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The foundations of a systematic general theory of lattice-ordered rings were laid by
Birkhoff and Pierce in [3]. They introduced, as an object for further study, the class of /-
rings. This special class of lattice-ordered rings displays a rich structure: it can be charac-
terized as the class of all subdirect unions of ordered rings. Birkhoff and Pierce obtained
many properties of f-rings, basing their structure theory on the l-radical of an f-ring. In
[20], Pierce obtained an important decomposition theorem for f-rings with zero l-radical.
This paper continues the study of the structure of f-rings.

In Chapter I, we present the necessary background material and obtain a characteriza-
tion of the l-radical of an f-ring that yields a new proof of the decomposition theorem of
Pierce.

In Chapter I, we present a structure theory for f-rings based on an f-ring analogue of
the Jacobson radical for abstract rings. In Section 1, the J-radical of an f-ring A4 is defined
to be the intersection of the maximal modular right I-ideals of 4. In Section 2, the J-radical
is characterized in terms of the notion of I-quasi-regularity, and this characterization is
used to obtain certain properties of the J-radical.

In Section 3, we consider a representation theory for f-rings. We show that every f-ring
that has a faithful, irreducible, I-representation is a totally ordered ring with identity that

contains no non-zero proper one-sided I-ideals. In Section 4, the notions of I-primitive f-ring
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and [-primitive [-ideal are introduced. The central result is: an f-ring is I-primitive if and
only if it has a faithful, irreducible, I-representation. As a consequence of this we have:
every maximal modular right I-ideal is an l-primitive (two-sided) l-ideal; hence the J-radical
of an f-ring A is the intersection of the I-primitive l-ideals of 4. This yields the main de-
composition theorem for f-rings with zero J-radical: they are precisely the subdirect unions
of ordered rings with identity that contain no non-zero proper one-sided Il-ideals.

In Section 5 of Chapter II, we characterize the subdirectly irreducible f-rings and
consider the special results obtainable for f-rings that satisfy the descending chain condition
for l-ideals. Section 6 treats some special questions that arise during the course of the earlier
part of the chapter.

In Chapter III, we consider the problems of imbedding an f-ring as a right l-ideal
(respectively, as a sub-f-ring) of an f-ring with identity. In general, neither type of imbed-
ding is possible. With each f-ring 4, we associate a ring extension 4, of A with identity,
and we define a partial ordering of 4, (the “strong order”) that extends the partial order
on A and makes 4, into a partially ordered ring. The main results are: 1) 4 can be imbedded
as a sub-f-ring of an f-ring with identity if and only if 4,, with the strong order, can be
imbedded in an f-ring whose identity element is that of 4;; 2) 4 can be imbedded as a right
l-ideal in an f-ring with identity if and only if A4 is what is called an “‘f,-ring’’ and the strong
order makes 4, into an f-ring.

In Chapter IV, we consider the existence in f-rings of one-sided l-ideals that are not
two-sided. In Section 1, we present an example of an ordered ring without non-zero divisors
of zero that contains a one-sided Il-ideal that is not two-sided, and we show that every such
ordered ring contains a subring isomorphic to this example. In Section 2, we briefly con-

sider the problem for larger classes of f-rings.

CHAPTER I. BACKGROUND MATERIAL

1. Lattice-ordered groups

In this section, we present those definitions and results in the theory of lattice-ordered
groups that will be needed in what follows. Standard references on lattice-ordered groups
are [2] Chapter X1V, [4], and [14].

In Jater sections, we will be concerned only with lattice-ordered groups that are com-
mutative. Hence, whenever it would be inconvenient to do otherwise, the results in this
section will be stated for abelian groups. For this reason, we will write all groups additively.
Partial order relations will be denoted by <; the symbol < will be used in totally ordered

systems only.
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DzrinttioN 1.1. A partially ordered group is a group @ which is partially ordered,
and in which ¢, <g, implies a +¢g; +b<a+g,+b for all a, bEG. If G is a lattice
under this partial order, then @ is called a laftice-ordered group. If G is totally ordered,
then G is called an ordered group.()

Let G be a partially ordered group. An element b of G is said to be positive if b = 0.
The set of all positive elements of G is denoted by G+. If @ is a lattice-ordered group and
a €@, then the absolute value of a is |a| =a Vv (— a), the positive part of a is a* =a v 0, and

the negative part of @ is a= = (—a) v 0.(2)

ProrosiTiON 1.2. 4 partially ordered group G is a lattice-ordered group if and only
if at =a V0 exists for every a €G ([2], p. 215, Theorem 2).

The interaction of the group operation and the lattice operations in a lattice-ordered
group creates many interesting relations and identities. Those that we will use are collected

in the following proposition; their proofs may be found in [2] and [4].

ProrositioNl.3. If G is an abelian laitice-ordered group, and if a, b, c€Q, then:

)a+@Bve)=(@+b)V(atc) and a+(bAc)=(a+b)A (a+c).
i) (—a)A(—b)=—{(aVD).
ii) @ +b=(a Vv b) + (@ A D).
iv) |a+b|<|a|+|b] and |a—0b|=]|a| —|b]].
)

iv
v =at—a .

vi) at Aa—=0.
vii) If b, c€G+ and a =b —¢, then b =a™ +x and ¢ = a— + x, where x =0 A c.
viil) IfaAb=0and a Ac=0, then a A (b +¢) =0.
ix) For any non-negative integer n, n{a Ab)=na Anb and n(aVbd) =naV nb. In
particular, (na)*t = na*, (na)~ =mna-, and n|a| =|na|.
x) If n is a positive infeger and na > 0, then a > 0.
xi) |a| =at+a.
xii) Hvery element of G has infinite order.
xiii) If a, b, cEG* and a < b + ¢, then there are elements b’, ¢’ €G+ with b’ <b, ¢ <c,
and a=>b"+¢'.
Throughout this paper, the word “homomorphism” (“isomorphism”) will, unless

qualified, denote a mapping that is both an algebraic homomorphism (isomorphism) and

() The meaning of “ordered group’ used here is found in [2]. In [4], the term “ordered group”
is used to designate what we have here called ‘“‘partially ordered group’.

(?) In [2], the term “negative part of a”’, and the notation ¢, are used to designate the element
ah0=—[(-a)yVo].
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a lattice homomorphism (isomorphism). Thus, for lattice-ordered groups, we have ([3],
p. 52, Lemma 1):

ProrosiTion 14. A group homomorphism 0 of a lattice-ordered group G inio a
lattice-ordered group G is a homomorphism if and only if one of the following conditions is
satisfied for a, bEG:

i) (evb)f=abVbo,

ii) (@ A D)0 =ab A b6,

iii) |a|0 =|ab];

iv) at0 = (al)*;

v) a Ab=0 implies al A b6 =0.

If 6 is a homomorphism of a lattice-ordered group @ into a lattice-ordered group &',
then the kernel of 6 is an I-subgroup of ¢ in the sense of:

DEFINITION 1.5. An l-subgroup of a lattice-ordered group @ is a normal sub-
group H of G that satisfies:

a€H and |b| <|a| imply bEH.

If H is any l-subgroup of G, then the difference group G — H can be made into a lattice-
ordered group by defining ¢ + H €(G — H)* if and only if a~€H. Then we have:

THEOREM 1.6. There is a one-to-one correspondence 0> Hy between the homomorphisms
defined on a lattice-ordered group G and the l-subgroups of G; such that, if 8 maps G onto Gy,
then Gy and G — Hy are isomorphic under the correspondence af < a + H,.

TaEOREM 1.7. If 0 is a homomorphism of a lattice-ordered group G onto a lattice-
ordered group G, and if H denotes the family of all l-subgroups of G that contain the kernel of
0, then H—~HO is a one-to-one mapping of I onto the family of all l-subgroups of G' ([2],
p- ix, Ex. 2(a)}).

If S is any non-empty subset of an abelian lattice-ordered group G, then the smallest
l-subgroup of G that contains S will be denoted (S):

(8> ={a€G: |a]| <n|b] +m|c|; b, cES, n, m positive integers}.
If H and K are l-subgroups of G, then the join of H and K is
(H+K)>={a€G: |a| <|h| + |k|; h€H, kEK]}.
By Proposition 1.3, xiii), this is just H + K ={h +k: h€H, k€K}. It is clear that the
intersection of any collection of I-subgroups of @ is an l-subgroup of G.
The following observation, although an obvious consequence of the definition of I-

subgroup, is very important, and will be used often.
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ProrosiTioN 1.8. If G is an ordered group, then the l-subgroups of G form a chain.
Many of the partially ordered groups that are important in applications are Archi-
median in the sense of the following definition.

DEFINITION 1.9. A partially ordered group @ is said to be Archimedean if for

every pair a, b of elements of @, with as 0, there is an integer » such that na<b.

TrrorEM 1.10 (Hélder). Any Archimedean ordered group is isomorphic to a subgroup
of the additive group of all real numbers, and so is commutative ([2], p. 226, Theorem 15).
Thus, if G is an Archimedean ordered group, then every non-zero positive element of

G is a strong order unit in the sense of:

Derinition 1.11. An element e of a lattice-ordered group @ is called a strong
order unit of G if for every a€G@ there is a positive integer n such that ne > a. A weak

order unit of @ is a positive element ¢ of G which satisfies: e A @ =0 if and only if ¢ =0.

2. Lattice-ordered rings

In Sections 2 and 3, we present those results from [3] that we will need.
Throughout this paper, all rings are assumed to be associative, and a ring identity

element, when it exists, will be denoted by 1. As usual, if I and J are any two subsets of

a ring A, then I.J denotes the set { > ab;: a€1, b,-EJ}.
i-1

DerinNiTION 2.1. A partially ordered ring is a ring A which is partially ordered and
in which:

i) @ 2 b implies @ +¢>b +¢ for each c€4, and

it) 220 and b>0 imply ab>0.
If 4 is a lattice, then A is called a lattice-ordered ring; it A is totally ordered, then
A is called an ordered ring.

A partially ordered ring is said to be Archimedean if its partially ordered additive group
is Archimedean.

ProPOSITION 2.2. The set A+ of positive elements of a partially ordered ring A satisfies:
I) 0ed+;
II) A+n (—4+) ={0}
IOI) A+ +A4A+< 4+
IV) A+-4+<C A+
V) a=bif and only if a —bEA+.
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Conversely, if A+ is a subset of a ring A which safisfies conditions I)-IV), then V) defines
a partial order in A, under which A4 is a partially ordered ring.

If A is a lattice-ordered ring, then the additive group of A4 is a lattice-ordered group.
Thus, we may speak of the absolute value, positive part, and negative part of any a€4,

and the relations in Proposition 1.3 are valid in 4. We also have:
ProrosiTioN 2.3. In any lattice-ordered ring A,

i) a = 0impliesa(bVve)=abV ac,a(brc)<abAac, (BVc)a=baVca,and (DA c)a <
ba A ca;

ii) |ab| <|a[]b].

DerINITION 2.4. A homomorphism of a lattice-ordered ring 4 into a lattice-ordered
ring A’ is a ring homomorphism 6 of 4 into A’ that satisfies (a V b)0 = af Vv b0 for every

pair a, b of elements of 4 (cf. Proposition 1.4).

DrrFINITION 2.5. A subset I of a lattice-ordered ring 4 is an l-ideal of 4 if:
i) I is a ring ideal of 4, and
ii) a€l,b€A, and |b| <|a| imply bE L.
If I is merely a right (left) ring ideal of A4, then I is called a right (left) I-ideal of A.
Every l-ideal in a lattice-ordered ring is the kernel of a homomorphism, and we have
(cf. Theorems 1.6 and 1.7):

THEOREM 2.6. There is a one-to-one correspondence 0« Iy between the homomorphisms
defined on a lattice-ordered ring A and the l-ideals of A; such that, tf 0 maps A onto Ay, then
Ag and A/ Iy are isomorphic under the correspondence al«>a + I,

THEOREM 2.7. If 0 is a homomorphism of a lattice-ordered ring A onto a lattice-ordered
ring A’, and if J denotes the family of all (right, left, two-sided) l-ideals of A that contain the
kernel of 0, then I—10 is a one-to-one mapping of J onto the family of all (right, left, two-
sided) l-ideals of A’.

A (right, left, two-sided) l-ideal I of A4 is said to be proper if I+ A. If I is such that
it is contained in no other proper (right, left, two-sided) l-ideal, then [ is said to be a

maximal (right, left, two-sided) l-ideal.
DEFINITION 2.8. A lattice-ordered ring A4 is said to be l-simple if A*+{0} and if

A contains no non-zero proper l-ideals.

If § is any subset of a lattice-ordered ring A, then (8> denotes the smallest I-ideal of
A containing S; (8>,((8),) denotes the smallest right (left) I-ideal of 4 containing §.

It is clear that the intersection of any collection of (right, left, two-sided) I-ideals of
a lattice-ordered ring A is a (right, left, two-sided) I-ideal of 4. The join of two (right, left,
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two-sided) l-ideals I, J of 4 is the (right, left, two-sided) Il-ideal
I+J={a+b: a€l beJ}

(cf. the discussion following Theorem 1.7). The product of two (right, left, two-sided)
l-ideals I, J is the (right, left, two-sided) I-ideal

Ty ={c€A: |¢|[< Z a;b; a,€1,b,€J}.

n n n

Since c€(IJ) implies [¢|< ¥ aibi<( > |a5|) ( > |b,-|> for suitable a;€1, b,EJ, we
i=1 i=1 j=1

may write

ITy={c€A: |c|<ab;a€l, beJ}.
An immediate consequence of Proposition 1.8 is:

Prorosition 2.9. If A is an ordered ring, then the (right, left, two-sided) I-ideals of A

form a chain.

f-rings
The class of lattice-ordered rings admits a disquieting amount of pathology. For
example, Birkhoff and Pierce have given an example of a commutative lattice-ordered
ring with identity element 1 in which 1 is not a positive element (even though a square).
For this reason, they have suggested the study of a special class of lattice-ordered rings:

those that are f-rings in the sense of the following definition.

DEFINITION 3.1. An f-ring is a lattice-ordered ring in which a A6 =0 and ¢=0
imply ca Ab=acAb=0.

It is to this class of rings that we will restrict our attention.

Every ordered ring is an jf-ring, since, in an ordered ring, @ A b = 0 implies either a =0
or b = 0. Any abelian lattice-ordered group G' can be made into an f-ring by defining ab =0
for all @, b€@. The following, more interesting, example of an f-ring serves to motivate

the choice of terminology.

ExamMpPLE 3.2 (cf. [10]). Let X be a Hausdorff space, C'(X) the set of all continuous
real-valued functions on X. If all operations are defined pointwise, then C(X) becomes an
Archimedean f-ring: for f, g€C(X) and each z€X,

(f +9) (@) =f(@) +9(), fg(x) =f(2) g ()
(fAg) (@) =f(@) Ag ()
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With each point z of X there are associated two l-ideals of special interest, defined by:
0, ={feC(X): f[U] ={0} for some neighborhood U of z}, and
M, ={f€C(X): f(x) =0}.

In general, O, is properly contained in M,. For each z, the l-ideal M is maximal in C(X),
and C(X)/M, is isomorphic to the ordered field of real numbers.

If A is an f-ring, we will call a subring of the ring A a sub-f-ring if it is also a sublattice
of the lattice 4.

ProrosiTioN 3.3. If A is an f-ring, then:

i) every sub-f-ring of A is an f-ring;
il) every homomorphic image of A is an f-ring;

iii) if A has an identity, then 1 is a weak order unit in A.

We also have the following partial characterizations of f-rings as lattice-ordered rings:

ProrosiTiON 3.4. If A is a lattice-ordered ring with positive identity element 1, then
A is an f-ring if:

i) 1 is a strong order unit in A; or

ii) 1 s a weak order unit in A and A contains no non-zero positive nilpotent elements.

Now, let {4,: 2€I'} be a non-empty family of f-rings, and consider the set 4 of all
functions a : I'> U {4,: €'} such that a, = a(x) €A, for each a€I'. In 4, define addition

and multiplication by
(@ + b), = a, + b, and (ab), = a,b, for each 2 €I".
Then, as is well known, A is a ring. Moreover,k if we define a partial order in 4 by
a > b if and only if a, > b, for each €T,
then 4 is a lattice-ordered ring, where
(@ Ab)y=a,Ab, and (aV b), = a,V b, for each o€l
It is clear that A is an f-ring.

DeriNiTION 3.5. The f-ring A described above is called the complete direct union
of the family {A,: «€I'} of f-rings.
For each « €', the mapping a—a, is a homomorphism of 4 onto 4,. If Bis any sub-

f-ring of A, then this mapping, restricted to B, is a homomorphism of B into 4,.
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DEFINITION 3.6. A sub-f-ring of the complete direct union of the family {4,: «€I'}
of f-rings is said to be a subdirect union of that family if the homomorphism a—>a, maps B
onto 4,, for each «€I.

We have the following important characterization ([2], p. 92, Theorem 9):

THEEOREM 3.7. An f-ring 4 is isomorphic to a subdirect union of the family {4,: « €'}
of f-rings if and only if there is a collection {I,: « €T} of l-ideals in A such that A/, is
isomorphic to A, for each «€I', and N{IL,: €'} ={0}.

We will denote a subdirect union of the family {4,: «€I'} of f-rings by 2, {4,: «€['}.
Note that, in general, this does not denote a unique f-ring. For example, if I is infinite and
if each A, contains an identity, then the complete direct union of the family {4,: « €'}
is a subdirect union of this family that contains an identity element. A subdirect union of
the same family that does not contain an identity element is the discrete direct union in

the sense of the following definition.

DeriNiTiON 3.8. The discrete direct union of the family {4,: «€I'} of frings is
the sub-f-ring of their complete direct union consisting of those elements o with a, =0
except for a finite number of €.

If an f-ring A4 is the complete direct union of a finite family {4,:¢=1,2,...,n} of
f-rings, it will be called merely the direct union of this family.

An f-ring will be called subdirectly irreducible in case all of its subdirect union repre-

sentations are trivial. Stated precisely,

DEFINITION 3.9. An f-ring 4 is said to be subdirectly irreducible if A=+ {0} and
every isomorphism 6 of 4 onto a subdirect union 2 {4,: €'} of f-rings is such that the

mapping a—(a), is an isomorphism for at least one «€I.

CoROLLARY 3.10. An f-ring A is subdirectly irreducible if and only if the intersection
of all of the non-zero l-ideals of A is not {0} (Theorem 3.7).
Thus, 4 is subdirectly irreducible if and only if A contains a unique smallest non-zero
l-ideal, given by
N {I:Iis a non-zero Il-ideal of A}.
The following lemma and its corollary give insight into the nature of subdirectly ir-

reducible f-rings.

LemMa 3.11. If a and b are elements of an f-ring A such that a Ab=0, then
{ay N by ={0}.
Now, if an f-ring 4 is not an ordered ring, then there are incomparable elements z, y

in 4. Then @ = (# — %)t and b = (x — y)~ are non-zero elements of 4 with @ A b =0 (Propo-
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sition 1.3, vi)). By the lemma, {(a}> and {b> are non-zero I-ideals in 4 with zero intersection,

80 A4 is not subdirectly irreducible, by Corollary 3.10. Thus, we have:

CoroLLARY 3.12. Every subdirectly irreducible f-ring is an ordered ring.
It was remarked in [3] that every ordered ring is a subdirectly irreducible f-ring.
However, the following example shows that this is not the case. In Chapter II, we will

characterize those f-rings that are subdirectly irreducible.

Example 3.13. Let Q[A] denote the ring of polynomials in one (commuting) in-
determinate 4 over the ordered field @ of rational numbers. Order @[A] lexicographically,
with the constant term dominating: ¢, + a4 + -+ - +a,A" = 0 if and only if @, >0, or ¢, =0
and @, >0, 0r ...,0orgy=a,=---=a,_; =0 and ¢, > 0. Under this order, Q[1] is a com-
mutative ordered ring; it is clearly non-Archimedean, since nA <1 for every integer .

The proper l-ideals of Q[A] are just the ring ideals (A™> ={a@,A* + @, A" -+ +
T ke ”‘} for each positive integer n. Thus, by Corollary 3.10, @[4] is not subdirectly ir-
reducible, since A {(A":n=1,2,...} ={0}.

Now, every ordered ring is an f-ring, so every subdirect union of ordered rings is also
an f-ring. Conversely, the well-known theorem of Birkhoff ([2], p. 92, Theorem 10) states,
in this case, that every f-ring is isomorphic to a subdirect union of subdirectly irreducible

f-rings. Thus:

THEOREM 3.14. A4 laitice-ordered ring is an f-ring if and only if i is isomorphic to a
subdirect union of ordered rings.

It is now an easy matter to determine some of the special properties of f-rings. For,
any property that holds in every ordered ring and that is preserved under subdirect union

is enjoyed by all f-rings. The following properties are of this sort:

THEOREM 3.15. If A is an f-ring, then, for a, b, c€A:

i) Ifa=0,thena(®dVec)=abVac, abAc)y=abAac, (bVc)a=baV ca, and (bAc)a
=ba A ca.

i) |ab| =[] [b].

iii) If a Ab =0, then ab =0.

iv) a®>=0.

v) If a, b€EA+ and n is any positive integer, then n|ab —ba| < a® + b2
COoROLLARY 3.16. An f-ring without non-zero divisors of zero is an ordered ring.

CoroLLARY 3.17. Every Archimedean f-ring is commutative.

There are, however, non-commutative f-rings. Examples of non-commutative ordered
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rings will be given in Chapters II and IV. Any ring constructed from these by subdirect
union will be a non-commutative f-ring.
In any fring 4, the set Z,(4) ={a€A4: " =0} is an l-ideal of 4 for each positive in-

teger n.

DeriniTiON 3.18.(1) If 4 is an f-ring, then the I-radical of A, denoted N (4), is the
set of all nilpotent elements of A4:

NA)=U{Z,(4): n=1,2, ...}

Tt is easily seen that N (4) is an l-ideal of 4 and that 4/N (A4) has zero l-radical.
Now, for each n, Z,(4) is a nilpotent l-ideal; that is, [Z, (4)]*={0}. However, N (4}

may not be nilpotent, as is shown by the following example.

Example 3.19. Let Q[A] be the ring of polynomials with rational coefficients, ordered
lexicographically as in Example 3.13. For each positive integer n, let 4, denote the ordered
ring Q[A]/<2™y. Then, in 4,, the element 1 =21 +{A*) satisfies 1" "'+ 0 and 1* =0. If 4
denotes the discrete direct union of the family {4,: n=1,2,...}, then it is clear that
N (4) is not nilpotent.

DEeFINITION 3.20. An f-ring A4 is said to satisfy the descending chain condition for

l-ideals if every properly descending chain I,>1,>I,> ... of l-ideals of A4 is finite.

TurorEM 3.21. If 4 is an f-ring that satisfies the descending chain condition for I-
ideals, then N (A) is a nilpotent l-ideal.

4. Ordered rings and prime [-ideals

The results presented in this section are, as is the case with all of this chapter, not
entirely new. However, as presented here, each has some claim to originality.

Recall (e.g., [23], p. 221) that if 4 is a commutative ordered ring without non-zero
divisors of zero, then there is exactly one way that the field F of quotients of 4 may be
ordered so that 4 is an ordered subring of F. This order on F is given by

a/b>0 if and only if ab = 0.

It is easily seen that F is Archimedean if and only if 4 is.
We now present alternate proofs of two results of Hion ([11], [12]).

(*) Birkhoff and Pierce have considered the Il-radical of an arbitrary lattice-ordered ring. The
definition given here is merely the special form that the I-radical assumes in f-rings.
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TaeorREM 4.1. If an ordered ring A contains non-zero divisors of zero, then i contains
a non-zero nilpotent l-ideal.

Proof. If A contains non-zero divisors of zero, then there are non-zero positive elements
a, b of A with ab=0. Thus, 0 =ab > (a A b)> > 0. Since 4 is an ordered ring, this means
that either a® = 0 or b* = 0. Thus Z, (4) is a non-zero nilpotent I-ideal of 4 (cf. the discussion
following Definition 3.18).

TAEOREM 4.2. If A is an Archimedean ordered ring, then either i) A is isomorphic to
an ordered subring of the ordered field of real numbers, or ii) A* = {0} and the ordered additive

group of A s isomorphic to a subgroup of the ordered additive group of real numbers.

Proof. If A contains a non-zero divisor of zero, then A contains a non-zero Il-ideal I
with I? = {0}, by Theorem 4.1. Since 4 is Archimedean, its additive group contains no
non-zero [-subgroups (Theorem 1.10), so I = A. Thus 4%= {0}, and ii) now follows by
Theorem 1.10.

If A contains no non-zero divisors of zero, then, since 4 is commutative by Corollary
3.17, we may imbed A in its field F of quotients. As remarked above, F is an Archimedean
ordered field. By a well-known theorem, F is isomorphic to a subfield of the ordered field
of real numbers, so i) holds.

Recall that, in any abstract ring 4, a proper (ring) ideal P of 4 is said to be prime in
case 1,1, P for any two (ring) ideals I,, I, of 4 implies I, S P or I,< P (cf. [19]). Also,
aring A is said to be prime if and only if {0} is a prime ideal in 4. Hence, P is a prime ideal
in a ring 4 if and only if A/P is a prime ring. Prime l-ideals, that is, I-ideals that are prime

ring ideals, play an important role in the structure theory for f-rings.
THEOREM 4.3. A proper l-ideal P in an f-ring A is prime if and only of 1,1, <P for
any two l-ideals I,, I, of A implies I, =P or I, < P.

Proof. Suppose that I, I, < P for any two l-ideals I;, I, of A implies [; =P or I, P.
If I, and I, are any two (ring) ideals of A with I, I, <P, then {I,I,>< P. That I, S P or
I, P will be shown by proving that {I,><{I,> S{I,I>. If a €{I,)> and b€{I,), then
|| < iz |a;| and |b] < 3 |b,| for a;€I, and b,€1, Then, |ab| =|a|-|b| < (X |ai])
i ‘ B
(2 |5;]) = 2 |a;b;l, whence ab€ (I, I,>. Thus, {I,»{Ip» <1, I;)SP.
7 i,7

The converse is obvious.

THEOREM 4.4. An f-ring A is prime if and only if A=+ {0} and A is an ordered ring

without non-zero divisors of zero.
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Proof. If A is a prime f-ring, then 4=+ {0} by definition. Moreover, 4 is an ordered ring,
for we have seen (cf. the discussion following Lemma 3.11) that any f-ring that contains
incomparable elements contains non-zero l-ideals I,, I, with I, n I, = {0}, and hence
II,=I,n1I,= {0}. If 4 contained non-zero divisors of zero, then it would contain a
non-zero l-ideal I with I* = {0}, by Theorem 4.1, contrary to the definition of prime ring.
Thus, 4 is an ordered ring without non-zero divisors of zero.

The converse is obvious.

CoRrROLLARY 4.5. If A is an ordered ring, and if A== N(A), then N(A4) is a prime
l-ideal.

Proof. A/N(A)= {0}, and A/N(A) is an ordered ring without non-zero divisors of
zero, by Theorem 4.1 and the remark following Definition 3.18.

CoroLLARY 4.6. 4 proper l-ideal P in an f-ring A is prime if and only if ab€EP
implies a €P or bEP for a, bEA.

Proof. If P is prime, then 4/P is a prime f-ring, so it contains no non-zero divisors of
zero.

Conversely, suppose ab€P implies a€P or bEP for a, b€EA. It is clear that 4/P
contains no non-zero divisors of zero. Hence, by Corollary 3.16, 4/P is an ordered ring
without non-zero divisors of zero. Since 4/P= {0}, it is a prime f-ring by Theorem 4.4.
Thus, P is a prime [-ideal.

Corollary 4.6 is the first appearance of a phenomenon that will present itself again in
Chapter II. We may describe this, roughly, as follows: in considering the l-ideal structure
of f-rings, the absence of commutativity seems to have less effect than in the ideal structure
of abstract rings. In the present instance, the equivalence in Corollary 4.6 is true for (ring)
ideals only in commutative abstract rings.

A subset M of an f-ring A4 is called a multiplicative system if a, b€M implies ab€ M.
By Corollary 4.6, a proper l-ideal P of 4 is prime if and only if the complementary set of
Pin 4 (ie., {a€A4: ag¢P}) is a multiplicative system. Conversely, we have the following
result. The proof, which is omitted, is a standard argument (e.g., [18], p. 105).

TrroREM 4.7. If I is an l-ideal in an f-ring A, and M a multiplicative system in A
that does not meet 1, then there is a prime l-ideal P of A that contains I and does not meet M.

We can now prove the following important theorem ([20]).

TEEOREM 4.8. The l-radical N(A) of an f-ring A is the intersection of the prime
l-ideals of A. Hence, N (A) = {0} if and only if A is isomorphic to a subdirect union of ordered
rings without non-zero divisors of zero.
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Proof. Since N (A) consists of the nilpotent elements of 4, it is contained in every prime
l-ideal of A, by Corollary 4.6. Conversely, if a¢ N (A4), then M ={a, o?, o®, ...} is a multi-
plicative system that does not meet N (4). Hence, there is a prime I-ideal P that contains
N (4) but does not meet M, by Theorem 4.7.

Thus, N(4) = {0} if and only if there is a family {P,: «€I'} of prime l-ideals in 4
with N {P,: €'} = {0}, hence if and only if 4 is isomorphic to a subdirect union of the
family {4/P,: «€l'} of prime f-rings (Theorem 3.7). By Theorem 4.4, each of these has
the required form.

In [19], McCoy defined a notion of the radical of an abstract ring which coincides, in
the presence of the descending chain condition for right ideals, with the classical radical.
One of his important results was the exact analogue of Theorem 4.8. Thus, we may view
the l-radical of an f-ring as the analogue of the McCoy radical for abstract rings.

According to Proposition 2.9, the [l-ideals of an ordered ring form a chain. Hence, by

Theorem 2.7, we have:

ProrositioN 4.9. If an l-ideal I of an f-ring A is such that A/ is an ordered ring,
then the l-ideals of A that contain I form a chain.

Thus, any such l-ideal I is contained in at most one maximal I-ideal. It is easily shown
(just as in abstract rings) that every l-ideal in an f-ring with identity is contained in a
maximal l-ideal. Hence:

ProrosiTioN 4.10. If A is an f-ring with identity, then every l-ideal I in A such
that A/I is an ordered ring is contained in a unigue maximal l-ideal.

In particular, every prime l-ideal in an f-ring 4 with identity is contained in a unique
maximal l-ideal. This result is, in a certain sense, a generalization of similar results that

have appeared in less general contexts (e.g., [5], [10]).

CuAPTER II. THE J-RADICAL AND THE STRUCTURE OF
J-SEMISIMPLE f-RINGS

In this chapter, we consider a structure theory for f-rings which is modelled after the
Jacobson theory for abstract rings. Most of the definitions are exact analogues of the defini-
tions of corresponding notions in the Jacobson theory; many of the theorems can be viewed
similarly.

1. The J-radical of an f-ring

DerFIiNiTION 1.1. A right l-ideal I of an f-ring 4 is said to be modular if there exists
an e€4 such that x —ex€1 for each x€A4. The element e is said to be a left identity
modulo 1.
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ProrositioN 1.2. Let A be an f-ring, I a modular right l-ideal in A.

i) There exists an e€ At such that e is a left identity modulo 1.
ii) If I' is a right I-ideal of A containing I, then I’ is modular (with the same left tdentity).
iii) If e is a left identity modulo I, then I 1is proper if and only if e¢ 1.

iv) If I is proper, then I can be imbedded in a maximal (modular) right I-ideal.

Proof. 1) Suppose e is a left identity modulo I. Then, for each z€ 4, we have
|z| — [e] [»]| €1, since x —ex €I and |z — ex| = | || — |ex]||. Thus, for each €4, we have
xt — le|at€l and 2~ — |e|a—€1, 80 2 — |e|z = (at — |e|at) — (w~ — |e|z") EL

ii) and iii) are obvious, and iv) is an easy application of Zorn’s lemma, using iii).

DrriNiTrOoN 1.3. Let A be any f-ring. The J-radical of A, which is denoted J(4),
is the intersection of all the maximal modular right I-ideals of 4. If 4+ {0} and J (4) ={0},
then A is said to be J-semisimple. If J(A4) = A, that is, if A contains no maximal modular
right l-ideals, then 4 is said to be a J-radical ring.

The examples that follow demonstrate the fact that the J-radical of an f-ring is
distinet from the I-radical; however, we will see (Corollary 2.6) that the J-radical always
contains the l-radical.

For any f-ring A4, let R(A) denote the Perlis-Jacobson radical of 4 considered as an
abstract ring; that is, B (4) is the intersection of the maximal modular right (ring) ideals
of A. Since E(A) contains all nil one-sided (ring) ideals of A ([13], p. 9), we have N(4)<
R (4). However, the following examples show that J(4) and R (4) bear little relationship
to each other.

Example 1.4. Let A denote the ring Q[A] of polynomials with rational coefficients,
ordered lexicographically as in Example 1.3.13. 4 is an ordered ring without non-zero
nilpotent elements, so N(4) ={0}. Also, R(4) ={0} ([13], p. 22). The unique maximal
(modular) right l-ideal of A4 is <A>, whence J (4) = <A>. We have:

{0} =N(4) = R(4)=J(4) = A +{0}.

Example 1.5. Let B denote the ordered subring {p/q:(g,2) =1} of the ordered
field @ of rational numbers, and consider the direct union C of B and the ring 4 of Example
1.4. Then C consists of all ordered pairs (z, y), where x€B and y€ 4. Since B contains no
non-zero proper l-ideals, it is readily seen that J(C) consists of all elements of the form
(0, ), where y€<{A>. Now (cf. [13], p. 21, and p. 10, Theorem 1), R(C) consists of all ele-
ments of the form (x, 0), where z is an element of the ring ideal (2) of B. Thus, in this case,
N(C)={0}, R(C)*{0}, J(C)=+{0}, and R(O) nJ (C) ={0}.
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Example 1.6. Let A denote the ring of even integers with the usual order. Then
we have N(4)=R(A)={0}. However, 4 is an l-simple commutative f-ring without
identity, so 4 is clearly a J-radical ring.

It is interesting to note that the analogue of one of the outstanding unsolved problems
in the Jacobson theory for abstract rings has its solution in the preceding example: there

do exist I-simple J-radical rings.

2. The notion of [-quasi-regularity

If @ is any element of an f-ring 4, let (1 —a)4 denote the set {x —ax:x€A4}. The
right l-ideal {(1 —a)4), generated by this set is the smallest modular right l-ideal with a
as a left identity.

DEFINITION 2.1. An element a of an f-ring 4 is said to be right I-quasi-regular (right
I-QR)if (1 ~a)d), =
ProrosiTIiON 2.2. Let A be an f-ring, a€ 4.
i) a s right I-Q R if and only if there are a finite number of elements xy, ..., x, in A such
that |a| < |x,—ax B

ii) I f Ia[ is right 1-Q R, then a is also.
iii) If a is nilpotent, then a is right I-Q R.
iv) If a is a non-zero idempotent, then a is not right 1-Q B.

Proof.
1) If a is right I-Q R, then a €{(1 —a) A), = A. But this means that there are elements
25 .- 2,€(1 —a) A such that |a| <|z,| + |z| +--- +|z,[. Bach , is of the form z; —ax;

for some z,€4.

n
Conversely, if there are elements zy, ..., #,€4, with |a| < > |*, —az,|, then it is
is1

clear that a €{(1 —a) 4),. But, since {(1 — a) 4>, is a modular right I-ideal with left identity
a, this implies (Proposition 1.2) that {(1 —a)4)>, = A. Thus, o is right I-Q E.
ii) If |a| is right I-Q R, then there are elements x,, ..., , of 4 with

n n
lal< 3 la—lalal< 3 la —[alot [+ 3 1o ~alar|

<
i

A%t

| &t —aaxi |+ 2|oc1 —axi |

I
-

Thus, by i), a is right I-Q R



A STRUCTURE THEORY FOR A CLASS OF LATTICE-ORDERED RINGS 179

iii) Suppose a” =|a|"=0. Set x=|a|+|a|>+--- +]a|"". Then |a| =2 —|a|a, so
|a| is right I-Q R. By ii), @ is right l-Q R.

iv) Suppose a is right I-Q R, say |a| <

n
|z; —ax;| for @y, ..., 2,€4. If a is also idem-
i=1

potent, then

n n
0<a=d’<a 2 |z—ax|= > |az,—a*x|=0.
i=1 i=1

DeriNiTION 2.3. A right l-ideal I in an f-ring 4 is said to be l-quasi-regular (I-Q R)
in case every element of I is a right I-Q R element of 4.

Note that we do not have any analogue of the notion of the quasi-inverse of an element
that occurs in the Jacobson theory. However, the following proposition is the analogue of

a result concerning quasi-inverses in abstract rings ([13], p. 8, Proposition 1).

ProrosiTioN 2.4. If I is an 1-Q R right l-ideal in an f-ring A, then each element of 1
18 @ right I-Q R element of the f-ring I, that is, if a €1, then there are elements xy, ..., x, €1

n
such that |a| < > |2, —az,].
i=1

Proof. If a€1, then a is a right I-Q R element of A, hence there are elements y;, ...,
¥,€4 such that |a| < > |y, —ay;| (Proposition 2.2). Then a® = |a|*<|a| 2 |y; —ay;| =
i=1 i=1
> lay, —a(ay)|. If welet I, denote the right I-ideal in the f-ring I generated by (1 — ) 1,
i=1

then we have shown that o®€ I,. But, a is a left identity modulo I, (in I), so a*€ I, implies
a€l,, whence ¢ is right I-Q R in the f-ring I.

The following theorem, the central result of this section, will be improved in Section 4,
where it will be shown that J (4) is a (two-sided) l-ideal in A.

THEOREM 2.5. The J-radical of an f-ring A is an 1-Q R right l-ideal of A that contains
every 1-Q R right l-ideal of A.

Proof. If a is not right I-QR, then {(1 —a)A4), is a proper modular right l-ideal in 4
with left identity a. By Proposition 1.2, {(1 — a) 4>, can be imbedded in a maximal modular
right l-ideal M which also has left identity a ¢ M. But then, a ¢.J (4).

Now, suppose that I is an I-QR right I-ideal in 4 and that I$¢J(4). Then there is a
maximal modular right I-ideal M of A such that 4 M. Let e be a left identity modulo M.
By Proposition 1.2, we may assume that e is positive. Since M is maximal, I + M = 4.
Hence, by Proposition I.1.3, xiii), there are positive elements z€ M and b€I such that
e=z+b. Then e —z =0€1 is right I-@R. Thus, by Proposition 2.2, there are elements

n n
%y, ..., £, €A such that 0<e—2z< > |z, — (e ~2)z;| = 2 |(z; —ex,) +22,|. But M is a
is1 =1

12 —60173033. Acta mathematica. 104. Imprimé le 19 décembre 1960
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modular right I-ideal with left identity e, and z€ M, whence x; — ex, and zx, are elements
of M for each 4, so the right hand member of the above inequality is an element of M.
Then e —2€ M, whence e€M, since z€ M. This is a contradiction.

CoRrROLLARY 2.6. J(A) contains all nil right l-ideals of A; hence J(A) contains the
l-radical N (A) (Proposition 2.2).

Since the Il-radical contains all of the nilpotent elements of 4 (Definition 1.3.18),
Corollary 2.6 yields the following result, which is in contrast with the situation in the

Jacobson theory.

CorOLLARY 2.7. If 4 is J-semisimple, then A contains no non-zero nilpotent elements.
We have already seen (Example 1.4) that the converse of Corollary 2.7 is not true;

there are f-rings without non-zero nilpotent elements which are not J-semisimple.
CorOLLARY 2.8. J(A) contains no non-zero idempotent elements (Proposition 2.2).

CorOLLARY 2.9. If @ is a homomorphism of A onto an f-ring A’, then p[J (A)]=J (4).

Proof. The image of an I-QR right l-ideal in 4 is an I-Q R right l-ideal in 4'.
As in the case of its analogue in the Jacobson theory, the inequality of Corollary 2.9
cannot, in general, be strengthened; for we have the following example of a homomorphic

image of a J-semisimple f-ring that is not J-semisimple.

Example 2.10. Let 4 =C(R), the f-ring of all continuous real-valued functions on
the space R of real numbers with the usual topology (cf. Example 1.3.2). It is easily seen
that 4 is J-semisimple (e.g. Theorem 2.11). Let p€ R. There are functions in 4 that vanish
at p but not on any neighborhood of p (e.g. the function f defined by f(x) =(x — p), so
that O,+ M,. Thus, O, is an l-ideal in 4 which is properly contained in exactly one maximal
(modular) right I-ideal. Hence, 4/0, contains precisely one non-zero maximal (modular)
l-ideal M,/0,, which must be J(4/0,).

TEEOREM 2.11. If A is an Archimedean f-ring with identity, then A is J-semisimple.

Proof. We can write A as a subdirect union of ordered rings 4,, for « in some index set
I' (Theorem 1.3.14). For each « €I, let A, denote the homomorphism of 4 onto 4,, and let
1, denote the kernel of ,. Now, N{I,: €'} ={0}, and, for each &, 4, contains an identity
ke (1), so that J(4,) is a proper right l-ideal in 4, by Corollary 2.8. Now suppose that « is
a positive element in J (A4). For each «€I', £, (a) is a positive element of J (4,), by Corol-
lary 2.9. Since each 4, is an ordered ring and J (4,) is a proper right l-ideal in 4,, we have
nhy(a) < h, (1) for all positive integers n. Thus, we have, for each positive integer » and each
o €I, 2, (1 — na) = 0. But then A, [(1 — na) A 0] =0 for each x €I and each positive integer »;
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whence (1 —na)AO0EN{I,: x€I'} ={0}, for each positive integer n. Since A is Archi-
medean, this means that a =0, so J(4) ={0}.

CoroLLARY 2.12 (Birkhoff-Pierce). An Archimedean f-ring with identity contains no
non-zero nilpotent elements (Corollary 2.7).

Neither Theorem 2.11 nor its corollary can be strengthened to a statement concerning
arbitrary Archimedean f-rings (without identity). For, an example of an Archimedean

ordered ring 4 in which ab =0 for all a, b€ A is easily constructed.

3. l-representations and [-modules

As in the Jacobson theory, a fundamental role in the structure theory for f-rings is
played by a representation theory. We will restrict our attention to l-representations in

the sense of the following definition.

DEerIiniTION 3.1 (Birkhoff-Pierce). A homomorphism 0 of an f-ring A onto an f-ring
4 is said to be an I-representation of A in the abelian lattice-ordered group @ if the elements
of 4 are (group) endomorphisms of G, and the operations and order in 4 are defined by:

i) for every g€G and @, b€ 4,

g(@+b)=ga+gb and g(ab)=(ga)b;

ii) ae A+ if and only if ga€G+ for every gEG+.

The I-representation is said to be fadthful if 0 is an isomorphism.

Birkhoff and Pierce have shown ([3], p. 57, Corollary 3), using the familiar (right) regular
representation, that every f-ring has a faithful [-representation. This section is devoted to
the study of those f-rings that have faithful, irreducible, l-representations (Definition 3.7).
These f-rings will be used to obtain an important characterization of the J-radical in
Section 4.

It is often more convenient, in considering a given l-representation of an f-ring 4 in an
abelian lattice-ordered group @, to focus attention on G and upon the interplay between
the operations in 4 and those in G. In such cases, we view G as an A4-l-module in the
sense of the following definition.

DEerinITION 3.2. If 4 is an f-ring and @ is an abelian lattice-ordered group, then G is
said to be an A4-l-module if a law of composition is defined on G'x A into G which, for ¢,,
9,€G and a, b€ A, satisfies:

i) (9, +g2)a =g.a +g,a,
i) gy(a +b) =g1a + ¢, b,
iii} ¢, (ab) = (g,a)b, and
iv) ga€G+ for every g€G+ if and only if ga— =0 for every g€G.
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THEOREM 3.3. There is a one-to-one correspondence 0 Gy between the l-representations
of an f-ring A and the A-l-modules, such that 0 is an l-representation of A in Gy and g(ab) =ga
for each g€Gy.

Proof. Suppose that a—a is an l-representation of 4 in G. We may define a law of
composition on Gx 4 into G by setting ga = ga. Now ga€G+ for every g€G+ if and only
if @ > 0, hence if and only if @ = 0. Since a—>@ is a homomorphism, @~ =a-, so we have
ga€G* for every g€ G+ if and only if ga~ =0 for every g€@. Thus, since conditions i)-iii)
of Definition 3.2 are clearly satisfied, this law of composition makes @ into an A-l-module.

Conversely, if @ is an A-l-module, then, for each a € 4, define the mapping @ of G into
itself by setting g@ = ga. By condition i) of Definition 3.2, @ is a (group) endomorphism of
G. Conditions ii) and iii) show that the mapping a—a is a (ring) homomorphism of 4 onto
the ring 4 ={a@: a€ A}, where the operations in 4 are as in i) of Definition 3.1.

Now let I denote the kernel of this ring homomorphism: I ={a€4:ga =0 for each
g€G}. Then I is a (ring) ideal of 4 and, moreover, if a €1, then |a|€I, since 0 =ga€G+
for every g€G+ implies ga— =0 for each g€@, whence gla| =g(a +2a~) =0 for each
g€G. If a€l and |b| <|a|, then |a] —|b| €A™, so g(|a| —|b]) = —g|b|€G+ for every
gEG*. But g|b| €G+ for each g€G+, so g|b| =0 for every g€G+. Hence, if g€@, then g|b| =
g*|b| —g~|b| =0, so |b| €1. Finally, b+, b-€ I, and, since I is a ring ideal of 4, we have
shown that b = b+ — b~ €1 whenever |b|<|a| and a€1. Thus, [ is an l-ideal in 4.

Hence, we may use the ring homomorphism a—@ to transfer the lattice structure of
A to A. In this way, 4 becomes an f-ring isomorphic to 4/I. The partial order on A4 is
given by @€ A+ if and only if a~ € I, hence if and only if ga— = 0 for every g €. By condition
iv) of Definition 3.2, we have @ € A+ if and only if @ €G+ for every g€ G+. Thus, the partial
ordering of 4 is as required by Definition 3.1: a—>d is an l-representation of 4 in G.

Thus, to every A-l-module G corresponds an l-representation of 4 in G (the l-repre-
sentation “associated” with the A-l-module @), and conversely. We will use the riotions of
{-module and I-representation interchangeably, as convenience dictates.

We say that an A4-l-module is faithful if and only if the associated I-representation is
faithful. Note that an A4-l-module @ is faithful if and only if ga =0 for all €@ implies
a=0.

Levma 34. If G is an A-l-module, then |ga |<|g||a| for every g€G and a€A. Con-
versely, if A is an f-ring of (group) endomorphisms of an abelian lattice-ordered group G
which satisfies |gi| = |g||a| for every g€G and every A€ A, then @ € A+ if and only if ga€G+
for every g €G.

Proof. First, if G is an A-l-module, g€G, and a€ A4, then
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lgal =g+ — ) (@ = )| < |g+a| + [g¥a| + |g-a*| + [
=grat -+ gra- - gat + ga- = (gt +g7) (@ +a) = [g| al.

It 4 is an f-ring of (group)endomorphisms of the abelian lattice-ordered group G in
which |ga@|=|g||a| for every g€@ and every @a€A4, then a€A+ if and only if @ = |a|,
whence if and only if ga = |g| |a| = |ga| G+ for every g€G+.

We may re-state the second part of Lemma 3.4 as follows: If a law of composition is
defined on (' 4 into & which satisfies conditions i)-iii) of Definition 3.2 and |ga| =]|g]| |2]
for every g€G and a €4, then @ is an 4-I-module. The following example shows that this

condition is not satisfied by every A-l-module.

Ezample 3.5. Let & be the lattice-ordered group consisting of all ordered pairs (m, )
of integers, with addition and lattice operations defined coordinatewise:

(m,n)+(m',n)y=(m+m', n+n')

(m, n) EGT if and only if m >0 and n > 0.

Let 4 denote the ring of integers with the usual order.

Define a law of composition on G x 4 into G by setting (m, n)p = (0, p(m + n)). It is
easily seen that this makes ¢ into an A-l-module. However, the condition above is not
satistied: [(1, —~1)2[ =1(0,2 —2)| =(0,0)+ (0, 4) =|(1, —1)||2].

DEerFiNiTION 3.6. If G is an A-l-module, then H is said to be an A-l-submodule of
G if:

i) H is an l-subgroup of the lattice-ordered group @;

i) for every h€H and every a€4, ha€H.

DErFiNITION 3.7. An A-l-module G is said to be irreducible (and the associated
l-representation of 4 is also said to be irreducible) if:
i) the only A4-I-submodules of G are {0} and &,

ii) there is a non-zero element e €G*+ with e 4 = G.

THEOREM 3.8. If an f-ring A has a faithful, irreducible, l-representation, then 4 is a

prime f-ring.

Proof. Suppose @ is a faithful, irreducible, 4-I-module. Let I,, I, be non-zero l-ideals
in 4. Then, since @ is faithful, there are elements g,, g, €@ such that g; I; ={0} and g, I, =+
10}. The l-subgroup (g, I,> ={g€@: |g| <|g,0|, a€1,} is clearly an A-lI-submodule of G.
Since G is irreducible and g, I, + {0}, we have {g, I,> = G.

Choose b€ I, such that g,b= 0. Since g,€<g, I,>, there is an element a €I, such that
[92] <|g1a|. Then O+ |g,b| <|g,| [b] <|gra||b]| <|gu||a|[b] =|g1]]|abl; s00+ abEI, I,.
Thus, 4 is a prime f-ring.
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CorOLLARY 3.9. If an f-ring A has a faithful, irreducible, l-representation, then

A is an ordered ring without non-zero divisors of zero (Theorem 1.4.4).

ProrosiTioN 3.10. If G is a faithful, irreducible, A-l-module, and e€G* satisfies
eA = @, then the mapping a—ea is a homomorphism of the ordered additive group of A onto
Q. The kernel of this homomorphism, I,={a€A: ea =0}, is a mazimal modular right
l-ideal in A.

Proof. Note that, if a € A+, then ea EG+, since e€ G+, Now, since 4 is totally ordered,
a A b =0 implies either @ =0 or b = 0. Hence, a A b = 0 implies ea A eb = 0. Thus, since the
mapping a—ea is clearly a group homomorphism onto @, a—>ea is, by Proposition 1.1.4,
a homomorphism of the ordered additive group of 4 onto G.

Then, by Theorem I.1.6, the kernel I, of this homomorphism is an I-subgroup of the
ordered additive group of 4 which is clearly a right (ring) ideal of A. It is easily seen that
the irreducibility of G forces I, to be a maximal right l-ideal of 4.

Since e 4 = @, there is a € 4 such that eu =e. If a€ A then e(a —ua) =ea —eua =0,

so % is a left identity modulo I,.

CoroLLARY 3.11. If G is a faithful, irreducible, A-l-module, then G is an ordered

group, and |ga| =|g||a| for every g€G and every a € A.

Proof. G is an ordered group, since it is & homomorphic image of the ordered additive
group of A. The second statement now follows. For, either |g| |a| =ga = |ga| or

|g]la] = —ga =]|ga|, since 4 and G are both totally ordered.

Lemma 3.12. If G is a faithful, irreducible, A-l-module and if 0+ g, EGH, then
I, ={a€d:g,a =0} = I..

Proof. It is clear that I, is a right (ring) ideal in A. Also, if a€ I, and |b| <]a|, then
0<|g:0| =|g:||0]1< |g1]|2] =|91@| =0. Thus I, is a right l-ideal in 4. By Proposition
3.10, I, is a maximal right l-ideal in the ordered ring A. Hence, I, < I, since the right
l-ideals of 4 form a chain. '

If 1,#+ I,, then g,I,4+{0}. It is clear that the l-subgroup <{g, I.> ={9€G: |g| <|p1 2|,
a€l.} is an A-l-submodule of G. Since g, I,+{0}, we have {g, I.> =@, by irreducibility.
Let u€A+ be a left identity modulo I, (Proposition 3.10). Then « ¢ I, and u > a for every
a€1,, since 4 is an ordered ring. Since <g; I,> = G, there is an ¢ € I, such that g,a > g,u=+ 0.
Then g, (a —«) 2 0, and this means that g, (a —u) =0, since @ <u. Thus, a —u€l, = I..

Since a € I,,, this implies that € I, a contradiction.

THEOREM 3.13. If an f-ring A has a faithful, irreducible, l-representation, then A

contains no non-zero proper right l-ideals.
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Proof. Let G be a faithful, irreducible, 4-I-module. Now, by Corollary 3.9 and Proposi-
tion 3.10, 4 is an ordered ring containing the (unique) maximal modular right l-ideal I..
By Lemma 3.12, if a€1,, then g,a =0 for every g, €G+. But then ga = 0 for every g€G.
Since G is a faithful 4-l-module, this means a = 0. Thus {0} is a maximal right I-ideal in 4.

CorOLLARY 3.14. If an f-ring A has a faithful, irreducible, I-representation, then A
has an identity.

Proof. By Proposition 3.10 and Theorem 3.13, {0} is a maximal modular right I-ideal
in A. Thus, there is an ¢€ 4 such that z — ex €{0} for every € 4; that is, ¢ is a left identity
in A. By Corollary 3.9, A contains no non-zero divisors of zero. Thus e is a left identity in

a ring without non-zero divisors of zero, so ¢ is, in fact, a two-sided identity in A4.

CoroLLARY 3.15. If an f-ring A has o faithful, irreducible, I-representation, then A is

a J-semisimple ordered ring with identity.

4. l-primitivity
We have seen (Corollary 3.15) that every f-ring that has a faithful, irreducible, I-
representation is a J-semisimple ordered ring with identity. In this section we will see,

conversely, that these are the only J-semisimple ordered rings and that they are the

components in a subdirect union representation for .J-semisimple f-rings.

DerFiniTrON 4.1. If I is any right l-ideal in an f-ring A, then the quotient I-ideal
(I:A)is the set {a€A4: Aa=I}.

LeuMa 4.2, Let A be an f-ring, I a right l-ideal in A. Then:
i) (I : 4) is an l-ideal in A.
ii) If I is modular, then (I : A) is the largest l-ideal of A contained in I.

Proof. It is well known ([13], p. 7), and also easily seen, that (I : 4) is a (ring) ideal in
4 and that if I is modular, then (I : 4) is the largest (ring) ideal of 4 contained in I. More-
over, (I:A) is an l-ideal. For, if a€(I: 4), |b|<|a|, and x€4, then |xb|=|z|[b] <
|z||a| =|xa|, whence xb€ I, since za€ 1. Thus, be(I : A).

DErinrTION 4.3. An f-ring A is said to be l-primibive in case there is a maximal
modular right l-ideal M of 4 with (M : A) ={0}. An l-ideal P of A4 is an l-primitive l-ideal
in case A/P is an l-primitive f-ring.

It is clear that an l-ideal P of A is l-primitive if and only if there is a maximal modular
right l-ideal M of 4 with P = (M : A).
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Definition 4.3 is the exact analogue of the definition of primitive ring and primitive
ideal in the Jacobson theory. Now, every primitive commutative (abstract) ring is a field
([13], p. 7, Theorem 1), so every l-ideal in a commutative f-ring that is also a primitive
(ring) ideal is l-primitive. However, the following examples show that, in general, the

notions of primitivity and I-primitivity do not coincide.

Ezxample 4.4. Let A denote the ring of integers with the usual order. Then 4 is a
commutative, I-simple, ordered ring with identity, whence it is easily seen to be [-primitive.

However, 4 is not a primitive ring, since it is not a field.

Ezample 4.5. Let F be an ordered field, ¢ an (order-preserving) automorphism of
F such that no power of ¢ is the identity automorphism. (For an example of such F, ¢,
cf. [1], p. 46.) If a € F, then we will denote the image of a under ¢ by a°. Let F[4, o] denote
the set of polynomials in one indeterminate 4 over F. Addition in F[A, o] is defined as
usual; the product of two elements in F[A, o] is obtained by first multiplying, formally,

termwise

(Z a; A (Z b; M) = Z a; A'b; A,
i i i,j

and then simplifying by means of the rule la =a°A, a€F.

Then (cf. [13], p. 22, Example 3), F[4, o] is a primitive ring in which the only (two-
sided) ideals are the principal ideals (1*). Now, F'[4, o] can be made into an ordered ring by
ordering lexicographically: a, -+ a;A +--+ +a,A" >0 if and only if @, >0, or a, =0 and
a,>0,0r...,0rqy=a,=---=a, ;=0 and a, >0. The unique maximal modular I-ideal
of F[4,6]is {A). Hence {0} is an l-ideal of F[4, o] that is a primitive (ring) ideal, but is not
I-primitive.

THEOREM 4.6. An f-ring A is l-primitive if and only if 4 has a faithful, trreducible,

l-representation.

Proof. If A has a faithful, irreducible, I-representation, then we have already seen
(Theorem 3.13 and Corollary 3.14) that {0} is the (unique) maximal modular right l-ideal
in A. Thus 4 is clearly an l-primitive f-ring.

Conversely, suppose 4 is an [-primitive f-ring. Then A contains a maximal modular
right l-ideal M with (M : A) ={0}. Let G denote the additive abelian lattice-ordered group
A ~M. Define a law of composition on Gx 4 into G by (x + M)a =za + M for each
x+ ME€G and each a€A4.

Note that the law of composition that we have defined satisfies [z + M||a| =
(|} + M)|a| =|za] + M =|(x + M)a| for every x + M E€G and every a€A. Since condi-

tions i)-iii) of Definition 3.2 are obviously satisfied, ¢ is an A-l-module by the remark
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following Lemma 3.4. Moreover, G is a faithful 4-l-module. For, if (x + M)a =0 for every
x + MEG, then xa€M for every x €4, whence a€(M : 4) ={O}.

It remains to show that @ is an irreducible 4-l-module (Definition 3.7). If e€ A+ is a
left identity modulo M, then e + M is a non-zero positive element of G such that, if x€A4,
then (e +~ M)x =ex + M =2z + M. Thus, (¢ + M)A = @G. If H is any l-subgroup of G, then
H is of the form M’ — M, where M’ is an l-subgroup of the lattice-ordered additive group
of A that contains M (Theorem I.1.7). If, moreover, H is an A4-l-submodule of G, then
M’ is clearly a right l-ideal of 4, whence M’ =M or M’ = A4, since M is a maximal right
l-ideal. But this means that H ={0} or H =, so G contains no non-zero proper A4-Il-sub-
modules. Thus, G is a faithful, irreducible, A-I-module.

COROLLARY 4.7 In an fring A, every maximal modular right l-ideal is a two-sided
l-ideal. Hence, J (A4) ts a two-sided l-ideal of A.

Proof. Let M be a maximal modular right l-ideal in 4. Then (M : 4) = P is the largest
l-ideal of A contained in M, and A/P is l-primitive. But 4/P has a faithful, irreducible,
l-representation, so A/P contains no non-zero proper right Il-ideals by Theorem 3.13.
Since M /P is a proper right l-ideal in 4/P, we have M/P ={0}; that is, M = P.

COROLLARY 4.8. An f-ring A is l-primitive if and only if it is an l-simple ordered ring
with identity (Corollary 3.14).

Thus, every I-primitive I-ideal is maximal. It is not true that every maximal I-ideal is
I-primitive (for example, the I-ideal {0} in the ring of even integers). However, if 4 has an

identity, then every maximal l-ideal is modular, and we have:

CoROLLARY 4.9 If A is an f-ring with identity, then an l-ideal of A is l-primitive if

and only if it is maximal.

CoROLLARY 4.10. An Archimedean f-ring is l-primitive if and only if it is isomorphic

to o subring of the ordered field of real numbers that contains the identity (Theorem T1.4.2).
COROLLARY 4.11. An ordered ring is J-semisimple if and only if it is l-primitive.

Proof. Tf A is an ordered ring, then there is at most one maximal modular right I-ideal
M in 4, since the right l-ideals of 4 form a chain (Proposition 1.2.9). If M exists, then it
must coincide with J(4), so J(4)={0} if and only if {0} is a maximal modular right
l-ideal in A, hence if and only if 4 is l-primitive.

Since, by Corollary 4.7, every maximal modular right I-ideal is a two-sided l-ideal
(hence an I-primitive l-ideal), J(4) is the intersection of I-primitive l-ideals. This leads to

the main structure theorem for J-semisimple f-rings:
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THEOREM 4.12. An f-ring A is J-semisimple if and only if A is isomorphic to a sub-

direct union of l-simple ordered rings with identity.

Proof. A is J-semisimple if and only if the family {P,: «€['} of I-primitive l-ideals of
A satisfies M {P,: «€I'} ={0}, hence if and only if A4 is isomorphic to a subdirect union
of the I-primitive f-rings 4/P,, by Theorem 1.3.7. By Corollary 4.8, each of the 4/P,
has the desired form.

We now know (Corollary 4.7) that the J-radical of an f-ring is a two-sided l-ideal.
With this, we can now complete the description of J(4) that was begun in Section 2.

We may define the concepts “left J-radical”, “left I-primitivity”’, and “left I-quasi-
regular” in a manner similar to that above. Corollary 4.7 and its analogue in this “left
theory” then show that the J-radical and the left J-radical coincide. These facts are sum-

marized in the following:

THEOREM 4.13. Let A be an f-ring. The J-radical J (4) is an -QR l-ideal, and

1) J(4) is the intersection of all maximal modular left l-ideals of A (and each of these is
actually a two-sided l-ideal);

ii) J(A) is the join of the l-QR left l-ideals of A.

It is interesting to note that the analogue of another of the open questions in the
Jacobson theory is readily solved here: I-primitivity and left I-primitivity do coincide for

f-rings.

COROLLARY 4.14. Every I-QR right l-ideal in an f-ring A consists entirely of left I-QR
elements of A.
Theorem 4.12 provides a description of J-semisimple f-rings. For f-rings that are

not J-semisimple, we have:

THEOREM 4.15. If A is an f-ring that is not ¢ J-radical ring, then A/J(A) is J-semi-
simple.

Proof. Let P denote the collection of maximal modular right I-ideals of 4. If P€P,
then PSJ(4), so P/J(A4) is clearly a maximal modular right I-ideal of 4/J(4). Since
N{P:PeP} =J(4), we have J(4/J(4)S N{P/J(A): PEP} ={0}. Thus, if J(4)+ 4,
then A4/J(A) is J-semisimple.

The following theorem is an analogue of a result in the Jacobson theory ([13], p. 10,
Theorem 1). However, it occurs here in much stronger form: the analogous result for ab-

stract rings is true only for two-sided ideals.

THEOREM 4.16. If I is any right l-ideal in an f-ring A, then J(I)=J(4) N I.
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Proof. Let B denote the right l-ideal of I generated by J(I)-I. Clearly, B is a right
l-ideal in A. Moreover, B< J (I), so each of its elements is right I-QR. Hence, BEJ(4),
so a€J (I) implies a” €. (4). But 4/J (4)is {0} or J-semisimple, hence it contains no non-
zero nilpotent elements (Corollary 2.7), so a€J (I) implies a €J (4).

Conversely, J (4) N I is an I-QR right I-ideal in 4, so it is an I-QR right l-ideal in I by
Proposition 2.4. Hence, J (4) N I <.J (I). ’

5. f-rings with descending chain condition for [-ideals

In this section, we will be concerned primarily with f-rings that satisfy the descending
chain condition for I-ideals (Definition I.3.20). As in the structure theory for abstract rings,
these f-rings exhibit several special properties.

If 4 is an ordered ring that satisfies the descending chain condition for {-ideals, then
A must contain a smallest non-zero [-ideal, since the l-ideals of 4 form a chain. Hence, by
Corollary 1.3.10, 4 is subdirectly irreducible. Thus, we are led first to consider subdirectly

irreducible f-rings.
LeEMMA 5.1. If A is a subdirectly irreducible f-ring with zero l-radical, then A is l-simple.

Proof. By definition, 4+{0}. Now, A4 is an ordered ring (Corollary 1.3.12), and A4
contains no non-zero nilpotent elements, so 4 contains no non-zero divisors of zero, by
Theorem I.4.1. Thus, 4%+ {0}.

Suppose 4 is not I-simple. Then, since 4 is subdirectly irreducible, 4 contains a smal-
lest non-zero I-ideal I. We show first that, if b, ¢ are any two non-zero positive elements of
I, then bc <b A c. For suppose that b¢= b. Then, if « is any positive element of 4 not in
1, we have bea > b, whence b{cx —z)> 0. Since b > 0 and A4 contains no non-zero divisors
of zero, cx> x, whence z€ 1. This contradiction shows that be < b. Similarly, bc <e, so
be<bAec.

Now let @ >0 be a fixed element in I, and set J ={d€4: |d| <bacforsomebd,c€I}.
Then J is an l-ideal in A: if d, d'€J, then there are elements b, b, cc’ € I with |d| < bac
and |d'| <V’ac’. Since A is ordered, we may assume that bac >b’ac’. Then, |d—d’| <
|d] +]d’'| <(2b)ac, and |dz|=|d||z| <ba(c|z|) for all z€A, whence (d —d’), dx, and
(similarly) xd are in J. Since a= 0 and N (4) ={0}, J is a non-zero l-ideal of 4, so J 21,
since I is the smallest non-zero l-ideal of 4. Then a€J, so there are positive elements b,
¢€ I with a < bac. But, by the above, bac <ba A ¢ <b A a A ¢ <a. This contradiction yields
the lemma.

The following theorem characterizes those f-rings that are subdirectly irreducible.

This is another instance in which the structure theory for f-rings differs markedly from
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that for abstract rings. The analogous problem is much more difficult for commutative

abstract rings (cf. [8] and [17]), and very little has been done in the non-commutative case.

THEOREM 5.2. An f-ring A is subdirectly irreducible if and only if either

i) A4 is l-simple; or

ii) A is an ordered ring, and there is a non-zero element a in A+ such that a®> =0 and,
for any non-zero element b in A such that b* =0, we have by 2 {a)>. In this case, I ={a) is
the smallest non-zero l-ideal in A.

Proof. Suppose first that A is a subdirectly irreducible f-ring. Then, by Corollary
1.3.12, 4 is an ordered ring. If 4 is not I-simple, then N(4)=+={0}, by Lemma 5.1. In
particular, Z,(4) ={a€A4:a*=0}+{0}. Now, 4 may fail to be I-simple in either of two
ways. In the first case, A =Z,(4), and A contains no non-zero proper l-ideals. It is clear
that, in this case, condition ii) is satisfied, with 7 =<a> = 4 for any non-zero element «
of A. In the second case, A contains proper non-zero l-ideals, so it contains a smallest such
l-ideal 7 (Corollary 1.3.10). Since I is contained in every non-zero l-ideal of 4, it is contained
in Z,(A), and if ¢ is any non-zero element in I, then I = {a). Hence, condition ii) holds in
this case. :

Conversely, every I-simple f-ring is trivially subdirectly irreducible. Suppose 4 satisfies
condition ii), and let B be any non-zero l-ideal in A. If b is any non-zero element in B,
then either |b| >a or @ >|b|. If a > |b|, then b* =|b|* <|a|* =0, so B2 (By2<{a> =1,
by condition ii). If |b| >a, then, clearly, B2 I. Thus, I is contained in every non-zero
l-ideal in 4, so 4 is subdirectly irreducible.

For the remainder of this section, we will be concerned only with f-rings that satisfy
the descending chain condition for l-ideals. As remarked earlier, every ordered ring with

descending chain condition is subdirectly irreducible. Hence, by Lemma 5.1, we obtain:

CoRrROLLARY 5.3 (Birkhoff-Pierce). An ordered ring A=+ {0}, with zero l-radical, that
satisfies the descending chain condition for l-ideals is I-simple.

The proof of this result given by Birkhoff and Pierce actually proves the stronger
statement in Lemma 5.1. It is their proof that we have used above.

If 4 is an f-ring that satisfies the descending chain condition for I-ideals, and if P is a
prime I-ideal in 4, then, by Theorem 1.4.4, 4 /P is an ordered ring without non-zero divisors
of zero that clearly satisfies the descending chain condition for I-ideals. By Corollary 5.3,

A/P is an l-simple f-ring, so we have:

CoROLLARY 54. In an f-ring satisfying the descending chain condition for l-ideals,

every prime l-ideal is a maximal l-ideal.
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In the Jacobson theory for abstract rings, the radical of any ring which satisfies the
descending chain condition for right ideals is a nilpotent ideal. The analogue of this result
does not hold for the J-radical, for we have seen, in Example 1.6, a commutative J-radical
ring that is {-simple (and hence contains no non-zero nilpotents). However, we do have the

result in question for f-rings with identity.

THEOREM 5.5. If A is an f-ring with identity that satisfies the descending chain condi-
tion for l-ideals, then J (A) is nilpotent (hence J (4) = N (4)).

Proof. We show that J(A4) = N (4); the theorem then follows by Theorem 1.3.21. By
Corollary 5.4, every prime [-ideal of 4 is a maximal I-ideal. Since 4 has an identity, every
maximal I-ideal is I-primitive by Corollary 4.9. Hence N (4), the intersection of the prime
l-ideals of A (Theorem 1.4.8), is the intersection of the l-primitive l-ideals of 4; that is,
N(4)=J(4).

COROLLARY 5.6. Let A be an ordered ring that satisfies the descending chain condition
for l-ideals.

i) Ewvery proper l-ideal in A is nilpotent.
i) If A has an identity, then every proper one-sided l-ideal in A is nilpotent.

Proof. By Theorem 1.3.21, N (4) is nilpotent. Thus, if N(4) = 4, then 4 is nilpotent.
If N(A)=+ A, then N(A4) is a prime Il-ideal of 4, by Corollary 1.4.5. So N (4) is the unique
maximal [-ideal in the ordered ring 4, by Corollary 5.4. Thus, i) follows in either case.

If A has an identity, then J (4) is the unique maximal right (left) l-ideal of 4. Hence,
ii) follows from Theorem 5.5.

We close this section with a decomposition theorem for J-semisimple f-rings satisfying
the descending chain condition for I-ideals, the analogue of the classical Wedderburn—

Artin theorem. The proof given here is a simplification of the proof in [3].

Lemwma 5.7 (Birkhoff-Pierce). If A =+{0} is an f-ring that satisfies the descending chain
condition for l-ideals, then A has zero l-radical if and only if A is isomorphic to a (finite)

direct union of l-simple ordered rings.

Proof. If A has zero l-radical, then it contains a collection {P,} of prime l-ideals with

NP,={0}. Since A4 satisfies the descending chain condition for l-ideals, we may choose a
finite number of these, say Py, ..., P,, with NP, ={0}. We may also assume that this finite
i=1

collection is minimal, in the sense that no proper sub-collection has intersection {0}. By

Corollary 5.4, each P, is a maximal l-ideal, hence

(Pi0..NP, ) +P,=A for j=2,3, ..., n.
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Thus, by [2] (p. 87, Theorem 4), A is isomorphic to the direct union of the I-simple ordered
rings A/P;,i=1,2, ..., n.
The converse is obvious.

If, in the proof above, we replace the word “‘prime” by the word “‘l-primitive” each

time it occurs, we obtain a proof of the following theorem, where this time the converse is

immediate by Theorem 4.12.

THEOREM 5.8. If A is an f-ring that satisfies the descending chain condition for l-ideals,
then A is J-semisimple if and only if A is isomorphic to a (finite) direct union of l-simple

ordered rings with identity.

CoROLLARY 5.9. If A is a J-semisimple f-ring that satisfies the descending chain condi-
tion for l-ideals, then A has an identity.

CorROLLARY 5.10. If A is an Archimedean f-ring that satisfies the descending chain
condition for l-ideals, then the following statements are equivalent.
i) 4 is J-semisimple.
ii) 4 contains an tdentity.
iii) A is isomorphic to a (finite) direct union of subrings of the ordered field of real numbers,

each of which contains the identity.

Proof. Now, i) and ii) are equivalent by Corollary 5.9 and Theorem 2.11; and iii)
implies ii) trivially. By Theorem 5.8, if 4 is J-semisimple, then 4 is isomorphic to a finite
direct union of I-simple ordered rings A, ..., 4,, each of which contains an identity. Thus,
A contains an isomorphic copy of each 4;, and, since 4 is Archimedean, each 4; must be
Archimedean also. By Theorem 1.4.2, the 4, have the required form.

It can be seen very easily that the decomposition given by Theorem 5.8 for a J-semi-

simple f-ring 4 that satisfies the descending chain condition for l-ideals is unique in the
following sense: if A = > A, and 4 = > B, are two such decompositions, then m =» and,
iT1 i=1

for some arrangement of By, ..., B, 4; and B, are isomorphic, for ¢ =1, ..., n. The ana-
logous statement for abstract rings ([13], p. 42, Theorem 1) depends only upon the fact
that A* = A (Corollary 5.9) and upon the notion of indecomposability, which has the same

meaning in f-rings, so the argument need not be repeated here.

6. Remarks

In this section, several asides to the main stream of this chapter are considered. They

consist mostly of questions that arose naturally during the course of this study.
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1. Tt was remarked in Section 3 that an l-primitive f-ring is, in a certain sense, the
f-ring analogue of a division ring: the l-primitive f-rings are precisely those f-rings with
identity that contain no non-zero proper right (left) l-ideals. Since an I-primitive f-ring is
an ordered ring without non-zero divisors of zero, it nevertheless seems natural to ask
whether an [-primitive f-ring can always be imbedded in an (ordered) division ring. The

following example gives a negative answer to this question.

Example 6.1. Chehata ([7]) and Vinogradov ([22]) have independently given the
same example of an ordered cancellative semigroup § with least element which cannot be
imbedded in a group. The semigroup 8 is the famous example of Malcev ([16]): it consists
of a countable number of elements which are discretely ordered; thus we may denote the
elements of 4 by x,, z,, ..., where ¢ < j implies z, < z;. We may adjoin an identity element
to S as follows: let 8" = SU {w,}, where, for 1 =1, 2, ..., x;3, =2, %, = x; and x, <z,, and
x5 = x,.

Now let 4 denote the semigroup ring of 8" over the (ordered) field of rational numbers:

n
A consists of all finite sums > a,x;, where each a; is a rational number. Addition in 4 is
i=0

defined coordinatewise; the rule for multiplication is given by

(éoai xi) (éobj xj) B % ( 2,500 %

TiTj=Tk

Order A lexicographically: > a;z; > 0, where a,+ 0, if and only if a, > 0. Clearly, this
i=o

makes 4 into an ordered ring with identity z,. Every positive element of 4 that is less than
Z, in this order is of the form axy, 0<a <1, so A is l-simple. Hence, 4 is an l-primitive
f-ring. 4 cannot be imbedded in a division ring. For, if it were, then the semigroup S, a
sub-semigroup of the multiplicative semigroup of 4, would be imbedded in a group, con-

trary to the result stated above.

2. By Corollary 4.7, every maximal modular right l-ideal in any f-ring is a two-sided
ideal. It seems natural to ask if there exist f-rings that contain right I-ideals that are not

two-sided. The following example answers this question affirmatively.

Erxample 6.2. Let A be the algebra over an ordered field F generated by two ele-
ments e, z, where e =¢, ez =2, and ze =2° = 0. The elements of 4 are of the form ae + bz,
where a, bEF. Order 4 lexicographically with ¢ dominating 2: e + bz >0 if and only if
a>0ora=0andb=>0. It is easily seen that, under this order, 4 is an ordered ring.

Now'let F be a non-Archimedean field, ® a non-zero proper l-subgroup of the ordered



194 D. G. JOHNSON

additive group of F. Then ®z ={bz: b€®d} is a right l-ideal in 4, since ®z-4 ={0}. But
@z is not two-sided: 4@z = Fz¢ P,

In this example, the existence of a right l-ideal that is not two-sided is intimately
connected with the presence of a left annihilator of the ring. This leads us to ask if there
exist ordered rings without non-zero divisors of zero which contain one-sided l-ideals that
are not two-sided. The affirmative answer to this question will be presented in Chapter IV.

3. In the Jacobson theory for abstract rings, the analogue of our definition of right
l-quasi-regularity (Definition 2.1) has an equivalent formulation in terms of the circle
operation ([13], p. 7). This use of the circle operation yields a more conveniently applied
condition on the elements of the radical: the existence of a right quasi-inverse. The question
considered here is the following: does there exist an f-ring analogue of the existence of a
right quasi-inverse that is equivalent to right l-quasi-regularity?

If A is an f-ring with identity, and if a €4 is right I-QR, then 1€{(1 —a)4), = A.

n n
Hence, there are elements «,, ..., 2, in 4 such that 1 < 3 |z, —az;| =|1 —a| > |2;|. Then
i1 i=1
n n n
1=1*<[(1—a)2 || =(1—a)y, wherey = > |x;|(L —a) > |x,|. If we writey =1 — =,
i=1 i=1 i=1
then1 < (1 —a)(1 —z),s0a + 2 —ax <0. Conversely, if @ +  — ax < 0, then, withy =1—ux,
it is easily seen that 1 <y —ay, whence {((1 —a)4), = 4.
Thus, the proper f-ring analogue of the existence of a right quasi-inverse of an element
a seems to be the existence of an element x such that a ox =a +2 —az <0. We have thus

proved the following result:
Pro?oOSITION 6.3. If A is an f-ring with identity, then a €A is right I-QR if and only
if there exists an x€ A such that a ox < 0.

We also have the following result, the proof of which is omitted:

PrROPOSITION 6.4. If A is an ordered ring, then a € A is right I-QR if and only f there
is an €A such that a ox < 0.

It is clear that we may, by applying Proposition 6.4 in each coordinate, extend this
result to every complete direct union and every discrete direct union of ordered rings
{Definitions I1.3.5 and 1.3.8). However, the status of this question for arbitrary subdirect

unions of ordered rings is not known.

CuEAPTER III. IMBEDDING AN f-RING IN AN f-RING WITH IDENTITY
The problem that gives rise to this chapter is the following: given an f-ring 4 without
identity, is it possible to imbed 4 as a sub-f-ring of an f-ring A* with identity? That is,

we hope to find an f-ring 4* with identity and an isomorphism of 4 into 4%,
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It is more natural to ask if a given f-ring 4 can be imbedded as a right l-ideal of an
fring A* with identity. It will be seen that both questions have, in general, a negative
answer. Hence, the central problem of the chapter becomes the characterization of those
f-rings that can be imbedded as right I-ideals (respectively, sub-f-rings) of f-rings with
identity.

1. Preliminary concepts

In this section, we present the notation and terminology that is to be used throughout
this chapter. The results stated in this section are due to Brown and McCoy ([6]) and are
valid for arbitrary rings. In this section only, the terms ring, homomorphism, ideal, imbedding,
etc. will have their usual (ring theoretic) meaning.

Let 4 be any ring. If a fixed element a € 4 satisfies ab = ba = nb for some fixed integer
n and all bEA, then a is said to be an n-fier of 4, and = is said to have an n-fier a in 4.
Note that the zero of 4 is always a O-fier of 4, and that there is a 1-fier e of 4 if and only
if e is the identity element in A,

The set K of all integers n which have n-fiers in 4 is an ideal in the ring of integers.
The ideal K is called the modal ideal of A; its non-negative generator k is called the mode
of 4.

It is well known that every ring can be imbedded as an ideal in a ring with identity.
The usual construction, which was apparently first published by Dorroh ([9]), follows.

Throughout this chapter, for any ring 4, we will let 4’ denote the ring of ordered

pairs (n, a), » an integer and ¢ € 4, where
(n, @) = (m, b) if and only if » =m and a =1b,
(n, @) + (m,b)=(n+m,a+d),

(n, a) (m, b} = (nm, ma + nb -+ ab).

Then A’ is a ring with identity in which 4 ={(0, a): €4} is an ideal isomorphic with 4.
When no confusion will result, we will suppose the identification a<« (0, a) has been made,
so that 4 is considered as an ideal in A4’.

If ais an n-fier of 4, for n == 0, then the set g (», @) of all integral multiples of (n, —a)€ 4’
is a two-sided ideal in 4’. Denote the ring 4'/o(n, a) by A(n, a), and let (m, b)— (m, b)
denote the natural homomorphism of 4’ onto 4 (n, a). Then the correspondence b— (f)m
from A4 onto the ideal of 4 (n, a) consisting of all elements of the form (0—,?) is an iso-
morphism.

13 —60173033. Acta mathematica. 104, Imprimé le 20 décembre 1960
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As usual, if no confusion will result, we will assume that the identification b« (a 135
has been made, so that A is considered as an ideal in 4 (n, a).

Let & denote the collection of rings consisting of A’ and all 4 (n, a), for 04 n€K and
a an n-fier of 4. Every member of € is a ring with identity that contains 4. A central result

in [6] is the “completeness” of this set of extensions of 4 in the sense of the following:

TeeorEM 1.1 (Brown-McCoy). If B is any ring with identity that contains A, then
there is a subring B, of B that coniains A and a ring S€S such that B, is isomorphic with S
under an isomorphism that leqves A elementwise fizxed.

The main results of this chapter are, in a certain sense, the analogues of this result
(Theorems 2.5 and 4.4, Corollary 2.6).

2. The strong order

In this section, we will consider the special form that the results stated in Section 1 take
for f-rings. Throughout the rest of this chapter, we will let 4 denote an f-ring without
identity, £ the mode of A, and x a k-fier of 4. If k= 0, then z is unique:

Lemma 2.1. If A vs an f-ring with mode k > 0, and if x is a k-fier of 4, then:
i) =0,

ii) 4 contains no non-zero annihilator on either side;

iii) If @ is an n-fier of A, then a =tx, where t =n/k.

The simple proof of this lemma is omitted. For any f-ring 4, we will let 4, denote the
ring A’/o (k, x), where, for k= 0, x is the (unique) k-fier of A, and # =0 if k =0. (Hence,
A, is isomorphic to 4" if £ =0.)

We will see that the ring extension 4, of 4 can always be partially ordered by a partial
ordering that extends the order on A4 and makes 4, into a partially ordered ring. To
define this partial order on A,, we first consider the subset P(A4’) of the ring extension A’
defined by: (n, a) EP(A’) if and only if either

i) n=0and a€ 4™, or

ii) =0 and nd +da€A+t, nd +ad€A+ for all d€EA4+. Since, in 4', (n,a)(0,d) =
(0, nd + ad) and (0, d)(n, a) = (0, nd + da), condition ii) merely states that (n, a) (0,d)€
P(A4’) and (0, d)(n, a)EP(A4’) for all (0, d)EP(A’). The following example shows that the
conditions “nd + da€A+ for all d€A+” and “nd +ad €A™ for all d€ A+ are independent.

BEzxample 2.2 (ci. Example 11.6.2). Let A be the algebra over the ordered field ¢
of rational numbers generated by two elements ¢, 2, where ¢> =¢, 2> =26 =0, and ez = z.

Order A4 lexicographically with e dominating: ae + bz = 0 if and only if ¢« > 0 or ¢ =0 and
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b>0.In A’, consider the element (1, — e —2). For any element ae +b2€A4+, 1-(ae + bz) +
(—e—z)(ae +bz) =ae+bz— (ae +bz) =0€A+. However, e€A+, and le-te(—e—2)=
—z¢A4+.

We will show that P(A4’) has the following properties: 1) (0,0)€P(4’), II)
PA)N (—PA")) =p(k, ), III) P(A) +P(A)SP(4'), IV) P(A")-P(A")=P(A’). Then,
by 1I) and III), (n,a)€EP(A4’) if and only if (n, a) +o(k, ) SP(A4’). Hence, the subset

A7 of 4in the following theorem is well-defined.

TuroreM 2.3, Let A be any f-ring, and A, as above. The subset A7 of A, defined by

(n, a)€A; if and only if (n, a) EP(A")
ts the set of positive elements for a partial ordering of A, that extends the order of A and under

which Ay is a partially ordered ring.

Proof. By Proposition 1.2.2 and the remarks made above, it is sufficient to prove

properties T)-1V) stated above. Property I) clearly holds.
II) Suppose (n,a)€P(A)N(—P(4"). If n =0, then a€d*+n(—A4+), so a=0,

whence (n,a) = (0,0)€p (k, z). If n= 0, then it can easily be shown that --a is an n-fier
of 4,s0n =tkand — g =tx for some integer ¢, by Lemma 2.1, i), That is, (n, a) =¢(k, - x)
€o(k, z).

Conversely, if (n,a)=t(k, — 2)€o(k, ), then nd+ad=tkd —tad=0=nd +da
€4+ n (—A) for every d€ A+, s0 (n,a)EP(A)N (—P(A4)).

III) Suppose (n,a), (m,b)EP(A’). For every d€A+, nd-+ad, nd+da, md+bd,
md -+ db are positive elements of 4, so (n +m)d + (@ +b)d = (nd + ad) + (md +bd) €A+
and, similarly, (n +m)d +d(a +b)€A+. Thus, if n +m=+ 0, it is clear that (n, a) + (m, b)
€P(A"). If n +m =0, then there are two cases:

i) m=m =0. Then a, b€A*, so @ +bEA+, whence (n, a) + (m, b) = (0, a -+ b)EP(A’).

ii) n = —m= 0. Suppose n > 0. Now, since (—n, b)EP(4’), we note that b€.A+, since
—nb=+bb-= —nb~ —b ® €A+ implies that b~ =0. Also, if 0==d€A+, then — nd +
bd€A+, so bd=+ 0. As noted above, (n +m)d +d(a +b) =d(a + b)€EA+ for every d€ A+,
Hence, in particular, b(z +b)€A+, so [b(a +b)]- =b(a +b)— =0. Thus, (¢ +b)- =0, so
we have (n,a) + (m, b) = (0, a + b)EP(A").

1V) Suppose (n, a), (m,b)€EP(A’). We wish to show that (n, a)(m, b) = (nm, nb+
ma + ab)EP (A’). There are three cases:

1) » =m =0. In this case, a, b€EA™*, so ab€ A+, whence (n, a)(m, b) = (0, ab)EP(4’).

H) n4+0, m=0 or n=0, m= 0. We suppose n= 0, m = 0; the other case is similar.
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Since (m, b) = (0, b))EP(A’), we have bEA*; since (n, a)EP(A’), we have nb+ab€Ad+.
Thus, (n, a)(m, b) = (0, nb +ab)EP(4’).
iii) nm + 0. Then, for every d€A+, we have nmd + (nb+ma +ab)d =n(md +

bd) + a(md+bd)€ A+, since (n, a), (m, b)EP(A’). Similarly, nmd + d(nb +ma +ab)ed+
for every d€ A+. Hence, (n, a)(m, b)EP(A’).

DEeriNiTION 2.4. The partial order for 4, defined by the set A{ of Theorem 2.3 is
called the strong order for 4,.

If A, is made into a partially ordered ring under a partial ordering < that extends the
order on 4, then any m > 0 is positive in the strong order for 4,. For, if d€ A+, then
(0, d) >0, since < extends the order on A. Then, since 4, is a partially ordered ring under

<, (n,a)(0,d)=(0,nd +ad) =0 and (0,d)(n,a)=(0,nd +da) >0, whence nd+ad,

nd + da€A+. Thus, (n, a) is positive in the strong order for 4,. In the usual terminology,
we have shown that the strong order is “‘stronger’” than <. Thus, the strong order is the
strongest possible partial ordering of 4, that extends the order on 4 and makes 4, into

a partially ordered ring.

THEOREM 2.5. Let A be an f-ring without identity.

i) If A is imbedded as a sub-f-ring of an f-ring B with identity, then there is a subring C
of B containing A such that C is ring isomorphic to A, under a correspondence that leaves 4
elementwise fixed. Moreover, the partial order induced tn A, by that of B restricted to C via
this ring isomorphism is the strong order for A,.

ii) A can be imbedded as a sub-f-ring of an f-ring with identity if and only if A,, with
the strong order, can be imbedded as a subring of an f-ring whose identity element is the identity

element of A,.

i) A, can be made into an f-ring by a partiol ordering that extends the partial order on
A if and only if the strong order for A, makes A, into an f-ring.

The proof of this theorem will be accomplished by establishing a series of intermediate
results, which will be designated by 1), 2), etc. We first remark that the subring C of part i)
of the theorem need not be a sub-f-ring of B, as will be shown later by an example.

In the construction of the subring C, we will, at times, need to differentiate between

the following three cases:

I) A has mode k > 1; we will, as usual, let « denote the k-fier of A.
II) 4 has mode k =0, and there is an element y € A+ such that y|a| A |a|y > |a| for
every a€A.
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IIT) A4 has mode &k =0, and 4 does not satisfy II). Hence, for each a € A+, there is an
element z, € A+ such that az, A 2,a F 2,.

Now, since B is an f-ring, it is isomorphic to a subdirect union of ordered rings (Theorem
1.3.14). Thus, we may choose a collection {I,: «€T"} of l-ideals in B with zero intersection
such that each B,= B/I, is an ordered ring. For each «€Il', let %, denote the natural
homomorphism of B onto B,.

In B, define the element 1 as follows: in cases I) and II), T =1 A 2y, where y€ A4+
is such that y|a| A |a|y = |a| for cach a€4; in case III), T = 1, the identity of B. Then,

1) For each €T, we have k,(1) =k, (1) or A, (1) =0.

For, if h,(1)=h,(1), then T=1A2y=+1, and b, (1) =h, (1 A 2y) =k, (1) Ak (29) =
h«(2y), since B, is an ordered ring. Then, if we assume that %, (y) = 0, we have &, (y) =
b () R (1) > R (y) - he (2y) = 2k, (y%). But, since y* >y, this yields Ak, (y) > 2h.(y) >0, a
contradiction. Hence, %, (y) =0, s0 k(1) = h, (1) A 2k, (y) = 0. An immediate consequence
of 1) is

2) =1, and 51 =10 for each b€ B.

Now, if I==1, then T=1A2y, and al=a(l A 2y) =a A 2ay =a =Tafor each a €A+,
since ay = a and ya = a. Thus, since we may write each element of 4 as the difference of
positive elements, we have

3) Ta =al =aq for each a € A.

If B is an ordered ring, then we have the following result in case I):

4) If B is an ordered ring, and y is an n-fier of A, for n >0, then n-1 =y.

For, y >0 by Lemma 2.1, whence (y — 1)y = (»n — 1)y > 0. Hence, y > 1, so we have
0=y —ny| =y|ly—nl]| =]y —nl|>0.

We use 4) to prove:

5) Incase I), k-1 =x.

By 4), whenever k(1) =4,(1), we have kh,(1) = k,(x), since k() is a k-fier of the
subring %, (4) of the ordered ring B, with identity. If %,(1) =0, then &, (x) = k,(1-2) =0.
Thus, b, (k1 — ) = kh, (1) — h, () =0 for each «€T, so k1 —x€N{I,: x€l'} ={0}.

We now have:

6) The subring C' of B generated by 1 and 4 is (ring) isomorphic with 4, under the

correspondence 1 + a<> (n, a).
For, by 2) and 3), 1 is the identity element for C. In cases IT) and III), it is clear that

this correspondence is one-to-one. In case I), we have (n, @) = 0 if and only if (»n, a) € (k, %),

whence if and only if n =tk and @ = — ¢ for some integer ¢. Thus, under the correspondence

nl +a—{n, a), nl +a—0 if and only if nl +a =tk1 —tx =0, by 5). Hence, in this case,
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also, the correspondence is one-to-one. Since nl + a—»m is clearly a (ring) homomor-
phism, this proves 6).

We will call the “strong order for C”* that partial order on C that is induced, via this
isomorphism, by the strong order for 4,.

7) The partial ordering of B, restricted to O, is the strong order for C.

The partial ordering of B, restricted to C, extends the order on 4 and makes C into
a partially ordered ring. As we have already noted (cf. the discussion following Definition
2.4), the strong order is the strongest such partial order on C; that is 1 +a€ B+ implies
that »l + a is positive in the strong order.

Conversely, suppose n1 + a is positive in the strong order for C, but that #n1 + a ¢ B+.
We will show that, in each of the three cases, there is an element d € A+ such that nd +

da ¢ A+, thus contradicting the assumption that »1 + a is positive in the strong order for ¢

1) Since n1 + a ¢ B+, we have k(n1 + a) ¢ B+, by Proposition 1.1.5, x). But, k(n1 +a) =
n k1 +ka =nz+ xa, by 5), and 2€ A+ by Lemma 2.1.

II) View the elements of B as elements of the complete direct union of the B3,. Then,
since n1 -+ a¢ B+, there is an «€I" such that h,(nl +a)<0. Now, h, (1) =h,(1), since
otherwise, by 1), k(1) =0 and, by 2) and 3), h,(n1 +a) =h,(1) -k, (n1 +a)<0. Thus,
since 2y =2y A 1 =1, we have h, (2y) = (1), and &, (n (2y) + (2y)a) =k, (2¥) ko (n] + a) <
ho(n1+a) <0, whence n(2y) + 2y)a g A+.

III) We first note that, since n1 + a is positive in the strong order for C, we must
have n>0. For if n <0, then 0 <nz+az<—z-+az and, similarly, 0 <~z +za for
every z€A+. But this means that |az| = |a||z| Za|z| = |z| and |za| > |z]| for every z€ 4,
contrary to the hypothesis of case III). Thus, n = 0.

Now, since we have assumed that n1 + a ¢ B*, we must have »n >0, since n1 + ¢ is
positive in the strong order for C, and the strong order coincides, in 4, with the partial
order on B.

As before, there is an a€I" with &, (n1 +a) <0 and h,1 =k, (1) = 0 is the identity ele-
ment of B,. Thus, we have k,(—a)>nh (1) =nh, (1) >0, so h(|a])=|h(—0a)| =
ho(—a) = h,(1). Hence, hy(n|a|+|a|a) =h.(|a]|)-ha(n]+a) <h,(n]+a) <0, which im-
plies that n|a| + [a]a 0.

Now, 6) and 7) prove part i) of Theorem 2.5. To prove part ii), we have:

8) B*=1B={1b: b€ B} is an f-ring with identity I.

For; by 2), the mapping b— 15 is a ring homomorphism of B onto B*. Moreover, since
1€ B+, we have (1b)+ = 1b+ for each b€ B, so, by Proposition 1.1.4, this mapping is also a

homomorphism of the lattice structure. Since 1 is the identity element in O, the elements
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of C are fixed under this homomorphism. It is clear that 1 is the identity element of B*,
so part ii) of Theorem 2.5 is proved.

Now, if B = A}, then b—1b5 is an isomorphism, since B is generated as a ring by 1 and
A. This proves part iii) of Theorem 2.5.

Thus, the proof of Theorem 2.5 is now complete. An immediate consequence of part i)

of the theorem is the following corollary:

COROLLARY 2.6. An ordered ring A without identity can be imbedded as a subring
of an ordered ring with identity if and only if A, is an ordered ring under the strong order.

The following example shows that the subring C of B in part i) of Theorem 2.5 need
not be a sublattice of B.

Example 2.7. Let A denote the f-ring of all continuous real-valued functions on the
interval [0, 1] which satisfy f(0) =0 and f(1) = 2» for some integer n, where the algebraic
and lattice operations are as in Example 1.3.2. Let B denote the f-ring of all continuous
real-valued functions on [0, 1]. Then A4 is an f-ring without identity that is imbedded as
a sub-f-ring of the f-ring B with identity. The subring € of B consists of all n1 + f, where
1 is the identity in B (i.e. 1(x) =1) and f€4; hence g€C if and only if g(0) =m and g (1) =
2n + m for integers m, n.

Now, C is not a sublattice of B since, if f denotes the element of 4 defined by f(x) =2z,
then g =1 A f satisfies g(0) =0 and g(1) =1, whence g¢C.

The next theorem describes a special elass of f-rings which can be imbedded as I-ideals
in f-rings with identity. The statement concerning ordered rings will be strengthened con-

siderably in Section 4.

TasorEM 2.8. Let A be an f-ring in which |ab| <|a| A |b| for every pair a, b of ele-
ments of A.
1) Under the strong order, A, = A’ is an f-ring and A is an l-ideal in A4,.

ii) If A is an ordered ring, then, under the strong order, A, is also.

Proof. Since |ab| <|a| A |b] for every pair a, b of elements of 4, it is clear that the
mode of 4 is 0, hence that 4, = 4’. Since, for every d€A+, and every integer n > 1, we
have nd > d = |d| = |ad| > — ad and, similarly, nd > — da, for every a € 4, the strong order

for A, is just the lexicographic order:
(n,a)€Ay if and only if n >0 or n =0 and o > 0.

For each (n, a)€4,, it is clear that (n, @)* = (n, @) V 0 exists and is given by:
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(n, @) if n>0,
(n,a) vO=1 (0, a") if n=0,
(0,0) if n<O.

Thus, by Proposition 1.1.2, A4, is, under the strong order, a lattice-ordered ring. In 4,,
the identity element (1, 0) is a strong order unit: if (n, a) €4, then (|z| + 1)(1, 0) > (n, a).
Hence, by Proposition 1.3.4, i), 4, is an f-ring.

To complete the proof of i), we must show that A4 is an l-ideal in 4,. It is a ring ideal,
so we must show that |(0, a)| = (0,|a]|) > (n, b) > 0 implies (n, b)€ 4 (that is, n = 0). Now,
(n, b) > 0 impliesn > 0,and (0,|a|) = (n, b) implies (— ,|a| — b) >0, whence —» > 0. Thus
n=0.

We have shown that 4, is an f-ring and 4 is an l-ideal in 4,. If, now, 4 is an ordered
ring and (n, @) €4,, then it is clear that (n, a) €A or (n, a)€(— A1), so 4, is an ordered

ring.

3. Imbedding as a sub-f-ring
We consider the following condition for an f-ring A:

for all a, b, cEA* and all integers n,
(@b —nb)A (nc—ac)<0, (ab—nb) A (nc —ca) <0, *
(ba —nb) A (nc—ac) <0, (ba —nb) A (nc —ca) <0.

This condition is clearly equivalent to:

for all a, b, c€ A+ and all integers =,
[(ab —nd) V (ba —nb)] A[(nc —ac)V (nc —ca)] <O. (*)

Lemma 3.1. If A is an ordered ring that satisfies (*), then A can be imbedded in an

ordered ring with identity.

Proof. We show that the strong order for 4, is a total order. Let (n, a) € 4,; we wish to
show that (n, @)€4; U (— A7). It is clearly sufficient to consider the case n > 0.If n =0,
then (n, @) EAT U (— A7), since A is an ordered ring. Tf n >0 and a € 4+, then (n, ) EAT.
If n >0 and — a€A+, and if (n, @)= 0, then there is a b€ A+ such that either nb + ab=+ 0
or nb+ba=+0. We suppose nb +ab=nb— (—a)b>0; the other cases can be handled

similarly. For any c€ A+ we have, by (*),
(nb—(—a)b)A ((—a)ce—nc)<0and (b — (—a)b) A (c(—a) —nc) <0.

Since nb +ab >0, we have (c(—a)—nc)V ((—a)c —nc) <0, whence nc+ac€A* and

ne + ca €A+ for each ¢c€A+. Thus, in this case, (», a) EA7.
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THEOREM 3.2.(Y) If A is an f-ring, then the following are equivalent:
i) A can be imbedded as a sub-f-ring of an f-ring with identity;
ii) A satisfies condition (*); '
iil) if A= 2,{A4,: €T} is any representation of A as a subdirect union of ordered rings

Ay, then each A, can be imbedded in an ordered ring A} with identity.

Proof. Suppose A4 is a sub-f-ring of the f-ring B with identity. If a, b, c€EA* and
if » is any integer then, in B, (@ —n-1)A (1 —a) <0, and it is easily seen that
(@b —nb) A (nc—ac) =(a—n-1)bA (n-1 —a)c <0. The other relations in (*) follow simi-
larly. Thus, i) implies ii).

That iii) implies 1) is obvious. To see that ii) implies iii), observe that condition (*) is
preserved under homomorphism. Hence, if A4 satisfies (*), then each A, satisfies (*),
whence each 4, can be imbedded in an ordered ring A with identity by Lemma 3.1.

As an immediate consequence of the equivalence of i) and iii) above, we have:

CorROLLARY 3.3. If A is an ordered ring, then A can be imbedded as a sub-f-ring of
an f-ring with identity if and only if A can be imbedded in an ordered ring with identity.

It is now easy to give an example of an f-ring that cannot be imbedded as a sub-f-ring
of an f-ring with identity. For, by Theorem 3.2, we have only to display an f-ring in which
condition (*) fails to hold.

Example 3.4. Let A be the algebra over the ordered field @ of rational numbers
generated by two elements e, z, where e? = ¢,2* =ze = 0, and ez = 2. Order 4 lexicographically
with e dominating: ae + bz > 0 if and only if ¢ > 0 or a =0 and b > 0. With this ordering,
A becomes an ordered ring. The element 2e €A+ satisfies 2e-¢ =2¢ and 2-2e = 0. Thus,
there are elements a, b, c€A+, (a =2¢, b =¢, ¢ =2) and an integer n (n =1) such that

(@b —nb) A (nc —ca) > 0. Thus, 4 is an f-ring which does not satisfy condition (*).

TarorEM 3.5. If 4 is an ordered m'ng without non-zero divisors of zero, then 4 can

be imbedded in an ordered ring with identity that confains no non-zero divisors of zero.

Proof. We first show that 4 can be imbedded in an ordered ring with identity by
showing that condition (*) holds in A4. ’

Let a, b, c€EA™, and let » be an integer. We may assume that b= 0, since otherwise
the relations of (*) hold trivially. If ab—nb€A+ then, for d€A*, (da —nd)b=
d{ab —nb)€ A+ .Since 04 b € A+, this implies that da — nd € A+ for each d € A+, In particular,
ba —nb€A*, so b(ac —nc) = (ba —nb)c€ A+, whence ac — nc€A+. Thus, if ab —nb€A4H,

(1) The author wishes to thank the referee, whose observations led to the present form of Theorem
3.2,
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then (nc —ca) V (nc —ac) <0. If, on the other hand, ab —nb€ — 4+, then (ba —nb)b =
b(ab —nb)€ — A+, whence ba —nb€ — A*+. Thus, in this case, (ba —nb) V (ab —nb) <O.
We have shown that, in either case, the relations of condition (*) hold.

Thus, under the strong order, 4, is an ordered ring. To show that 4, contains no non-
zero divisors of zero, it is sufficient, by Theorem 1.4.1, to show that 4, contains no non-
zero nilpotent elements. Hence, suppose W EN(4,), the set of nilpotent elements of 4,.
Since N(A4,) is an l-ideal in 4,, (», @) (ab_) = WGN(AI) for each b€A4. Since 4
contains no non-zero nilpotent elements, we have nb +ab =0 for each b€ 4. Similarly,
nb +ba =0 for each b€ 4. Hence, —a is an n-fier of 4 and it follows that (Ta)Eg (k, x)
(Lemma, 2.1), so (n, a) = 0. Hence, N (4,) ={0}.

Theorem 3.5 is the analogue of a result of Szendrei ([21]) for abstract rings without

non-zero divisors of zero. In fact, Szendrei’s ring construction is the same one that we have
used. In [15], Johnson remarked, without proof, that Szendrei’s result also applied to
ordered rings.

There are two important classes of f-rings for whirh special imbeddings are

always available:

THEOREM 3.6. If A is a J-semisimple f-ring, then A can be imbedded as a sub-

[-ring of a J-semisimple f-ring with identity.

Proof. By Theorem 11.4.12, A is isomorphic to a subdirect union of I-simple ordered

rings with identity; their complete direct union is a J-semisimple f-ring with identity.

TrEOREM 3.7. If A is an f-ring with zero l-radical, then 4 can be imbedded as a sub-f-

ring of an f-ring with zero l-radical that contains an identity.

Proof. By Theorem 1.4.8, 4 is isomorphic to a subdirect union of ordered rings A4,
which contain no non-zero divisors of zero. Each of these can be imbedded in an ordered
ring A} with identity that contains no non-zero divisors of zero by Theorem 3.5. The

complete direct union of the A4 is the required f-ring with zero /-radical.

4. Imbedding as an [-ideal

The main result of this section is a strengthening of Theorem 2.5 for imbedding as a
(right) l-ideal: if an f-ring A without identity can be imbedded as a (right) l-ideal in an
f-ring B with identity, then there is a standard imbedding available (i.e., under the strong
order, A, is an f-ring).

The following result immediately eliminates many f-rings from consideration:
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ProrosiTioN 4.1. If 4 is an f-ring without tdentity that contains elements a, b such
that lac| > |c| and |cb| = |c| for all c€ A, then A cannot be imbedded as a right l-ideal in any

f-ring B with identity.

Proof. Note that it is sufficient to assume that there is an a’ €4 such that |a’c| = |¢|
and |ca’| = |¢| for all c€A (e.g. @’ =|a| V |b]).

Now suppose that 4 is a right l-ideal in the f-ring B with identity. Then 1 A |a’|€A4.
But, (LA |a'|)|c]=]c| A |a'c|=]|c| for every c€A. Thus, for any c€A4, (LA |a'|)c =
(LA |a'|}(er —e¢) = ¢t~ ¢ =c. Similarly, ¢(1 A |a’]) = ¢ for every c€A. Thus, 1 A |a'| is
an identity in A, a contradiction.

For the sake of economy, we introduce the following notation:

DEerINITION 4.2, If 4 is an f-ring that satisfies

1) A does not contain an identity element, and

2) A contains no element a’ such that |a’c| A |ca’| = |c| for all c€4,
then 4 is called an fp-ring.

In view of Proposition 4.1, we need concern ourselves only with f,-rings. They are
the only f-rings without identity that can possibly be imbedded as right I-ideals in f-rings

with identity. However, not every fp-ring can be so imbedded:

Example 4.3. Let N denote the space of non-negative integers in the usual (discrete)
topology. Then C(N) consists of all sequences of real numbers. Let A denote the sub-f-
ring of (V) consisting of those null sequences a = (a,: n =0, 1,2, ...) with a, =2k, an
even integer. Then 4 is easily seen to be an f,-ring.

We show that A cannot be imbedded as an I-ideal in an f-ring with identity by proving
that if 4 is imbedded as an l-ideal in a lattice-ordered ring B with identity, then the
identity element of B is not a weak order unit (cf. Proposition 1.3.3). For, let b€EA be
defined by b, =2 and b, =0 for n+ 0. Now b? =2b<¥ b, so b<1, whence b A 1 b. But,
since 4 is an l-ideal in B and b€ A+, we must have bA 1€ 4. The only a€4 with0 <a <b
anda+bisa=0,s0bA1=0. Since b=+ 0, 1 is not a weak order unit in B.

Thus, 4 is an example of a commutative f,-ring without non-zero nilpotent elements
that can be imbedded as a sub-f-ring of an f-ring with identity but cannot be imbedded
as a right l-ideal in any f-ring with identity.

By condition 2) of Definition 4.2, every f,-ring has mode k=0, so 4;,=4". We
notice that if (»n, ¢)€4’ is positive in the strong order, then # > 0. For, if n <0, then
= |d| + |ad| Zn|d| +a|d|>0 and —|d|+ |da| >0, whence |ad| A |da| > |d|, for every
d€ A, contrary to Definition 4.2.
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Now, by Theorem 2.5, if an fy-ring A is imbedded as a sub-f-ring of an f-ring B with
identity, then there is a subring C of B that contains 4 and is ring isomorphic to A’ under
a correspondence that leaves 4 elementwise fixed. Moreover, the partial order induced in
A’, via this ring isomorphism, by the partial order in B is the strong order. As noted above,
the mode of 4 is zero. Moreover, 4 contains no y > 0 which satisfies ya A ay = a for every
a€A*. Thus, in the language of Section 2, 4 belongs to case ITI. We recall, from the proof
of Theorem 2.5, that, in case III, the identity element of the subring C' of B can be taken
to be the identity element of B. We now have:

THEOREM 4.4. If an fp-ring A can be imbedded as a right l-ideal in an f-ring B with
tdentity, then B contains a sub-f-ring C that contains A and the ideniity of B and such that C
18 1somorphic to A', with the strong order for A’, under a correspondence that keeps A element-

wise fixed.

Proof. By the remarks made above, we need only show that the subring C of B provided
by Theorem 2.5 is a sub-f-ring of B. We will denote the elements of C by (n, a), etec. (i.e., as
the elements of 4°). We will show that (n, a)* = (n, a) v 0€C for each (n, a) €C. Then, by
Proposition 1.1.2, C is a lattice-ordered ring, hence a sub-f-ring of B.

Let (n, a)€C. We consider three cases:

i) » =0. Then, (0, a)* = (0, a*)€C.

it) n > 0. (n, a) = (n, a*) — (0, a~) expresses (n, a) as the difference of positive elements
of B. Hence, (n, a)t = (n, a®) — (n, a*) A (0, @), by Proposition 1.1.3, vii). Now, since 4 is
anl-ideal in B and (0, a-) €A, we have (n, at) A (0,a) € A4, since (0, a~) = (n,a™) A (0,a~) =0.
Thus, (n, a)T€C.

iii) n <0. (n,a)=(0,at) —(—n,a") expresses (n,a) as the difference of positive
elements. As before, (0, at) A (—n,a7)€EA, so (n, a)t =(0,at) — (0, a*) A (—n,a")EC.

Since, if 4 is a right I-ideal in B, then A is a right l-ideal in the sub-f-ring C of B, we

have:

CorOLLARY 4.5. If A is an f-ring without identity, then A can be imbedded as a right
l-ideal in an f-ring with identity if and only if A is an fp-ring and A’ is an f-ring under the
strong order.

Since 4 is a two-sided (ring) ideal in A’, this yields:

CoROLLARY 4.6. An f-ring A can be imbedded as a right l-ideal in an f-ring B with
wdentity if and only if A can be imbedded as an l-ideal in some f-ring B* with identity.

Our central problem, that of characterizing those f-rings that can be imbedded as
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right l-ideals in f-rings with identity, is now reduced to that of characterizing those f,-

rings A for which A’ is an f-ring under the strong order. For ordered rings, we have:

THEOREM 4.7. If A is an ordered ring without identity, then the following are equivalent:
i) A can be imbedded as an l-ideal in an f-ring with identity;

ii) A4 can be imbedded as an l-ideal in an ordered ring with identity;

iii) for every pair a, b of elements of 4, |ab| <|a| A |b];

iv) for every pair a, b of non-zero elements of 4, lab| <|a

A |b].

Proof. That iv) implies iii) and ii) implies i) are trivial, and iii) implies ii) by Theorem
2.8. Now, it is easily seen that iii) implies iv). For suppose «, b € 4 are non-zero elements and
that |ab|<|a]| A |b|. Since 4 is an ordered ring, |a| A [b] is |a| or |b].IE [a| A |b] =
|| and |ab|<|a| A |b|, then we must have [ab|=|a|, whence |a(2b)]=2|a|<£
Jal A |26] = a]. |

The proof will be completed by showing that i) implies iii). If 4 can be imbedded as
an l-ideal in an f-ring with identity, then 4 is an fp-ring (Corollary 4.5) and 4 satisfies
condition (*) (Theorem 3.2). If @, b € A+ are such that ab > b (or ba > b) then, by condition (*),
[{ab—b)V (ba —bB)]IA[{c —ac) V (¢ —ca)] <O for each c€A4+. Hence, the element @ of 4
satisfies (¢ —ac) vV (c —~ca) =c —acA ca <0 for each c€A+, contradicting the fact that 4
is an fp-ring. Hence, iii) is satisfied.

For arbitrary f-rings, no such characterization is known. In fact, it is not known
whether it is sufficient to require only that A’ be a lattice under the strong order. It is
not inconceivable that, if A’ is a lattice-ordered ring, then the special nature of A’ and
the presence in 4’ of the maximal l-ideal 4, which is itself an f-ring, force 4’ to be an f-ring.

We note the following result, the proof of which is omitted:

ProrosiTioN 4.8. Let A be an fp-ring. Then A’, under the strong order, is a lattice-

ordered ring if and only if (1, 0) A (0, @) exists for every a€A+.

CuapPTER IV. ONE-SIDED /-IDEALS IN f-RINGS

In Chapter 1I, a question was raised concerning the existence in f-rings of one-sided
l-ideals that are not two-sided. At that time, we presented an example of an ordered ring
containing a right l-ideal that is not two-sided. In this chapter, we present an example of
an ordered ring 4 without non-zero divisors of zero with this property, and we show that
if an ordered ring without non-zero divisors of zero has a right l-ideal that is not two-sided,
then it contains a subring isomorphic to A. In Section 2, we consider the status of this

question for the larger classes of f-rings that have been considered in this paper.
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1. An example

Example 1.1. Let S denote the free semigroup without identity generated by two

elements a, x: the elements of S are “words’’ of the form
z = anxxkxanexkz . a’ﬂrx’fr’ (].)

where the »; and k; are non-negative integers, and »n, and %, are not both zero. With each

,
element z of S, where z has the form (1), associate the non-negative integer N (z) = > n,.
i

We define a total order in S as follows. If z€ S is as in (1), and if 2" = a":xk:a";xk;
a”; x]”s €S, then we will say that z > 2’ if and only if

i) N(z) <N (2), or

ii) N (z) = N (z') and either

1) ng=n1, ky = ki, ny =0, ko =kay ..., k1 = km_1, and n, < n, forsomem =1,2, ...,

r~—1, or
, , .
2) my=mny, ky=ki, ng=mns, kg =kz, ..., km 1= Kkm_1, %y = Nm, and k,, > ki, for some

m=1,2,...,r.

Thus, if z= 2’ and if N (z) = N ('), then the order relation between z and 2’ is determined
by observing the first exponent at which the expressions of z and 2z’ in the form (1) differ.

It is easily seen that this is a total order on S. Moreover, this order is preserved under
multiplication; that is, if z, 2/, 2" €S, with z > 2, then 2z’ >2'2"
N(z) <N(#'), then N(zz")=N(@#"2)<N('"2)=N('z2"), and if N(z) =N(z'), then
N(zz")=N{E'2")=N(2'2) = N(2"2') and whichever of the conditions 1) and 2) of ii)

[ o

above holds for z, z’ will also hold for z2"/, 2’2"" and 2"z, 2''%’.

and 2”2 >z2"2. For, if

Now let A denote the semigroup ring of § over the ring of integers. The elements of

A are finite formal sums:

n
A ={ > m;z;: m; integers, ziES}.

i=1

In A, addition is defined coordinatewise, and multiplication is defined by:

( imizz) ( nZ m,’z,') = E (2> mim;)zk-
i=1 j=1 k

quZj:Zk

[ 2 24

In order to define an order in 4, we write the elements of 4 in the form > m;z; where
i=1

t <4 implies z, > z,. Now, say that m,z, >0 if and onl if m,; >0, or m; =0 and m, >0,
7 P i f) y % i“i y
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Or ...,0r My =my ="+ =m, ; =0and m, > 0. It is readily verified that this is a total order
in 4, under which 4 is an ordered ring. Clearly, 4 contains no non-zero divisors of zero.
In A4, <a>, is a right l-ideal that is not two-sided, since {(a)>, =

{d€d: |d| <mya +a 2 mz;, m, an integer, > m,2,€ A} and, clearly, za¢{(a),.
§=1 i=1
The rest of this section is devoted to the proof of the following result.

TueorEM 1.2. If A is an ordered ring without non-zero divisors of zero that contains
a right l-ideal that s not two-sided, then A contains a subring that is isomorphic to the ring of
Example 1.1.

By Theorem I11.3.5, the strong order makes the ring extension 4, of 4 into an ordered
ring without non-zero divisors of zero in which the ordering extends that on 4. Recalling
the details of this imbedding, we note that if I is any right l-ideal in A, then it is a right
(ring) ideal in 4, and hence that if I is proper in 4, then (I, is a proper right l-ideal in 4,.

Now, if 7 is a right I-ideal in A that is not two-sided, then there are positive elements
a€l and x €4 such that xa ¢ I. Then, in 4, <{a>, is a right I-ideal that is not two-sided. Hence,
as noted above, the right I-ideal J = (&), in 4, is a right l-ideal of 4, that is not two-sided.

Since 4, contains an identity element, J is a modular right l-ideal. Hence, J can be
extended to a maximal (modular) right l-ideal M of 4, (Proposition 11.1.2). By Corollary
11.4.7, M is a two-sided {-ideal in 4. Thus, J* = {a) is a proper l-ideal in 4, since J* < M;
it is the smallest (two-sided) l-ideal of A4, that contains J.

Now let J, denote the largest l-ideal of 4, that is contained in J. Since the right I-
ideals of 4, form a chain, J* is the smallest l-ideal of 4, that properly contains J . Hence,
4,/J, is a subdirectly irreducible f-ring, with smallest non-zero l-ideal J*/J . By Theorem
11.5.2, J*/J consists entirely of nilpotent elements of order two; that is, z€J* implies
2PEed,.

Now, let I*=J*nN4 and I,=J,NA. We have: I, < {(a>, < I< I*. Thus, we have
proved:

Lemma 1.3. If A is an ordered ring without non-zero divisors of zero that contains o
right l-ideal I that is not two-sided, then A is not 1-simple. More precisely, there is an l-ideal
I.< I and an l-ideal I*2 I, with I < 1,.

For the sake of economy, we will write, for b, c€E 4,, b>cin case b = n¢ for every integer
n. Note that, since xa ¢J, we have za = na for every integer n, whence x>1 in A4,.

The proof of Theorem 1.2 will proceed as follows. We consider the sub-semigroup 7T
of the multiplicative semigroup of 4 generated by a, z, and show that the order induced in

T by that in A4 is the same as the order defined on the semigroup S of Example 1.1. More-
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over, we will show that if z, 2 € T and z > 2, then z>2'. Then the subring B of 4 generated

by T is just the semigroup ring of 7' over the ring of integers and the order on B is the same
n
as the order on the ring 4 of Example 1.1. For, if > m,z,€ B, where each z,€7, each m,
i=1
s an integer, and ¢ <j implies 2; >z,, then > m;z, >0 if and only if m; >0, or m; =0
i1

and my >0, 0r ...,or my =my=-+-=m,_, =0 and m, =0.

In what follows, we will make tacit use of the following facts:

1) The elements of T are non-zero positive elements of A.
2) A contains no non-zero divisors of zero, hence 7' is cancellative. Thus, if z, 2,
2 €T and z2z' >z2"’, then 2’ >2z".

nr k ne ki n n. k.
...a x and 2 =a’'xz'a” ...ax . As before, let

2

Let z, 2’€T, say z= a"xa"
N@E)= > n,and N(z') = > n;. That N (2) is uniquely determined for each z€ 7' is shown
i=1 =1

by I) below. )

If N(z)=N(z') =0, then z = xk' and 2’ = 2, Since, in A, z>1, we have z >z’ if and
only if &, > ki, in which case z>2'. If N(z) =0 and N (') + 0, then, in 4,, 2’ €J*, whence
2’ <1<z =", Thus, if either N (z) or N (2’) is zero, then the order relation between z and
2’ is the same as that defined in Example 1.1. In what follows, we will consider those z€ T'
with N (z) = 1.

I) If N(z) < N(z), then z>2'.

We prove this by induction on N (z). If N(2) =1 and N (z') > 1, then z >a, so z¢ 1,
and z' may be written as the product of two elements of I*, whence 2’ € I . Since Iy is an
l-ideal in 4, z>2".

Now suppose that ¢t > 1 and that I) is true whenever N (z) <t. If N(z) =t and N (')} > ¢,

then we consider two cases:

i) k.> k.. For any integer n,

Kk ne kr—k, n ke n,. k&,
z—nZ'=(@'z ...a x PF—na'z ...a®)x*
n, Kk n, k n, K,
Z@'z" ...a —na'z' ...a®)x?
n k nr-1 Ty n,-1 k,
=(a'z ' ...a ~na 'z ..a° ax°=0

by the induction hypothesis.

i) k,<k;. For any integer n,

L2

n, n k ! -
z—nZ=@'z' ...a —na 'z ...ax® ).
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Now, since za>ax, we have

atd L at AT <M s T

ny Ky -1 n; k; n’s -1 Z’k; - kr)

S0 z—nZ>@'x ...a —na'x ..a ax =0

by the induction hypothesis.
Thus, in each case, z>2’, so I) is established.
I0) If N(2)=N ('), n,=ni1, ky=k1, ng="n3, ..., km_1=kn_1, and n,,<n,, then 2>2".
The proof is again by induction on N (z). If N (z)=1, then there is only one

case: z=a"ax™ and 2’ =aa®, where k,+0. Then z>za ¢ I, while 2’ € I, whence z > 2'.
Now suppose that t>1, and that II) holds whenever N (z)<¢ Let z, 2 €8
satisfy the hypothesis of 1I), with N (z)=#. There are four cases:

i) m=1. For any integer n,

n kK na—1 k i na-1 ks K
z—nz =a'z'alea’ ' ... —na’ Tz ...x)=0

by the induction hypothesis.
i) m=1 and »,7+0. For any integer n,
z—nz =a@ 2" . " —nd" 2" ) >0

by the induction hypothesis.

iii) m=1, n,=0, and n;+1. For any integer n,
r—nZ =2"a"a" ... xk'—nan;xk; .z,
Now, since xa > azx, we have
hgh . v >axfaml L ahr,

Ky ny-1 %, -1 Kk k
whence z—nz'>a(x'a’ ...z —mna' x ...x%)=0

by the induction hypothesis, since n;—1>0.
iv) m=1, n;,=0, and ni=1. As in the proof of I), we consider two cases:
1) k,>k,. For any integer =,

’

’
8

Ky my K B ke—l, % m nyy K
z—-nz =(@x'a'x ...a x ‘*—nazr'a’..a’)x
& ny k. n. K n n, K,
Zx'a'x"...0 —nazx ' a’...a%)x"®
Ky ny k. nr—1 K 7, ny -1 K,
=(x'a’xz"...a ~—maxr'a’...a® Yax*=0

by the induction hypothesis.
14— 60173033. Acta mathematica. 104. Imprimé le 20 décembre 1960
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2) k,<k;. For any integer n,

e, n n K m
z—nz=(x'a’...a —naxr'ae’..a°‘x )k
K m n x n ng—1 k. ~k
>@'a®...a —nax a...6° x5 ayz
ky n. ny—1 ki 7 -1 k.—k
=(@'a”...a" —nax'a ..as x5 Nax"=0

by the induction hypothesis.

Thus, in each case, we have z>2', so II) is established.
III) If N(2)=N(2), ny=mn1, ky=ki, ny="n, ..., Np="nm, and k,> kn, then 2> 2",
The proof is again by induction on N (z). For N (z)=1, there are two cases;

. Bk Ky ke - .
i) z=x"'azx", 2’=2 'ax ", with k2>ké. For any integer =,

Ky Ky, Ky—Ky
z—nz =z 'ax " (x' "—n)>0.

.. kK K ke . .
i) z=x2"'ax’, Z=x"ax", with k1>k{. For any integer n,

K-k Kk K, . ki—ky Kk . K,
Y Maxt—mnax)>0, since x ax ¢1, while ax” €1

Pk
z—nz =z (x
Now suppose that ¢>1 and III) holds whenever N (2)<t. Let z, 2’ €S satisfy
the hypothesis of III), with N (z)=£. There are two cases:
i) n,#+0. For any integer =,

m—-1 Kk n K, n-1 ki k.
z—nZ=a(@' 2'a’'...x —ma T .. .x%=0

by the induction hypothesis.
ii) n; =0. We consider two cases:

1) k,=k;, For any integer n,
z—nz =2"a@ 2" ... xk’—na"”_lxk; e x2)20
by the induction hypothesis.
2) k,>k;. For any integer n,
z—nz'=xk; (:ck‘_k; a” ... xk'—na";xk; xk;)>0 by II).

Thus, in each case, 2> 2" so III) is established.
I), II), and III) show that the order in 7' is exactly the order given for the
semigroup S in Example 1.1. As noted earlier, this completes the proof of Theorem 1.2.
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2. The general question

The result stated in Lemma 1.3 can be stated in the following more general form:

ProrositioN 2.1. Every ordered ring that contains a non-zero proper one-sided l-ideal

contains a non-zero proper two-sided [-ideal.

Proof. For ordered rings without non-zero divisors of zero, this follows from Lemma
1.3 and its left analogue. If 4 is an ordered ring containing non-zero divisors of zero but
no non-zero proper [-ideals, then 4 contains non-zero nilpotents by Theorem 1.4.1, hence
Zy(A) ={a€A:a>=0}=A, since Z,(4) is an l-ideal in 4 (cf. the discussion following
Corollary I.3.17). Then, since every Il-subgroup of the additive group of 4 is an l-ideal in
A4, there are no non-zero proper I-subgroups of the additive group of 4. Hence, there are
no non-zero proper one-sided l-ideals in 4.

As an immediate consequence, we have:

CoroLLARY 2.2. Every maximal I-ideal in an f-ring A is a maximal right (left) 1-ideal
of 4.

In the remainder of this section, we summarize what is known about the existence of
one-sided [-ideals that are not two-sided in the general classes of f-rings that have been
considered in this paper.

Recall that the ring 4 of Example I1.6.2 is an ordered ring containing only one non-
zero proper two-sided l-ideal (#2). Hence, A satisfies the descending chain condition for
l-ideals, and 4 is subdirectly irreducible, so we have:

1) There exist f-rings satisfying the descending chain condition for I-ideals that contain
one-sided I-ideals that are not two-sided.

2) There exist subdirectly irreducible f-rings that contain one-sided I-ideals that are
not two-sided. .

Since the ring of Example 1.1 contains no non-zero divisors of zero, we have:

3) There exist f-rings with zero l-radical that contain one-sided I-ideals that are not
two-sided.

If A is an f-ring with zero l-radical that satisfies the descending chain condition for
l-ideals, then, by Lemma I1.5.7, 4 is isomorphic to a (finite} direct union of I-simple ordered
rings A4, ..., 4,. By Proposition 2.1, each A4, contains no non-zero proper one-sided I-
ideals. If 1 is a right (left) l-ideal in A, then I N 4, is a right (left) I-ideal in A4, for¢ =1,
..., . Hence, each I N A, is {0} or 4;, so I is clearly a two-sided l-ideal in A. Thus, we have:

4) If 4 is an f-ring with zero l-radical which satisfies the descending chain condition

for I-ideals, then every one-sided l-ideal of A4 is two-sided.
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Since the J-radical of an f-ring always contains the l-radical, we have:

5) If A is a J-semisimple f-ring which satisfies the descending chain condition for
l-ideals, then every one-sided l-ideal of 4 is two-sided.

Our final example, which is due to Professor Henriksen, shows the following:

6) There exist J-semisimple f-rings that contain one-sided l-ideals that are not two-
sided.

Example 2.3. Let A be an ordered ring with identity and without non-zero divisors
of zero that contains a right l-ideal I that is not two-sided (cf. Section 1). Let 4[] denote
the ring of polynomials in one indeterminate A with coefficients in 4, ordered lexicogra-
phically with the leading coefficient dominating: @y + a4 + -+ +a,A" =0 if and only if
a,>0, or a,=0 and a,_, >0, or ..., or @, =a, ,=---=a;, =0 and a,>0. With this
ordering, A[A] is an ordered ring with identity and without non-zero divisors of zero;
it is clearly I-simple, since |ai| > 1 for every 0+ a € A. Hence, A[4] is an I-primitive f-ring.
Observe that A4 is an ordered sub-ring of A[A] and that, if y€A4[4], then y¢A implies
|y| > |a| for every a€A.

Now let B denote the set of all sequences in A[A] that are eventually in A: if z€B,
then z = (2, 2y, ...), where each z;€ A[1], and there is an integer » such that ¢ > » implies
2,;€ A. Under coordinatewise ring and lattice operations, B is an f-ring; it is clearly a sub-
direct union of copies of the I-primitive f-ring 4 [4]. Hence, B is a J-semisimple f-ring with
identity.

Let J ={2€B:z is eventually in I}. Since I is a right l-ideal in A4 that is not two-
sided, it is clear that J is a right l-ideal in B that is not two-sided.
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