complementaire et
explicative. A.8.8. Bruxelles, A, 48, 56—s57. (1928). (5)
T. VIJAYARAGHAVAN 1. A Tauberian theorem. Jour. Lond. Math. Soc. 1, 113—120.
(1926). » (Io)
—— 2. A theorem concefning the summability of series by Borel’'s method. Proc.
Lond. Math. Soc. 27, 316—326. (1928). : {10)
V. VOoLTERRA. Lecgons sur les fonctions de lignes. Paris, 1913. (ro)
J. D. WaLsH. A generalization of the Fourier cosine series. Trans. Am. Math.
Soc. 21, tor—116. (1920). (4)
H. WEYL 1. Integralgleichungen und fastperiodische Funktionen. Math. Ann. 97,
338—356. (1926). ‘ (5)
—— 2. DBeweis des Fundamentalsatzes in der Theorie der fastperiodischen Funk-
tionen. Berliner Sitzungsber. 1926, 211—214. (s)

—-—— 3. Quantenmechanik und Gruppentheorie. Ztschr. f. Physik 46, 1—46. (1927). (10)
N. WIENER 1. On the representation of functions by trigonometrical integrals.

Math. Ztschr. 24, 575—617. (1923). (8)
~~— 2. The bharmonic analysis of irregular motion. J. Math. Phys. Mass. Inst.
Technology 5, 99-——122. (1925). » (8)
——- 3. The harmonic analysis of irregular motion II. JM.P.M.LT. 5, 158—191.
(1926). (8)
—— 4. The spectrum of an arbitrary funection. Proc. Lond. Math.  Soc. 27, 487—
406 (1928). (8)

—— 5. Coherency matrices and quantum theory. J.M.P.M.LT. 7, 109—125. (1928). (8)
—— 6. Harmonic analysis and the quantum theory. Jour. of Franklin Institute
207, 525—534. (1929). , (8)
—— 7. The average of an analytic functional. Proc. Nat. Acad. Sci. 7, 253—260.
(1921). - . (6)
——-— 8. The average of an analytic functional and the Brownian motion. Proc.
Nat. Acad. Sci. 7, 294—298. (1921). . (6)
33—29764. Acta mathematica. 55. Tmprimé le 9 mai 1930.



258 Norbert Wiener.

N. WIENER 9. The guadratic variation of a function and its Fourier coefficients.

JMPMIT. 3, 72—94. (1924). ' (8)
—— 10. Differential-space. JMP.M.LT. 2, 131—-174. (1923). (6)
—— 11. The average value of a functional. Proc. Lond. Math. Soc. 22, 454—

467. (1922). (6)
—--12. On a theorem of Bochner and Hardy. Jour. Lond. Math. Soc. 2z, 118—

123. _(1927). _ (1o)

— 13. A new method in Tauberian- theorems. J.M.P.M.IT 7, 161—184.

(1928). (10)

—— 14. The spectrum of an array and its application to the study of the transla-
tion properties of a simple class of arithmetical functions. JM.P.M.LT. 6,

t45—157. (1927). , (8)
—-— 15. Harmonic analysis and group theory. JM.P.M.LT. 8, 148—154. 1929) (8)
—-— 16. The operational calculus. Math. Ann. 95, 557—584. (1926). (8)
—— 17. Verallgemeinerte trigonometrische Entwicklungen. Gott. Nachrichten, 1925,

151—158. (8)
A. WINTNER. Spektraltheorie der unendlichen Matrizen. Leipzig, 1929. (5)

W. H. Youxe. On non-harmonic Fourier series. Proc. Lond. Math. Soc. 18, 307—
335. (1919). : _ 4)
Footnotes.

I. In accordance with the listing adopted in the bibliography, the following references will
give the background of the corresponding sections.

1. PLANCHEREL I, 2, 3; and in general, papers under rubric (.
2. Papers under rubric (2"

3 and 4. WIENER I, 2, 3, 4, 17.

5. SCHMIDT I, 2; VIJAYARAGHAVAN I, 2; WIENER 13} JACOB I.
6. BOCHXNER 7.

7. HAHN 1. 2; DORN; JACORB 2, 3.

8. BERRY 1, 2.

9. PoINCARE; WIENER 5, 6; WEYL 3; RIKTZ.

10. WIENER I5.

11. MABLER; WIENER I4.

12. . WIENER 14.

13. WIENER 2, 3, 7, 8, 10, 11; KINSTEIN; TAYLOR; RAYLEIGH I, 2, 3, 4, §, 7, 8.
14, 15, 16. Papers under rubric (5).

17. MCUCKENHOUPT.

SCHUSTER §., p. 461.
HoBsoN, § 492.
WEYL 3.

VOLTERRA, Ch, 7.
BOREL; STEINHAUS.

DN



