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1. The multiplicative notation employed in the study of groups leads, in a natural

way to the notion of roots in groups. Thus if # is a positive integer and ¢ is an element of

a group G then a solution z of the equation

" =gq
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is called an n-th root of g. In general ¢ may not have an nth root; on the other hand it may
have more than one. If every element in G has an nth root for every positive integer »
then G is called a divisible or complete group.

Divisible groups appeared first in the theory of abelian groups; one of the classical
theorems in this connection asserts that every abelian group can be embedded in a divisible
group, which is also abelian. In recent years a large number of Russian mathematicians
have carried out investigations of particular classes of divisible groups which have certain
commutativity properties. Thus Cernikov [7] has studied divisible groups with an ascending
central series which sweeps out the whole group, and Mal’cev [25], [26] has studied locally
nilpotent groups which are divisible. In particular Mal’cev [25] proved the beautiful theorem
that every torsion-free locally nilpotent group can be embedded in a torsion-free locally
nilpotent divisible group. Mal’cev [25] proved also that the extraction of roots is unique
in a torsion-free locally nilpotent group G; in other words for any x, y €G and any non-zero
integer n, the equation

o= gy
implies @ = y. Groups with this property were given the name of R-groups by Kontorovié
[18], [19] who extended some earlier work by Baer [1] on torsion-free abelian groups to
the larger class of R-groups.

We shall be concerned here with three kinds of groups which contain divisible groups,
R-groups and divisible R-groups as special cases: For each non-empty set of primes w
we define 3 associated classes of groups. Thus E,, denotes the class of groups in which pth
roots exist for all p€w, and U, denotes the class of groups in which pth roots are unique
for all p€w; consequently £, N U, is the class of those groups in which pth roots not only
exist, but are unique—we shall henceforth denote the class E,nNU, by D,. If GEE,, we
call G an E-group; on the other hand, if G€U, we call G a U,-group; if G€D, we call
G a D,-group. So in the particular case where w coincides with the set of all primes,
an E,-group is a divisible group, a U,-group is an R-group and a D,-group is a divisible

R-group.

2. Part I of this work is concerned with miscellaneous properties of E,-groups, U,-
groups and D,-groups. Here (and throughout this paper) we are motivated by the concepts
of universal algebra to fix some of our attention on certain subgroups of E,-groups and
D,-groups. One of our results in this connection is that the derived group of a locally nil-
potent D,-group is itself a D,-group. We concern ourselves also with various “extension”
problems. Thus we prove that an extension of a ZA4-group in E, by a periodic group in

U, belongs to E,. A similar, although unrelated, result is the following: A locally nilpotent
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group which is an extension of a D,-group by a D,-group is a D,-group. Another topic

treated in Part I is the construction of U,-groups, E,-groups and D,-groups.

3. The class of groups D, forms a “variety’ of algebras in the sense of P. Hall; equi-
valently, it is equationally definable. To see this we introduce a set Q, of unitary operators
in a fixed one-to-one correspondence with w, 7 €€}, corresponding to p €w; these, together
with the group operations, are to be the operators of the variety D,. The laws of D, are

the group laws together with the further laws, 2 for each pEw:
(xmy =, 2ZPm=x.

It is easy to see that a group which admits the operators z (in the sense of Higgins [14])
is a D,-group and conversely.

Now it follows from general results on varieties of algebras (Birkhoff [5]) that there
are free algebras in the variety D,; we call these free algebras D, -free groups. Although
the existence of D,-free groups is thus taken care of there are still a large number of im-
portant questions that the bare knowledge of the existence will not answer.

The notion of a free group is of vital importance in the theory of groups. It seems likely
that a D,-free group will play as important a role in the study of D,-groups. A simple
“normal form” with reference to a fixed set of free generators is available for the elements
of & free group. This normal form facilitates the proof of a large number of theorems about
free groups. One of the difficulties involved in the study of D,-free groups is the absence,
at first sight at least, of a useful simple normal form. This makes difficult the proof of such
a seemingly obvious, and in fact true, assertion as: A D,-free group is torsion-free. The
most important part of this paper seems to be Part IT in which a D,-free group is con-
structed as the union of an ascending sequence of U,-groups; these U,-groups are them-
selves generalised free products of U,-groups with a single amalgamation. The complica-
tions involved in the study of generalised free products therefore occur here and so this
construction serves also to illustrate the difficulties inherent in such groups. However we
are able to utilise it to investigate the structure of D,-free groups. In particular we prove

the surprising result that every E,-group is the homomorphic image of a D,-free group.

4. B. H. Neumann [27] has shown that a free product of groups can be defined by
means of a homomorphism property. We define, analogously, a D,-free product of D,,-
groups. The existence of this product is established by an actual construction which

enables us to derive some of the properties of D,-free products.

5. Only a small number of the questions that present themselves in connection with

D,-free groups and D,-free products of D,-groups have been answered here. The solution
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of some of these questions seem, by the very nature of the groups involved, to offer more
than token resistance. However the methods developed here make possible, at least theo-
retically, the solution of most of these questions; we hope to deal with further questions

in later papers.

6. Acknowledgments. 1 take this opportunity to express my gratitude and appreciation
to my Parents, without whose help and encouragement this opportunity for further study
would have been both unwanted and impossible. ’

Tt is a very great pleasure to acknowledge the help of Dr. B. H. Neumann who, with
his ever-ready advice, criticism and creative remarks, has made it a privilege and a delight

to have him as a supervisor.

7. Notation. For the reader’s convenience we list some of the notations used.

w a non-empty set of primes.

gp(X, R) the group generated by the set X with defining relations E.

[g, A] the commutator g-1h-1gh of ¢ and k.

(G, H] the group generated by the commutators [g, 2], g€G, hEH.,

¢ =T(0)=T1(G) [G, (], the derived group of G.

'@ I,(@), I'(@)], the i+ 1st derived group of G.

g the transform k-1gh of g by &, g, hEG.

glathat iy g"-g™... 9" (g, by, hy, ..., b, in the group G).

g g*-g" ... g" with m > 0 an integer.
o, .

g* the image of g under the homomorphism ¢ of the group G.

gy g”-g¥, where here ¢ and y are homomorphisms of the group G into the
group H.

Z(G) the centre of the group G.

|G| the order of the group G.

| 8] the cardinality of the set S.

C(8, G) the centraliser of the subset S in the group G.

C(S) the centraliser of the subset S in the group @, where ¢ here is understood.

C(s, G) C{{s}, Q).

C(s) C({s}).

N(§, &) the normaliser of the subset § in the group G.

N(S) the normaliser of the subset S in the group G, where here G is understood.

nm (S) the normal closure of the subset § in the group @, i.e. the intersection

of all normal subgroups of G containing §.
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the free product of the groups A4; (A€A).

F,%Fy, %--- %F, the free product of ¥,, F,, ..., F,.

{A% B; H}
[T A4

AeA

AxX B
{Ax B; H}
H<@
H<@G

H<G
Z(p*~)

(m, n)
§—-T

the free product of 4 and B with amalgamated subgroup 4.
the (restricted) direct product of the 4;(1€A).

the direct product of 4 and B.

the direct product of 4 and B with amalgamated subgroup H.

H is a subgroup of G.

H is a proper subgroup of G (here we do not exclude the possibility
H=1).

H is a normal subgroup of G.

the multiplicative group of all p"th roots of unity, where p is a fixed
prime and n ranges over the non-negative integers.

the greatest common divisor of the integers m and n.

the set-theoretical difference between S and 7, where 7' is a subset of S.

8. Preliminaries.
Suppose that f, g and £ are elements of a group G- Then the following relations between

commutators hold:

lgf, k] =g, RV[f, 2] and [g, fR]=1g, k][g, /1"

We refer the reader to Kurosh [21] vol. 2 for the definitions of a free group, a free

product, upper central series of a group, lower central series of a group, nilpotent group,

ZA-group, locally nilpotent group, soluble group and derived series of a group.
We say that @ is an extension of 4 by B if 4< @ and G/A= B; an extension is
called central if A < (G).
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PART 1

CuaprrER I

Definitions and generalities

9. Let H be a subgroup of an arbitrary group G. Then we call H an w-subgroup(!) of
G if the relation g?€ H implies g€H for any pair g and p, with g€G and p€w. If HI G
we call H an w-ideal(?) of G if G/HEU,. These two concepts are relative; however, if there
is no ambiguity involved we shall simply call an w-subgroup of G an w-subgroup and an w-

tdeal of G an w-ideal.

LeMMA 9.1 The intersection of m-subgroups is an w-subgroup.

Proof. Let {H,} be a set of w-subgroups of G, & ranging over an index set 4. If g in
G, p in w are such that g°€ N H,, then g*€H, for all «€ A4, so g€H, for all € 4. Thus
x€ 4

N H, is an w-subgroup.

€A

LremMma 9.2. The intersection of w-ideals is an w-ideal.

Proof. Let {H,} be a set of w-ideals of @, « ranging over an index set 4, and let H be
their intersection. Then H < G. Furthermore G/H€U,. For suppose p€w, g, g,€G and
(g1 H)? = (g, H)?. Then (g, H,)* = (¢, H.)* and hence ¢, H, =g,H, for every € 4. In other
words ¢,95 ' € H, for every o€ 4 and hence g,g5 ' € H. Consequently g, H =g, H.

Suppose that H is a normal w-subgroup of G. It does not follow, in general, that H
is an @-ideal of G, even if we presuppose that G € U,. For let

O =gpla, b; a® =b?);
it can be verified directly that C' contains no elements of order 2 (and in fact no elements
of finite order). Next present C as a factor group of a free group G by a normal subgroup H:

C=G/H.

Now a free group is a Ug-group (it is in fact an R-group, see e.g. Kontorovi¢ [18] or
Theorem 17.2 of this paper). It is clear that H is a {2}-subgroup of ¢ because C contains no

elements of order 2. So here we have a normal w-subgroup of a U,,-group which is not an

(*) In the case where @ coincides with the set of all primes and G'€ U, an w-subgroup of G is called
isolated by Kurosh {21] vol. 2, p. 243.

(2) In the case where G€D, the w-ideals defined here coincide with the ideals defined by Hig-
gins [14].
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w-ideal. For D,-groups it is more difficult to make an example of such a situation; we
shall however give an example of this kind in 39.

Now let § be a subset of an arbitrary group ¢. By Lemma 9.1 there is a unique minimal
w-subgroup of & containing S, namely the intersection of the w-subgroups of G containing
8; we call this @-subgroup of G the w-closure of S in G and we shall denote it by cl, (S, G)
or by cl, (8), if there is no consequent ambiguity. It is useful to have an alternative charac-

terisation of cl, (S). This is provided by Theorem 9.3.

TueorEM 9.3. Let 8 be a subset of a group G. Put 8, =8 and H, =gp(S,). Define
H, ., inductively by putting

S ={g|l9’€H,, g€G, pEw}

and Hiy =gp(Si)-
Then cl,(8)=U H,.
i=1

Proof. Let H* = U H, and suppose g° € H*, where g €& and p€w. Thus ¢g* € H, for some
i=1

+ and hence, by definition, g€.S;,, and so g€ H*. Consequently H* is an w-subgroup of ¢
containing § and therefore
H* = cl, (S). (9.31)

On the other hand, it is clear that cl,(S) > H,. Suppose in fact that cl,(S) > H,.
Obviously then el, (S) > 8, and so ¢, (S) > H,_,. It follows by induction that cl,(S) > H,

for all j and so
cl, (8) = H*. (9.32)

Putting (9.31) and (9.32) together we have the required result.

CorOLLARY 9.4. The w-closure of a normal subset S of a group G is a normal sub-
grouwp of @G.

Proof. We make use here of the representation of ¢l,(S) afforded by Theorem 9.3;
consequently we adopt the notation used there. The proof is by induction. Suppose we
have proved H,< @. Then S, is also normal in G. Forletg€S,,, andx€@. Sinceg” € H,< G
we have x71g?x = (x~'gx)’€H, and so x—1gx€S,,,. Consequently H, ; < G. It follows that
H ;<1 G for all 7 and so

oy (8) = U H,< €.

In a similar way one can prove that the w-closure of a characteristic subset is charac-

teristic and that the w-closure of a fully invariant subset is fully invariant.
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10. If p€w and G€U, then pth roots are unique in @. Thus we may speak of “‘the”
pth root of g€G whenever g has a pth root. We shall sometimes denote the pth root of g,
if it exists, by g=.

In U,-groups there is a certain interaction between elements and their pth roots. The

corollaries to the following lemma illustrate this interaction.
Lemma 10.1. Let G, HEU,, and let 0 be a homomorphism of G into H. Then
(gm)0 = (g0)7; (10.11)

this is to be interpreted as stating that g0 has a p-th root if g does and in this case (10.11) holds.
Proof. By applying 0 to the equation (97r)® =g we obtain

(gm)70 = ({g=)0)” =90
It follows that g6 has a pth root and that
((gm) 0= = (g7)0 = (90).
CoroLrLARrY 10.2. Let g, h€G, GEU,,. Then
g thmg = (g7 hg)7.

Proof. The mapping § defined by z§ = g-1zg, where g is fixed and x ranges over the

elements of @, is an automorphism; hence Lemma 10.1 applies and the result follows.

CororrarY 10.3. (Kontorovi¢) Suppose GEU,, g, h€Q, p, ¢€w and that k and 1

are non-negative integers. Then g* and h? are permutable if and only if g and b are permutable.

Proof. We may assume k =1, [ = 0. Corollary 10.2 can now be applied:
g =g°n = (W g" k) = b (gPm)h = kg,
and so g and h are permutable if g* and % are permutable. The converse is immediate.
CoroLrLARrY 10.4. Let g, h be two permutable elements in a U,-group G. Then
(gh)m = gmhm; (10.41)

this is to be interpreted as stating that if gh, g and h have p-th roots then (10.41) holds.
Proof. Since g and k commute so do g and hn (by Corollary 10.3). Hence

(gmha)® = (gm)” (hm)? =gh,

and the result follows on applying s to this equation.
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11. We shall adopt the following notational conventions: Instead of Uy, E; and
D, we shall write U,, E, and D, respectively. A Dy-group will be called a o-group and a
Dy-group a 7-group. The square root of an element ¢ in a o-group & will be denoted by
go; the cube root of an element ¢ in a z-group G will be denoted by g7.

We have seen in Corollary 10.4 that if g and % are permutable elements of a D,-group
then (gh)w =gmhn. The converse is not true in general. However, we shall prove this

converse in some special cases.

THEOREM 11.1. Two elements g and h in o o-group G are permutable if and only if
(gh)o =goha.
Proof. Suppose (gh)e = goho. Squaring both sides of this equation yields
gh=gohogoho;
on cancellation of go on the left and ko on the right this equation reduces to
goho =hogo.
Consequently gh = (go)? (ho)® = (ho)*(go)® = hg.
On the other hand, if g& = kg then (9h)c = goho, by Corollary 10.4.

CoROLLARY 11.2. In a o-group G the mapping which takes each element into its square
root is an automorphism if and only if G is abelian.

We need to digress for the moment to record a few properties, connected with elements
of finite order, of U ,-groups and D,-groups.

We shall call a group G w-free if it does not contain elements of order p if p€w.

LemMma 11.3. If GeU,, then G is w-free.
Proof. Let €@, p€w and suppose ¢g? =1. Then

and as GEU, we have g = 1.

LeMMA 114, Let G be an extension of @ U,-group A by a U,-group B. Let f, g€G have

finite order modulo A and suppose
fF=9"(p€w). (11.41)

Then f=g.
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Proof. By hypothesis there exists m prime to p such that f™, g™ € 4; hence (cf. (11.41))
(™ = (g™y"
is an equation in the U ,-group 4 and so
fr=gm (11.42)
We choose 4, 4 so that Am+pp=1,;
this is possible since (m, p) = 1. Then, making use of (11.41) and (11.42) we have
| g=g I =g gt = 1 P = P < f,

which completes the proof.

The following lemma is due, in part, to P. Hall.,

TrEOREM 11.5. Let G be an extension of a U,-group 4 by a periodic w-free group B.
Then G€U,,. If, in addition, A€ E,, then GED,,.

Proof. The first part of the theorem is an immediate consequence of Lemma 11.4;
thus we are left only with the second part. Suppose then that g€@G and p€w. There exists
an integer m prime to p such that g™ € A. Therefore we can find a € 4 such that

g™ = av. (11.51)
Since A <4 @, g'ag€ A and so the resulting equation (cf. (11.51))
(9~ragy =a”

is an equation involving only elements of A, therefore

g lag =a. (11.52)
Since (m, p) =1 we can choose 4, u such that Am + up =1. Then (cf. (11.51) and (11.52))

g =gt = g gh — (o ghyP
and so g has a pth root, and this completes the proof.
CorROLLARY 11.6. A4 periodic group G s a D, ,-group if and only if it is w-free.

Proof. If @ is w-free we can apply Theorem 11.5 to deduce that G € D,—we may take
A =1. On the other hand, if G€D,, then Lemma 11.3 applies and @ is w-free.

We make use of Corollary 11.6 to give an example of a situation in which G€ D, and
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g, b in G are such that (gh)z = gnhx although gh= hg. This is given in order to show that

Theorem 11.1 cannot be generalised in the obvious way. We take
G=gp(a,b;a*=b"=1,a1ba =1).
Now |G| =20 and so by Corollary 11.6 G is a 7-group. It can easily be verified that
(ad)® =a®bs.
Hence ’ (@®0%) 1 = (ab)’t =ab =d’1b%7.
However, it follows from the defining relations of G that
a’b® =+ 6%a’.

In this example ¢ is not even nilpotent; for locally nilpotent groups however the

result for 7-groups corresponding to Theorem 11.1 does hold:

TaeoreM 11.7. Two elements g and b in a locally nilpotent v-group G are permutable
if and only if
(gh)r =gthT.

Proof. If gh = hg then (gh)t = grh7 by Corollary 10.4.
It remains to show that gh =hg whenever (gh)r =grht. To this end let H be any

nilpotent subgroup of G containing gv and hr—the existence of such a subgroup H is
taken care of by Theorem 15.1. The proof that ¢ and % commute will be by induction over
the class ¢ of H. If ¢ =1 the result is immediate. If ¢ > 1 then the factor group H/Z, with
Z the centre of H, is a 7-group of class c-1 (see e.g. Corollary 14.4). Now

(9ZhZ)r = (ghZ)yr = (gh)1Z = (gTh1T)Z =91 ZhtZ = (9Z)7 (R Z)T.

Thus inductively

9ZhZ =hZgZ.
consequently
gtZhtZ = (9Z)yr(hZ)T = (hZ)1(9Z)T = htZ gt Z.
Hence [kT, gT] =2€Z. (11.71)

We have (gh)7 =gth, by the hypothesis; on cubing this equation we obtain

gh =grhrgthrgrht = (g7)*ht [, gv)hrgrhT =
= (97)*(h7)’gThT2 (since 2€Z) = (g7)* (h7)*[(h7)%, gTlhT2

— 3 3 ke — 3
h(qt) (h‘[) [ht: gT] 1[}1/[, gT]Z—th .
15— 60173033. Acta mathematica. 104. Imprimé le 21 décembre 1960
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It follows that 2 =1
But G€D,; therefore z = 1. Hence gtht = htgr (by 11.71) and so
gh =hg.

This completes the proof of the theorem.
It follows from this theorem that if a locally nilpotent 7-group G has the property that
the mapping which takes every element into its cube root is an automorphism, then (¢ is

abelian. However, the restriction that ¢ be locally nilpotent is redundant.

THEOREM 11.8. Let G be a 7-group in which the mapping which takes every element

into its cube root is an automorphism. Then G is abelian.

Proof. Let g, h€@G. Then
{(gh)r = g7h7, (hg)Tt =hTgT.

The result of cubing both sides of the equation (gh)7r =gvht and then cancelling g7 on
the left and A7 on the right is the further equation

(97)* (h)* = (hTg7)"

Starting instead from the equation (kg)t = kgt and proceeding similarly the corresponding
equation
(h)*(g7)* = (g7h7)?
can be obtained. Hence
97k = (g7)*(h7)* = (97)* (h1)*hT = (hvgT)*hT
=ht(gthtgrht) =ht{grht)® =hT(hT)?(97)2 = R(gT)"

Thus & commutes with (g7)? and therefore so also does A7. Consequently
(hege) = (go) (h)* = (e (g |
This leads after cancellation of %7 on the left and g7 on the right to
gtht =h19T,

and so g and % also commute and @ is abelian. This completes the proof.
An example of a non-abelian D,-group in which = acts as an automorphism is the

quaternion group ¢ of order 8:

Q=gp(a b; a* =b'=1,[a,b] = a* =b?).
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We may take p here to be the prime 5. Then
(cd)mw =cmdm

for all ¢, d€Q) since each element in @ coincides with its fifth root. This example shows

Theorem 11.8 cannot be extended to include all D,-groups.

CoarTER I1

Locally nilpotent groups, ZA-groups and nilpotent groups

12. We shall be concerned here with groups satisfying certain commutativity condi-
tions. For example we prove that the terms of the upper central series of a ZA-group in
E, are w-ideals. The main result in this chapter is of a different kind: The w-closure of a
nilpotent subgroup of class ¢ of a U,-group is nilpotent of class c. We deduce a number of
related results and, in particular, a sort of dual to the result mentioned at the outset:
The first o terms of the lower central series of a locally nilpotent D,,-group are w-ideals.

Some of the results stated, and sometimes proved here, are, per se, similar to known
results for R-groups and divisible groups; in particular there is a certain amount of over-

lapping between our results and those of Kontorovis [18] and Cernikov [7].

13. A set of groups {H,}, where i ranges over a well-ordered index set I, is said to form
an ascending sequence if H; < H; whenever 1 < j. Suppose now that each H, is a w-subgroup

of some fixed supergroup(’) @ and let H = U H,. Then H is itself a w-subgroup of G. For
iel

if g€@G, pEw and g*€H, then g° € H, for some € 1. Consequently g€H, and so g€ H. Thus

we have proved

Lemma 13.1. The union of an ascending sequence of w-subgroups of an arbitrary
group s an w-subgroup.

In a similar way we can prove:

Lemma 13.2. The union of an ascending sequence of w-ideals of an arbitrary group is
an w-ideal.
The following theorem and Corollary 13.4 are immediate generalisations of a theorem

of Kontorovi¢ [18] on R-groups—the proofs are similar and are therefore omitted.

TurorEM 13.3. The centraliser of an arbitrary set of elements of a U,,-group is an

w-subgroup.

(1) G is a supergroup of H; if H;<@G.
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CorOLLARY 13.4. The terms of the upper central series of a U,-group are w-ideals.
CoROLLARY 13.5. An w-subgroup H of a U,-group @ which is contained in the centre
is an w-tdeal of G.

Proof. Suppose p€w, z, y€G and (xH)? = (yH)". Then
x®=y"h, hEH. (13.51)

The centre { (@) is an w-ideal of G (Corollary 13.4); furthermore { (&) contains H. Conse-
quently (zZ(@))? = (w{(G))* and so x{(G) =y (G). Thus z = yz, 2€{ (G) and

2P =yP2P. (13.52)

On comparing (13.51) and (13.52) we see that » = 2°. But as H is an w-subgroup of ¢, z€ H.
Consequently « H =y H and H is therefore an w-ideal of G.

We saw in 9 that a normal w-subgroup of a group is not necessarily an w-ideal; however,
this is always true whenever the factor group is locally nilpotent. This follows immediately
from the following theorem, which is due to Mal’cev [26] and Cernikov (see Kurosh [21]
vol. 2, p. 247).

THEOREM 13.6. A4 locally nilpotent group is a U,-group if and only if it is w-free.

CoroLLARY 13.7. A normal w-subgroup N of a group G is an w-ideal of G if G/N is
locally nilpotent.

Proof. By Theorem 13.6 G/N €U, since it is w-free.

14. We shall consider in this section some properties of various kinds of E,-groups.

First we prove:

THEOREM 14.1. Let G be a ZA-group, let pEw and let G be an E,-group. Then the
set of elements of G whose orders are a power of p forms a subgroup contained in the centre
of G.

The proof of Theorem 14.1 depends on the following lemma (cf. Kurosh [21] vol. 2,
p. 234).

LeMMA 14.2. Let G be a ZA-group in the class E,. Then the centre Z = (G) is an
w-ideal of G.

Proof. Let 1+ g€@, let pEw and suppose g” €Z. Choose « so that(')

(1) We define {1 (@) =( (@), (*(G)= ﬂU C’S(G’) if o has no predecessor, and il

by £(G/C*(@) =L (@)L (6).
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geL* (@), geH(@).

If « =0, then g€Z, as required. Suppose, if possible, that « =1 and let x be an arbitrary
element of (. Let x, be a pth root of x. Then

1= [gp: x] = [g, x(l;] = [g> x:]

and so = 1. Let us now suppose that any element of ?(G) which has a pth power in Z,

for every f satisfying 1 <f < «, is contained in Z. Then
[x, 9] =2 tg-ta-g €T%(G),

and as both ¢ and x~1g~'x have order p modulo Z, [z, ¢] itself has order modulc Z a power
of p(*) and hence belongs to Z. This holds for all € G and so g €.%(G), which, as we showed
above, implies g€Z. This completes the proof since a normal w-subgroup of a locally nil-
potent group is an w-ideal (Corollary 13.7).

The proof of Theorem 14.1 now follows easily. For if ¢?" =1 then ¢”"€{ (@), and so,
by Lemma 14.2, g€ (G). ‘

The first of the following two corollaries is due to Cernikov [1]; the proof of Theorem

14.1 is based on his original proof.

COoROLLARY 14.3. In a divisible ZA-group the elements of finite order form a subgroup

of the cenire.

CoroLLARY 14.4. The terms of the upper central series of a ZA-group G in E, are

w-ideals.

Proof. By Corollary 14.2 Z =[ (@) is a w-ideal. Thus G/Z is a U,-group and so by
Corollary 13.4 the terms (*(()/Z of the upper central series of G/Z are w-ideals of G/Z. It
follows easily that the terms (*(G) of the upper central series of & are w-ideals of G.

We remark that the centre of a locally nilpotent E,-group is not necessarily an w-ideal
since every locally nilpotent p-group can be embedded in a divisible locally nilpotent
p-group with a trivial centre (see Baumslag [3]) (cf. Corollary 14.3).

TuEOREM 14.5. The terms of the lower central series of a nilpotent group G in E, are

themselves E,-groups.

(*) In a locally nilpotent group the elements of order a power of p form a subgroup (see Kurosh
[21] vol. 2, p. 215).
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Proof. The proof is by induction on the class ¢ of ¢. In the case ¢ =1 the result is im-

mediate, so we have a basis for induction. Now I',(G) is generated by the commutators:
lg, 2}, g€G, el ,(&).
If p€w then g has a pth root, say g,. Hence

[g’ h] = [g(l;’ h] = [gos h]p

and so [g, k] has a pth root in I'. (). Consequently every element of the abelian group
I'c (@) has a pth root and therefore I' () € E,,. Consider now the factor group H = G/I',(G).
Then H€E, and is nilpotent of class ¢ —1 and we may apply induction to deduce that
I,H)=T,(&/T.(G) is an E,-group for ¢=1,2,...,c. It follows immediately that
I'(EeE, fori=1,2,..., ¢ and the theorem is proved.

It is easy to make examples of nilpotent E,-groups in which the terms of the lower
central series are not w-ideals. On the other hand, for nilpotent D,-groups such examples

cannot exist.

COROLLARY 14.6. The terms of the lower central series of a nilpotent group G in D,

are w-ideals.

Proof. A normal w-subgroup of a (locally) nilpotent U,-group is an w-ideal (Corollary
13.7) and so the result follows from Theorem 14.5, because an E,-group which is a sub-
group of a U,-group is an w-subgroup of that group.

By Corollary 14.6 the derived group of a nilpotent D,-group is an w-ideal. This result
is, however, not true for D,-groups in general. An example of a D,-group in which the
derived group is not an w-ideal will be given in Part II (see Theorem 37.2).

If we consider the more general class U, then again Corollary 14.6 is no longer true.
For let

G=gp(a, b, c; [a, b] =c* ca=ac, cb=bc).

It is easy to verify that G€U, and that @ is nilpotent of class two; but the derived

group of G is generated by ¢ and so is not an w-ideal of G.

15. Mal’cev [25] has proved that if G is a torsion-free locally nilpotent group then
G can be embedded in a torsion-free locally nilpotent divisible group G*. We shall prove
here, as an application of the main theorem of this section, that if G is a torsion-free locally

nilpotent group and if K is a supergroup of @, which is a divisible R-group, then G*, the
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o-closure of ¢ in K (p being the set of all primes) has no option other than to be a locally
nilpotent divisible group.

The main theorem is the following.

THEOREM 15.1. Let G be a subgroup of a U,-group K. Then, if G is nilpotent of class
¢, so s cl, (G, K).

Proof. Let
1<Z,<Zy< <Z,=G
be the upper central series of G. It follows, on applying Theorem 13.3 that(*)
[cl(Z), G]1 =1,
and similarly that [el(&), el(Z)] =1. (15.11)

Thus we see from (15.11) that cl(Z) is a subgroup of the centre of ¢l(¢) and so, by Corollary
13.5, cl(Z) is an w-ideal of cl(G); we shall make use of this fact in the sequel.

Now if ¢ =1 then, by (15.11), [cl(®), cl(G)] =1 and so cl (&) is abelian—thus we have
proved the theorem in the case ¢ = 1. We shall use this fact as the basis for an induction:
if L is a subgroup of a U,-group M and if L is nilpotent of class d(d <c¢— 1) we shall
assume cl, (L, M) is nilpotent of class d.

We now make use of Theorem 9.3. We put
8, =GQ-cl(Z));
according to Theorem 9.3 if H; =gp(S,), S,y = {g|9"€H,, g€K, p€w}, H, 1 =2p(Sip);
then cl(S;) =Z_QH ;~ We shall show that H; is nilpotent of class ¢ for ¢ =1, 2, ... and conse-

quently that cl(G-cl(Z,)) is nilpotent of class ¢. Tt follows from (15.11) that §, is a sub-
group; therefore H, = Gel(Z,). Now

H, /ol (%)= G/GNcl(Z) =G/ Z;

thus H, is nilpotent of class ¢ since cl(Z,) < {(H,).
Suppose now that we have proved H, nilpotent of class ¢ for all ¢ <4, for some j > 1.

We now well-order the elements of S,,,:

S ={an a5 .y @y ...}

(*) Throughout the proof of this theorem we shall simply write cl(H) for the w-closure of H in K.
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Define Fe=gp(H;, a1, 05, ..., sy ...; € <p).

Now F, is nilpotent of class ¢. To see this we consider H;/cl(Z,) as a nilpotent éubgroup
(of class ¢ — 1) of F,/cl(Z,). There is a prime p € for which (a,cl(Z))” € H,/cl(Z,) and so, by
induction, F;/cl(Z,) = cl(H,/cl(Z,), F,/cl(Z,)) is nilpotent of class ¢ — 1. But cl(Z,) < (F,)

and so F; is nilpotent of class ¢. It follows by transfinite induction that
H; = LﬂJF 8

is the union of an ascending sequence of subgroups, each nilpotent of class ¢ and so H,

is nilpotent of class c. Therefore, by induction, each H, is nilpotent of class ¢ and hence
cl(G-cl(Z)) = UH; is nilpotent of class ¢. In particular cl(() is nilpotent of class ¢ and
i=1

this completes the proof of the theorem.

CoRrROLLARY 15.2. Let G be a subgroup of a U,-group K. If G is locally nilpotent then

its w-closure in K is also locally nilpotent.
Proof. Let §,, g, - .-, §, be n elements taken arbitrarily from cl(G) and let

H = gP@p 62’ (A gn)'

We have to show that H is nilpotent. We make use of Theorem 9.3. and write
(@) =U4H,
i=1

where H,=G =G,
H;, =gp(Gi)
and G, ={g|g€K, g° € H, for some pE€w}.
This expression for ¢l (G) enables us to find a finite set
{91, 92 .- gn} (9:€6)
such that H<({gy, g v gm})

To see this let us consider the case of a single element g€cl(G). Since g belongs to the

union of the H; it must belong to one of them, say to H,. Therefore we can write

g=h1h2 ...h;.,
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where %, €G; and has therefore a prime p,€w associated with it such that
byt €H, ;.

Now, inductively, corresponding to each element in H;_, we can find a finite set of elements

in G whose w-closure contains that element. Thus we can find
Guts Gus oo Guny ) (91 €6,
such that ik €cl({gu 15 Gunzs -+ Gum, })-
Then, since p.Ew, we have also
hu€cl({gu 1 Gu2s - s G n,‘})-
Hence gecl(gi,1, gr2, -+ Jany)-
It follows that we can, in a similar way, find a set

g = {gb 92> (A4 gm} (ngG)7
such that gi€cl(@) (i=1,2,..., n)

consequently H < cl(G).

The group generated by a finite subset § of a locally nilpotent group & is necessarily nil-
potent. Furthermore, by Theorem 15.1, the w-closure of a nilpotent subgroup of a U,-
group is again nilpotent. Now ¢l(§) = cl(gp(()); thus H is a subgroup of a nilpotent group
and so is itself nilpotent. This completes the proof of the corollary. »

CorOLLARY 15.3. Let K€U, let G be nilpotent of class ¢ and suppose G is & subgroup
of K. Suppose, furthermore, that every element k€K has a power k®€G, where all the prime

divisors of n belong to w. Then K is nilpotent of class c.

Proof. The w-closure of G is K, so the theorem follows on applying Theorem 15.1.

It may be of interest to note a connection between Corollary 15.3 and a theorem of
Duguid and Maclane [8] which states that a subgroup of finite index in a torsion-free
nilpotent group of class ¢ is also of class ¢. Since a torsion-free nilpotent group is an
R-group (Theorem 13.6) their theorem is an immediate consequence of Corollary 15.3.

Corollary 15.3 has an analogue for locally nilpotent groups, for it follows easily from
Corollary 15.2 that if K€U, and if G is a locally nilpotent subgroup of K such that every
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k€K has a power k"€Q, where all the prime divisors of » belong to w, then K is itself

locally nilpotent. One may also prove a similar result for Z 4-groups.

THEOREM 15.4. The first w terms of the lower central series of a locally wilpotent
D,-group G are w-ideals of G.

Proof. Let
G=H,>H,>--->H,>--->1

be the lower central series of G. Suppose p€w, g€G and ¢g? € H, for some finite integer ¢;
then ¢? can be written as a product of (say) n i-fold commutators involving the » (i + 1)

elements

91,1, 91,25 o+ o5 J1,i415 <o o5 Gn, 1415

a 1-fold commutator is a simple commutator [, ¥] and, inductively, an i-fold commutator

is the commutator of an (¢ — 1)-fold commutator and an element of G. We put

H=gp(g1.1: 912 -+ In. 142)-

Then H is nilpotent and so therefore ¢l (H) is also nilpotent, by Theorem 15.1. The terms
of the lower central series of cl(H) are w-ideals, by Corollary 14.6; thus since g” belongs to
the 1th member of the lower central series of cl(H) (by the choice of H), g belongs also to
the ith member of the lower central series of cl(H). Consequently g € H; and hence H;is an
w-subgroup of G. Furthermore H; is normal in G' and so on applying Corollary 13.7 we

see that H, is an w-ideal of G. The same analysis holds for every ¢ and so we have H, is an
w-ideal of G for i =1,2,... . Hence H,= N H, is also an w-ideal of G (Lemma 9.2). This
i=1

completes the proof of the theorem.
I do not know whether it is possible to extend this theorem so as to include all the

members of the lower central series of a locally nilpotent D,-group.

COROLLARY 15.5. The terms of the derived series of a locally nilpotent D,-group are

w-ideals.

Proof. By Lemma 9.2 the intersection of -ideals is an w-ideal and the corollary follows
immediately from this remark and Theorem 15.4.

We complete this section with the proof of the following theorem and its corollary.

THEOREM 15.6. Let G be a nilpotent group and suppose that G is generated by its p-th

powers, for each prime pEw. Then G is an E,-group.
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Proof. Suppose
G=H,>H,>--->H,=1

is the lower central series of ¢. The theorem is obviously true when ¢ = 1; we shall use this
fact as a basis for an induction over the class ¢ of G.
We prove first that H,_, is an E,-group. The elements of H,_; can be written as

products of commutators of the form
h=1[g,9'], g€G,g'€H_,. (15.61)
Now @ is generated by its pth powers and so g can be written in the form
g=919% ... gn,

where the g, are elements of G. We substitute this expression for g in equation (15.61) and

make use of the equation
[fg, 1 =11, kY9, ]

to show that % is a pth power of an element in H,_;. Explicitly

) D Y ap 959590 » D P
h=[g79% ... 97, 9'1=19%.9'] (9295 ... 97, 9]

Il

=g 9118 917 (g8 . g2 g = g g P [ 9] ..
=909 1929 ... [gn, 9 =91, 9192, 9] ... [gn, 9" 11)".

Thus 4 is a pth power of an element in H, ; and it follows that every element of H,_, is a
pth power of an element in H,_,. This procedure applies for all p€w and since H,_, is
abelian, it is an B,-group. Now @ is generated by its pth powers for each p in w; therefore
so also is G/H,_,. Now G/H,_; is nilpotent of class ¢ — 1 and so we are able to apply the
induction hypothesis to assert that G/H,_; is in fact an X,-group. Thus G is a central
extension of an K,-group by an E,-group and so by Theorem 21.2 (see Chapter IV) G is
itself an E,-group. This completes the proof of the theorem.

CrAPTER II1
Construction of U,-groups, E, -groups and D, -groups

16. In this chapter we shall make use of the free product and the second nilpotent pro-
duct. We shall later also require the free product with an amalgamated subgroup, and, more

generally, the generalised free product. It is convenient therefore to give here a short exposi-
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tion on such products and to record some of their properties which we shall need in sub-
sequent work. As far as generalised free products are concerned, we shall take this op-
portunity to draw heavily from B. H. Neumann’s “An essay on free products of groups
with amalgamations’’; we even go so far as to take the liberty of quoting from this essay
(B. H. Neumann [27}).

Let F be a group and let F; be subgroups of F, where 1 ranges over an index set A.
We call F the generalised free product of the F; if i) F is generated by its subgroups F;,
and ii) for every group @ and every set of homomorphic mappings ¢; of each F; into @,
every two @,, ¢, of which agree where both are defined, there exists a homomorphic map-
ping ¢ of F into G that coincides with ¢; on each F; (see B. H. Neumann [27], Theorem
1.1). Now suppose F is the generalised free product of its subgroups F;(A€A) and put

Fi0F,=Hy,(=Hu), A peEA.
If all the intersections H;, coincide to form a single subgroup H:
FinF,=H, (A+p)

then F is called the (generalised) free product of the F; with an amalgamated subgroup H.
In the case where H =1, the trivial subgroup, then F is called simply the free product, or,
to emphasise the distinction, the ordinary free product of the F;.

Let now groups F, be given, where 4 runs over a suitable non-empty index set A.
In every F, and to every index u€A let a subgroup H;, be distinguished; H;; is always
to be the whole group F,. If there exists a group F which is the generalised free product

of groups F; with intersections
Hy=Fi0Fu=Hu,
and if there are isomorphic mappings @; of F; onto #,
Fi=F.p;
such that always B, = Hp,

then we say that the generalised free product of the F; with amalgamated H;, exists, or simply
the generalised free product of the F; exists. The generalised free product does not always
exist; however, in the special case of the generalised free product with a single subgroup
amalgamated, the generalised free product does always exist (Schreier [32]).

It is often convenient when dealing with generalised free products not to distinguish
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between a group and an isomorphic copy of it; we shall adopt this convention whenever
it is both convenient and wnambiguous.

Let us suppose for the moment that F is the free product of the groups F; with
amalgamated subgroup H (A€A). The elements in F can be represented by a certain
normal form: We choose in every group F; a system S; of left coset representatives modulo
H containing the unit element; thus every element f€ F'; can be uniquely represented in

the form
f=sh (s€S; h€H).

Now we distinguish certain words in elements of the Fj; specifically we call
W =588y ...,
a normal word if it satisfies the following three conditions:

(i) Every component s;(1 <1i<n) is a representative = 1 belonging to one of the S;.
(ii) Successive components s; belong to different systems of representatives; in other
words, if 1 <7 <n, 5,€8, 8;,,€8,, then A+ u.

{iii) The last component belongs to the common subgroup A€H.

We call n the length of the normal word. Note that a word is a string of symbols; if
we interpret it as a product (which is written in the same way) we obtain an element of
the group, and we say the word represents the element. Then every element is represented
by one and only one normal word (cf. B. H. Neumann [21] Theorem 2.4). The uniquely
determined normal word representing f we call the normal form of f and we call the length
of the normal word representing f the length of the element f; we write A(fy =n if f is of

length n. The following lemma is due to B. H. Neumann [27]:

Lemma 16.1. If n>1, 4f
f=f1f2"'fnf

and if no two successtve factors f,, f,., are elements of the same group F,, then n is the length of f.
If n =1, the length of f is 0 or 1 according as f lies in H or not.

We call the element € F cyclically reduced if none of its conjugates in F has smaller
length than itself. The following lemma is due to B. H. Neumann [27].

Lemma 16.2. If f is cyclically reduced and if it has the normal form
f=8185...8,h

of length n > 1, then s, and s, belong to different groups F,+ F,,.
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Lemma 16.3. (B. H. Neumann [27].) If f has length n>1 and if in its normal form
f=6180...8,h

the components s; and s, belong to different groups F; and F,, then | is cyclically reduced.

TaeoreM 16.4. (B. H. Neumann [27].)
Let F be the free product of growps F; with amalgamated subgrowp H . if f is an element of

finite order in F, then f is conjugate to an element in (at least) one of the F,.

CoroLLARY 16.5. (B. H. Neumann {27].) The free product of locally infinite groups with
an amalgamated subgroup is locally infinite.

Suppose now that F is a group generated by its subgroups F;, where A ranges over an
ordered index set A. Then F is a regular product of the groups F; (Golovin [11], [12]) if

every element f€ F has a unique reqular representation of the form
f=hohe - fim s,

where f}x(i) EFA(i), A (].) <A (2) << A (n), w €nm ([Fl])

and (Fil=gp (fa ful; F2E€F4, fu€Fyu Akp, A, u€A).

We . revert to the case where F' is the free product of the groups F;, A€A, A

an ordered index set. Let
[[Fa]=nm ([F]), W[F1}=[F, x-1[Fill,
where k=2, 3, .... Then Golovin [11] calls the factor group
F/e[F]

the k-th nilpotent product of the groups F;, A€A; furthermore he proves that the kth nil-

potent product of groups is in fact a regular product.

17. We consider now methods of constructing ‘new’ U ,-groups, E,-groups and D,-
groups from given U,-groups, E,-groups and D,-groups.
The proof of the following lemma is straightforward and is omitted.

LemMMa 17.1. The restricted direct product and the unrestricted direct product of X,,-
groups is an X ,-group where X here stands for any of the three letters U, E and D.
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Kontorovi¢ [8] has proved that the free product of R-groups is an R-group; we

generalise this result to the following

THEOREM 17.2. The free product F of U,,-groups F,, where A ranges over an index set

A, s a Uy-group.
Proof. Suppose pEw, f, g€ F and
P =gP(f+1). (17.21)

We may assume f is eyclically reduced; then the proof that f =g falls naturally into two
parts:

(i) A(f) =1. We have g~1ffg = /7 and since f< 1, 7= 1 and so
1L=24{g7"fg) = A(g") = A(g)-

Thus A(g) <1 and therefore, by (17.21), A(g) is precisely 1. It follows then with the aid
of (17.21) that f and g belong to the same subgroup, say to F;. But F;is a U,-group and
therefore (17.21) yields f =g.

(ii) A(f) > 1. Let us suppose that the normal form for f is
f=hahe - fams Fre € Fawy;

7 is eyclieally reduced and consequently A(1)= A(m) (Lemma 16.2); therefore the normal

form of f* is

fp:fzm f/l<2> f/km) fza) fl(m»

Now, by (i), the length of ¢ is at least 2. Let then

9=9uty Ju - Jumy (0>1)

be the normal form of g. We assert that g is itself cyclically reduced. For it follows from
(17.21) that g and f* are permutable i.e.

Tty Tu -+ Juew aw Fry <+ Jaom = Fac fay -+ Faom) Juct) Guey +++ Juens- (17.22)
mp mp

If u(n)#= (1) and (1) =+ A({m) then we see immediately from (17.22) that x (1) =A(1) and
w(n) =A(m) and so ¢ is eyclically reduced since 1(1)= A(m) (Lemma 16.3). If u(n)= A(1)
and u (1) =4 (m) then

A (guy Ju@ -+ Guew ay frey -+ faom) =n+pm>A(faqy faey -+ faom Gy -+ Juem)s
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which is incompatible with (17.22) and so this case does not arise. Finally if u(n) =A(1)

and u (1) = A (m) then we have, once more, g cyclically reduced. Hence we must always have

L __
9" = Juw Ju@ -+ Juey Juq) -+ GJunys

which is the normal form of ¢g?; and so it follows from (17.21) that f and g are in fact identical.
This completes the proof.

It is clear that the free product of more than one nontrivial E,-group is not an E,-
group since extraction of pth roots is not always possible. One may ask whether or not
certain regular products of U,-groups are again U,-groups and, in particular, whether

such regular products when applied to D,-groups result in D,-groups.

LEmMMA 17.3. The second nilpotent product F of U,-groups Fi(A€A) is a U,-group
if and only if [F,] is w-free.

Proof. 1f [F;] contains elements of order p then F is not a U,-group. Suppose then
that this is not the case. Let p€w and let f, g€ F be such that

=g (17.31)

Let f=fhaohbe - fomw, AQL)<A@)<- - <i(n), w€nm([F;]) (17.32)

9=9u® Iu® - Juemy Vs B(1)<p(2) < <u(m), vEnm([F;]) (17.33)

be the regular representations for f and g respectively, where fi,€ Fy i, and g, € Fuy)-
In the second nilpotent product [F;] lies in the centre (cf. Golovin [12]) and so in this case
am([F;]) =[F;]. Thus we can easily deduce the regular representations for f* and g
from those of f and g (cf. Golovin [12]):

f”=fﬁ’(1) fﬁ’(z) ffm)'“p'( H [faars fz(i)])w(p_l) (17.34)
I<i<ign
9°=Guw Guuws -+ Jiaem """ ( <ig<m [Gucirs Jucr))F 2P0 (17.35)

Now by (17.31) /* and g” are equal; hence the regular representations (17.34) and (17.35)

coincide. Thus m = » and, in particular

D P /) D — P
fary=Grws << » flomy = Guemy-

But each F, is a U,-group and therefore we have

hao=0wy fre=9ue - o5 fuomy= Juomye
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It follows thence that uP = *.

Now u and v both lie in the centre of F; therefore (uv=1)? =1, i.e. w =v and so (cf. 17.32)
and (17.33)) f =g. This completes the proof.

We give now an example of a second nilpotent product of U,-groups which is not a
U ,-group. We take

G =gp(a,b,c[a,b] = [a,c]=[b,c] =1),
H;—gp(d: €, f; id, €] Zfz’ [d, f] =[e 1l =1).

It is easy to show that @ and H are U,-groups. But F, the second nilpotent product of G
and H, is not a U,-group. For let

F=6*H.
Then F=F/[F,[G, H.
Now a commutator in G always commutes with every element k€ H:
[y~ tay, k] = [z, ]y, k] [=, 1y, k] =1 (=, y€C).
So [e,d)? =[c?, d] =1,
although [c, d}= 1.

THEOREM 17.4. The second nilpotent product F of E,-groups F; (AEA) is an E,,-group.

Proof. We have only to prove the existence of pth roots in F for every p€w. Let then
gEF and let

I=Fa Fa@ - Gamy%s A(1)<A(2)<--- <A(m), uw€[F;].

Now every simple cross-commutator has a pth root; for

(am, [P =1(1am)®, ful = 1
since [F;]<{ (F). Consequently [F;] is itself an E,-group. Choose u, €[F;] so that

uf =u-[( H (92 72, gﬂ(i)”]%p(p_b)]il'
Igicigm

Then it follows that
Jo= a0y T Gy 7T *** Gagm) T Uy

is a pth root of g. This completes the proof of the theorem.
16 —60173033. Acta mathematica. 104. Imprimé le 21 décembre 1960
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CoroLLARY 17.5. The second nilpotent product F of locally nilpotent D,-groups F;

18 a D,-group.

Proof. It follows from a theorem of F. W. Levi that if F is the second nilpotent product
of its subgroups F, and if the factor group of each F; by its commutator subgroup is
w-free then so is [#]. Thus it follows in this case, from Lemma 17.3, that F is a U ,-group
since the derived group of a locally nilpotent .D,-group is an w-subgroup (Corollary 15.5);
furthermore F is, by Theorem 17.4, an E,-group and so the corollary follows.

18. The wreath product W of two groups 4 and B (cf. e.g. Hall [13], Kaloujnine &
Krasner [16]) is a useful method of constructing examples. It can be defined as follows:
Let K denote the direct product of groups A4, which are isomorphic copies of 4 indexed
by the elements of B:

K =HAb;
beB
put W =gp(K, B; bi'ayb, = aws,, b, b, € B, a€ A).

Then W is called the wreath product of A by B.

We shall prove that the wreath product of a U,-group by a U,-group is a U,-group;
further connections between roots in groups and wreath products are found in Baumslag
[3] and [4].

TarEoREM 18.1. The wreath product W of a U,-group 4 by a U,-group B is a U,-
group.

Proof. Suppose p€w, ¢, g,€ W and
gl =g5. (18.11)

Now W =gp(K =11 45, B; bi'asb, = avs,),
beB

and so we can write g, = b, k;, g, = byk,, where k,, k; € K and b,, b,€ B. Making use of these

expressions and equation (18.11) we see that

gr =01k =bE k2 =95, (18.12)
where =0+ b b+ L, =0 BSR4 Dy + 1.
Hence by =0b3.

But B is a U,-group and hence b, =b, =b (say).
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Thus g1 =bk,, g, =bk,.

Now if b is of finite order then g, and g, have finite order modulo K; therefore we can apply
Lemma 11.4 to deduce that g, = ¢,. We may therefore concern ourselves only with the case
where b is of infinite order.

Suppose now that g, = ¢,; then k, =+ k, and hence
kelky£1. (18.13)
Furthermore, it follows from (18.12) that we can write
g5 =b"k*, EK*€K.
Now gi=g% and hence ¢g§ commutes with g;; it follows that ¢g§ commutes with
g: g, =k;' k. Thus
k3t =98 (ks ky) gz P =bPk* (ko' k) K* L0 =07 (B* (ka1 k) B*TT AP, (18.14)
Let now k; 'k, have a non-trivial component in the groups 4, , 4., ..., 4s,(b,€ B), and trivial
components in all the other groups 4,; it follows from (18.13) that %:;'%,"has non-trivial

components and, furthermore, that k* (kz'k;)k*—! has non-trivial components in exactly

the same groups 4,, 4,, ..., 45, and trivial components otherwise. Therefore, by (18.14),

b transforms, by right multiplication, the set of suffixes b, b,, ..., b, into itself. More
precisely

{6,067, b7, ..., b, b7} = {by, by, ..., by }. (18.15)
Consequently byb?, byb%, ... b b P

must all belong to the set
{by, by, ..., b, }.

But no two of these elements b,5%, b,b’” (i= §) coincide since b is of infimite order. Thus

our assumption (18.13) was not a valid one and so in fact k;'k, =1, ie. k; = k,. Hence
91 =0k, =bk, = gs,
and this completes the proof of the theorem.

19. One can define, analogously to the wreath product, certain allied products. It
turns out that if one starts with U,-groups then these products give rise to U,-groups.

However, we shall not consider them here but prefer to discuss them in a separate work.
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CuapTER IV

Extensions of U, -groups, E -groups and D -groups

20. In 71 we we proved that an extension of a U,-group by a periodic U,-group is a
U,-group, and that an extension of a D,-group by a periodic D,-group is again a D,-
group. These results on extensions lead to a number of related questions: Is an extension
of a U,-group by an arbitrary U,-group a U,-group? Is an extension of an ¥,-group
by an arbitrary E,-group an E,-group? Is an extension of a D,-group by an arbitrary
D,-group a D,-group? All of these questions have negative answers and appropriate
counter-examples will be given in this chapter.

The main results in this chapter are concerned with special kinds of extensions. Thus
we prove that if G is locally nilpotent and contains a normal subgroup A4, which is itself
a D,-group, and, furthermore, if G/4 is a D,-group, then G is a D,-group. The cor-
responding theorem is, however, not true for Z,-groups (see Baumslag [4]). A similar, al-
though unrelated, result for E,-groups is the following: Let 4 be an E,-group and suppose
A is a ZA-group, and let B be a periodic D,-group. Then every extension of 4 by B is an
E,-group.

21. We begin by considering central extensions.
Lemma 21.1. A central extension G of a U,-group A by a Uw-grodp Bis a U,-group.
Proof. Let g, h€G, let pEw and suppose |

g° = hP. (21.11)

Making use of the isomorphism between G/ 4 and B it follows that g and h are equal modulo
A4, i.e.
qg=ha, a€A. (21.12)

Now a € () and so by (21.12) we have
g° = h’a”. (21.13)

Comparing the right-hand sides of (21.11) and (21.13) we see that o” = 1. But since A€U,,,
a =1, and hence g = h; this completes the proof of the lemma.

We prove now the following theorem for E,-groups.

THEOREM 21.2. A central extension G of an E,-group A by an E, -group B is an

E ,-group.
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Proof. Suppose p€w. The isomorphism G/A4 = B enables every g€@ to be written in
the form
g="ha (hEG, a€A).

Now A€E, and so we can find a,€ 4 such that af = a; hence
g =kraf = (hay)®.

"Thus extraction of pth roots is always possible in &; this completes the proof of the

theorem.

COoROLLARY 21.3. A4 central extension of a D,-group by a D,-group is a D,-group.

22, It is not true that every extension of a U,-group by a U,-group is a U,-group.
An example of an extension ¢ of a U,-group 4 by a U,-group B, which is not a U,-group
will now be given. :

Let B be a multiplicatively written group which is isomorphic to the additive groups

of dyadic rationals:

B=gp(by, by, ... bluy=b,,i=1,2,...).

Let A denote the unrestricted direct product of | B| copies of B indexed by the elements
of B. Then 4 is a o-group since B is a o-group (Lemma 17.1). It is now possible to define
an extension ¢ of 4 by B by defining transformation of an element d@ of 4 by an element
b’ € B by defining the coordinate of '~1ab’ in the group A4ss., to be @y, if @y is the coordinate
of @ in A,. This enables us to define the group G generated by A and B in this way:

G=gp(d, B: bayb =ay, abbEB)

G is called the unrestricted wreath product (Hall [13]) of B by B. Now both 4 and B are,

of course, Uy-groups, 4 is normal in G and
G/A=B.

We choose now an element b(= 1) in B and consider the element a*€ 4 whose compo-
nent in B is a“l)n, where a is some element of B different from 1, and whose components
in all other B,. ('€ B) is the identity. But g = ba*. Now it can be verified that

a*a* =1;

consequently g° =bv%a*’a*, = b,
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but ¢ =ba*=+ b since a*=+ 1 and therefore square roots are not unique in G. Thus this
example shows also that an extension of a D,-group by a D,-group is not always a D,-
group.

In the group G above every element has at least one square root (see Baumslag [4]);
however it is possible to make extensions of g-groups by o-groups in which extraction of
square roots is unique but not always possible. This is accomplished by making use of
the wreath product. Explicitly the procedure is as follows:

Let B be a multiplicatively written group which is isomorphic to the additive group-
of dyadic rationals (as in the first example above). Put

A=HB(,

beB
and define
G=gp(4, B; bt ay b’ = ayy, a, b, b’ €B);

G is, as we saw earlier, the wreath product of 4 by B. Hence it is, by Theorem 18.1, a
U,-group. Moreover, G/A= B and so G is an extension of a o-group 4 by a o-group B.

However, the element ¢ in G:
g==0%a', a'+1,ad €B,,

does not have a square root in G. For suppose that G3% and A* = g. Then h must be of the

form
h=ba* bEB, a*€EA,

and hence a*’a* =a’; (22.1)
Now a* can itself be written in the form
a*=a(1)saya (s --- @ M)pmy, @), bE)EB, bE)+b(j) if i+7; (22.2)
this representation is unique. Now, by (22.1)
(@ (Mo @ (2o --- @ (Mow) (@ (1)pay @ (2)oce) --- @ (B)oen) =a'. (22.3)

At least one of the lower suffixes involved in the left-hand side of (22.3) must be the
identity. Suppose 5(1) = 1. Then it follows that some other b(3) say b(2) must coincide
with b. Further, it follows also, possibly after renaming, that for i =1, 2, ...

b(i) = b1, (22.4)

Therefore 5" is not equal to any &(:) for ¢ =1, 2, ..., since b is of infinite order. Hence the

equation (22.3) yields, using the commutativity of B,
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a(l)y=a’, a(@)a3)=1, ... a(n—Dan)=1, a(n)=1. (22.5)

It follows by (22.5) that a(1) =1 and hence also &’ =1. We have here assumed that b(1)
= 1; there is a second possibility, namely bb(1) =1; it follows similarly in this case that
a’ = 1. We are therefore always led to the same conclusion, namely that o’ is the identity.
However, this contradicts the choice of @’ at the outset and we can only conclude that g
does not have a square root in G.

We may as well make the remark here that the first example given in 22 is an example
of a metabelian group in which no element has order 2 but it is not a U,-group; this shows

that Theorem 13.6 cannot be generalised to include even soluble groups.
23. We shall need the following lemma.

LeEMMA 23.1. Let p€w, let HEU, and let K € D,,. Furthermore, suppose H is nilpotent
and that K is a normal subgroup of H. Then

h=g"’a (g€H,ackK)
has a p-th root in H.

Proof. Put
K,=EKnZ(H).

There is a least integer d satisfying K, = K. The proof that » has a pth root will be by
induction on d. Suppose firstly that d =1. Then K < (@) and so if a, is the pth root of a
then

h=gvag = (ga,)’.

Therefore we have the first step of a proof by induction. Consider next H/K,. Now K, is
the intersection of two w-subgroups of H, since, on the one hand, { (H) is an w-subgroup by
Corollary 13.4, and, on the other hand, K is an w-subgroup since it belongs to D, and H
belongs to U,; consequently, by Lemma 9.1, K, is an w-subgroup of H and therefore also
an w-subgroup of K. Thus K, must be a D,-group. We apply the induction hypothesis to
H/K, and deduce thereby that 4 K, has a pth root. Hence we can write

h=fPa, (f€H,a,EK,).

But K,€D, and therefore @, has a pth root a,, say, which belongs also to K. Since
K, <{(H) we therefore have
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b =frai = (fay)”

and this completes the proof of the lemma.

We can now prove the following “extension theorem” for locally nilpotent D,,-groups.

THEOREM 23.2. Let G be a locally nilpotent group and let A be a normal subgroup of G.
Suppose that both A and G/A belong to D,,. Then @ belongs to D,,.

Proof. Since A and G/ A belong to U, they are both w-free (Lemma 11.3). Thus the
locally nilpotent group @ is w-free; consequently @ belongs to U, (Theorem 13.6). It
remains to prove that G belongs to £,,.

Suppose then that p€w, h€G. Now modulo 4 the element % has a pth root and so

we can write

h=g’a (g€EG, a€A). (23.21)

Put H=cl,({g, a}, G).

By Theorem 15.1 H is nilpotent since it is the w-closure of a finitely generated (and hence
nilpotent) subgroup of a locally nilpotent U,,-group G. Let J be the normal closure in H of
the group generated by a and put

K =dl,(J, H).

Then, by Corollary 9.4, K is normal in H. Furthermore, K is a w-subgroup of A4 (it is
clearly a subgroup of 4 since 4 < G); for if c€ 4 and ¢?€K, then ¢c€H as H is a w-subgroup
of &; and so c€K, since K is a w-subgroup of H. Thus we have a nilpotent group H in U,,
with a normal subgroup K which belongs to D,. Consequently the element % of equation
(23.21) is the product of a pth power in H and an element in K:

h=g?a (g€H,a€K),

we are therefore entitled to apply Lemma 23.1—so % has a pth root and the proof of the
theorem is complete.

24. We shall now prove that an extension of a ZA-group in the class £, by a periodic
D,-group is an E,,-group. We need the following lemma.

Lemya 24.1("). Let H be any group, let K be an abelian normal subgroup of H. Suppose

(*) This lemma is due to the referee. It greatly simplifies my original proof of Theorem 24.2.
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that g€ H, that g" €K and that g™ has a p-th root in K. Then there exists b€ K such that
[b,9] =1 and b® = g™,
Proof. By hypothesis there exists an ¢ € K such that
g™ =ap. (24.11)
g g2 . gm_l.

Put b=a-a’a% ...a

Now K is an abelian normal subgroup of H, so b€K and

¥ =a"a” ... a=a-a®a® ... =b
thus [b, g] =1, as required. Furthermore,
B =ar-a? ... q?" " =qPm, (24.12)

sinee by (24.11) g commutes with o?. But by (24.11) ¢” = o” and so by (24.12)
bP = g™

and this completes the proof of the lemma.
Suppose now that A is a Z4-group in the class E,,. Then {(4) is an w-ideal of 4 (Corol-
lary 14.4). Consequently if z, y€A, p€w and x? = y?, then

@A)y = (yi(4)®
is an equation in the D,-group 4/7(4) and so
xl(4) =yl (4).

Thus « and y differ by an element in {(4) and consequently are permutable. So we have

proved
Levma 24.2. If A is a ZA-group in the class E,, and if
?=y° (z,y€d),

where pEw, then x and y commute.

We can now proceed to the proof of the following theorem.

THEOREM 24.3. An extension G of a ZA-group A in the class E, by a periodic D,,-
group is an E -group.
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Proof. Let p be any prime in w and let g€G. Then there exists a positive integer m
prime to p such that
grEA.
Since A is an E,,-group g™ has a pth root ¢, say, in 4:
m

g" =cP.

m—1

Put K=gp(e, e’ ¢ ...,c" ).

Since any pair of the given generators of K have equal pth powers, they commute (Lemma
24.2). Therefore K is abelian. Now put

H =gp(g, K).

Then it follows from the definition of K that K is a normal subgroup of H. Furthermore,
g™ has a pth root in K. We can now apply Lemma 24.1; thus there exists b€ K such that

[6,9] =1, =g™. (24.31)
Since m and p are coprime there exist 4, u such that

AmP+up=1.
Hence, using (24.31),
g= gﬂrrl’ﬂtp — bipgﬂp — (bﬂgll)v.

So g has a pth root and this completes the proof of the theorem.

PART II

CHAPTER V

The abstract D ,-free group

25. In this chapter the D,-free group is defined abstractly and some consequences
of this definition are derived. We prove that the factor group of a D,-free group by its
commutator ideal (i.e. the w-closure of its commutator subgroup) is a direct product of
groups isomorphic to T, where I',, is the additive group of those rationals whose deno-
minators are products of primes in @ only. Analogous notions to those occurring in the

theory of free groups are also defined here for D,-free groups.
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We say that a D, -group F is w-generated by a set X, or, alternatively, X w-generates
F, if cl,(X)=2F. Then a set X is called a free w-generating set of a D,-group ¥ if
i) X w-generates F and ii) for every D,-group H and every mapping 0 of X into H there
exists a homomorphism ¢ of F into H that coincides with § on X. A D,-group F is called
a D,-free group if it is freely w-generated by some set X; the existence of such groups (cf. 3)
is ensured by a theorem on abstract algebra due to Birkhoff {5].

It is well known that the factor group of a free group-of rank » by its commutator
subgroup is a direct product of » infinite eyclic groups (cf. e.g. Kurosh [21]}). We prove

an analogous result for D,-free groups.

THEOREM 25.1. Let F be a D,-free group which is freely w-generated by the set X.
Then the factor group of F by its commutator ideal is a direct product of | X | groups isomor-

phic to T',,.
Proof. Let H be a direct product of | X| copies of [,
H=T1D,;
reX

here D is a multiplicative group isomorphic to I', and D, >~ D. Let 6 be a mapping of X

into H defined as follows:
z0=d, (1=+d€D,z€X, cl,({d}, D)= D).

This mapping 6 can be extended to a homomorphism ¢ of F into H since X is a free
w-generating set of F. Now it can easily be verified that {d,|x€X} is a w-generating set
of H and thus ¢ is in fact an epimorphism. Hence it follows that if IV is the kernel of @
then

F/N>~H.
Now by Lemma 13.7, cl, (#”) is a w-ideal of F and therefore

N =l (F) (25.11)

since any w-ideal containing F’ obviously also contains cl,, (F7).

Consider on the other hand the factor group F/cl,,(F'); F/cl,(F’) is an abelian D,,-group
which is w-generated by the set {xcl, (F') }ccx. We remark that the pth root of the product
of two elements in F/cl, (F') is the product of the pth roots of each of the elements (Corol-
lary 10.4). Therefore we may write any element f€N (and, of course, any element of F)

in the form
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f=yith i --- yigk, ' (f €cly (F)), (25.12)

where y; is the n;jth root of ;€ X, with n; a product of primes in w. Then on

applying ¢ to f wee see that
fo=Wide) Hde) - Whe)=1, (25.13)
since, by (25.11), ¢l, (#") < N. The elements
Yy P> Yi P5 -+ Yico
lie in distinct factors D, of the direct product H since that is true of

d-l‘i(l)’ dl'i(Z)’ ety d'z'i(k)'

Thus (25.13) can hold only if the exponents m; are all zero:

my =mg" - - =my =0.
Consequently f=F¢€cl,(F)
and so we have proved N <ecl,(F'). (25.14)

Putting the inequalities (25.11) and (25.14) together we see
N =cl, (F'),

and this completes the proof of the theorem.

It is not true that the factor group of a D,-free group F by its commutator subgroup
F’ is a direct product of groups isomorphic to I',; the exact structure of F/F’ will be
determined later in 37 (Theorem 37.3). Consequently Theorem 25.1 is a ‘best’ analogue of
the corresponding result for free groups.

It is convenient to investigate abelian D,-groups by considering the corresponding
modules over a principal ideal ring (for these concepts, cf. eg. Jacobson [15]). Let us take
R to be that subring of the ring of rational fractions consisting of those rationals whose
denominators are products of primes in w only. Then an abelian D,-group corresponds
to an R-module in the natural way. Explicitly, if 4 is an abelian D,-group, m/n€ R and
a€A, then we define

if b =a™

this definition is not ambiguous since b is uniquely defined because pth roots are unique

in A for all p€w. It is easy to verify that this definition turns 4 into an R-module. An
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R-module is termed free if it is a direct sum of copies of R. It can then be verified that the
number of copies of B that go into the formation of a free R-module M is an invariant of
the isomorphism class determined by M (see Kaplansky [17]). Thus we can define un-
ambiguously, the w-rank of a D,-free group to be the cardinal of any one of its free
w-generating sets; for, by the preceding remark and Theorem 25.1, this cardinal is uniquely
determined by the given D,-free group.

The w-rank of a D,-free group uniquely determines the isomorphism class to which
this D, -free group belongs, ie. two D,-free groups are isomorphic if, and only if, they
have the same w-rank. This result is a particular case of a theorem due to Birkhoff (cf. e.g.
Slomingki [35]) on abstract algebras. We shall, however, prove it here, in a group theoretical

way, by making use of Theorem 25.1.

TrEOREM 25.2. Two D,-free groups are isomorphic if, and only if, they have the same

w-rank m.

Proof. Suppose F and F* are isomorphic D,-free-groups. Then there is a natural
isomorphism between F/cl,(F’) and F*/cl,(F*) induced by the isomorphism between
F and F*. It follows from Theorem 25.1 and the remark as to the number of copies of R
in a free R-module that F and F* have the same w-rank.

Conversely if ¥ and F* are D,-free groups of the same w-rank, then they have free
w-generating sets X and X* of the same cardinality. Thus there is a one-to-one mapping
7 of X onto X*; this mapping can now be extended to a homomorphism 0 of F into F*,
We note that § is necessarily an epimorphism since F8 > X*,

Now let ¢ denote the epimorphism of F* to F that extends the mapping 11 of X*
onto X.

Consider the composite mapping f¢; this mapping is an automorphism of ¥. For in
the first place 0@ maps X identically onto X; therefore, as X w-generates F, fp must in
fact be the identity automorphism of F. It follows that # is a one-to-one epimorphism of

F to I'*, ie. 6 is an isomorphism and this completes the proof.

Lemma 25.3. Let F and F* be isomorphic D,,-free groups and let O be an isomorphism

of F onto F*. Then if X is a free w-generating set of F, X0 is a free w-generating set of F*.
Proof. We note firstly that X0 w-generates F*; for

F* = F6 = (cl, (X))0 = cl,, (X0).

We note secondly that for every D,-group K and every mapping ' of X6 into K
there is a homomorphism ¢’ of F* into K that coincides with ' on X . To begin with #’
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leads naturally to a mapping # of X into K defined by
xn = (x0)y’ (x€X).

This mapping can then be extended to a homomorphism of F into K, say @, that now induces

a homomorphism ¢’ of F* into K defined by
f*e' = (f*0 M.
This homomorphism ¢’ extends #’ since
(@0)¢" =z =an = (z0)n’;

consequently X0 is a free w-generating set of F* and this completes the proof of the
lemma.

Another property of a free w-generating set X of a D,-free group F is that if z€X,
then z¢ecl,(X —«); this follows immediately from Theorem 25.1. This property of X
is an instance of a more generally definable concept. Explicitly, a subset X of an arbitrary
D,-group F is called w-independent, if, for all z€ X, x¢cl,(X —x). The remark at the
beginning of this paragraph states then that a free w-generating set of a D,-group is

w-independent.

CHAPTER VI

The fundamental embedding theorem

26. This chapter is concerned with a particular class of groups J,, corresponding to
a given non-empty set of primes w. This class contains, in particular, all D,-groups. It
contains also U,-groups which are not D,-groups. For such groups there are elements in
them without pth roots, for some p€w. The fundamental embedding theorem proved in
this chapter enables us to embed such U,-groups (in the class P,) in D,-groups, which
belong also to the class P,,.

27. We define the class P, by stipulating that its members are those groups & which
satisfy the following 4 conditions:

27.1. G is a U,-group.

27.2. If p€w and if the element g in G has no pth root, then the centraliser C (g, G)

of g in @ is isomorphic to a subgroup of I',,.

27.3. 1f p€w and if the element g in G has no pth root, then the centraliser of any non-

trivial power of g coincides with the centraliser of g.
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27.4. If p€w, if the element ¢ in G has no pth root and if A~1¢g™h = g*, for some LEG

and some integers m and n, then m = ».

Thus a group G belongs to the class P,, if, and only if, it satisfies the four conditions
above. We see therefore that all D,-groups belong to P,. It is convenient to note that if
pEw, if gEGE P, and ¢ has no pth root, then, by 27.2, ¢ has infinite order. In this case the
centraliser C(g) is isomorphic to a proper subgroup of I',,.

For groups in P, the following lemma holds; we shall make use of this lemma in the

sequel.

LevMa 27.5. Let G be a group in the class D, and let g be an element in G which does
not have a p-th root for some p€w. Let a€C(g) and suppose h~1ah€C(g) for some hEG.
Then h=ah =a and hEC(g).

Proof. Put hlah=a', a' €C(g). (27.51)

Now C(g) is isomorphic to a subgroup of I',, and therefore it is locally cyclic; in other words,

every finitely generated subgroup of C(g) is eyclic. Thus we can find b€C(g) such that
gp(a. o', 9) = gp(6).
This means that we can write
a=0b" o =b" g=10" (27.52)
where k, m, n, are integers. Now g does not have a pth root and so b does not have one

either; hence condition 27.4 applies to b. Making use of (27.52) we can rewrite (27.51) in

the form

h1b%n = b™,
We see then by 27.4 that ¥ =m and so b commutes with * = g. Furthermore, by 27.3,
Cla) = C(®") = C(b) = C (") = C(g),
and so R€C(g). This completes the proof of the lemma.

28. Let now G be a group in the class P,. We are interested in embedding G in a
D,-group. Thus if G is already a D,-group we have no further interest in G. Let us assume,
therefore, that ¢ is not a D,-group. Then there exists a prime p€w and an element g€ G
which does not have a pth root in G. Hence, by 27.2, C(g, G) is isomorphic to a proper sub-
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group of I',,. We take then P to be a supergroup(’) of C(g, G) which is isomorphic to I',,
and whose intersection with @ is simply C(g, ). We then form the generalised free product
F of G and P (with C(g, G) amalgamated):

F ={G*P; C(g, ®)}.

Then g has a pth root in F since it has a pth root already in P. We shall prove that in fact
g has a unique pth root in F, and, even more, that ¥ belongs also to the class P,. We
remark that the generalised free product of two locally infinite groups is locally infinite
(Corollary 16.5); thus if G is locally infinite then so also is F.

The proof that F belongs to P, will be accomplished with the aid of a number of

lemmas. It is this string of lemmas that we now prove.

Lemma 28.1. For every a€P
Cla, F)=P.

Proof. It is clear that C(a, Fy=P. (28.11)

We want the reverse inequality. Let 6€C(a, F) and suppose b is written in the form
b=cicy...cCp (28.12)

where no two successive factors c;, ¢;,; are elements of the same constituent.(*) Put
Z=C(g, (). Now b€C(a, F); therefore utilising (28.12),

a’ =c;'c,y...c5% 1 aACLCy ... CpyCy=a. (28.13)

Suppose, firstly, that ¢« €EP —Z and ¢, €G. If n > 1, ¢,€P — Z since no two successive
factors c;, ¢;, lie in the same constituent. This is however impossible for then A (a°) = 2n + 1,
by Lemma 16.1; this contradicts equation (28.13) and so n <1, i.e. n =1.If ¢, €EG — Z, then
A(a’) =3 but A(a) is either 0 or 1, again a contradiction. Hence the only possibility is that
¢, €P and thus b =¢,€P.

Suppose, secondly, that ¢ €P —Z and ¢, €P. If n>1 then ¢,€G —Z. Consequently
A(a’) =2n — 1 and since » > 1 this contradicts (28.13). Therefore n =1 and again b = ¢, EP.

Suppose, thirdly, that a€Z and ¢, €G. If n > 1, then by Lemma 16.1, ¢;*ac, must lie
in Z. It follows then by Lemma 27.5 that ¢, €Z < P; but ¢, € P and so we have a contradiction

(*) We say A is a supergroup of B if 4 contains a distinguished isomorphic copy of B; note that
B may be a subgroup of 4.
(2) By a constituent we mean either G or P.
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since ¢; and ¢, were assumed to lie in different constituents. Consequently » =1 and
b=c,€EP.

Finally suppose ¢ €Z and ¢, €P — Z. Then if n > 1, ¢,¢ P and so A (2”) # 0, contradicting
(28.13). Hence n =1 and b =, €P.

The four paragraphs above have shown that if an element in F commutes with an ele-

ment in P then it must belong to P. Therefore
Cla, F)<P. (28.14)
Putting (28.11) and (28.14) together then yields C(a, F) = P and this is just what is required.
LeEMMA 28.2. Let a €G and suppose a is not conjugate to an element in Z. Then
C(a, Fy=C(a, G). |
Proof. Let b€C(a, F) be written in the form
b=cycy ... Cyy

where no two successive factors ¢, ¢;,; belong to the same constituent.

Suppose ¢, EP. If n > 1, then ¢, € P — Z. Consequently, by Lemma 16.1. A (a®) = 1 = A (a),
a contradiction. Hence n =1 and so b = ¢, €0 (g, ).

On the other hand, suppose ¢, ¢P, i.e. suppose ¢,€G —Z. If n > 1, then ¢,€P —Z. If
the equation (28.13) is to remain valid then ¢, must transform a into an element in PN Z = Z;
however, by hypothesis a is not conjugate to an element in Z and so this case cannot arise.
Hence n =1 and b =¢,€C(a, ).

The two paragraphs above have shown that C(a, F) < C(a, @); the reverse inequality
is obvious and hence the lemma follows.

LeEmmA 28.3. Let a€F be a cyclically reduced element of length at least two. Then if
b€eCla, F)y (b= 1), b is cyclically reduced of length at least two.

Proof. Let S, be a set of representatives of the left cosets of ¢ modulo Z containing

the identity, and let S, be a set of representatives of the left cosets of P modulo Z containing

the identity element.

We write ¢ in normal form (cf. 16):

G =885 ...832. (28.31)

We write b also in normal form

17 —60173033. Acta mathematica. 104. Imprimé le 21 dévembre 1960
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b=t1y...t,2. (28.32)

Observe that z, and z, both belong to Z.

We notice, to begin with, that b ¢ Z; for if this were the case then b =z, and a €C(z;, F') = P
(by Lemma 28.1) which contradicts the hypothesis of the lemma. Hence » = 1.

We can rewrite the equation ab = ba, using (28.31) and (28.32), in the form

ab =818y .. .Sm2akily ... 0,2 =ity ... 1,258,8y ... Sm2Za = ba. (28.33)

Now, by hypothesis, a is cyelically reduced of length at least two; consequently s; and
sy lie in different constituents (cf. Lemma 16.2), say s, €G and s, €P. Suppose that both
t; and £, lie in the same constituent, say £, t, €G. In this case there will be no cancellation
in the left-hand side of equation (28.33) but at least one in the right-hand side. Hence

m+n=2A(ab) =A(ba)<m-+n—1.

This equation is clearly impossible; hence both ¢, and ¢, cannot lie in . Similarly they
cannot both lie in P. It follows that ¢, and ¢, belong to different constituents and so (cf.
Lemma 16.3) b is a cyclically reduced element of length at least two.

For s,€P and s, €06, a similar argument again shows that ¢, and ¢, lie in different

constituents. This completes the proof of the lemma.

LeMMA 28.4. Let a€ F be cyclically reduced, A(a) =m > 2. Let b€C(a, F) be such that
Ab)=n=m. Putn=am+pf, 0<f <m. Then

p=0o0rp=2,
and b can be written in the form
b =a**b¥,
where Ab*) =4;

furthermore, if B =0, then b* is trivial and if §=+ 0, then b* is cyclically reduced of length at

least two.

Proof. We shall assume here the notation employed in Lemma 28.3. Let us assume
also that s, €G and s, €P. Now, by Lemma 28.3, b is cyclically reduced of length at least
two, hence ¢, and £, belong to different constituents, say ¢, €G and ¢,€P.

Suppose now that we can write b in the form

b=a’b, 0<y<a, bEF. (28.41)
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Now b clearly commutes with a since b does; hence, by Lemma 28.3, b is cyclically reduced
of length at least two. We have also, by (28.41), A(b) = (x — y)m + f; we write b in normal

form

b=uyuy ... upzs, k=(cc—y)m-+p.

It follows from (28.41) that u; € G and u, €P. Further, the element b commutes with a:

b

a’ =271

-1, -1 -1, -1 . ¢ ¢
3 Wk U2 UL Sy Sp ... Sy Uy Up oo Uy =SSy ... Sy P (28.42)

Now u; and s; both belong to G. The equation (28.42) thus implies that u; ‘s, €Z. For let

us suppose the contrary; then, making use of Lemma 16.1,
A@?)=2k+m—1;

furthermore, Afa) =m,

and therefore 2k +m—1=m.

However, such an equation is not possible and so we have a contradiction of the assumption
ui's; 4Z. Thus ui's; €Z and therefore

u =s,. ” (28.43)
Similarly we can prove
Uy = 81, Ug = Sgy vy Upy = Sppe ©(28.44)

Thus utilising (28.44) we see that

b=azu,,, ... uz2; =ab, say.

Hence b=a""'h,

where A (5) = (o ~ y —1)m + B. We can apply the same procedure to b as that applied to b

providing A (b) < m; hence it is possible to write b in the form
b=a""b*, A(B*)=5.

The initial assumptions that s, €6, s, €P, t,€G, t,€P may always be presupposed. It
is sufficient for this purpose to note that b€C(a?, F), b-1€C(a, F) and b-1€C(a~1, F).

This remark then completes the proof of the lemma.
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LeMMA 28.5. Let a € F be cyclically reduced of length at least two. Suppose, further, that
beC(a)(b+ 1). Then there is a cyclically reduced element ¢ in F of length at least two, and
integers y and v such that

a=c", b=c".

Proof. We again adopt the notation of Lemma 28.3. It follows from this lemma that
b is cyclically reduced of length at least two. Put b =b,, a = b,. We may assume, without
loss of generality, that A (b,) =X (b,). Then, by Lemma 28.4, we can write b, = b{'b,, where
either b,=1 or b, is cyclically reduced of length 2 <A(b,} <A(8,). Clearly [b,,5,]=1
since [b;, by] = 1. Thus if b,+ 1 we can repeat the process, writing b, = b5*b;, where b, = 1
or 2 <A (b;) <A(by). Proceeding in this way we obtain a set of elements b, b, ... of strictly
decreasing length. Consequently the process must stop, i.e. b, =1 for some r. We now put
¢ equal to the last b in the sequence which is not the identity, say ¢ = b,. Then ¢ is cyclically
reduced of length at least 2. Furthermore,

bs_2=c°‘“2, bs_3=b§“‘_§26, vy bo=b‘f‘ bz.

Consequently each b, can be expressed as a product of succeeding b, —s and so also as
a power of ¢. In particular

b=b,=¢ and a=0b,=c",

and so @ and b are powers of a cyclically reduced element of length at least two, as claimed.

This completes the proof of the lemma.

LemMa 28.6. Suppose that a is neither conjugate to an element in G nor to an element in
P. Then C(a, F) is an infinite cyclic group.

Proof. Since
x1-C(a, F)-x =C(z'ax, F) (o,x€F),

it is sufficient to prove only that C(a, F) is an infinite cyclic group in the case where a is
cyclically reduced. Further, we note that, by hypothesis, a is not conjugate to an element
in @ or P and so it is of length at least two.

We choose now an element ¢*€ F so that
a=(c*)?, y>0, (28.61)

and, further, so that if a = (¢')?, 9’ >0, then A(c') 2A(c*). Suppose now that b€C(a);
then, by Lemma 28.5, there is a cyclically reduced element c€ F, of length at least two,

such that
a=c"and b=
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thence, by (28.61), = (c*) (=a). (28.62)
Let C = U Ug ... U2, 2,€Z
¥ =00y ... V%, 2::€Z

be the normal forms of ¢ and c¢* respectively. We shall, without any consequent loss af
generality, suppose that u, €G; it follows then that », €G. The equation (28.62) implies
by the choice of c*, that A(c) >A(c*). It follows, on substituting the normal forms of ¢
and c* in (28.62), that

Uy =0y, Uy =1y, ..., U; =0,

Therefore c=c" 2ot Ujp1 ... Wz, =C* ¢/, say. (28.63)
We consider two possibilities:

i) A(¢’) = 0. Both ¢ and ¢* commute with a and so their quotient ¢*—1¢ = ¢’ also commutes

with @; but this is, by Lemma 28.1 only possible if ¢’ =1. Hence ¢ =c* and b = (¢*)".
ii) A(¢') > 0. It follows from (28.63) that the first component of ¢’ belongs to G and the

last component of ¢’ belongs to P; hence ¢’ is cyelically reduced of length at least two. Thus
we see, on substituting (28.63) in (28.62) that (c*c¢’)* = (c*)”; transforming both sides of
this equation by ¢* then yields

(¢’ c*)* = (c*)” = (c*¢)™. (28.64)

Now ¢'c* and c*¢’ are of the same length; it follows from (28.64) that they can differ only
by an element in Z or, more precisely, (c*c¢’)~1-(¢c'¢*)€Z. Furthermore, both ¢* and ¢
commute with ¢ and thus so also does ¢’. Therefore both ¢'c* and ¢*¢’ commute with a
and (c*c¢')~t-(¢'c*) also commutes with a; but (c*¢’)-1:(c¢'c*)€Z, and hence, by Lemma
28.1, (c*c’)1(c'c*) =1; thus ¢'c* =c*¢’. Thus ¢’ and ¢* commute and are also cyclically
reduced of length at least two; we can apply Lemma 28.5 to ¢’ and c¢*, yielding ¢’ = /7,
¢*=f, f€F, where # and { are here integers. However, by the choice of ¢*, { can only
be +1 or —1. It follows that f = (¢*)°, £ = + 1, and hence ¢ is a power of c*; therefore, by
(28.63), c is itself a power of ¢* and s0 b is also a power of c*.

The two cases i) and ii) show that b is always a power of ¢*. But b was an arbitrary
element of C(a, F) and so it follows that C(a, F) is the infinite cyclic group generated by
c*; this completes the proof of the lemma.

We need, finally, the following lemma.
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LEvMMA 28.7. Let p€w and let a € F not have a p-th root in F. Let m and n be integers
and let bEF be such that

b-la™b = a". (28.71)
Then m=n.

Proof. Since x1ba transforms (z—'az)™ into (x—1ax)", we can assume that a is cyclically
reduced. Furthermore, since @ is a group in the class P, it follows that a is in fact of infinite
order (cf. Theorem 16.4). Thus if m =0 then » =0 and the lemma holds. Let us suppose
then that m > 0.

Let the normal form for b be
b=rry...12s (2,€Z). (28.72

Now as a does not have a pth root, a ¢ P and so A (a) = = 1. The proof that m = is split
into a number of cases.

Suppose firstly that 4 =1, i.e. suppose a €G. Then a™¢Z; for if this were the case then
condition 27.3 would apply and so a itself would belong to Z, contradicting u = 1. Now
@ =A(b) cannot exceed three. For suppose the contrary. Since ™ €G — Z, r; must belong
to G (this must be the case whenever p > 1). It follows from the equation

(am)b _ zb—l 7'_1

-1 _-1_m __ h
2 T2 T AT Ty T =0 (28.78)

that a*=ri'a™r, €Z. (28.74)

Then, since r, leaves a* fixed, ry must transform a* into some other element of Z. This
is, however, only possible if 7;€Z, which is not the case since p > 3. Thus in fact ¢ <3.

Consider now the case ¢ = 3. Then it follows, just as in the analysis above, that

(ryrg)ta™(riry) =a™

this equation involves only elements of G, and so m == since G€ P, and a does not have
a pth root in G. If o = 2 then, by (28.74), ™" €Z, which is not the case because a ¢Z; so this
case does not arise. Finally if o =1, then m = since G€ P, and condition 27.4 applies;
note that if ¢ =0, i.e. if b€Z, then m =n follows once more from the fact that G€ P,,.

We consider secondly the case ¢ > 1. Thus as a is cyclically reduced of length at least
two, it follows that a™ and a” are also cyclically reduced of lengths mu and nu respectively.
Let
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m=81 So v Smp %y (ZIEZ)} (28 75)
t .

1ts o thuzy (2,€7)
be the normal forms for ™ and a”. Since s; and s, belong to different constituents and
b1{a)"b = (a~1)"

we lose nothing by supposing that s, €G and s, €P. Consequently ¢ €G and £,,EP. We

rewrite equation (28.71) in the more convenient form
7D =818y oo. SmuyT1Ts on. Tolp =111y ouu Volobyly oou tnu2y = ba™ (28.76)
If o =0, ie. if b€Z, then it follows from (28.76) that

mu =A(a"b) =A(ba"™) =nyu;
hence m = n.
Suppose now that g = 1. Consider firstly the case r; €G, r,€G. Now s,,€P and {, €G;
thus it follows by (28.76) that

my +o =A(a"b) =A(ba") <nu +o— 1. (28.77)

The equation (28.76) can also be expressed in the form

1,..-1

b lam =zt gt L gt rT s 8y e SmpRy = bty oo bapza®s Ty . v2 Tt (28.78)
Here s, €4, t,,€P and so we have
my +p —12A b 1a™) =A(a"b-1) =nu +o. (28.79)
It follows from (28.77) and (28.79) that
mu Fo=znuto+1=2mu+p+2;

this equation is impossible and so the case r €@, r,€G does not arise. In a similar way one
can show that the case r, €P, r,€P also does not occur. We are left with the remaining
possibilities r, €0, »,€P and r, €P, r,€ G—the procedure in both cases is similar and so

we shall only deal with the first of these two cases here. We inspect equation (28.76):
mp +p =A(@"b) =A(ba") =nu +o.

Thus we see that my =nu and hence m =n. This completes the proof of the lemma.
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29. This chapter is brought to a close with the proof of the “fundamental embedding

theorem” mentioned in 26.

THEOREM 29.1. Let G be a group in the class D, and let p be a prime in w such that the
element g in G does not have a p-th root. Let P be a supergroup of C(g, G) which is isomorphic
to ', and which intersects G in C(g, @). Then the generalised free product F of G and P belongs
also to the class Py

Proof. We have to show that F satisfies the four conditions 27.1, 27.2, 27.3 and 27.4.
Let us consider firstly the condition 27.1. Let p€w, a, b€ F and suppose

a? = b. (29.11)

We may assume that a is cyclically reduced. Then the proof that ¢ = b falls naturally into
three parts:

i) a€P. Here b€C(a, F) =P (cf. Lemma 28.1) and since P is a U,-group and both a¢ and
b lie in P, the equation (29.11) implies that @ = b.

ii) a€G —Z. We note that af is not conjugate to an element in Z. For suppose, on the

contrary, that a” = x~1zz, where z€ F and z€Z. Then, by Lemma 28.1,
C(a?, F) =z 1Pux;
now ¢ €C(a?, F') and so can be written in the form

a=xz"1z,x, 2 €P. (29.12)

Now A (z,) = 1 since a is cyclically reduced, by hypothesis, of length one. It follows directly
that this is not possible and, consequently, that a” is not conjugate to an element in Z.

Now b commutes with a? and therefore we have, using Lemma 28.2,
beC(a?, F)=C(a" Q);
80 b€ and thus the equation (29.11) is an equation in the U,-group G. Therefore o =b.

iii) 2 ¢G U P. In this case a” is cyclically reduced of length at least two; hence its centraliser,
which contains both @ and b, is an infinite cyclic group (cf. Lemma 28.6) and therefore a =b.
The cases i), i) and iii) take care of all possibilities and so F is a U,-group and 27.1 is

therefore satisfied.
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Secondly we consider condition 27.2. Let us suppose a€ F does not have a pth root
for some p Ew. We may assume that a is cyclically reduced. If a €@, then a is not conjugate
to an element in Z and so C(a, F) = C(a, G) cf. Lemma 28.2) is isomorphic to a subgroup
of I',,. The other possibility is @ ¢ (; in this case a is cyclically reduced of length at least two
and so C(a, F) is an infinite cyclic group (cf. Lemma 28.6) which is isomorphic to a sub-
group of I',.

Thirdly we consider 27.3. Let p€w and let ¢ € F be cyclically reduced and not have a
pth root in ¥; let m be a non-zero integer. We consider the following possibilities:

i) a€G —Z. Now a is not conjugate to an element in Z and so neither is a™. Thus making
use of Lemma 28.2 we see that

C(a, F)=C(a, G) =0(a™, @) =C(a™ F).

ii) a¢GUZ. Then a™ is cyclically reduced of length at least two and so C(a™, F) is an
infinite cyclic group (cf. Lemma 28.6). Furthermore a€C(a™, F), and since C(a™, F) is
abelian, C(a”, F) < C{(a, F). The reverse inequality is obvious and so C(a, F) = C(a™, F).
The above three cases exhaust all possibilities and so F satisfies 27.3.

We consider, finally, 27.4: Suppose p€w, suppose m and n are integers and that ¢ € F
has no pth root. Suppose also that b€ F is such that

bla™bh = g".

Then Lemma 28.7 applies and so m = n. This completes the proof of the theorem.

CaapTER VII

Embedding of U,-groups in D, -groups

30. Tt is not true that every U,-group can be embedded in a D,-group (The counter-
example is due to B. H. Neumann — see Baumslag [3].) However, it is certainly true for
some U,-groups. In fact we shall make use here of Theorem 29.1 to develop a constructive
process for embedding a given group @, which belongs to the class D, in a D,-group G*,
which also belongs to the class P,. If the constructive process is carried out in a certain
way the group G* turns out to be the “freest” D, -group w-generated by @; in other words,
for every D,-group H and every homomorphism g of G into H there exists a homomorphism
¢* of G* into H which coincides with ¢ on G.
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31. The union of an ascending sequence of groups in P, under certain conditions, is

also in P,. In particular we have the following result.

Lemma 31.1. Let G, be given groups in the class P, where « ranges over an ordered
index set A. Let G, < Gy whenever o < f(x, € A); suppose further that if a€G, (a 1) and
Cla, Gp) > C(a, Gy,), then C(a, Gp) is isomorphic to I',. Then G*, the union of the groups G,
also belongs to the class P,,.

Proof. We have to show that G* satisfies the conditions 27.1, 27.2, 27.3 and 27.4.

We begin with 27.1, i.e. we show that G*€U,. Thus suppose that p€w, that a, bEG*
and that a® = %, Now there is an « in 4 such that both a and & belong to G,. Since G, € D,
we have a =b.

Now suppose for the remainder of this lemma that g is an element of G* which does
not have a pth root in G* (p€w).

We prove next that G* satisfies 27.2. Now g€@, for some « in 4. Since G, €D, it
follows that C(g, G,) is isomorphie to a proper subgroup of [',. Now if C(g, G*) =C(g, G,)
then obviously C(g, G*) is itself isomorphic to a subgroup of I',. Alternatively C(g, G'*)
>C(g, G,). Thus we can find B€ 4 such that C(g, Gg) > C(g, G+). Therefore by hypothesis
C(g, Gg) =T', and so g has a pth root in Gg and hence also a pth root in G¥, contrary to our
initial supposition.

Next we prove that G* satisfies the condition 27.3. Let m be a non-zero integer. It
is obvious that C(¢™, G*) = C(g, G*). We show that the reverse inequality also holds.
Suppose z€C(g™, G*). Then we can choose « € 4 so that z, g €4,. Since G, € P, it follows ttha
z€C(g, @,) and hence z€C(g, G*). Thus C(g™, G*)< O(g, G*) and so C(g™, G*) = C{(g, G*).

Finally we prove that G* satisfies 27.4. Suppose that m and n are arbitrary integers,
that AEG* and that h-1g™h —g". Then g, h€G, for some a€ 4 and hence m =n since
G*€ P,. This completes the proof of the lemma.

Let now G be a group in the class P, and suppose that G is not a D,-group. Then
there exists a prime p in @ and an element ¢ in G which does not have a pth root. We can
embed @ in a group G, which is also in D,,, in such a way that g now has a pth root in ¢

(e.g. by Theorem 29.1). Even more is possible, namely:

LeMMa 31.2. Every group G in D, can be embedded in a group G in P,, such that every

element of G has in G p-th roots for every p in w.

Proof. We proceed by the classical “tower” argument. 1f ¢ is a D,-group then we
may take G =@. Hence we assume that G is not a D,-group and thus infinite. Let the
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elements of ¢/ be well-ordered by the relation <, the successor of the element ¢ being denoted
by ¢+, the predecessor of g, if it exists, being denoted by g—, the first element of the well-
order being the unit element e,(*) and the well-order being so chosen that there is no last
element. We put G = G, and define inductively, supposing that G, is a group in P, its
successor (i~ as a group in ), in which g has a pth root for every p in w. Specifically, if
g already has all these roots in G4, we choose Gy+ = G,. If, on the other hand, g fails to have
a pth root for some p€w, then the centraliser C(g, &) in G, is isomorphic to a subgroup
of I',; we now choose P to be a supergroup of C(g, G,) which is isomorphic to I',, and which
intersects G, in C(g, Gy). We then define

Gy ={G,*P; C(g, G,) };

we observe that, by Theorem 29.1, Gy~ €D,. If g is an element without a predecessor in
the well-order, we define

This is legitimate because the groups form a well-ordered chain by inclusion (see, e.g.,
Kurosh {21] vol. 1, p. 226). Now G is a group in the class D, because the groups Gy (b < g)
satisfy the conditions of Lemma 31.1—this follows by applying the following lemma.

Lemwva 31.3. Let G, be given groups in P, where « ranges over a well-ordered index
set 4. Suppose that G, < G5 whenever o < f («, BE A) and suppose that if « does not have @

predecessor then
Ga :ﬁU Gﬂ (“: )8624)'

Furthermore, suppose that if o does have a predecessor B, then either

or G, ={Gg*P; Cg, Gp) },

where g is an element of Gg which does not have root in Gy, and P is a supergroup of C(g, Gg)
tsomorphic to I, intersecting G in C(g, Gg). Suppose now that a in G, is such that for some
0€ A, Cla, Gs) > C{a, G,). Then C(a, Gs) is tsomorphic to T,.

(1) We find it convenient to introduce the symbol e for the unit element, which will, as has been
done, also be denoted by 1.
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Proof. Let y* (= y) be the first member of 4 for which
C(a, G,)* C(a, G,+). (31.31)
Clearly y* has a predecessor y~ and so, by hypothesis,
Gy ={G)- % P; Clg, B},

where ¢ is some element of G,— which does not have a pth root in G,~ for some p in w, and
P is an isomorphic copy of I',, intersecting G,~ in C(g, G,-). By Lemmas 28.1, 28.2, 28.6
and equation (31.31) it follows that a is conjugate to an element in P and that its centraliser
in G, is therefore conjugate to P and so is isomorphic to I,,. It follows now from the hypo-
thesis of this lemma and Lemmas 28.1, 28.2 that

Cla, Gs) = C(a, Gys)

for all § in 4 which follow y*. This completes the proof of the lemma.
We now continue with the proof of Lemma 31.2 by defining
G=U G,
geG
Here again Lemma 31.3 can be applied and hence also Lemma 31.1. Therefore G€ P,,.
Furthermore, every element in G has pth roots in @ for every p€ w because, by our choice
of well-order g has a successor g+ in it and, at the latest in G+, it then has the requisite roots.

This completes the proof of the lemma.
We now apply Lemma 31.2 to prove the following theorem.

THEOREM 31.4. Every group G in the class D, can be embedded in a group G*, also

in Do, in which all elements have a p-th root for every p€ w; in other words G* is a D,-group.

Proof. We put G, = @ and, inductively, define G, =@, (cf. Lemma 31.2). Then each

G,€ D, and the G-s form, in their natural order, an ascending sequence. We put

Here Lemma 31.3 applies and so we can make use of Lemma 31.1. Hence G* belongs to
I',,. Furthermore, every element g€ G* belongs to G, for some 4, and hence, for every p€w,
has a pth root in G,,;. Consequently G* is a D,-group and this completes the proof of the

theorem.
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32. We have shown in Theorem 31.3 that to every group G in P, there is a supergroup
G* of G which is simultaneously a D,-group and a member of P,. We wish to construct
a supergroup G* of ¢ in such a way that G* turns out to be the freest D,-group which is
w-generated by G. This can be done by making slightlybmore refined usage of Theorem 29.1.
The procedure is similar to that described in the proof of Theorem 31.4. Care is needed
when adjoining pth roots to ensure, at each stage, and ultimately at G*, that the freest
posgible D,-group is obtained. We will need certain facts concerning I',,. In our dealings
with I', we shall assume that whenever we postulate m/n€l,, the integers m and n are

coprime.

Lrmma 32.1. Let A be a given subgroup of I',. Then there exists a subgroup B of I,

contarning the integer 1 such that B is isomorphic to A.

Proof. Let y be the greatest common divisor of the integers in 4. Now these integers
generate a cyclic subgroup of 4 which, by the definition of , must in fact be generated
by . Thus

y€A4.

Suppose now that a€4; then a is of the form @ =m/n and (m, n) = 1. Furthermore,

since y divides m, (m, ny) =y. Therefore we can find two integers o and § such that
am + fny =y.
Now, using the additive notation for I',, we see that

am~+pny
n

m - v
Ada ( n) +6y .

Thus we have shown that if & =m/n€A4, then y divides m and that o’ =y/n€A.
Consequently 4 is generated by rationals of the form a' =y/n, where n is a product of
primes in w, and so it is isomorphic to that subgroup B of I, generated by corresponding

rationals ¢ = 1/n. This group B clearly contains the integer 1 and so we have proved the
lemma.

We prove next

Levma 32.2. Let B be a subgroup of I', containing the integer 1. Then for every
D,,-group H and every homomorphism 6 of B into H there exists a homomorphism @ of T, into
D which coincides with 6 on B.

Proof. We put
C=cl,(10, H).
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Then C is an abelian subgroup of H (by Theorem 15.1). We have already remarked (in 25)
that if R is that subring of the ring of rational numbers which consists of those rationals
whose denominators are products of primes in w only, then we can regard abelian D,,-
groups as R-modules in the natural way. In particular I',, will be a free R-module on a
single generator, which we may take, for convenience, to be the integer 1. Hence the
mapping
1-10

can be extended to a homomorphism ¢ of I', into O, and thus to a homomorphism of I,
into H.

It follows now, from its definition, that the mapping ¢ extends 0. For if r/s is an

arbitrary element of I',, and if (r/s)¢ =¢, then (writing C additively) we have
se=rp=r(lg) =r(10);

since s is a product of primes in w only, division in @ by s (qua integer, of course) is uniquely

possible and therefore

Now if /s€ B and if we put r8/s =d, then a similar procedure to that carried out above

yields

This then completes the proof of the lemma.

Finally we combine Lemma 32.1 and Lemma 32.2 to prove

LeMMA 32.3. Let A be a group which is isomorphic to a subgroup of I,. Then A can
be embedded in a group P which is isomorphic to I, in suck a way that for every D,-group
H and every homomorphism 0 of A into H there exists @ homomorphism ¢ of P into H which

coincides with 6 on A.

Proof. We can choose, by Lemma 32.1, an isomorphic copy B of 4 in I, such that B
contains the integer 1. We take then P to be a supergroup of A4 so that there is an isomor-
phism of P onto I, which maps 4 onto B. Now by Lemma 32.2 every homomorphism 6
of B into a D,-group H can be extended to a homomorphism ¢ of I, into H. It follows
then from the definition of P that for every D,-group H and every homomorphism 6 of
A into H there exists a homomorphism ¢ of P into H which coincides with 6 on 4. This

completes the proof of the lemma.
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Not every supergroup P of 4 which is isomorphic to I',, has the property that for every
D,-group H and every homomorphism 0 of 4 into H there exists a homomorphism ¢ of

P into H which coincides with 6 on 4. For example we can take
P =T, A=gp(3; 3€T), H=gp(h; 3h =0)

(we are again using the additive notation for groups). Now Iz, and H are both D,-groups.
We define 6 to be the homomorphism of 4 into H that takes 3 into 4. Then § cannot be
extended to a homomorphism ¢ of P into H. For if ¢ is any homomorphism of P into H,
then

3p=3(1¢) =0;

but 36 = 2% 0. We see therefore that the condition demanded in Lemma 32.2 is in fact a

necessary one.

33. We are now in a position to define a free w-closure of a group ¢ in P,,. The proce-
dure is similar to that involved in the construction of the group G* in the proof of Theorem
31.4. Precisely, we proceed as follows: If & is a D,-group then we put G* = Q. If, on the
other hand, @ is not a D,,-group then it is infinite. Put G, = G. We define a supergroup G, ,
of (¢, which we assume is in P, by induction. Let the elements of G; be well-ordered by
the relation <<, the successor of g €@, being denoted by g+, the predecessor of g, if it exists,
being denoted by g, the first element being the unit element ¢, and the well-order being
so chosen that there is no last element. We put G, =@, . and define a supergroup G, 4+
of the group G; 4 in P, inductively as follows. If ¢ already has a pth root in G, for every
P in @, then we define G; 4+ = G 4. If, on the other hand, ¢ fails to have a pth root in G, 4
for some p in w, then its centraliser 4 in G; , is necessarily isomorphic to a subgroup of
I',. We can choose now, for example by Lemma 32.3, P to be a supergroup of 4 which is
isomorphic to I', and such that for every D,-group H and every homomorphism 6 of 4
into H there exists a homomorphism ¢ of P into H which coincides with § on 4; and further,
such that P intersects G, in 4. We form now the generalised free product G, ,+ of G,

and P. If ¢ is an element without a predecessor in the well-order we define

Gi,g: U Gzh
h<g

Finally we put Gimai= U G .
geGi

‘We now complete the definition of a free w-closure G* of G by defining
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G = _U G,;. (33.1)

Then (cf. Lemma 31.1, Lemma 31.2, Lemma 31.3 and Theorem 31.4) it follows that G*
is a supergroup of G which is simultaneously a D,-group and a member of D,,.

Note that a free w-closure G* of @ is not uniquely defined, a certain amount of freedom
being allowed in the well-orderings involved and also in the choice of the groups P. How-
ever, we shall show that a free w-closure is unique in the sense that two free w-closures of
the same group are isomorphic.

It is convenient to have at hand an expression, other than (33.1), for a free w-closure
G* of a group @ in the class D, as the union of an ascending sequence of groups in D,,.
Now, by (33.1),

¢*=U (U 6o (33.2)

i=0 geGi,e
Let A4 be the set of all those suffixes (i, g) which index the groups G, 4 that go into the con-
struction of G* (cf. (33.2)). We make 4 into a well-ordered index set in the natural way by

defining an order relation < in it as follows: We put

(4, 9) <(j, )

if either ¢ <j, or ¢ =4 and g <A; it follows that the first element of 4 is (0, ¢) =¢ (say),
that the succesoor at of « = (¢, g) is ot = (4, g*), and that the predecessor of «, if it exists,

is = = (¢, g~) (note the construction of G*). We define now, for o = (¢, g) € A4,
Gaz = G’i, 7
then G* is the union of a set of groups G, in P, indexed by a well-ordered set 4:

¢*=U G, (33.3)

x€A

We shall make frequent use of this expression (33.3) in our dealings with a free
w-closure G* of GE P,,.

We prove now the “freeness” property of a free w-closure G* of a group @ in the
class P,.

THEOREM 33.4. Let G* be a free w-closure of a group G in the class P,,. Then for every
D,-group H and every homomorphism ¢ of G into H there exists a homomorphism ¢* of G*
ento H which coincides with ¢ on G.
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Proof. We shall define ¢* by transfinite induction. First let us write G* in the form
given by equation (33.3):
& =U 6.

xeA

Then we can start the induction by defining

P T

Suppose then that homomorphisms ¢, of G, into H have been defined for all « < («, B€ A4)
in such a way that ¢, is continued by @, if « < «'. If § does not have a predecessor then

Gy = U G, and we define ¢z to be the union of the homomorphisms ¢, for all « < f. Speci-

a<f
fically we define the action of @z on G as follows: If g€, then g€e@, for some o < 5. We
define then

998 = 9P

this defines the effect of ps on ¢ unambiguously since ¢, is continued by @, if & <a'. It
is elear that @ is a homomorphism of G into H. If §- exists then there are two possibilities:
(i) Gg = G5~ In this case we define gz to be gs-. (i) G5 = {Gs*P; A }-—here Pis a supergroup
of A (which is the centraliser of some element in G3- which does not have a pth root in
G-) which is isomorphic to I, (cf. the definition of (33.3)). We have in this case already a
homomorphism 6 of 4 into H induced by the homomorphism gz~ of Gs- into H. Now by
the construction of G* every homomorphism of 4 into a D,-group can be extended to a
homomorphism of P into that D,-group. So, in particular, we can extend 6 to a homo-
morphism 6 of P into H. Now gz and ¢’ agree on P N G3- = A and so, by the definition of
the generalised free product {see 16) they can be extended simultaneously to a homomor-
phism ¢p of G4 into H. We can now complete the definition of the homomorphisms ¢,
for all €4 by transfinite induction. We then define ¢* to be the union of the homo-
morphisms ¢,:

"= U @

x€A

This completes the proof of the theorem.

This theorem now enables us to prove that two free m-closures of a group G€ P, are

isomorphic. But first we need the following lemma.
LevMmaA 33.5. A free w-closure G* of a group G in the class P, is w-generated by Q.

Proof. We have firstly the obvious inequality G* > cl, (G). It remains to prove the

reverse inequality. The proof is by transfinite induction. We make use of equation (33.3)
18 — 60173033. Acta mathematica. 104. Imprimé le 21 décembre 1960



276 GILBERT BAUMSLAG

and begin the induction by noting that G, = G and hence G, < cl,, (¢). Let us suppose that
for all « <f G, <cl,(@). If § does not have a predecessor, then

Gs= U G,
A aLL<J/S‘

and hence G < ¢cl, (G). Suppose, on the other hand, that f- exists; then either G5 = G-
or Gg ={Gs-*P ; A}. In the first case G < cl, (@) since G- <cl,(G); in the second case
we have P <cl,(®) since 4 <cl, (&) and also G5~ < cl, (&), by the induction hypothesis;
hence G; < cl,(G). It follows now by transfinite induction that for all a€ 4; G, <cl,(G).

Hence
G*= U G,<cl, (G).

xEA

Thus G* = ¢, (G) and so the proof of the lemma is complete.

We can now deduce the following corollary of Theorem 33.4.

COROLLARY 33.6. Let G* and H* be two free w-closures of a group G in D,,. Then any

automorphism @ of G can be extended to an isomorphism of G* onfo H*.

Proof. The homomorphism ¢ of ¢ (qua subgroup of G*) onto G (qua subgroup of H*)
can be extended to a homomorphism @* of G* into H*, by Theorem 33.4. The image of
G* under ¢* contains Ge* = Gp = G; now H* is a free w-closure of ¢ and so, by Lemma
33.5, G w-generates H*. Thus G*p* must in fact be the whole of H*, i.e. ¢* is an epimorphism
of G* to H*. Tt follows that we can similarly extend ¢~1, which is a homomorphism from
G (qua subgroup of H*) onto G (qua subgroup of G*) to an epimorphism (¢~1)* of H* to
G*. Tt is clear that p*(p~1)*, when restricted to G, is the identity. But G w-generates G*
and so ¢*(¢~1)* is in fact the identity automorphism of G*. It follows that ¢* is simul-
taneously an epimorphism and a monomorphism; in other words ¢* is an isomorphism
between G* and H*. It also follows, by its definition, that ¢* extends g; this then completes
the proof of the corollary.

This corollary shows that although there appears to be a certain amount of freedom
in the formation of a free w-closure of a group in P,,, a free w-closure is unique up to iso-
morphism. Hence it is not ambiguous to speak of “the” free w-closure of a group in the
class P,.

We conclude this section by proving that a free w-closure of a group & in the class

PD. inherits some of the properties of G.

LeEMMA 33.7. Let G be a locally infinite group in the class P,. Then any free w-closure
G* of G is locally infinite.
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Proof. The proof is by transfinite induction. Put G* = U G, (cf. (33.3)). Then G, =&

a€A
is locally infinite. Suppose @, is locally infinite for all o < 8. If 8 does not have a predecessor
then

Gg= U G..
a<f
and so being the union of an ascending sequence of locally infinite groups, is itself locally
infinite. If § does have a predecessor f~ then there are two possibilities—either G5 = G4~

or

G5 = {GP; 4},

where P is an isomorphic copy of I', intersecting G- in A. For the first of these two possi-
bilities (/5 is obviously locally infinite and for the second, G is locally infinite since the
free product of locally infinite groups with a single amalgamation is again locally infinite
(Corollary 16.5). Hence in all cases G5 must be locally infinite and the lemma follows since
G*=UG,.

x€A
If @ happens to be the set of all primes then any group & in P, is an R-group and so
its w-closure G* is, of course, also an R-group. However, we shall show next that if Gisan
R-group to begin with, then, irrespective of whether w is the set of all primes or not, G* is

also an R-group.

LemMA 33.8. For any non-emply set of primes w a free w-closure G* of an R;gmu;p G

in the class P, ts itself an R-group.

Proof. Let G* = G, (cf. (33.3)). We prove that each G, (x€ 4) is an R-group and so

w€A

G*, which is the union of the ascending sequence of subgroups G,, will itself be an R-group.
Now @, is an R-group. Let us suppose G, is an R-group for all « <f (a, F€A). If § does

not have a predecessor then

6= U G,

a<f

and so, being the union of an ascending sequence of R-groups, is itself an R-group. If -
exists, then we have to consider two cases. Firstly if G; = G4 there is nothing to prove,

since G- is, by induction, an R-group. Let us consider the second possibility:
Gﬂ = {Gﬁ*%P 5 A},

where P is isomorphic to I', and intersects G4 in 4. Let m be a positive integer and let
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x, Y €EG5 be such that

We can clearly suppose that x, qua element of Gy, is cyclically reduced. If x €P then, by
Lemma 28.1, y€P. Since P is a torsion-free abelian group it is an R-group and so z =y.
If x€G5 but z¢P, then C(z™, G5) =C(2™, G5-) (by Lemma 28.2) and so y€Gs. Hence
x =y since G4~ is an R-group by the induction hypothesis. Thus we may suppose that
A(x) > 1. Since x is cyclically reduced it follows that z™ is also cyclically reduced (e.g. by
Lemma 16.3) and hence A(z™) >1. Hence Lemma 28.6 applies and so C(z™, Gp) is an
infinite cyclic group. But
z, y€C(x™, Gg);

C(x™, Gp) is an R-group and so x = y. This completes the proof of the lemma.

Next we prove a lemma concerned with centralisers in a free w-closure of a group
in P,

Lemma 33.9. Let G be a group in the class P, and let G* be a free w-closure of Q.
Swppose that the centraliser, in @, of every non-trivial element of G is isomorphic to a sub-
group of T',. Then the centraliser, in G*, of every non-trivial element of G* is isomorphic
tol,.

Proof. We write (cf. (33.3))
Gx= | G,.

oA

Put G4 = G* and define A to be the set-theoretical union of 4 and {x}:
A=A4U {}

We turn A into a well-ordered set by making use of the well-order relation in 4 and stipulat-
ing that 4 follows every member of 4.

Suppose now that 1= a€G*. If a €@, (= @) then C(a, G,) is isomorphic to a subgroup
of T'y. I C(a, G4) (= C(a, G*)) > C(a, G,) then, by Lemma 31.3, C(a, G%) is isomorphic to
I',,. On the other hand, if C(a, G«) = C(a, G.) then a must have a pth root in G, for every
pEw; thus C(a, @) is isomorphic to I', and so C{a, G*) is likewise also isomorphic
to T',. ;

Now suppose inductively that for every » in A which precedes i the centraliser, in
G*, of every non-trivial element of G, is isomorphic to I',. Let 14 a€G;. We show that
C(a, G*) is isomorphic to I',. The result is immediate if a has a conjugate in G, for » <A.

Thus we suppose that this is not the case. Then
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G}_ = {GA*%P N C(g, G}f)},

where A~ is the predecessor of 4, ¢ is an element of G- which does not have a pth root in
G- for some p in w, and P is an isomorphic copy of I', which intersects G4~ in C(g, Gx-).
If ¢ €P then C(a, G3) =P and so is isomorphic to I',. It follows from Lemma 31.3 that in
this case C(a, %) = C(a, G4) is isomorphic to I',. Hence it remains only to consider the
cagse a ¢P. In this case a, qua element of G, represents a cyclically reduced element of
Iength at least two. Consequently its centraliser in (; is an infinite cyelic group (Lemma
28.6). Thus there is an element g in A for which C(a, &) <C(a, ¢}), and so, by Lemma
31.3,
Cla, G*) = C(a, Gx) =T,

The theorem then follows by induction.

CuapTErR VIII

D,,-free groups and D -free products of D, -groups

34. The work done hitherto in Chapters VI and VII is the basis for an investigation
of the properties of D,-free groups and D,-free products of D,-groups.

The existence of a D,-free group of arbitrary w-rank is ensured by the results of
Birkhoff [5] on abstract algebraic systems. The rather hazy form that a D,-free group
takes on from the existence proof is replaced here by a more concrete realisation. We
prove the important result that a free w-closure of a free group of rank m is a D,-free
group of w-rank m. Now although a free w-closure of a group (in the class p,,) bristles with
transfinite ordinals, we have here a theoretically usable realisation of a D,-free group.
We make use of this realisation to prove a number of results about D,-free groups. In
particular we prove that a D,-free group is torsion-free and then, still more, we prove
that a D,-free group is an R-group, independently of w being the set of all primes
or otherwise. An interesting result is that the centraliser of every non-trivial element
of a D,-free group is isomorphic to I',. This enables us to deduce that a D,-group,
which is not abelian, has trivial centre. We prove also that a free w-generating set of a
D,-free group generates (in the usual sense) a free group. This suggests the possibility
that a D,-free group is locally free. However, it turns out that this is true only for D,-free
groups which are abelian. We prove next, by a transfinite induction, that the derived group
of a D,-free group is an w-subgroup if, and only if, it is trivial. This provides the clue to
the structure of the factor group of a D,-free group by its commutator subgroup, which

we then determine.
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The existence of a D,-free product of D,-groups is taken care of by a theorem of
Sikorski [34] on general algebras. It is, however, still an interesting result in its own right
that the free w-closure of a free product of D,-groups is in fact a D,-free product of these
groups; this statement implies simultaneously a proof of the existence of a D,,-free product
and a realisation of such a product as the union of an ascending sequence of U,,-groups.
In the same way as with D,,-free groups we can utilise this realisation of a .D,-free produet
of D,-groups to find some of their properties. In particular, it turns out that a D,-free
product of groups isomorphic to I', is a D,-free group (which is as it “should” be). We
prove some simple properties of D,-free products. One interesting ‘“‘carry over” from the
realm of free groups is an analogous theorem to that of Baer & Levi [2] for free products,
namely: A D,-group cannot be decomposed in a non-trivial way simultaneously into a

direct product of D,-groups and a D,-free product of D,-groups.

35. In this section we shall prove, by means of elementary cancellation arguments only,
that a free product of groups which belong to the class P, is also in P,. The proof follows
a similar pattern to the proof of Theorem 29.1; it is, however, very much simpler. We
shall effect the proof of the theorem by proving a number of lemmas and then make use
of them to deduce this theorem.

We take now F to be the free product of groups F;, where A ranges over an index
set A.

Lemma 35.1. Let a€F be a cyclically reduced element of length at least two. Then if
bEF (b= 1) commutes with a, it is also cyclically. reduced of length at least two.

Proof. Let the normal forms of @ and b be

— A1) (2 (m)
a—cm) C}(g) es c/l(m) } (35 11)

— A 22 2(n)
b=2Eud) Cacy -+ Cumy-

Now a is cyclically reduced of length at least two and so A(1) + A(m). We have

— ) @) A ) @ m _ M @ m) ) 5@) amy
ba =60y Ey ... €5ty Cith Cidy + o+ Cim = Cihy €y -+ Caimy Gty €y -+ Cumy=ab. (35.12)

If w(n)+ A(1) then p(1)= A(m) and (35.12) yields
# (1) =4(1) A(m) =p(n),

and so p(l)=F p(n);



SOME ASPECTS OF GROUPS WITH UNIQUE ROOTS 281

therefore b is cyclically reduced of length at least two. On the other hand, if u(n) = A(1)
then 1 (1) = A(m) and so u (1) = u(n) and b is again cyclically reduced of length at least two.

This completes the proof of the lemma.

Levma 35.2. Let a€F be cyclically reduced, with A(a) =m > 2. Let beC(a, f) and
suppose A(b) =n =m. Put n =om + [ (0 <f <m). Then

p=0o0rfz=2,
and b can be written in the form
b=a**a*,
where Ala*) =p;

hence a* is either trivial or cyclically reduced of length at least two.

Proof. Let a and b have normal forms given by (35.11). It follows from the proof of
Lemma 35.1 that either u(1)=1(1) and w(n) =A(m) or u(l)=A(m) and u(n)=A4i(1).
Let us suppose (1) =A(1) and g (n) = A{m). Then it follows immediately from (35.12) that

p)=A), u(2)=4(2), ..., u(m)=2A(m)

& = c(l)’ &P C<2), s & — c(m);

thus b=ab,

where A(b) = (a — 1)m + § and b is cyclically reduced of length at least two or trivial.

Furthermore, b commutes with @ and so the process can be continued until
b =a*a*,

B =A(a*) <A(a). We assumed at the outset that u (1) = A(1); if however u(1) = (m) then
we would have obtained

b=a%a*
these are the only two possibilities and so the lemma follows.

Lemma 35.3. Let a € F be cyclically reduced of length at least two. Let bEC(a, F) (b==1).

Then a and b are powers of a common element c€ F.
Proof. We suppose A (b) = A (a). Then by Lemma 35.2 we can write

b=a*a,,
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A{ay) <A(a). Now ¢ €C(a,) and A(a,) <A(a); so we can apply the same lemma to a, and a:
a=ai'a,,

with A(a,) <A(a,). Continuing the process we obtain in this way a set of elements a,€ F
such that
Afa) >A(ay) > - >A(a;) >

The process must terminate with A (a;) =0 for some ¢, say ¢ =j + 2. Then
@; = ;742 ="+, say.

It follows that both a and b can be expressed as powers of ¢ and this completes the proof of

the lemma.

LEMMA 35.4. Let a€F be cyclically reduced of length at least two. Then C(a) is an

infinite cyclic group.

Proof. Choose ¢c€F so that a =¢", with r as large as possible. Suppose b€C(a); then,

by Lemma 35.3,
a=d, b=d

where s and ¢ are integers and d€ F. Then
d’=c. (35.41)

Now, by the choice of r, s <r and so, on comparing the two sides of (35.41) we see that
the (cyclically reduced) element d has the form d =cc; (¢, € F), where A(c) +2A(c;) =A(d).
Hence

(ce))” = =(c,0)".

Taking the extreme right-hand-side and extreme left-hand-side of this equation we have
€ =66,

and hence d = c¢¢; commutes with ¢. Remembering how ¢ was chosen it follows from Lemma
35.3 that d = ¢”, for some integer . It follows that C(a) is the infinite cyclic group genera-
ted by c.

LevMma 35.5. Let p€Ew and let m and n be integers. Suppose F is the free product of
groups F,, each of which belongs to the class P,,. Suppose a € F does not have a p-th root and that

b-la™b =a”, (35.51)

for some bEF. Then m = n.
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Proof. We may assume « is cyclically reduced. Let us recast (35.51) in the form
a™b = ban. (35.52)

If A(a) =1 then it follows from (35.52) that A(b) = 1, and since each factor F; belongs to
Do it follows that m = n. If A(a) > 1 then it follows that & must be cyclically reduced and

80 we can arrange it that either
A(@™b) =A{a™) +A(d) and A(ba"™) =A (D) +A(a")
or A(@ b 1) =A(@™) +A () and A la™) =A (B + A(a™).
Since a™b = ba”, if the first of the above situations occurs, we have
Ala™b) =mA(a) +A(D) =nA(a) +A(b) =A(ba™)
and so m =n. A similar argument holds for the second case and the lemma then follows.

THEOREM 35.6. The free product F of groups F,, each of which belongs to the class
Do (AEA) belongs also to the class P,,.

Proof. We know already from Theorem 17.2 that a free product of U,-groups is a
U ,-group; therefore F satisfies 27.1.
Suppose next that p €w and that o € F does not have a pth root. We may suppose that

a is cyclically reduced. If ¢ lies in one of the factors ' then
C(a, F) = C(a, I;)

and so C(a, F) is isomorphic to a subgroup of I',. On the other hand, if @ is of length two or
more then, by Lemma 35.4, C(a, F) is an infinite cyclic group. Hence F satisfies 27.2.

Now let @ be as above and let m be a non-zero integer. Then if a € F},
Cla, F) = C(a, F3) = C(a™, F;) =C(a”, F).

If o is cyclically reduced of length two or more then o™ is likewise cyeclically reduced of
length at least two. It follows, because C(a) and C(a™) are infinite cyclic groups, and hence
abelian (cf. Lemma 35.4), that

Cla, F)=C(a™, F).

So F satisfies 27.3.
Finally, by Lemma 35.5, F satisties 27.4 and this completes the proof of the theorem.
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COROLLARY 35.7. Every free group belongs to P,

Proof. An infinite cyclic group belongs to P,; hence, by Theorem 35.6, so does every
free group.

We remark that had use been made of a theorem by Kurosh [22] on the subgroups of
a free product, the proof of Theorem 35.6 could have been achieved more easily. The proof
we have given here will be used in 38 to provide an elementary proof of the theorem due to

Baer & Levi [2] which we cited earlier.
36. We shall prove in this section some of the simpler properties of D,-free groups.

THEOREM 36.1. A free w-closure F* of a free group F of rank m is a D,-free group
of w-rank m. Moreover, every set of free generators of F is also a set of free w-generators
of F*.

Proof. Let F be a free group of rank m and let X be a free generating set of F. Now
by Corollary 35.7 F belongs to P, and so its free w-closure exists and belongs also to
Po- Let now H be a D,-group and let 6 be a mapping of X into H. This mapping 6 can
be extended to a homomorphism ¢ of F into H, since X is a free generating set of F.
Theorem 33.4 can now be applied to extend ¢ to a homomorphism ¢* of F* into H.

Now X generates F and F w-generates F* (Lemma 33.5); hence X w-generates F*.
X is in fact a free w-generating set of F*. Because, as we have seen above, for every D,
group H and every mapping 0 of X into H there exists a homomorphism ¢* of F* into
H which coincides with § on X. Therefore F* is a D,-free group freely w-generated by
the set X.

Now a free w-closure of a group of order m is again of order m if m is infinite (cf.
Theorem 31.4 and the constructive process that precedes it). It follows from this observation
and Theorem 36.1 that

THEOREM 36.2. A D, free group F* freely w-generated by the non-empty set X is
countably infinite if X is finite. If X is infinite then the order of F* is equal to the number of
elements of X.

We shall make further use of Theorem 36.1 to prove a number of results concerning

D,-free groups. But first we prove a sort of converse to it.

THEOREM 36.3. Let G* be a D,-free group freely w-generated by the set Y. Then the
group G generated by Y s a free group freely generated by Y.

Proof. Let F be a free group freely generated by a set X of the same cardinality as Y.
Further, let F* be a free w-closure of F; F* is then, by Theorem 36.1, a D,-free group
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freely w-generated by the set X. Now there is a one-to-one mapping 0 of X onto Y; this
can be extended to an isomorphism ¢* of F* onto G* (cf. the proof of Theorem 25.2).
Now # maps under ¢* onto the group generated by Y i.e. onto G; hence ¢ is free since F
is free. Furthermore, X maps onto ¥ under ¢* and since X is a free generating set of F,
Y is a free generating set of . This completes the proof of the theorem.

We note at this point that it follows from the proof of Theorem 36.3 that if G*isa
D,,-free group freely w-generated by a set Y, then G* may be thought of as the free w-closure
of the free group G freely generated by Y.

Theorem 36.3 brings to mind the question as to whether D,-free groups are locally
free. However, this is true only in the case of a D,-free group of w-rank one. We make use

of the following lemma, which is interesting in its own right.

LeMmma 36.4. Let n be an integer greater than one. Then a simple commutator in a free

grouwp s an n-th power if, and only if, it is the identity.

Proof. Let F be a non-abelian free group and suppose there is a non-trivial element
fEF such that

=19, hl,

g, h€F. Now F is locally infinite and so "= 1; hence ¢ and % do not commute.
Consider now the subgroup @ of F generated by f, ¢, h:

G =gplf. g, h).

The Nielson-Schreier theorem for free groups states that the subgroups of a free group
are free (cf. e.g. Schreier [33)); so & is itself free. Now the factor group of & by its commu-
tator subgroup G is a free abelian group (cf. e.g. Kurosh [21]) of rank m, where m is the
rank of G. Now f*€G’ and consequently, by the remark above, f€G". Hence (/G is of rank
two, and is generated modulo @' by g and k. Consequently G is itself of rank two. Therefore
we can find two elements ¢* and A* such that they generate G and such that g*G’" =¢G”
and A*G’ = h@Q'. Thus

g*=gg, h*=hb, g, hEG. (36.41)
A theorem of Magnus [24] states that if a free group of finite rank m is generated by m
elements, then these m elements are in fact a free generating set; thus g* and A* are a free

generating set of G.

Let now H be a nilpotent group of class two defined in the following way:

H=gp(a,b; a" =b" =1, [a,b] =a" =b").
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It follows from its defining relations that the centre of H coincides with its derived group
and is of order n.

Let @ be the homomorphism of G into H defined b
' P y
g*¢ =a, h*p =b.

It follows then from the equations (36.41) and the fact that the derived group of H lies
in the centre of H that [g, h]ep = [a, b]; for

lg, Alo =[g*g'*, A*h' g =g*pg' o, K*eh' " @] = [g*p, h*¢] =[a, b].
Now f* =g, k] and so we have shown that
f'e =la, b]+ 1;

thus f*¢ is of order n. However, f lies in the derived group of G and consequently its image

under @ lies in the derived group of H. But H’ is of order » and therefore
f'e =(for =1.

Thus f*¢ is simultaneously an element of order » and an element of order 1, which is

impossible and so f* cannot be a commutator. This completes the proof of the lemma.
THEOREM 36.5. A D,-free group is locally free if, and only if, it is abelian.

Proof. A D,-free group which is abelian is isomorphic to I',, and so any finitely gene-
rated subgroup is necessarily cyclic, and hence free. Thus a D, -free group which is abelian
is locally free.

On the other hand, let G* be a D,-free group which is not abelian. Then there exist
g, h€G* such that [¢, h]+ 1. Let p€w and let f denote the pth root of [g, A]:

7 =1g, k).

Then H = gp(f, g, k) is not free, by Lemma 36.4, and so G* is not locally free.

We prove next the following theorem.
THEOREM 36.6. 4 D,-free group is locally infinite.

Proof. A free group is locally infinite and hence, by Lemma 33.7, so is its free w-closure.

Thus a D,-free group is locally infinite.

TrEOREM 36.7. The centraliser of every element different from 1 in any D,,-free group

s isomorphic to I',,.
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Proof. The centraliser of every element different from 1 in a free group ¥ is an infinite
cyelic group—this follows easily by e.g. Lemma 35.4—which is isomorphic to a subgroup
of I',. Hence the centraliser of every non-trivial element in its free w-closure is isomorphic

to I', (Lemma 33.9); this completes the proof of the theorem.
CorOLLARY 36.8. The centre of a D,-free group which is not abelian is trivial.

Proof. Let F* be a non-abelian D,-free group; then the w-rank m of F* is greater than
1. Let X be a free w-generating set of F* and choose x;, , to be distinet elements of X.

Then C(x,) and C(z,) are, by Theorem 36.7, isomorphic to I', and hence
cl, (27) = C(z,y) and cl, (xy) = C(xy). (36.81)
But X is w-independent (see the end of 25) and therefore

cl, (2,) Nel, (@) = 1.
It follows from (36.81) that
C(z,) N C(xy) = 1. (36.82)

Now the centraliser of any element in a group contains the centre of that group; conse-
quently so does the intersection of the centralisers of an arbitrary number of elements. In

particular

L(F*) < C(y) N Cly);
s0 by (36.82) the centre of F* is trivial.

THEOREM 36.9. The normaliser of the centraliser of any element, different from 1, in

a D-free group F* covncides with the centraliser, and is therefore isomorphic to T',.

Proof. Let 1= a € F* and suppose y € F* normalises C(a). Since C(a) is isomorphic to

I’ (Theorem 36.7), it is locally cyeclic. Thus
a and y~tay
are powers of a common element b:
a=>b", ytay =b"
Thus ‘ y1bmy = b".

Since F* € P, it follows that m = n and so y €C(a). This completes the proof of the theorem.
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Finally we generalise Theorem 36.6; two simple proofs present themselves and so we

give them both.

THEOREM 36.10. Let w be any non-empty set of primes. Then every D,-free group is

an R-group.

Proof. (i) A free group is an R-group (Theorem 17.2). Furthermore, a free w-closure of
an R-group is an R-group (Lemma 33.8). The theorem now follows immediately on applying
Theorem 36.1.

(il) Let F* be a D,-free group, let f, g€ F*, and let n be a positive integer. Suppose
that

Now feC(g™ = C(g) (by Theorem 36.7). Hence
(fg ' =1

but, by Theorem 36.6, F* is locally infinite and so fg—* = 1. Therefore f =g and this com-
pletes the proof of the theorem.

37. Theorem 25.1 states that the factor group of a D,-free group of w-rank m by
the w-closure of its commutator subgroup is a direct product of m isomorphic copies of I',,.
In this section we shall completely determine the structure of the factor group of a D,-
free group by its commutator subgroup. We shall need the notion of a restricted direct
product of groups with an amalgamated subgroup; this notion was introduced by B. H.
Neumann and Hanna Neumann [30]. Only a particular case of this product is needed for
our purpose; it is this case which we define here. Suppose A and B are given groups and
H <[(4), K <[(B). Suppose further that K ~ H =~ L, where L is some given group. Let
0 be an isomorphism of H to K. Put M = 4 x B and put

N=gpm=abl;me€M,a€H,bEK, af =b).
Then N is normal in M and so we can form the factor group D = M/N; D is called the

direct product of A and B with L amalgamated, or the generalised direct product of A and

B (the amalgamation being understood); we shall write
D={AxB;L}.
D is generated by isomorphic copies of A4 and B which intersect in a group isomorphic to

L. When dealing with such a product we shall usually identify groups with their isomorphic

copies (as is usually done in the case of a direct product of groups).
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Levwva 37.1. Let F be a non-abelian free group and let ¢ be an element of F which is
not a p-th power, for some p in w. Let, further, ¢ be a member of the second term of the lower
central series of F but not o member of the third term of the lower central series of F. Let P be
a supergroup of the (necessarily cyclic) centraliser of ¢ in F such that P intersects F in C(c, F)
and such that there is an element ¢y in P satisfying c§ = c. Finally let G be the generalised free

product of F and P. Then the p-th root ¢, of ¢ does not lie in the commutator subgroup of G.

Proof. Let 6 denote the natural homomorphism of F onto #/®F, where “F here
denotes the (i + 1)st member of the lower central series of the free group F. Now VF/® F
is a direct product of infinite cyclic groups (by a theorem of Witt [37]) and, since ¢ ¢®F,
[Clc, )]0 is an isomorphic copy of the cyclic centraliser C(c, F). Take P+ to be a super-
group of C(c, F)0 which is isomorphic to P in such a way that the isomorphism between
them maps C(c, F), qua subgroup of P, onto [C(c, F)]6 in the same way as § maps C(c, F)
onto [C(e, F)]6; let, further, P+ have intersection [C(c, F)]0 with F0.

Now C(c, F)0 < {(F0) and so we can form the generalised direct product D of F@
and P+:

D ={F0xP* Clc, F)6}.

By definition of the generalised free product it follows that we can extend the homo-
morphisms § (of F onto F6) and ¢ (of P onto P+) to a homomorphism y of G into D. Now
if ¢y€G, then ¢,pw€ D’. However, cyp =+ 1; furthermore,

D= (Fy),

since P+ is abelian. But ¢,p€P+; and ¢, ¢ FO and so, in particular, ¢,y ¢ (F0)’; in other
words

o D',
Hence ¢, ¢’ and so we have proved the lemma.

TuEOREM 37.2.(Y) The commutator subgroup of a D,-free group is an w-subgroup if

and only if, it is trivial.

Proof. Let F* be a D,-free group; we shall take F* to be a free w-closure of a free
group F. It is clear that the trivial subgroup is an w-subgroup; so when the commutator

subgroup K of F* is trivial there is nothing to prove.

(*) Thus we have examples of D,,-groups whose derived groups are not w-subgroups (see 14).
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Suppose, on the other hand, that K is non-trivial. Then F* is a non-abelian D,,-free
group. So if X is a free generating set of ¥, then |X|>1. We make use now of the fact
that F* is a free w-closure of F to write F* in the form (using (33.3)):

Fr=UF,

oA

In order to prove that K is not an w-subgroup we have to prove that for some p€w
there is an element ¢, € F'* such that ¢§ = c€ K but ¢,¢ K. We choose a simple commutator
c€®F, with c¢®F,; then, by Lemma 36.4, ¢ is not a pth power in the free group F,
and 80 ¢,, the pth root of ¢, does not lie in F,. We shall prove that ¢, ¢ K although, by our
choice of ¢y, ¢f =c€K.

The ordering in F can be chosen so that
tt=c.
Then F.={F*P; A}

We make use of Lemma 37.1 in asserting that c,¢ F,+ since ¢,¢ F,-. So we have the first
step in a proof by transfinite induction. Let us now suppose that ¢+ < € 4 and that c,¢ F,
for all & <f, € A. If § does not have a predecessor then

FB= U Faz
a<f

and since F;=UF,
a<f

¢o & Fs. If B does have a predecessor, say -, then there are two possibilities: Either Fy = Fg-,
in which case c,¢ ¥, or

Fﬂ = {Fﬁw*P“" i A+}

We shall prove that there is a homomorphic image of Fg in which the image of ¢, is not in
the commutator subgroup, which shows that ¢, is not in the commutator subgroup of Fp.

Consider the factor group

G=Fs-/Fs-.
Now @ is a non-trivial abelian group since ¢,¢ Fs-. Furthermore, the p“th roots of ¢,
Co» CoTTs CoTos « - oy

where c,n” denotes the p™th root of ¢,, generate modulo Fg- a group H isomorphic to Z (p*).

Note that all the p“th roots of ¢, lie in Fs- since they lie already in F,+, and by the choice
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of §, v <f~. Now H is a divisible subgroup of the abelian group ¢ and consequently it
splits off as a direct factor (cf. e.g. Kaplansky [17] p. 8):

G=HxK.

It follows that Fjz- can be homomorphically mapped onto H by a homomorphism 6 so
that c,0=+ 1.
Consider now A+ : § induces a homomorphism of 4+ into H. There are two possibilities

that can oceur:
i) A+6=1;
i) A+ 1.

In i) it is easy to see that c,§ Fj. For we can define here a homomorphism ¢ of P+ into H
which coincides with 6 on A+ simply by stipulating that all the members of P+ map onto
1 under ¢. Then by the definition of the generalised free product we can extend 8 and ¢
simultaneously to a homomorphism y of Fg onto H. Now cop =c¢,0+ 1; but H' =1 and
80 Co & Fs.
In ii) we have for some a €4+, say a,, a,0 = 1. We add this relation to the defining relations
of P+; this yields a torsion group P. This group P has a subgroup isomorphic to Z (p™)
and so H is a homomorphic image of P+. Thus we can find a homomorphism ¢ of P+ onto
H which coincides with 6 on A+. The definition of the generalised free product ensures
that we can extend, simultaneously, the homomorphisms ¢ and ¢, respectively, of Fg-
and P+ into I to a homomorphism ¢ of F; into H. Now again cop= 1, and so, because
H' =1, ¢y¢ Fp.

We are therefore entitled, with the aid of a transfinite induection, to deduce that
co§ F,, for all a€ 4. Hence

t¢ U F = (P*) =K.

This completes the proof of the theorem.

Theorem 37.2 enables us to prove the following important result:

TuroREM 37.3. The factor group of a non-abelian D,,-free group F* of w-rank m by
its commutator subgroup K splits into a direct product of a divistble torsion group @ and a
torston free group R:

F*/K =@xR.

When m is finite, the torsion group Q is a direct product of a countably infinite number of

groups isomorphic to Z(p™) for each p in w. When m is infinite then Q is a direct product of
19 —60173033. Acta mathematica. 104. Imprimé le 21 décembre 1960
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m groups isomorphic to Z (p™) for each p in w. Finally the torsion-free group R is a direct

product of m groups isomorphic to T,

Proof. The group F*/K is abelian and, as such, it can be split into a direct product of
a maximal divisible group 4 and a group B which contains no divisible subgroups (cf.
e.g. Kaplansky [17] p. 9):
F*/K =AxB.

Let us suppose now that F* is a free w-closure of the free group F and let X' be a
free generating set of F’ consisting of distinet simple commutators of F (cf. Levi [23]).
Choose c€ X’; then ¢ is not a pth power in F, by Lemma 36.4. It follows from the method
of proof of Theorem 37.2 that the p*th roots of c:

¢, ¢, ...

do not belong to K and so they generate modulo K a group isomorphic to Z(p*). This
argument holds for every p€w; so for each p€w the p“th roots of ¢ generate modulo K
a Z(p*~) and hence, letting p run through the whole of w, the p*th roots of ¢ generate modulo
K a direct product of groups isomorphic to Z (p*). If m is finite, then F”’ is of countable rank
(cf. Levi [23]). Thus X’ is countably infinite and so we have a countably infinite number
of independent choices for ¢ and hence, in this case, 4 contains a subgroup which is a direct
product of a countably infinite number of groups isomorphic to Z(p*) for each p in w.
Similarly, in the case where m is infinite, 4 contains a subgroup which is a direct product
of m groups isomorphic to Z (p*) for each p€w. We take @ to be that subgroup of 4
generated by all those subgroups of A4 which are isomorphic to a Z(p™) for some p€w;
then @ is a direct product of these subgroups isomorphic to Z(p®) (ef. e.g. Kaplansky
[17] p. 8). We can now split 4 into a direct product of its divisible subgroup @ and a
complementary factor C. Now a direct factor of a divisible group is itself divisible (cf.
Kaplansky [17]) and so C is divisible. Thus

F*/K=Q x C x B,

Now C x B is a group in which no element has order p, where p is any prime in .
For if f€ F* generates modulo K a subgroup of order p in O x B then its p*th roots generate
a subgroup of C X B isomorphic to Z (p*) and so in fact f K €¢). Thus €' X B is an abelian
group without elements of order p for all pE€w. Consequently it is a U,-group. Therefore
(@ xC x B)/@=C x Bisa U,group and thus

F*/cl,(K)=C x B.
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Theorem 25.1 then informs us that ¢ x B is isomorphic to a direct product of m groups
isomorphic to I',. We put now B =C x B.

Thus we have, in both cases, a decomposition
F*/K =Q x R,
where @) and R are of the required form. This completes the proof of the theorem.

38. We begin this section by recasting some of the concepts connected with generalised
free products (see 16) into analogous concepts for D,,-groups.

Let G* be a D,-group and let G be w-subgroups of G*, where 1 ranges over an
index set A; suppose that ¢ = lle-jJ\ (7, w-generates G* (note that each G is itself a D,,-group).

Then we call G* the generalised D,-free product of its w-subgroups G; (or, more simply,
the generalised D,,-free product of the G;) if for every D,-group W and every set of homo-
morphic mappings ¢; of each G into W, every two ¢, g, of which agree where both are
defined, there exists a homomorphic mapping ¢* of G* into W that coincides with ¢; on
each ;. Now suppose G* is the generalised D,-free product of its w-subgroups G5 (1€A)
and put

GNG,=Hy (=Hu),

where 4, u€A (A= ). If all the intersections H,, coincide to form a single subgroup H:
NG, =H,

then G* is called the (generalised) D, -free product of the G with an amalgamated subgroup
H; note that H is itself a D, -group. In the case where H =1, the trivial group, G* is called
simply the D,-free product or, to emphasise the distinction, the ordinary D,,-free product
of the G;.

Following B. H. Neumann [27], who proves a like result for the generalised free
product of groups, we can prove the “uniqueness” of the generalised D,-free product.
The proot of our theorem is similar to the proof of B. H. Neumann’s theorem and is therefore

omitted.

TursorrMm 38.1. Let G* be the generalised D,,-free product of 1is w-subgroups Gi (A€A).
Let H* be the generalised D,-free product of its w-subgroups H, (A€A). Then, if for each
AeA, there is an isomorphism @, of G onto H, every two @i, @, of which agree where both are
defined, then all the @; can be extended simulianeously to an isomorphism of G* onto H*.

Let now D,-groups G} be given, where A runs over a suitable non-empty index set A.

In every G; and to every index u €A let an w-subgroup H;, be distinguished; Hj; is always



294 GILBERT BAUMSLAG

taken to be the whole group G;. If there exists a group G* which is the generalised D,-free

product of groups @; with intersections
H;,L=@1 N G:’,L=Hyz,
and if there are isomorphic mappings ¢; of & onto G,
éz =0, Pis

such that always H aw=H @,

then we say that the generalised D,-free product of the G; with amalgamated H,, (or simply
the generalised D, -free product of the G;) exists. It is often convenient when dealing with
generalised D,-free products to distinguish only between groups lying in different isomor-
phism classes; we shall adopt this procedure whenever it is convenient and also not am-
biguous.

The generalised free product of groups with a single subgroup amalgamated always
exists. However, it is not even true that the generalised D,-free product of two D,-groups

with a single w-subgroup amalgamated always exists.
For let A =gp(s,a, b, c; Ry,
where

={a*=bb =¢,c*=a,8 === =[a,b]=[a,c]=[b,c] =1}
and let B=gp(t a b, ¢ R,),
where Ry={t=nld=c? d=b¢= 1}.

It can easily be verified that both 4 and B are of order 81; hence, by Corollary 11.6,
they are also both g-groups. Now put

H =gp(a, b).
Then H is clearly an w-subgroup of both 4 and B (here w = {2}).
Suppose, if possible, that the generalised D,-free product F of 4 and B with H amal-

gamated exists. Thus obviously

F>gp(d, B).

In particular both f=sta, g=st
belong to F. Now

f2=sta-sta =sts-bta =stst-a~ta = stst = g°.
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But f= ¢ and so F is not a g-group, a contradiction. Thus this example shows that the
generalised D,-free product of two D,-groups does not always exist. However, in the
particular case of the ordinary D,-free product we can in fact prove that this product

always exists.(!)

TEEOREM 38.2. Let G be given D,-groups, where A ranges over an index set A. Then
the free w-closure G* of the free product @ of the Gy is their ordinary D,-free product; hence

the D,,-free product always exists.

Proof. Every D,-group belongs to P, and the free product of groups in P,, belongs
also to P, (Theorem 35.6). Hence G belongs to P,. We can form, therefore, the free
w-closure G* of G. Now G* is in fact the D,-free product of the ;. To see this we note first
that the G, w-generate G* (Lemma 33.5). Secondly, they intersect trivially with each
other. Thirdly, for every D,-group W and every set of homomorphic mappings ¢; of each
& into W, there exists a homomorphism ¢* of G* into W that agrees with g; on G (1EA).
For the homomorphisms ¢; of each G; into W can be simultaneously extended to a homo-
morphism ¢ of & into W, since @ is the free product of the groups G;. Then we can make
use of the “freeness” of the free w-closure to extend ¢ to a homomorphism ¢* of G* into
W (Theorem 33.4). This completes the proof of the theorem.

THEOREM 38.3. Let F* be the D,-free product of its w-subgroups F;, where ), ranges

over an tndex set A. Then the groups F, generate in F* their ordinary free product F.

Proof. Let G; be groups isomorphic to F; and let ¢; be isomorphisms of G; onto F,
for each A€A:
Gﬂ(pz = Fz.

Let, further, G be the free product of the groups G and let G* be a free w-closure of G.
Then G* is the D,-free product of its subgroups G; and we can extend the isomorphisms

@1 simultaneously to an isomorphism ¢* of G* onto F*. Now Gg* = F, i.e.
G=~F,

in other words F is the free product of its subgroups F;.

We remark at this point that it follows from the method of proof of Theorem 38.3 that
of F* 1s the D,-free product of its w-subgroups F;, then F* may be thought of as the free
w-closure of the free product F of the groups F;. We shall make use of this fact, sometimes with-

out explicit mention, in the sequel.

(*) See also Sikorski [34].
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COROLLARY 38.4. The D,-free product of m groups isomorphic to T, 1s a D,-free

group of w-rank m.

Proof. Let F* be the D,-free product of m groups G, isomorphic to I',. Take now an
element x; (& 1) from each of these groups and let X be the set consisting of these elements.
Let now § be any mapping of X into a D,-group H. The mapping 6 induces a mapping
B, of the single element x; of each G; into H. Since {x;} freely w-generates G; these mappings
can be extended to homomorphisms @; of the G; into H. Now F* is the D,-free product
of the ¢} and so these homomorphisms extend to a homomorphism ¢* of F* into H.

Clearly ¢* extends 0 and so F* is a D,-free group of w-rank m.

TueorEM 38.5. The D,-free product F* of locally infinite D,-groups F* is locally

infinite.

Proof. Let F be the free product of the F; (A€A). Then F* may be taken to be the
free w-closure of F. Now F is locally infinite and therefore so is F* (Lemma 33.7). This

completes the proof of the theorem.

THEOREM 38.6. Let w be any non-empty set of primes and let F* be the D,,-free product
of its w-subgroups Fy. If each F; is an R-group, then F* is itself an R-group.

Proof. The free product of R-groups is an RE-group (Theorem 17.2) and the free
w-closure of an R-group is an R-group (Lemma 33.8). The theorem then follows from these
remarks.

We prove next the following auxiliary lemma.
LEMMA. The free w-closure G* of a group G with trivial centre has trivial centre.

Proof. We make use of (33.3) and write

¢ =U G,

e A

Let «€ 4 and suppose for all o < g, that G, has trivial centre. If B~ does not exist, then
Gp= U Gou
p a<fB

and so G has trivial centre. If 8~ does exist and G = G5- then again Gj has trivial centre.

We are left to consider only the case

Gp={Gg-%P; A}.
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Now in this case L(Gp)y =C(Ge)NE(P) =1

{ef. e.g. Kurosh [21], vol. 2, page 32). So for all cases, {(G,) = 1, and hence by transfinite
induction, [(G,) =1 for all «€ 4; therefore ;(G*) is trivial. This completes the proof of
the lemma.

THEOREM 38.7. Let F* be the D,,-free product of its w-subgroups Fy (A€A). If |A] > 1,
then F* has trivial centre.

Proof. Let F be the free product of the F;. Then F has trivial centre. Hence, by the
Lemma, F* has trivial centre and so the theorem has been proved.

We complete this chapter with the following analogue of a theorem due to Baer and
Levi [2].

TEEOREM 38.8. 4 D,-group cannot be decomposed simultaneously, in a non-trivial

way, into both a D,-free product of two D,-groups and a direct product of two D,-groups.

Proof. Suppose @ is the D,,-free product of its w-subgroups P and ¢); suppose further,
that G is also the direct product of its w-subgroups R and 8.

Consider RN P; if RNP=1, then S <P since the centraliser of an element in P lies
also in P (@ is a free w-closure of the free product of D,-groups and so Lemmas 28.1 and
28.2 apply). Hence SN P41 and so by a similar argament it follows that B <P; hence
@ must be trivial, a contradiction. Thus we must have RN P = 1. It follows in like manner

that the four possible intersections are trivial:
RNQ=RNP=1=8n@Q=8nP.

Suppose now that R3a=+ 1. Now R is normal in @ and so it follows that a is not con-
jugate to an element in P or in . Thus, remembering that G is the w-closure of P*Q we

see from Lemma 28.6 that

Cla, @) =T, (38.81)
Now R is an w-subgroup; hence by (38.81) we have

C(a, @) < R.

But § < C(a, @) and hence S < R; this is a contradiction and so the theorem follows.

We remark that the condition that R and 8 be w-subgroups is unnecessary. For if a
D-group @ is a direct product of its subgroups, then each of these subgroups is necessarily
an w-subgroup.
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The simple proof of Theorem 38.8 can be carried over to the case of a free product.
Explicitly, if G is a free product of its subgroups P and @ and also a direct product of its
subgroups R and S, then at least one of these four subgroups is trivial—this is the Baer
and Levi [2] theorem which we have quoted so often. For it follows, just as in the proof
of Theorem 38.8, that

PAR=PNS=1=QNR=QnS&.

Suppose now B3a=+ 1; then R is normal in & and so it follows that a is not conjugate to
an element in P or . Thus, by Lemma 35.4, C(a, &) is an infinite cyclic group. But S < C(a,G)
and hence

SNRE=8Ngp(a)+1;

i.e. § and R intersect non-trivially and so we have a contradiction. The theorem of Baer

and Levi therefore follows.

39. A surprising property of D.-free groups.

Every D,-group is a homomorphic image of a (suitably chosen) D,-free group, and
so the homomorphic images of D,-free groups include all D,-groups. However, it is clear
that not all the homomorphic images of D,-free groups are D,-groups. But in any homo-

morphic image G of a D,-group the equation
x’ =g

is soluble for all g€G and all p€w; in other words the homomorphic images of D,-groups
are E,-groups. Thus, in particular, every homomorphic image of a D,-free group is an
E,-group. We shall show that the converse is also true: Every E,-group is a homomorphic
image of a (suitably chosen) D,-free group. Hence the homomorphic images of D,-free
groups are precisely all the #,-groups.

To prove our main theorem we shall make use of a number of lemmas.

LevMma 39.1. Let A be a subgroup of I'y, contarning the integer 1. Then every homo-
morphism 0 of A into any E,-group B, which is abelian, can be extended to a homomorphism
of Iy, into B.

Proof. Let § denote the set of all pairs (X, %) where X is a subgroup of I',, containing
4 and 7 is a homomorphism of X into B extending §. We introduce an order relation < into
$ by defining

(X, m) <(Y,?)
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if X is a subgroup of ¥ and { extends 7. We now apply Zorn’s Lemma to deduce the ex-
istence of a maximal element (X*, n*) of §.
If X* =T, the lemma follows. Suppose the contrary. Then (see Lemma 32.1 as to the

structure of the subgroups of I',) there exists an element b€I", and a prime p€w such that
beX* and pbe X*

(we are employing, in this lemma, the additive notation for groups). Suppose (pb)n* = c.

We choose d€ B to be a solution of the equation
pr=c.
We then put X+=gp(X*,b),
and define a homomorphism #* of X+ into B as follows:
(* +mb)yt = x*n* +md.

Then 5+ extends #* and hence (X*, *) is not a maximal element of §, which is a contradic-

tion. So in fact X* =T, and this completes the proof of the lemma.

Lemma 39.2. Every cyclic subgroup A of an E,-group B is contained in an abelian

subgroup C of B which is itself an E,-group.
Proof. It is not difficult to construct a sequence of integers
Oy, Oy Og, +vo (0, EW) (39.21)

having the property that given any positive integer N and any p in w, there exists an integer
M > N for which oy = p.

Suppose now that A =gp(a).
We then put

C=gp(ay, a), @y, ...; & =ag ag=a¥, a; = af, ...),

the @, being chosen subject only to the relations above. Now any pair a,, a, of these gene-
rators of ¢ commute since one is always a power of the other; hence C is abelian. Further,
for any non-negative integer ¢ the property of the sequence (39.21) ensures that for all
p€w the equation

D
2? =a,

is soluble. Since C is abelian, it follows that C is an E,-group and so this completes the
proof of the lemma.
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We prove next the following result concerning the extending of a homomorphism
from a subgroup of I',, into an E,-group, to a homomorphism from the whole of I, into

that E,-group.

Levwma 39.3. Let A be a cyclic subgroup of T, containing the inieger 1. Then every
homomorphism 0 of A into any E,-group B can be extended to a homomorphism 0* of T,
wmnto B.

Proof. We make use of Lemma 39.2 to embed A0 in an abelian subgroup C of B,
with C an E,-group. Then we can think of # as a homomorphism of 4 into an E,-group
C, which is abelian; and so, on applying Lemma 39.1, we can extend 6 to a homomorphism
0* of I', into C; this completes the proof of the lemma.

We remark that neither of the conditions “A4 contains the integer 17, “4 cyclic” can
be omitted from the hypothesis of the lemma.

Next we state, as an immediate consequence of Lemma 39.3 and Lemma 32.1 the

following lemma.

LeEMMA 39.4. Let A be isomorphic to a cyclic subgroup of T'y,. Then A can be embedded
m an isomorphic copy P of T, in such a way that for every E,-group B and every homo-
morphism 0 of A into B there exists a homomorphism 6% of P into B which coincides with
0 on A.

The lemma places us in a position to prove the following theorem.

TarEoREM 39.5. Let G be a group in the class D, with the property that if 1=+ g€G,
then either cl,(g, @) is cyclic, or cl, (g, @) is isomorphic to ',,. Then for every E,-group B,
every homomorphism 0 of G into B and every free w-closure G* of G, there exists a homomor-
phism 0% of G* into B which coincides with 0 on G.

Proof. We avail ourselves of equation (33.3):

G*= U G,
aEA
The proof of this theorem follows closely the proof of Theorem 33.4; here we make use of
Lemma 39.4 instead of, as was done in the proof of Theorem 33.4, making use of Lemma
32.3. The details of the proof are left to the reader.
Let us now suppose that G* is a D,-free group freely w-generatéd by the set Y.
Then, by Theorem 36.3, the group G generated by Y is a free group freely generated by

Y. Hence any mapping # of X into an E,-group B can be extended to a homomorphism
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0 of G into B. Now G € D, and satisfies the conditions of Theorem 39.5 (cf. Lemma 35.4).
Thus 6 can be extended to a homomorphism 6* of its free w-closure G* into B. So we

have proved the following theorem.

TuEOREM 39.6. Every mapping n of a free w-generating set ¥ of a D,-free group G*

into any Ee-group B can be extended to a homomorphism 6% of G* into B.

CoroLLARY 39.7. Every EB,-group is a homomorphic image of a (suitably chosen)
D,,-free group.
Theorem 39.6 enables us to give an example of a normal w-subgroup of a D,-group

which is not an w-ideal (see 9). Put
O =gp(a, b; a® =5b?.

Then C is torsion-free (see 9). Moreover, C can be embedded in a torsion-free E,-group C*
(using the method of construction employed by B. H. Neumann in [28]). We make use of

Corollary 39.7 to find a D,-free group G* which has C* as a homomorphic image:
G*/N = C*,

Then N is a normal w-subgroup of G* which is not an w-ideal, since the distinct elements a

and b in C* have equal squares.

40. In conclusion we would like to point out that many of the results and notions of
free groups can be carried over into D,-free groups. For example the notion of an identical
relation in a group, introduced by B. H. Neumann [29] can be carried over to “identical
w-relations in D,-groups”. These identical w-relations lead to ‘‘reduced D,-free groups”
and a whole theory along these lines can be developed. A similar theory to the one described
in this paper can be developed for E,-free groups. However, time and space prevent the
presentation of such theories and other interesting results connected with D,-free and

E-free groups. We shall remedy this state of affairs by means of later works.
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