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1. Introduction

Let X be a compact Hausdorff space and €' (X) the algebra of all continuous complex-
valued functions on X. Let 4 be a uniformly closed complex linear subalgebra of C(X).
Our interest centers about such algebras 4 which are maximal among all proper closed
subalgebras of C(X). In this paper we gather together most of the known facts concerning
maximal algebras, give some new results, and some new proofs of known theorems.

A major motivation for the study of maximal algebras stems from an attempt to
generalize the Stone-Weierstrass approximation theorem to non-self-adjoint algebras. This
theorem states that if 4 is a self-adjoint closed subalgebra of C(X) (f€A implies f€A4),
and if 4 separates points and contains the constant function 1, then 4 = C(X). See [11;
p. 8] for a proof. This result can be restated as follows: (i) every proper self-adjoint closed
algebra A4 is contained in a self-adjoint maximal algebra and (ii) the self-adjoint maximal
algebras, B, are of two kinds; either B =[f€C (X), f(x,) = 0] for a fixed z,€X, or B=
[fEC(X); f(w,) = f(x,)] for fixed x;,2,€X. The condition, 4 contains the function 1, says
that A4 is not in a maximal algebra of the first kind. The condition, 4 separates points,
says that 4 is not in a maximal algebra of the second kind. Thus A4 is not contained in
any self-adjoint maximal algebra and consequently, from (i), 4 is not a proper subalgebra,
ie., 4 =C(X). A refinement of the Stone-Weierstrass theorem classifies all self-adjoint
closed subalgebras of C(X) and says that such an algebra 4 is the algebra of all continuous
functions on an identification space of X, with the common zeros of the functions in A
deleted. This result can be reinterpreted as saying that 4 is the intersection of the self-
adjoint maximal algebras which contain it.

Let us drop the self-adjointness condition on 4. One might now hope that the way
to generalize the Stone-Weierstrass theorem would be to show that (1) holds (with self-
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adjointness deleted) and then to classify all maximal subalgebras of C(X). (To avoid trivia-
lities we now make the assumption that all subalgebras under consideration separate points,
contain 1, and are closed). It turns out, however, that (i) fails; in section 7 lwe exhibit a
proper algebra 4 not contained in any maximal algebra. The example is easy to describe,
but the proof that it is not contained in a maximal algebra depends on several results of
earlier sections. Even if 4 is contained in a maximal algebra, it is not necessarily the
intersection of the maximal algebras containing it. Specific examples are given in section 6.

Despite these negative results, the study of maximal algebras does give approximation
theorems. In particular, if 4 is a maximal subalgebra of C(X), then of course the algebra
generated by 4 and any f€C(X) — 4 is all of C(X). For example, [16] the fact that the
algebra of continuous functions on the circle which are boundary values of analytic func-
tions on the disc is maximal, implies that every continuous function on the circle can be
approximated by polynomials in z and f, where f is not the boundary value of an analytic
function on the disc. This is a generalization of Fejer’s theorem (the case f =2). For some
special spaces X, one knows enough about maximal algebras so that if 4 lies in a restricted
class of algebras (just as one restricts ones attention to self-adjoint algebras in the Stone-
Weierstrass theorem), then the possible proper subalgebras B containing A4 can be classified.
If 4 contains functions not in these algebras B, A must be C (X). In section 6, this situation
is analyzed when X is the circle and 4 contains a separating subalgebra of analytic functions.
Wermer’s results [18; 19; 20] give enough information about maximal algebras to give a
strong approximation theorem.

The study of maximal algebras has one natural reduction which we now discuss.
Suppose 4 is a maximal subalgebra of C(X) and suppose S is a closed subset of X. Let Ag
denote the closure of 4 restricted to S, and let 4, = [f€C(X); f| s€A4s). Then A4, is closed
and 4 < 4, < C(X). Since 4 is maximal, either 4, = C(X) so that A;=C(S)orelse 4 = 4,
so that A is actually a maximal algebra on S extended continuously in all possible ways to
X. Among the closed sets S such that 4 g 4= C(S) there exists a unique minimal one & =

N S which we call the essential set for 4 [3]. Thus A consists of a maximal algebra of
Az+C(8)

C(E) extended in all possible ways to X in a continuous fashion. Furthermore, if S is a
proper closed subset of E, then 4= C(8S). If E = X, then A4 is said to be an essential maxi-
mal subalgebra of C(X). The study of maximal algebras of X is thus reduced to the study
of essential maximal algebras of X and its closed subsets.

In section 2, we list the known examples of essential maximal algebras. Some new
ones are exhibited in section 4. One observes that these examples all stem from algebras of
analytic functions. In [10], Helson and Quigley show that essential maximal algebras

display a number of properties enjoyed by analytic functions. To our mind, the reason for
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this is that an essential maximal algebra 4 is pervasive, that is, 4= C(8S) for any proper
closed subset § of X. In sections 3 and 4, pervasive algebras and their properties are ana-
lyzed. These results together with an idea of Rudin [14] show that any pervasive algebra
on a disconnected space is contained in a maximal algebra (Section 4). This leads to some
new essential maximal algebras on the circle and an example of an essential maximal algebra
on the unit interval.

Section 5 contains a discussion of the representation of complex homomorphisms of
an algebra by positive measures on the Silov boundary, emphasizing the usefulness of
such representations in studying maximal algebras. This measure representation is playing
an important role in the study of function algebras. It seems clear that it will play an

increasingly important role.

2. Examples

We shall list the examples of essential maximal algebras known to us.

1. (Wermer [16]). Let X be the unit circle in the complex plane and let 4 be the
algebra of continuous functions on X which can be analytically continued to the interior
of the unit disc. That is, f is in A4 if and only if

2n
[éf(e%d6=0,n=1,2,3,...
0

2. (Wermer [21]). If F is a Riemann surface and X is an analytic curve on ¥ which
bounds a compact subset K of F, let A be the algebra of continuous functions on X which
can be analytically continued to K — X.

3. (Bishop [6]). Let X be the topological boundary of any simply connected plane
domain and let 4 be the algebra of functions on X which are uniform limits of polynomials:

4. (Hoffman and Singer {8]). Let X be a compact abelian group whose character
group X is a subgroup of the additive group of real numbers. Let A be the algebra of all
continuous functions on X whose Fourier transforms vanish on the negative half of the
group X.

5. Rudin [14], has proved the existence of essential maximal subalgebras of C{X)
where X is a certain totally disconnected set in the complex plane. This is described in
section 4.

As mentioned in the introduction, we shall add to this list in section 4.

3. The essential set

Suppose that 4 is a subalgebra of C(X), which we remind the reader means 4 se-

parates the points of X, contains the constant functions, and is closed. We consider those
15 - 603808 Acta mathematica. 103. Tmprimé le 21 juin 1960
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closed subsets K of X such that 4 contains every continuous function on X which van-
ishes on K. Among such sets K there is a unique minimal one E, which we call the
essential set for A (relative to X). The algebra Az, obtained by restricting 4 to the set
E, is a closed subalgebra of C'(E) and A consists of the algebra of all functions which are
continuous extensions to X of functions in A4;. The minimality of ¥ is characterized by
saying that the algebra 4 contains no non-zero ideal of C(E). If £ =X, we say that £
is an essential subalgebra of C(X). The terminology here is due to Bear [3].

The study of function algebras A4 is “reduced’ to the study of essential algebras, and
the purely topological problem of describing closed subsets of X. We should point out
that when 4 is a maximal subalgebra of €'(X) this reduction agrees with that carried out
in section 1; that is, a maximal algebra is essential if and only if it is pervasive (see in-
troduction).

In [10], Helson and Quigley proved that every essential maximal algebra is anti-
symmelric, i.e., contains no non-constant real-valued functions, and is analylic, i.e., any
function in the algebra which vanishes on a non-empty open subset of X is identically
zero. They were motivated of course by an interest in proving that any maximal (essential)
algebra has many properties in common with the algebra of analytic functions on the unit
circle (example 1, section 2). They did not specifically mention the pervasive property
which such algebras share with the analytic functions. What we should like to point out
in this section is that the pervasive property seems to be the fundamental one. By this

we mean that any proper pervasive subalgebra of C(X) is analytic and antisymmetric.

THEOREM 3.1. 4 proper pervasive subalgebra of C(X) is analytic.

Proof. Let f be a function in A which vanishes on a non-empty open set U in X.
Choose a non-empty open set V such that ¥ < U. The assumption that A4 is pervasive
tells us that if g €C'(X) then there is a sequence [f,] of functions in A4 such that f, converges
to g uniformly on the complement of V. Then the sequence [ff,] converges uniformly to
fg on all of X. Thus fg is in 4 for each g, or f-C(X) is contained in 4. So 4 contains the
closed ideal in C(X) generated by f, i.e., A contains every continuous function on X which
vanishes on the null set K of f. This means that when we restrict 4 to K we get a closed
subalgebra of C(K). Clearly then f must vanish on all of X; for, if K were a proper closed
subset of X the restriction of A to K would be at once dense in C(K) and closed and 4
would contain all of C(X).

TaEOREM 3.2. Let A be a closed subalgebra of C(X).
(1) If A is analytic, A s an integral domain.
(i1) If A is an integral domain, A is antisymmelric.

(iii) If A4 is antisymmetric, A is an essential subalgebra of C(X).
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Proof. (i) is obvious. (ii) Let R be the self-adjoint part of 4, i.e., the set of all functions
f in A whose complex conjugate is also in 4. Then R is a closed subalgebra of 4, and
since R is self-adjoint there is a compact Hausdorff space Y such that R is isometrically
isomorphic to C(Y). Since 4 is an integral domain, so is O (Y). Clearly then Y consists of
a single point and R contains only the constant functions.

(iii) It is clear that if the essential set for A is a proper closed subset of X then A
contains a non-constant real-valued funection.

An immediate corollary of these two theorems is that an essential maximal subalgebra
of C(X), being a proper pervasive subalgebra, is analytic, hence an integral domain; hence
antisymmetric. In fact we see that for a maximal subalgebra of C(X) the properties of

being essential, pervasive, analytic, an integral domain, antisymmetric, are all equivalent.

4. Pervasive algebras

In section 3 we saw that some of the known special properties of an essential max-
imal algebra are possessed by every proper pervasive subalgebra of C'(X). There are
pervasive algebras which are not maximal, a simple example being the uniformly closed
algebra on the unit circle generated by 1, 22, 28, 24, ... . Having observed this, we felt it
interesting to inquire whether it is true that every proper pervasive subalgebra of C(X)
is contained in a maximal subalgebra of C(X). Motivated by a result of Rudin [14], we
did prove the somewhat strange fact that, when the underlying space X is not connected,
this is true. This then is a mild existence theorem for maximal algebras. It can be used to
construct a new class of essential maximal algebras, and in particular to construct a new
essential maximal algebra on the unit cirele.

Let us first observe the following.

LeEMMA 4.1. Let A be a subalgebra of C(X) such that for each f € A the real part of f has
connected range. If X is not connected, then A is contained in a subalgebra of C(X) which

18 mazximal with this property.

Proof. The proof is essentially that of Rudin [14; theorem 2]. Let F be the class of all
proper closed subalgebras B of C'(X) which contain A and are such that for each f€ B
the real part of f maps X onto a connected set. If [B,] is a linearly ordered subset of F,
the closure of the union of the B, contains only functions whose real part has connected
range, and this closure is a proper subalgebra of €'(X) since X is not connected. By Zorn’s

lemma, F contains a maximal element.
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LeEmMaA 4.2, If A is an antisymmetric subalgebra of C(X), then for each f€ A the real
part of | has connected range.

Proof. Again see Rudin [14]. Let f€A4 and suppose the real part of f does not have
connected range. Then the range of f is the union of two non-empty compact sets K,
and K, which are separated by a vertical line. We can find a sequence of polynomials
P, (in one complex variable) which converges uniformly to 0 on K, and to 1 on K,. Then
P.(f) is a sequence of elements in 4 which converges to a non-trivial idempotent function
in 4, i.e., a non-constant real-valued function in 4.

It is clear from the above argument that the statement that the real part of each f
in 4 maps X onto a connected set is equivalent to the statement that 4 contains rio non-
trivial idempotent functions. This in turn is equivalent (by a theorem of Silov) to the maxi-

mal ideal space of 4 being connected.

THEOREM 4.3. Let A be a proper pervasive subalgebra of C(X), and suppose that X is

not connected. Then A is contained tn an essential maximal subalgebra of C(X).

Proof. Since A is proper and pervasive, 4 is antisymmetric, so lemmas 4.1 and 4.2
tell us that 4 is contained in a subalgebra B which is maximal with the “‘connected range”
property. But then B is a maximal subalgebra of C(X); for any proper subalgebra B,
which contains B contains 4 and is therefore pervasive. So B, is antisymmetric, hence has
the “connected range’ property and must be equal to B.

We shall now combine theorem 4.3 with some work of Wermer [17] to prove the
existence of new essential maximal algebras.

Let X be a compact set in the complex plane with these properties:

(i) X has no interior.
(ii)) X does not separate the plane.

(ii1)) X is not connected.

(iv) X has positive Lebesque measure at each of its points, i.e., if x€X then for any

neighborhood U of « the set U N X has positive plane measure.
Let 4y be the algebra of all continuous functions on the Riemann sphere S which are
analytic on § — X. The functions in Ay separate the points of § [17].

Each function in 4, assumes its maximum modulus on the set X, so that we can
identify 4y with a proper closed subalgebra of C'(X). These properties of 4y require only
that X have no interior and positive measure.

We now observe that properties (ii) and (iv) imply that A is a pervasivé subalgebra
of C(X). Let K be a proper closed subset of X. Choose a point 2,€X — K. For simplicity let
us assume that z, = 0. Choose § > 0 such that the disc [|z]| < 8] does not intersect the set
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K. When 1/n <4, let A, be the intersection of X and the open dise |z| <1/n. By condi-
tion (iv), the measure of A,, |A,], is positive. Define

J‘f _dzdy
ztiy—2

Ap

D,

The functions @, are (can be extended to) functions in 4. A routine verification shows
that @, (z) converges to 1/z uniformly on the compact set K. Since X does not separate
the plane (and has no interior) a theorem of Mergelyan [12] tells us that polynomials in
1/z are dense in the continuous functions on K. Thus we see that the restriction of 4y to
K is dense in C(K).

Using theorem 4.3 we then have

TrarorEeEM 4.4. If X is a compact set in the plane which satisfies conditions (i)—(iv)

above, then the algebra A 4 is contained in an essential maximal subalgebra of C(X).

When X is totally disconnected, this result was obtained by Rudin [14].

The following special case of theorem 4.4 is of particular interest. Suppose the set
X consists of two disjoint homeomorphic images of the unit interval. (These two arcs can
be so embedded as to satisfy condition (iv)). The algebra A4 is then included in an essential
maximal subalgebra B of C'(X), where X consists of two disjoint copies of the unit interval.
From B we wish to obtain an essential maximal subalgebra on the unit circle, by taking
the subalgebra of functions which identify the respective ends of the two intervals. If we
identify only one pair of endpoints we obtain an essential maximal algebra on the unit

interval. We shall need the following lemma.

Lemma 4.5. Let B a moximal subalgebra of C(X) and let « and y be two points in X,
Let B, be the subalgebra of B of functions | for which f(x) =f(y), and let Y be the compact

space obtained from X be identifying x and y. Then B, is a maximal subalgebra of C(Y).

Proof. What we must prove is this. If ¢ is a continuous function on X such that ¢g(z) =
g(y) and g¢ B, then the closed subalgebra of C'(X) generated by B, and ¢ contains every
- continuous function f for which f(x) =f(y). It clearly will suffice to consider the case in
which g(z) =g(y) = 0.
Since g(x) = ¢(y) and g ¢ B,, g ¢ B. Thus, the linear algebra [ B, g] generated by B and
¢ is dense in C'(X). This linear algebra consists of all functions of the form

fothg+--+1hg"
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where f,, ..., f, are in B. Let I be the set of all functions in [ B, ¢] such that f, (x) =f.(y) =0,
k=0,1,...,n Then I is an ideal in [ B, g¢], so the closure of [ is a closed ideal in the closure
of [B, g] (which is C(X)). The ideal I contains every function in B which is 0 at both =
and y, and since B separates points on X the set of points on which every function in 7
vanishes consists of the two points x and y. Thus the closure of I must contain every con-
tinuous function on X which vanishes at both z and y. But [ is contained in the algebra
generated by B, and g¢. Thus the closed algebra generated by B, and g contains every
continuous funetion vanishing at x and y. Since B, contains the constants, B, and g generate
all functions which identify « and ¥.

Now let us return to the algebra 4 y above when X = I, U I, where I, and I, ave disjoint
homeomorphic images of the unit interval. Let B be an essential maximal subalgebra of
C(X), containing A4 4. If z; and u, are the end points of I,, ¢ =1, 2, we consider the subalgebra
B, of B of functions f such that f(z,) = f(x,), /(%;) = f(%,). By the above lemma, B, is an
essential maximal subalgebra of a homeomorphic image of the unit eirele.

We wish to show that the algebra B, is not isomorphic to any of the examples cited
in section 2. To do this it will suffice to show the following. If A% is the subalgebra of
Ay which identifies #, with x, and u, with u,, then A% cannot be isomorphic to a closed
subalgebra of the algebra of boundary values of analytic functions on a Riemann surface
(with boundary).

We shall content ourselves with a sketch of this proof. Let I' be an analytic circle on
a Riemann surface which bounds a compact piece K of the surface. Let A be the algebra
of all continuous functions on K which are analytic on K —I". Suppose that the algebra
A% is (isomorphic to) a subalgebra of 4. Each complex homomorphism 5 of the algebra A
gives rise to a complex homomorphism h, of A% by restriction. The mapping 7 : h—>h,
is a continuous mapping of K into the space S of complex homomorphisms of the algebra
A%. The space S, can be identified as the Riemann sphere § with the pairs of points (2, z,)
and (u,, u,) identified. This follows from a result of Arens [1] that the space of complex
homomorphisms of 4y is §. The mapping 7, when restricted to I', gives a homeomorphism
of I" onto the circle on S, obtained by identifying the ends of the intervals I, and I,.

It is now relatively easy to argue that such a continuous mapping sz cannot exist. For,
let p be the point on I' such that ¢ =z p is the point of S, which arises from identifying x,
and x,. A sufficiently small neighborhood V of the point ¢ is homeomorphic to two discs
with their centers identified. Thus V — [¢] is homeomorphic to two disjoint copies of the
punctured open disc. Suppose we select a neighborhood U of the point p which is connected
and for which z(U)< V. Then U — [p] is still connected and must be mapped by 7z into
one of the two punctured discs comprising ¥ — [¢]. But this is impossible, since the part
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of I' which lies in the neighborhood U is mapped by # partly into one of the punctured discs
and partly into the other.

We should perhaps comment that in a rough sense the algebra A% is not an algebra of
analytic functions on a Riemann surface with boundary, because the circle we have on
the pinched sphere 8, does not bound. We should also note that it may well be that 4y
is already a maximal subalgebra of C(X). One can prove that if Bis any proper subalgebra
of C'(X) which contains 4, then every complex homomorphism of 4 extends to a complex

homomorphism of B. But whether A4y is actually maximal remains unknown.

5. Measures and the Silov boundary

Our discussion thus far of maximal subalgebras of C(X) has not involved any detailed
information about the relation of the space X to the algebra A. Further discussion requires
the introduction of the maximal ideal space and Silov boundary for 4.

Let A4 be a closed subalgebra of O'(X), as usual containing the constants and separating
points. The space of mazximal ideals (or complex homomorphisms) of 4 is the set S(4)
of all non-zero complex linear functionals on 4 which are multiplicative. Each such multi-
plicative functional is automatically of norm 1, and we give to S(4) the weak topology
which it inherits as a subset of the unit sphere in the conjugate space of 4. The space
S(4) is the largest compact Hausdorff space on which the algebra 4 can be realized as a
separating algebra of continuous functions. In S(4) there is a unique minimal closed subset
T"(4) on which every function in A assumes its maximum modulus. We call I'(4) the
Silov boundary for A [7].

For each point 2 €X we have a complex homomorphism %, of 4 defined by

Since 4 separates points on X, the mapping z—A, is a homeomorphism of X onto a closed
subset of §(4). The image of X under this mapping includes I'(4) because each function
in 4 certainly assumes its maximum on X,

Since each function in A assumes its maximum on I'(4) we may (if we wish) regard
A as a subalgebra of C'(I'). The minimality of I' shows that I is the smallest compact
Hausdorff space on which A can be realized as a closed separating algebra of continuous
functions.

If p€8(4), there is a (not necessarily unique) positive Baire measure u, on I' such
that

f)=]idu,
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for every fin A [see 2]. We say that u, “represents’ p. This representation results from
the fact that any continuous linear functional on C(I') which has norm 1 and is 1 at the
identity is positive. We are particularly interested here in the role of these measures in
the study of maximal algebras.

Let us first make some simple observations. We have been discussing special types of
subalgebras of C(X): antisymmetric, pervasive, ete. The representation of homomorphisms
by positive measures makes it clear that 4 is antisymmetric if and only if 4 is an anti-
symmetric subalgebra of C(I'). In other words, antisymmetry is independent of which
space X we represent A on, because X always contains I'. Likewise the property of being
an essential subalgebra of C(X) is independent of X. However, certain properties we have
discussed do depend upon the underlying space X. For example, the exact description of
the essential set depends heavily on X. Also the property of being pervasive depends on
X. To rule out discrepancies, let us make the following conventions. The essential set for
A will be the essential set for A relative to I'. We shall call A pervasive if 4 is a pervasive
subalgebra of C(T'). (It follows that if A is a pervasive subalgebra of C(X) then X =T,
but A may be pervasive on I" and not on X.) ‘

We begin our consideration of measures with two facts which were proved for essential

maximal algebras by Bear [4].

THEOREM 5.1. Let A be a pervasive subalgebra of C ('), let p€S(A) —T' and let ., be
any positive measure on I which represents p. Then the closed support of u, is oll of I.
Proof. Let K be the closed support of p,. Suppose K is a proper closed subset of I'.

Since f(p) = ,J fdu,,

(@) |<sup|f],

and since 4 is pervasive the measure y, defines a multiplicative linear functional on C (K).

Thus u, must be a point mass, which is absurd since p¢I.

CoROLLARY: Let A be a pervasive subalgebra of C(I') and let f be a function in A
which has norm 1. If there is a point p€S(A) —T such that [f(p)| =1, then f is constant.

Proof. Choose a measure yu, representing‘ p. Since u, has mass 1, |f] <1, and
L=[f@)=1[fdu],
r

it is clear that f(x) = f(p) for all z in T".

Of course Theorem 5.1 and its corollary hold for essential maximal algebras. We have
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stated them for pervasive algebras to emphasize once again that the pervasive property
of maximal algebras is the fundamental one {(among the known special properties}.
We shall later need the following.

THEOREM 5.2. Let f be a function in A which has norm 1, and let K be the subset of
S(A) on which f =1 (assume K is not empty). Let Ay be the algebra obiained by restricting A
to the set K. Then Ag ts closed and

(@) S(dx) =K.
(i) 'dp)<I' n K.
(iii) If p€K, then any measure u, on I" which which represents p (as a homomorphism of
A) is supported on K NT.

Proof. A portion of this theorem was proved by Bear [5]. It is no loss of generality to
assume that K =[}f] = 1), for we may replace f by 1(1 + ) if this is not so. Then f =1 on
K and |f| <1 on S(4) — K. If I is the closed ideal of functions which vanish on K then
Ay is isomorphic to 4/I and thus inherits the quotient norm

1901l =inf || g + g -
gel
Clearly ||g,}l <[|gol|cc = sup |go|- But the opposite inequality also holds since
K
tim 176011~ o e

Thus the quotient norm is the sup norm on K so that 4, must be complete in the sup
norm,
(i) S{(4%) = K is well known, because K is a hull, i.e., the set of zeros of the function
(L =)
(ii) is clearly implied by (iii).
(iti) Let p €K and let u, be a positive measure on I which represents p. For the func-

tion f we then have

1=f(p)=[fdu,
T

and since |f| <1 we must have f =1 on the closed support of u,.
We should like to make some comments which place theorem 5.1 in what we believe
is its proper setting. For an algebra 4
(i) the inferior of S(A4) is the set I =S(d4) —T.
(ii) the accessible set is the set L =1 — 1.
(iii) the minimal support set is the subset Sy of I" obtained by intersecting the closed

supports of all measures u, which represent points p in I.
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(iv) the maximal support set is the set S* which is the closure of the union of the
closed supports of all measures g, which represent points p in 7.

Of course I is an open subset of S(4), while L, Sy, and S* are closed subsets of I".
If the interior I is non-empty, then Sy < S*. If 4 is a maximal subalgebra of C(I"), or
more generally, if the algebra 4, obtained by restricting 4 to its essential set ¥ is a pervasive
subalgebra of C(E), then theorem 5.1 tells us that ¥ is contained in the minimal support
set Sx.

THEOREM 5.3. For any algebra A, the accessible set L is contained in the essential set K.

Proof. Let A, be the ideal in C'(I") of functions which vanish on E. By definition of
the essential set, 4, is contained in A. As is well-known, every non-zero complex homo-
morphism of 4, is evaluation at a point of I' — E. Thus if ® is a complex homomorphism of
A, the restriction of @ to 4, is either identically 0 or is evaluation at a point of ' — E.
If there is a point y, €' — £ such that @ (f) =f(y,) for every f in A4,, then O (f) =f(y,) for
all fin A4, becanse a non-zero homomorphism on an ideal has a unique extension to a homo-
morphism of the full algebra. Thus we see that if p is a point of S(A4) which does not lie
inT' — E, then every function in 4, vanishes at p. In particular this is true for each point
p€L. Thus, no point of Lliesin I’ — E,ie., L< E, q.ed.

THEOREM 5.4. For any algebra A, S* < K.

Proof. Let p be a point of I and let u, be any measure on I' which represents p. With

the notation of 5.3 (and a portion of the proof), for each fin 4, we have
0=f(p)=[fdu,=[fdps
T [ig

where U =TI" — E. But this says that the restriction of u, to U sends every continuous
functior on U which vanishes at infinity into 0. Thus this restriction is the 0 measure, i.e.,
25(U) = 0. This proves that the closed support of u, is contained in E.

If we put these results together for maximal algebras we have the following. If A4 is
a maximal subalgebra of C(I') and if I" &= §(4), then

L< E=84=28*%

It seems reasonable to us to conjecture that when 4 is maximal and I is non-empty then
L = E =84 = S*. In fact, one might conjecture that for any algebra A with I non-empty
the inclusion Sy = L holds. The question posed by this conjecture has the following two
equivalent formulations:

(i) H p€I does there exist & measure u, representing p whose closed support is con-

tained in the accessible part of the Silov boundary, L =1 — %
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(ii) If 4, is the closure of the restriction of 4 to I, is the Silov boundary for 4, exactly
L?

When the question is stated in form (ii), we see that we are asking whether a strength-
ened maximum modulus principle holds for function algebras. This seems to be a very

interesting question. An affirmative answer could have important consequences.

6. Tests for maximality

In our comments about pervasive algebras, we pointed out that if 4 is a pervasive
subalgebra of C(X) then I' = X. From this it is easy to see that if A is any maximal sub-
algebra of C'(X) then I' = X. So, in inquiring whether an algebra A4 is maximal we need
only inquire whether 4 is a maximal subalgebra of C'(I").

How does one tell if a given algebra A is a maximal subalgebra of C(I")? This is, of
course, a difficult question. One can attempt to check whether it is true that on the essential
set for 4 the algebra is pervasive, an integral domain, antisymmetric, ete. In section 7,
we shall use the analytic property of maximal algebras to give an example of an algebra 4
which is contained in ne maximal subalgebra of C'(I'). But there are algebras 4 which are
pervasive subalgebras of C'(I') without being maximal, as we have seen. One is then cer-
tainly led to a search for other tests for the maximality of A. We should like to outline now
another technique which, although simple, does seem to have some interesting conse-

quences.

LemwMa 6.1. Let p be a point in S(A) —~1" and let u, be a representing measure for p.
Then there is a proper subalgebra B of C{I") which contains A and is maximal with the property

that p, defines a multiplicative linear functional on B.

Proof. Let F be the family of all proper closed subalgebras of C(I") which contain 4
and on which g, defines a multiplicative linear functional. If [B,] is a linearly ordered
subset of F then y, is multiplicative on the closure of the union of the B,, and this closure
is not all of C(I") since p€S(4) —T'. By Zorn’s lemma, F contains a maximal element B,

By a similar argument, one can prove

Lemma 6.2. If I' is a proper subset of S(A) then among all closed subalgebras B of
C(8) such that

(i) 4< B

(ii) ['(B) =T'(4)

there is a maximal one.
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Of course, if 4 is a maximal subalgebra of C(I') then 4 is already a maximal closed
subalgebra of C'(8) with the property that each function in the algebra assumes its maximum
on I'. However, the converse is not true as is shown by the following example, due largely
to H. Rossi [Thesis, M.I.T., 1959].

Let A be the closed bicylinder |z| <1, |w|<1 in complex two-space, and let 4
be the algebra of all continuous functions on A which are analytic in the interior of A.
This algebra 4 is simply the uniform closure on A of the algebra of all polynomials in two
complex variables. The space S(4) is A, and I'(4) is the torus I' =[(z, w); [z| =|w]| =1].
The topological boundary T of A is larger than the Silov boundary for A.

THEOREM 6.3. Let B be a uniformly closed algebra of continuous functions on the topo-
logical boundary T such that each function in B assumes its maximum modulus on the set I'.
If B contains A, then B = A.

Proof. Let (25, w,) be a point in T, ie., |2y] =|w,| =1. Then the disc K = [(z, wy);
|z] <1]is contained in the topological boundary 7. We wish to show that every function
f in the algebra B is an analytic function of z on the disc K.

Let F(z, w) =}(1 +wws'). Then FE€A, ||F||=1 and K =[|F|=1]=[F =1] (these
sets relative to A ). Then, as we observed in theorem 5.2 the algebra By obtained by restrict-
ing B to the disc K is a closed subalgebra of C(K) and I'(Bg)<I'N K. But I' N K is
exactly the circumference of the disc K. Hence By is a uniformly closed algebra of continuous
functions on K each of which assumes its maximum modulus on the circumference. Also
By> Ay, and Ay is simply the algebra of all continuous functions on K which are analytic
for |z| <1. By the theorem of Wermer which we mentioned in section 2, the algebra A4x
is a maximal subalgebra of the circumference of K. Thus, it must be that 4, = By, or
that every function in B is analytic in z on the interior of the disc K.

Similarly we can show that each function in B is analytic in w on the disc [(zy, w);
[w] <11

Since this holds for every point (z,, w,) €', the Fourier coefficients

fm,n)= f eIt £ (0 oy dOdt
r

vanish cutside the quadrant m > 0, n > 0 for every f€B. Thus B= 4, q.e.d.
Of course the bicylinder algebra 4 is not a maximal subaligebra of C'(I'). A larger algebra

is for example the algebra of all continuous functions f on I' such that

2n

[ €"f(e®1)dg=0,n=1,2,... .

0
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It is interesting to contrast this algebra of analytic functions in the bicylinder with
with the corresponding algebra when A is the closed unit sphere in complex two-space.
The algebra 4 of all continuous functions on A =[(z, w); [z| <1, |w|<1] which are
analytic in the interior has A as its space of maximal ideals and the full topological bound-
ary of A as its Silov boundary. In this case there are larger closed subalgebras of C'(A)
in which every function assumes its maximum on the unit sphere. One such example is
given in [9].

Let us return now to the consideration of our general algebra 4 and look more closely
at lemma 6.1. In certain special cases it may happen that there is a point p€S(4) —TI
with these properties:

(i) if 4 < B< C(I") and no measure representing p is multiplicative on B, then B =
o(I). '

(ii) if A< B< CO(T') and any measure representing p is multiplicative on B then
B = A. It is then clear that 4 is a maximal subalgebra of C(I").

This is a very special situation of course, but it does arise. It was this idea which was
exploited in [8] to give a very short proof of the Wermer theorem on the maximality of
the analytic functions on the circle (and some generalization thereof). Royden [13] and
Bishop [6] have also exploited this idea. We should like now to indicate how a simple
extension of this idea leads to some examples of the “primary” algebras described in the
introduction.

For each positive integer %, let A; be the uniformly closed algebra of continuous func-
tions on the unit circle which is generated by 1,2%, 25*%, ... Then 4 is (isomorphic to) the
algebra of continuous functions on [z| <1 which are analytic for |z| < 1 and have derivatives
of orders 1, ..., k — 1 which vanish at the origin. The space of maximal ideals of 4, is the
closed disc [z] <1 and the Silov boundary for A, is the unit circle I'. The algebra A, is
(of course) the uniform closure on I of the algebra of polynomials, that is, 4, consists of
all continuous functions f on I'" such that

27
[ emaf=0,2=1,2,3,... .
0

THEOREM 6.4. Let B be a closed subalgebra of C(T) which contains Ay (for some fixed
k). Then either B =C(I") or B is contained in A,.

Proof. The origin of the unit disc defines a complex homomorphism of the algebra
A by

2n
b=g [ 1o,
9
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If this homomorphism % does not extend to B, ie., if no measure representing the

9 is in B, since the function

origin is multiplicative on B, then the function f(e'®) =e'*
2" in 4, vanishes on the disc only at the origin. But then it is easily seen that B contains the
functions e for every integer n, so that B = C(I).

Suppose the homomorphism 4 does extend to B. Then

h(f)= f f(e?)du(0), feB

for some positive measure u on I'. In particular then y must evaluate every function in

Ay at the origin, or
27
f €"du(0)=0, n>k.

0

Since y is a real measure of mass 1 we must then have

1
du(0)=5-¢(0)do

27

where ¢ is a trigonometric polynomial
k-1 )
$0)=1 +p;[ap 0+, e 0],

Now let f be any function in the algebra B, and let n = 0. Then
27

OGN ()=RE" ) =5 [ €706 () §6)a5.

[

If we let p (%) = €9 $ (6) the above equation says that for every f€B, yf is analytic, i.e.,
27
[ €™y () f(e)d6=0,n=1,2,....
]

Thus every f€B is (the boundary function of) a meromorphic function: f =yf/yp. So f is
meromorphic, v is analytic, and for every positive integer » the function yf" is analytic.
Clearly f is itself analytic. Thus B< A4,.

In the case k =1, the above theorem states that A, is a maximal subalgebra of C'(I").
Furthermore, the theorem implies that for any k the algebra A4; is contained in precisely
one maximal subalgebra of C(I'), namely A4,. So, when k£ > 1, the algebra A4y is contained
in a maximal algebra but is not the intersection of the maximal subalgebras of C(T")
which contain it. Thus we might say that 4, is a primary algebra. We shall see shortly
that this property of A4,(k > 2) is rather easily deduced from the maximality of 4, and
the fact that A4, has finite codimension in 4,. We have given theorem 6.4 separately to
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show that the proof of the primary nature of 4, is not appreciably more difficult than the
short proof of the maximality of A, given in [8].
We proceed now to enlarge our class of primary algebras. We shall need the following

lemmas.

LEMMA 6.5. Let A be a mazximal subalgebra of C(I') and let B be a subalgebra of C (I")
which contains an ideal I of A. If B contains a function f which is notin A, then B contains
every continuous function on I' which vanishes on the hull of 1. If, in addition, the hull of I is
finite, then B = C(T).

Proof. By the hull of I we mean the set of all points in I' where every function in 7
vanishes. Since 4 is maximal and f is not in A, the linear algebra generated by 4 and f is
dense in C(I'). This means each function 2 in C(I') can be uniformly approximated by

functions of the form

z 9x fk’ Ik €A,
£=0
If g is any function in the ideal I, then the function
2 9ot
o}

belongs to B, because f is in B and each gg, is in I, hence in B. From this it is clear that
if R€EC(L) and g€, then gk is in B. In other words, J = I-CO(T") is contained in B. Now
J is an ideal in C(T") so that the closure .J consists of all continuous functions vanishing on
the hull of J. Clearly J and I have the same hull. This proves the first statement of the
lemma.

If we now assume that the hull of I is a finite point set, then since B separates points

of I' and contains every continuous function vanishing on that finite point set, it is clear

that B = C[T).

LEMMA 6.6. Let A be a commutative linear algebra with identity and let 4, be a subalgebra
of A which has finite codimension in A. Then A, contains an ideal I of the algebra A such

that I has finite codimension n A.

Proof. Let I be the set of all elements a €4, such that a4 = 4, Then I is an ideal in
A and I< A4,. For each element a €4, let L, be the linear transformation of 4 into 4
which is right multiplication by a. Since 4, is a subalgebra of 4, the space 4, is invariant
under L,. Thus I, induces a linear transformation I, of the linear space 4 /4, into itself.
The mapping a—1L, is an algebra homomorphism of 4, into the algebra of linear trans-
formations on the finite-dimensional space 4/4,. The kernel of this homomorphism is the

ideal I. Thus 4,/ is finite-dimensional, hence 4 /1 is finite-dimensional.
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THEOREM 6.7. Let A be a maximal subalgebra of C(T') and let Ay be a subalgebra of A
which has finite codimension in A. If B is a subalgebra of C(I') which contains A4,, then
either B =C(T') or B is contained in A.

Proof. By Lemma 6.6, 4, contains an ideal I of the algebra 4 which has finite co-
dimension in 4. Thus the hull of I must be a finite point set. If B is not contained in 4,
then by lemma 6.5, B =C(I).

Under the hypotheses of Theorem 6.7, the algebra A, is contained in precisely one
maximal subalgebra of C(I"). This theorem applies (of course) to the algebras 4, of theorem
6.4. We should like to discuss now some further examples of this situation.

For the remainder of this section, let I' denote the unit circle of the complex plane,
and let 4 be the uniform closure on I' of the algebra of polynomials. Suppose that fl, A
are functions, each analytic in a neighborhood of the unit disc, satisfying

@) fi ... f, separate the points of I’

(ii) at each point of I, one of the functions f, has a non-vanishing derivative.

Let A4, be the subalgebra of C(I') generated by f,, ..., f,. Results of Wermer [20; Lemma
3.2] and [19; Theorem 1.2] imply that there is a function

9(2)= (2= L) (= he) %

such that 4, contains the ideal I =gA of the algebra A. Thus A4, is contained in precisely
one maximal subalgebra of C(I'), namely 4. As an approximation theorem, this result states
that if f;, ..., f, are analytic in a neighborhood of the closed disc and satisfy conditions (i)
and (ii) above, then given any continuous function A on I' which is not in 4, we can ap-
proximate every continuous function on I' by polynomials in f, ..., f, and A.

There is a theorem similar to this where one assumes that f,, ..., f, are analytic in an
annulus containing I" and satisfy conditions (i) and (ii). In this case the algebra A4, generated
by fi. .., f» need not be a subalgebra of 4; indeed, this algebra A; may be all of C(T').
If 4,4 C(I'), Wermer’s results {19; 20; 21] state the following. There is a Riemann surface
F and an analytic homeomorphism z—>z' of I" onto an analytic circle I on F which bounds
a domain D such that D U I is compact. Each of the functions f,, ..., f, extends analyt-
ically from I' into a neighborhood of D UI". If 4’ denotes the algebra of all continuous
functions on I' which extend from I analytically to D then A4’ is a maximal subalgebra
of C'(I"), which of course coutains 4,. It is once again true that 4, containg an ideal I of
A’ which has a finite hull. Thus, in this case, the algebra 4, is contained in exactly one
maximal subalgebra of C(I'), namely 4’. But the algebra 4’ may consist not of the functions
which extend from I' analytically to the unit disc but rather those which extend analyt-

ically into the domain D on the Riemann surface F.
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If we wish to state this last result as an approximation theorem, it says that if A€C (1)
and h¢ A4’ then f,, ..., f, and k generate C(T'). Given the function » on I' it might be ex-
tremely difficult to determine whether or not % is in 4’. But one can state a slightly weaker
approximation theorem whose hypothesis is more easily verified in specific cases.

Because conditions (i) and (ii) are satisfied by f,, ..., f, there will be an annulus con-
taining I’ such that the analytic homeomorphism z->2" of I' into the surface F can be
extended to an analytic homeomorphism of this annulus onto a neighborhood of the curve
IV. Thus one sees that if % is in 4’ then in the plane A must be extendable from I" so as to
be analytic in an annulus of one of the two types: [z 1 <|z| < p] or [z p <|z| <1]. That
i8, f15 ... fn determine a positive number p, either less than or greater than 1, such that
each function in 4’ is extendable to a continuous function on [z; 1 <|z| < p] which is
analytic on [z; 1 <|z| <p], or a continuous function on [z; p <|z| <1] analytic on [z;
p <|z| <1]. We might describe this by saying that f,, ..., f, determine one side of the
unit cirele such that each function in 4’ is analytic in an annulus on that side of the circle.

Now one can certainly state the following. Suppose fy, ..., f, are analytic in an annulus
containing I' and satisty conditions (i) and (ii) above. If A€C(I") and % is not analytically
extendable to an annulus on either side of T', then every continuous function on I" can be

uniformly approximated by polynomials in f,, ..., f, and A.

7. Bounded analytic functions

Let L, be the algebra of bounded measurable functions on the unit circle of the
complex plane, idéntifying functions which are equal almost everywhere. Then L, is a

commutative Banach algebra with the norm
(1711 = ess sup | £ (7).

Let H, be the (closed) subalgebra of L., consisting of the functions f such that

27

J‘einef(eie)dgzo’ n=1,1,2,3,....
0

For each f€H,, the function
2r
1@ =] f(c*) P.(6)do,
]

where P, is the Poisson kernel for z, is a bounded analytic function in the open unit disc,

and

II71l= sup |7 ()]

16 — 803808 Acta mathematica. 103. Imprimé le 21 juin 1960
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Furthermore, a well-known theorem of Fatou states that every bounded analytic function
in the disc arises in this way. Thus H, is isometrically isomorphic to the algebra of bounded
analytie funections in the open dise.

The algebra L is self-adjoint, i.e., closed under complex conjugation, and is therefore
isometrically isomorphic to the algebra C(X) of all continuous functions on its space of
maximal ideals. This follows from the commutative Gelfand-Neumark theorem, see {11;
p- 88]. The space X is also the Stone space for the Boolean algebra of measurable subsets
of the circle, modulo sets of measure 0. Thus X is an extremally disconnected compact
Hausdorff space. We shall need to know only that X is totally disconnected and that a
basis for the topology of X is given by the open and closed sets

[#€X; by (2) = 0]

where M is a measurable set on the circle and ky is its characteristic function.

The algebra H,, is isometrically isomorphic to a closed subalgebra 4 of C(X). For
the sake of simplicity we shall sometimes write 4 = H,, and/or C(X) = L.

We proceed now to record some facts about the space of maximal ideals of H, which
are contained in an unpublished paper of I. J. Schark.

Each point of the open unit disc defines a complex homomorphism of H. by

f=1@)
and the open disc is thus “embedded” in the space S(H ). Also, there is a natural continuous
mapping 7z of S(H,) onto the closed unit disc, as follows. The algebra H ., contains as a
closed subalgebra the algebra A4, of continuous “analytic”” functions on the circle. The
mapping 7 mentioned above sends a homomorphism of H,, into its restriction to the sub-
algebra 4,, and this restriction corresponds to a point in the closed disc. The mapping
7 is one-one over the interior of the disc; that is, if ® is a complex homomorphism of H
such that @ evaluates each function in 4, at some point z, |z| <1, then @ is simply evalua-
tion at z on all of H,. This is evident from the fact if f€H, then f(z) =0 if and only if

g(C)=;_“C

is in H,. The mapping = certainly maps S(H,) onto the closed unit disc since 7(8) is a
compact subset of the closed disc which contains each interior point. The mapping x is
(as we shall see) not one-one over the circumference. Notice also that = * actually defines
a homeomorphism of |z| <1 into S(H.) since the topology of the disc is in either case
the weak topology defined by H.. Let us call A the image of the open disc in S(H).

One unsolved problem in this context is whether A is dense in S(H). Since H, is an
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algebra of continuous functions on A, it is at least clear that the closure of A in S(H )
will contain the Silov boundary I"(H.,).

We wish now to show that I'(H,,) is (homeomorphic to) S{L} = X. Since H is a
subalgebra of L, there is a natural continuous mapping sr; of X into 8 (), obtained by

restricting each homomorphism of L, to the subalgebra H .

LeMmma 7.). The mapping r, s a homeomorphism of X into S(H ) and 7 (X) is exactly
I'(H,,).

Proof. What we must show is that the functions in H ., when regarded as elements of
L., separate points on X and that the Silov boundary for H., is all of X. We shall first
show that the Silov boundary condition is satisfied. From this proof it will be clear that
H , separates points on X.

Let #€X and let U be an open set in X containing . We must show that there is a
function A €H ., whose maximum modulus on U is greater than the modulus of » anywhere
on X —U. It will suffice to do this when U = [k, = 1], M a measurable set on the unit

circle. Define
2n

i0
() =2in f %kM(efo)de.
]

Then y is analytic for |z| <1 and b =¢” is a bounded analytic function in the unit dise.
Furthermore, on the unit circle, |k| =exp k), almost everywhere. Thus on X, |k| =e
where k,; =1 and |h| =1 where ky = 0; so & is the desired function.

Let us now regard X as a closed subset of S (H,,). We then have the following picture
of S(H,). This space contains the open unit dise A. The closure of A contains besides A
the Silov boundary I (H,) which is the space X of maximal ideals of L.,. It is not known
whether the closure of A is all of S (H ), but it is easily seen that there are points in A — A

which are not on the Silov boundary. For example, the function

1er=exp (25)

is in H, has no zeros in A, but must vanish somewhere on A since f(z) tends to 0 as 2z
approaches 1 along the positive axis. No such 0 of f can occur on the Silov boundary X
since the function f has modulus 1 on the unit circle and is therefore invertible in L.
This is the extent of the information we shall need from the work of I. J. Schark.

The space S(H,,) — A and a fortiori the space X, is fibered by a natural continuous

mapping 7z onto the unit circle, 77 being the map which sends each complex homomorphism
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into its restriction to the algebra of functions in H, which are continuous on the unit
circle. If  is a complex number, |¢| =1, let us define the fiber of S(H ) over { [the fiber
of X over {] to be the set z~*(Z)[%(£) N X]. We shall denote this fiber by S(H.); [X;].
If we consider the function f(z) = 2, this fiber over { is simply the set of all points in S (H )
{X] where f ={.

THEOREM 7.2. Let B be a closed subalgebra of Lo, = C(X) which contains H .. Then

(i) for each L, || =1, the algebra By obtained by restricting B to the fiber X, is a closed
subalgebra of C(X;)

(ii) ¢f B ts a proper subalgebra of C(X) then for at least one { the algebra B; is a proper
subalgebra of C(X;).

Proof. (i) The algebra B contains the function f(2) =1 (1 +2{7"). Also||f|| =1 and X,
is exactly the subset of X on which f =1. By theorem 5.2, B, is closed. (ii) Suppose B, =
C(X,) for each {; we shall show that B =C(X). The Silov boundary I'(B) is X, because
B is a subalgebra of C(X) and contains the algebra H,, whose Silov boundary is all of X.
We wish to prove that in fact X is the entire space of maximal ideals of B.

Let @ be a complex homomorphism of B. Suppose that ® sends the identity function z
into a complex number ¢ of absolute value 1. Considering once again the function f(z) =
3(1 +27") and applying theorem 5.2, any measure ug on I'(B) = X which represents @
must be supported on the subset of X on which f =1, that is, on the fiber X,. But the restric-
tion of B to X, is all of C'(X;) and since ug is multiplicative on B;, up must be point mass
and ® must simply be evaluation at some point of X.

Suppose that the restriction of ® to H,, isin A, i.e., that @ sends the identity function
z into A, |i| <1. The homomorphism of H,, which is evaluation at 2 then extends to a
homomorphism of B. But this means that for any «, ]oc| <1, the a-homomorphism of
H,, must extend to B. If not then (z — oz)_1 is in B, and since 1, 2, 2%, ... are in B every
continuous function on the unit circle is in B. In particular, (z — A)™" is in B, contradicting
our assumption that the A-homomorphism extends.

Now we claim that the assumption that ® restricted to H,, is evaluation at A is con-
tradictory. For restriction to H., is a continuous mapping of S(B) into S(H.). We just
observed that if the range of this mapping contains any point of A it contains all of A.
But the range is compact and would therefore contain all of A. We noted earlier that A’
contains points which are neither in A nor in X, and we proved above that every point of
S(H ) — A which is in the range is in X.

The space S(B) is thus X, and since X is totally disconnected B = C(X). This follows
from a well-known theorem of Silov [15], that a function algebra 4 must contain the charac-

teristic function of any open and closed subset of S(4).



MAXIMAL ALGEBRAS OF CONTINUOUS FUNCTIONS 239

TrEOREM 7.3. The algebra H., is contained in no maximal subalgebra of L = C(X).

Proof. Suppose the contrary, and let B be a maximal subalgebra of C(X)} which
contains H,. By theorem 7.2, for each ¢, | | =1, the algebra B; obtained by restricting
B to the fiber X, is closed. Since B is a proper subalgebra of C'(X) there is a { such that
B, is a proper subalgebra of C'(X;). But if B; is a proper closed subalgebra of C'(X;), then
since B is maximal, B must contain every continuous function on X which vanishes on
X, becanse the algebra of all f€C (X) such that [ restricted to X, is in B, is a proper sub-
algebra of C(X) which contains B. Thus the essential set E for the algebra B lies wholly
inside one fiber X,.

It is no loss of generality to assume that E is contained in X, the fiber over 1. Now
the algebra By obtained by restricting B to its essential set F is analytic, that is, if f€EB
and f vanishes on a non-empty open subset of £ then f vanishes on all of E (theorem 3.1).
We shall now arrive at a contradiction by showing that if B is any closed subset of the
fiber X, which contains more than one point (as the essential set for B necessarily would)
then there is a function A€H,, which vanishes on a non-empty open subset of & but is
not identically 0 on E.

Let z, and x; be two distinet points of E. Then there is a measurable set M on the

unit circle such that the characteristic function ky is 0 at x, and 1 at ;. Let
w (€)= [1 — ky (¢'%)] log |1 — €.

Then u is a Lebesgue integrable function on the unit circle which is real-valued and bounded

above. If we define

then ¢ is analytic for |z] <1, and since u is bounded above, » = ¢ is a bounded analytic

function in the unit disc. Also, almost everywhere on the unit circle

1, on M
|k|=e*= io
|1—e1 |, off M.

In particular, the function f defined by

1L —ky (€°)] o ("
f(eie):[ 1;(_6622 (e”)

is a bounded measurable function. We rewrite this equation

h=(1—2)f+kyh.
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Let @ be a complex homomorphism of L., which lies in the fiber X, and for which ® (k,;) = 0.
Then
ORYy=P(1 —2)O(f) + P (k)P (R) =0-D(f) +0-D(A) =0.

This says that k vanishes on the non-empty open subset of the fiber X, on which &, =0.
Also, no homomorphism of L, sends both & and (1 — ky,) into 0. For let

g = (1 — ky) + kyk.
Then
h,on M
g:{ 1, off M

so that |g| =1 almost everywhere. Thus g is invertible in L., so that the ideal generated
by (1 — ku) and h contains 1.

Returning now to our two points zy, #; in F N X,, we have constructed a function
h€H, such that h vanishes on the non-empty open subset E N [k = 0] of E and does
not vanish on all of (A (z;) +0).

The above argument shows that a maximal subalgebra of L, containing H ., simply
cannot exist.

We might point out one interesting fact which results from theorem 7.2. Let B be
the closed subalgebra of L, which is generated by H, and the set of all continuous func-
tions on the unit circle. Then B is not all of L, because if |¢| =1 then the restriction of
B to the fiber X, is exactly the same as the restriction of H ., to X;, because each continuous

function on the circle is constant on X.
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