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1. Introduction 

Let  X be a compac t  Hausdorf f  space and  C (X) the  a lgebra  of all cont inuous  complex-  

va lued  funct ions on X.  Le t  A be a un i fo rmly  closed complex  l inear  suba lgebra  of C(X). 

Our in te res t  centers  a b o u t  such a lgebras  A which are m a x i m a l  among all  p roper  closed 

subMgebras of C(X). I n  th is  pape r  we ga the r  toge ther  most  of the  known facts  concerning 

m a x i m a l  algebras,  give some new results ,  and  some new proofs of known  theorems.  

A ma jo r  mo t iva t i on  for the  s t u d y  of max ima l  a lgebras  s tems f rom an  a t t e m p t  to  

general ize the  S tone-Weiers t rass  app rox ima t io n  theorem to non-se l f -adjo in t  algebras.  This  

theorem s ta tes  t h a t  if A is a se l f -adjoint  closed subalgebra  of C(X) (lEA impl ies  lEA), 

and  if A separa tes  poin ts  and  conta ins  the  cons tan t  funct ion  1, t hen  A = C(X). See [11; 

p. 8] for a proof.  This resul t  can be r e s t a t ed  as follows: (i) eve ry  p roper  se l f -adjoint  closed 

a lgebra  A is con ta ined  in a se l f -adjoint  max ima l  a lgebra  and  (ii) the  se l f -adjoint  max imM 

algebras,  B, are of two kinds;  e i ther  B = [/EC(X), /(Xo)=0] for a f ixed xoEX, or B = 

[ /EC(X) ;  /(xl) =/(x2)  ] for f ixed xl,x 2 EX. The condit ion,  A conta ins  the  funct ion 1, says  

t h a t  A is no t  in a m a x i m a l  a lgebra  of the  f irst  k ind.  The condit ion,  A separa tes  points ,  

says  t h a t  A is no t  in a max ima l  a lgebra  of the  second kind.  Thus A is no t  conta ined  in 

any  self -adjoint  max ima l  a lgebra  and  consequent ly ,  f rom (i), A is no t  a p roper  subalgebra ,  

i.e., A = C(X). A ref inement  of the  S tone-Weiers t rass  theorem classifies all  se l f -adjoin t  

closed subMgebras of C (X) and  says t h a t  such an  a lgebra  A is the  a lgebra  of all  cont inuous  

funct ions on an  ident i f ica t ion  space of X,  wi th  the  common zeros of the  funct ions  in A 

deleted.  This resul t  can be r e in te rp re ted  as saying t h a t  A is the  in tersec t ion  of the  self- 

ad jo in t  maximM algebras  which conta in  it. 

Le t  us drop  the  self-adjointness  condi t ion  on A.  One migh t  now hope t h a t  the  w a y  

to general ize the  S tone-Weiers t rass  theorem would  be to  show t h a t  (i) holds (with self- 
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adjointness deleted) and then to classify all maximal subalgebras of C (X). (To avoid trivia- 

lities we now make the assumption that all subalgebras under consideration separate points, 

contain 1~ and are closed). I t  turns out, however, that  (i) fails; in section 7 we exhibit a 

proper algebra A not contained in any maximal algebra. The example is easy to describe, 

but the proof that  it is not contained in a maximal algebra depends on several results of 

earlier sections. Even if A is contained in a maximal algebra, it is not necessarily the 

intersection of the maximal algebras containing it. Specific examples are given in section 6. 

Despite these negative results, the study of maximal algebras does give approximation 

theorems. In  particular, if A is a maximal subalgebra of C (X), then of course the algebra 

generated by A and a n y / E C ( X )  - A  is all of C(X). For example, [16] the fact that  the 

algebra of continuous functions on the circle which are boundary values of analytic func- 

tions on the disc is maxifilal, implies that  every continuous function on the circle can be 

approximated by polynomials in z and / ,  where ] is not the boundary value of an analytic 

function on the disc. This is a generalization of Fejer's theorem (the case ] =5). For some 

special spaces X, one knows enough about maximal algebras so that if A lies in a restricted 

class of algebras (just as one restricts ones attention to self-adjoint algebras in the Stone- 

Weierstrass theorem), then the possible proper subalgebras B containing A can be classified. 

If  A contains functions not in these algebras B, A must be C (X). In  section 6, this situation 

is analyzed when Xis  the circle and A contains a separating subalgebra of analytic functions. 

Wermer's results [18; 19; 20] give enough information about maximal algebras to give a 

strong approximation theorem. 

The study of maximal algebras has one natural reduction which we now discuss. 

Suppose A is a maximal subalgebra of C(X) and suppose S is a closed subset of X. Let A s 

denote the closure of A restricted to S, and let A 0 = []EC(X); [] sEAs]. Then A 0 is closed 

and A c A o c C(X). Since A is maximal, either A 0 = C(X) so that  As = C(S) or else A = A o 

so that A is actually a maximal algebra on S extended continuously in all possible ways to 

X. Among the closed sets S such that A s +C(S)  there exists a unique minimal one E = 

N S which we call the essential set for A [3]. Thus A consists of a maximal algebra of 
As4=C(S) 
C(E) extended in all possible ways to X in a continuous fashion. Furthermore, if S is a 

proper closed subset of E, then As = C(S). If E = X, then A is said to be an essential maxi- 

mal subalgebra of C(X). The study of maximal algebras of X is thus reduced to the study 

of essential maximal algebras of X and its closed subsets. 

In  section 2, we list the known examples of essential maximal algebras. Some new 

ones are exhibited in section 4. One observes that these examples all stem from algebras of 

analytic functions. In  [10], Helson and Quigley show that  essential maximal algebras 

display a number of properties enjoyed by analytic functions. To our mind, the reason for 



M A X I M A L  A L G E B R A S  OF  C O N T I N U O U S  F U N C T I O N S  219 

this is that  an essential maximal algebra A is pervasive, that  is, As = C (S) for any proper 

closed subset S of X. In  sections 3 and 4, pervasive algebras and their properties are ana- 

lyzed. These results together with an idea of Rudin [14] show that any pervasive algebra 

on a disconnected space is contained in a maximal algebra (Section 4). This leads to some 

new essential maximal algebras on the circle and an example of an essential maximal algebra 

on the unit interval. 

Section 5 contains a discussion of the representation of complex homomorphisms of 

an algebra by positive measures on the ~ilov boundary, emphasizing the usefulness of 

such representations in studying maximal algebras. This measure representation is playing 

an important role in the study of function algebras. I t  seems clear that  it will play an 

increasingly important role. 

2. Examples 

We shall list the examples of essential maximal algebras known to us. 

1. (Wermer [16]). Let X be the unit circle in the complex plane and let A be the 

algebra of continuous functions on X which can be analytically continued to the interior 

of the unit disc. That is, ] is in A if and only if 

2n 

fe~e/(e~~ n = 1 , 2 , 3  . . . .  
0 

2. (Wermer [21]). If F is a Riemann surface and X is an analytic curve on F which 

bounds a compact subset K of F, let A be the algebra of continuous functions on X which 

can be analytically continued to K - X. 

3. (Bishop [6]). Let X be the topological boundary of any simply connected plane 

domain and let A be the algebra of functions on X which are uniform limits of polynomials: 

4. (Hoffman and Singer [8]). Let X be a compact abelian group whose character 

group X is a subgroup of the additive group of real numbers. Let A be the algebra of all 

continuous functions on X whose Fourier transforms vanish on the negative half of the 

group 2~. 

5. Rudin [14], has proved the existence of essential maximal subalgebras of C(X) 

where X is a certain totally disconnected set in the complex plane. This is described in 

section 4. 

As mentioned in the introduction, we shall add to this list in section 4. 

3. The essential set 

Suppose that  A is a subalgebra of C (X), which we remind tile reader means A se- 

parates the points of X, contains the constant functions, and is closed. We consider those 

15 -- 603808 Acta  r 103. I m p r i m 6  le 21 j u i n  1960 
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closed subsets K of X such that  A contains every continuous function on X which van- 

ishes on K. Among such sets K there is a unique minimal one E, which we call the 

essential set for A (relative to X). The algebra AE, obtained by restricting A to the set 

E, is a closed subalgebra of C(E) and A consists of the algebra of all functions which are 

continuous extensions to X of functions in A E. The minimality of E is characterized by 

saying that the algebra A E contains no non-zero ideal of C(E). If  E = X, we say that  E 

is an essential subalgebra of C (X). The terminology here is due to Bear [3]. 

The study of function algebras A is "reduced" to the study of essential algebras, and 

the purely topological problem of describing closed subsets of X. We should point out 

that  when A is a maximal subalgebra of C(X) this reduction agrees with that carried out 

in section 1; that  is, a maximal algebra is essential if and only if it is pervasive (see in- 

troduction). 

In  [10], Helson and Quigley proved that  every essential maximal algebra is anti- 

symmetric, i.e., contains no non-constant real-valued functions, and is analytic, i.e., any 

function in the algebra which vanishes on a non-empty open subset of X is identically 

zero. They were motivated of course by an interest in proving that  any maximal (essential) 

algebra has many properties in common with the algebra of analytic functions on the unit 

circle (example 1, section 2). They did not specifically mention the pervasive property 

which such algebras share with the analytic functions. What we should like to point out 

in this section is that  the pervasive property seems to be the fundamental one. By this 

we mean that  any proper pervasive subalgebra of C(X) is analytic and antisymmetric. 

THEOREM 3.1. A proper pervasive subalgebra o] C ( X ) is analytic. 

Pro@ Let / be a function in A which vanishes on a non-empty open set U in X. 

Choose a non-empty open set V such that  V ~ U. The assumption that  A is pervasive 

tells us that if g EC(X) then there is a sequence [/n] of functions in A such tha t /n  converges 

to g uniformly on the complement of V. Then the sequence []]n] converges uniformly to 

/g on all of X. T h u s / g  is in A for each g, o r / . C ( X )  is contained in A. So A contains the 

closed ideal in C(X) generated by ], i.e., A contains every continuous function on X which 

vanishes on the null set K of ]. This means that  when we restrict A to K we get a closed 

subalgebra of C (K). Clearly then / must vanish on all of X; for, if K were a proper closed 

subset of X the restriction of A to K would be at once dense in C (K) and closed and A 

would contain all of C (X). 

T ~ o ~  3.2. Let A be a closed subalgebra o /C(X) .  

(i) I / A  is analytic, A is an integral domain. 

(if) I / A  is an integral domain, A is antisymmetric. 

(iii) I / A  is antisymmetric, A is an essential subalgebra o /C(X) .  
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Proo/. (i) is obvious. (ii) Let R be the self-adjoint part of A, i.e., the set of all functions 

/ in A whose complex conjugate is also in A. Then R is a closed subalgebra of A, and 

since R is self-adjoint there is a compact Hausdorff space Y such that  R is isometrically 

isomorphic to C(Y). Since A is an integral domain, so is C(Y).  Clearly then Y consists of 

a single point and R contains only the constant functions. 

(iii) I t  is clear that  if the essential set for A is a proper closed subset of X then A 

contains a non-constant real-valued function. 

An immediate corollary of these two theorems is that  an essential maximal subalgebra 

of C (X), being a proper pervasive subalgebra, is analytic, hence an integral domain; hence 

antisymmetric. In  fact we see that  for a maximal subalgebra of C (X) the properties of 

being essential, pervasive, analytic, an integral domain, antisymmetric, are all equivalent. 

4. Pervasive algebras 

In  section 3 we saw that  some of the known special properties of an essential max- 

imal algebra are possessed by every proper pervasive subalgebra of C(X). There are 

pervasive algebras which are not maximal, a simple example being the uniformly closed 

algebra on the unit circle generated by 1, z 2, z 3, z 4, . . . .  Having observed this, we felt it 

interesting to inquire whether it is true that  every proper pervasive subalgebra of C (X) 

is contained in a maximal subalgebra of C(X). Motivated by a result of Rudin [14], we 

did prove the somewhat strange fact that, when the underlying space X is not connected, 

this is true. This then is a mild existence theorem for maximal algebras. I t  can be used to 

construct a new class of essential maximal algebras, and in particular to construct a new 

essential maximal algebra on the unit circle. 

Let us first observe the following. 

LEM~A 4.1. Let A be a subalgebra o[ C(X) such that ]or each [EA the real part o/]  has 

connected range. I / X  is not connected, then A is contained in a subalgebra o/ C (X) which 

is maximal with this property. 

Proo/. The proof is essentially that of Rudin []4; theorem 2]. Let F be the class of all 

proper closed subalgebras B of C (X) which contain A and are such that  for each /E B 

the real part of / maps X onto a connected set. If  IBm] is a linearly ordered subset of F, 

the closure of the union of the B~ contains only functions whose real part has connected 

range, and this closure is a proper subalgebra of C (X) since X is not connected. By Zorn's 

lemma, F contains a maximal element. 
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LEMMA 4.2. If A is an antisymmetric subalgebra o /C (X), then/or each /E A the real 

part o/ / has connected range. 

Proo/. Again see Rudin  [14]. L e t / E A  and suppose the real pa r t  of / does no t  have 

connected range. Then the range of / is the union of two non-empty  compact  sets K 0 

and K 1 which are separated by  a vertical line. We can find a sequence of polynomials  

p~ (in one complex variable) which converges uniformly to 0 on K 0 and to 1 on K 1. Then 

p~ (/) is a sequence of elements in A which converges to a non-trivial  idempotent  funct ion 

in A, i.e., a non-cons tant  real-valued function in A. 

I t  is clear f rom the above a rgument  t ha t  the s ta tement  t ha t  the real par t  of each / 

in A maps X onto a connected set is equivalent  to the s ta tement  t ha t  A contains no non- 

trivial idempotent  functions. This in tu rn  is equivalent  (by a theorem of ~ilov) to the maxi- 

mal ideal space of A being connected. 

THEOREM 4.3. Let A be a proper pervasive subalgebra o/C(X),  and suppose that X is 

not connected. Then A is .contained in an essential maximal subalgebra o/C (X). 

Proo/. Since A is proper and pervasive, A is ant isymmetric ,  so lemmas 4.1 and  4.2 

tell us t ha t  A is contained in a subalgebra B which is maximal  with the "connected range"  

property.  But  then B is a maximal  subalgebra of C(X);  for any  proper subalgebra B 1 

which contains B contains A and is therefore pervasive. So B~ is ant isymmetr ic ,  hence has 

the "connected range"  proper ty  and  must  be equal to B. 

We shall now combine theorem 4.3 with some work of Wermer  [17] to prove the  

existence of new essential maximal  algebras. 

Let  X be a compact  set in the complex plane with these properties: 

(i) X has no interior. 

(ii) X does no t  separate the plane. 

(iii) X is not  connected. 

(iv) X has positive Lebesque measure at  each of its points, i.e., if x EX then for any  

neighborhood U of x the set U N X has positive plane measure. 

Let  Ax  be the algebra of all continuous functions on the Riemann  sphere S which are 

analytic on S - X. The functions in A x separate the points of S [17]. 

Each  function in Ax assumes its m a x i mum modulus on the set X, so tha t  we can 

identify Ax with a proper closed subalgebra of C (X). These properties of Ax require only 

tha t  X have no interior and positive measure. 

We now observe tha t  properties (ii) and (iv) imply tha t  Ax is a pervasive subalgebra 

of C(X). Let  K be a proper closed subset of X. Choose a point  x 0 EX - K. For  simplicity let 

us assume tha t  x 0 = 0. Choose ~ > 0 such tha t  the disc [ [ z I ~< ~] does not  intersect the set 
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K. When 1In < (~, let An be the intersection of X and the open disc I z I < ! /n .  By condi- 

tion (iv), the measure of An, ]A~ I, is positive. Define 

On (z)- 1 f (  dxdy 
l• x~-V~y: ~" 

A n 

The functions dp~ are (can be extended to) functions in A x. A routine verification shows 

that  On (z) converges to 1/z uniformly on the compact set K. Since X does not separate 

the plane (and has no interior) a theorem of Mergelyan [12] tells us that  polynomials in 

1/z are dense in the continuous functions on K. Thus we see that  the restriction of A x to 

K is dense in C (K). 

Using theorem 4.3 we then have 

T~EO~EM 4.4. I f  X is a compact set in the plane which satisfies conditions (i)-(iv) 

above, then the algebra A x is contained in an essential maximal subalgebra o / C ( X ) .  

When X is totally disconnected, this result was obtained by Rudin [14]. 

The following special case of theorem 4.4 is of particular interest. Suppose the set 

X consists of two disjoint homeomorphic images of the unit interval. (These two arcs can 

be so embedded as to satisfy condition (iv)). The algebra A x is then included in an essential 

maximal subalgebra B of C (X), where X consists of two disjoint copies of the unit interval. 

From B we wish to obtain an essential maximal subMgebra on the unit circle, by taking 

the subalgebra of functions which identify the respective ends of the two intervals. If  we 

identify only one pair of endpoints we obtain an essential maximal Mgebra on the unit 

interval. We shall need the following lemma. 

L~MMA 4.5. Let B a maximal subalgebra of C(X)  and let x and y be two points in X .  

Let B o be the subalgebra o] B o/]unctions ] ]or which /(x) = ](y), and let Y be the compact 

space obtained from X be identi]ying x and y. Then B o is a maximal subalgebra o] C(Y) .  

Proo]. What we must prove is this. If  g is a continuous function on X such that  g (x) = 

g (y) and g ~ B 0 then the closed subalgebra of C (X) generated by B 0 and g contains every 

�9 continuous function ] for which ](x) = ] (y). I t  clearly will suffice to consider the ease in 

which g (x) = g (y) = 0. 

Since g (x) = g (y) and g ~ B0, g ~ B. Thus, the linear algebra [B, g] generated by B and 

g is dense in C (X). This linear algebra consists of ull functions of the form 

/o + /:g +"" + /.g" 
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where /0  . . . . .  /~ are  in B. Le t  I be the  set of all  funct ions  in [B, g] such t h a t / k  (x) = /k  (Y) = 0, 

k = 0, 1 . . . . .  n. Then I is an ideal  in [B, g], so the  closure of I is a closed ideal  in the  closure 

of [B, g] (which is C(X)) .  The ideal  I conta ins  every  funct ion in B which is 0 a t  bo th  x 

and  y, and  since B separa tes  po in ts  on X the  set of poin ts  on which every  funct ion  in I 

vanishes  consists of the  two poin ts  x and  y. Thus the  closure of I mus t  conta in  every  con- 

t inuous  funct ion  on X which vanishes  a t  bo th  x and  y. Bu t  I is conta ined  in the  a lgebra  

genera ted  b y  B 0 and  g. Thus  the  closed a lgebra  genera ted  b y  B 0 and  g conta ins  every  

cont inuous  funct ion vanishing a t  x and  y. Since B 0 conta ins  the  constants ,  B 0 and  ff genera te  

all  funct ions which iden t i fy  x and  y. 

Now let  us r e tu rn  to  the  a lgebra  A x  above  when X = 11 U 12 where 11 and  I~ are d is jo in t  

homeomorphic  images  of the  un i t  in terva l .  Le t  B be an  essential  m a x i m a l  suba lgebra  of 

C (X), conta in ing A z. If  x~ and  u~ are the  end poin ts  of I~, i = l ,  2, we consider  the  suba lgebra  

B 0 of B of funct ions  ] such t h a t  ](xl) = / ( x 2 ) , / ( u l )  = / (u2) .  B y  the  above  lemma,  B 0 is an  

essent ia l  max ima l  suba lgebra  of a homeomorph ic  image  of the  un i t  circle. 

W e  wish to  show t h a t  the  a lgebra  B o is not  i somorphic  to  a n y  of the  examples  ci ted 

in section 2. To do this  i t  will  suffice to  show the  following. I f  A~ is t he  suba lgebra  of 

A x which identif ies  x 1 wi th  x 2 and  u 1 wi th  us, then  A~ cannot  be i somorphic  to  a closed 

suba lgebra  of the  a lgebra  of b o u n d a r y  values of ana ly t i c  funct ions  on a R i e m a n n  surface 

(with boundary) .  

W e  shall  conten t  ourselves wi th  a sketch of th is  proof.  Le t  F be an ana ly t ic  circle on 

a R i emann  surface which bounds  a compac t  piece K of the  surface. Le t  A be the  a lgebra  

of al l  cont inuous  funct ions  on K which are  ana ly t ic  on K -  F.  Suppose  t h a t  the  a lgebra  

A~ is ( isomorphic to) a suba lgebra  of A.  Each  complex  homomorph i sm  h of the  a lgebra  A 

gives rise to  a complex  homomorph i sm  h 0 of A ~ b y  rest r ic t ion.  The  ma pp ing  7~ : h-~h  o 

is a cont inuous  mapp ing  of K in to  the  space S o of complex  homomorph i sms  of the  a lgebra  

A ~ The space S o can be ident i f ied  as the  R i e m a n n  sphere S wi th  the  pa i rs  of po in ts  (xl, x2) 

and  (ul, u2) ident i f ied.  This  follows f rom a resul t  of Arens  [1] t h a t  the  space of complex  

homomorph i sms  of A x is S. The  mapp ing  ~,  when res t r i c t ed  to F,  gives a homeomorph i sm 

of F onto the  circle on S o ob ta ined  b y  ident i fy ing  the  ends of t he  in terva ls  11 and  I2. 

I t  is now re]a t ive ly  easy  to argue t h a t  such a cont inuous  ma pp ing  ~ cannot  exist .  For ,  

let  p be the  po in t  on F such t h a t  q = z p  is the  po in t  of S o which arises from ident i fy ing  x 1 

and  x~. A suff ic ient ly  smal l  ne ighborhood  F of the  po in t  q is homeomorph ic  to  two  discs 

wi th  the i r  centers  ident i f ied.  Thus  V - [g] is homeomorph ie  to  two d is jo in t  copies of the  

p u n c t u r e d  open disc. Suppose  we select a ne ighborhood  U of the  po in t  p which is connected  

and  for which g ( U )  c V. Then  U - [p] is st i l l  connected  and  mus t  be m a p p e d  b y  ~ into  

one of the  two punc tu red  discs compris ing V - [q]. B u t  th is  is impossible,  since the  p a r t  
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of F which lies in the neighborhood U is mapped by 7e partly into one of the punctured discs 

and partly into the other. 

We should perhaps comment that  in a rough sense the algebra A~c is not an algebra of 

analytic functions on a l~iemann surface with boundary, because the circle we have on 

the pinched sphere S O does not bound. We should also note that  it may well be that  Ax 

is alreudy a maximal subalgebra of C (X). One can prove that  if B is any proper subalgebra 

of C (X) which contains Ax, then every complex homomorphism of Az extends to a complex 

homomorphism of B. But whether Ax is actually maximal remains unknown. 

5. Measures and the Silov boundary 

Our discussion thus far of maximal subalgebras of U (X) has not involved any detailed 

information about the relation of the space X to the algebra A. Further discussion requires 

the introduction of the maximal ideal space and ~ilov boundary for A. 

Let A be a closed subalgebra of C (X), as usual containing the constants and separating 

points. The space o/ maximal ideals (or complex homomorphisms) of A is the set S(A) 

of all non-zero complex linear functionals on A which are multiplicative. Each such multi- 

plicative functional is automatically of norm 1, and we give to S(A) the weak topology 

which it inherits as a subset of the unit sphere in the conjugate space of A. The space 

S(A) is the largest compact Hausdorff space on which the algebra A can be realized as a 

separating algebra of continuous functions. In S (A) there is ~ unique minimal closed subset 

F(A) on which every function in A assumes its maximum modulus. We call F(A) the 

~ilov boundary for A [7]. 

For each point x EX we have a complex homomorphism hx of A defined by 

hx (/) =/(x). 

Since A separates points on X, the mapping x--->h z is a homeomorphism of X onto a closed 

subset of S(A). The image of X under this mapping includes F (A) because each function 

in A certainly assumes its maximum on X. 

Since each function in A assumes its maximum on F(A) we may (if we wish) regard 

A as a subalgebra of C(F). The minimality of F shows that F is the smallest compact 

Hausdorff space on which A can be realized as a closed separating algebra of continuous 

functions. 

If  p ES(A), there is a (not necessarily unique) positive Balre measure # ,  on F such 

that 

/(p) =f /dl~, 
F 
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for every / in A [see 2]. We say that/~p "represents" p. This representation results from 

the fact tha t  any continuous linear functional on C(F) which has norm 1 and is 1 at  the 

identity is positive. We are particularly interested here in the role of these measures in 

the study of maximal algebras. 

Let us first make some simple observations. We have been discussing special types of 

subalgebras of C(X): antisymmetric,  pervasive, etc. The representation of homomorphisms 

by positive measures makes it clear that  A is antisymmetric if and only if A is an anti- 

symmetric subalgebra of C(F). In  other words, ant i symmetry  is independent of which 

space X we represent A on, because X always contains F. Likewise the property of being 

an essential subalgebra of C(X) is independent of X. However, certain properties we have 

discussed do depend upon the underlying space X. For examplel the exact description of 

the essential set depends heavily on X. Also the property of being pervasive depends on 

X. To rule out discrepancies, let us make the following conventions. The essential set for 

A will be the essential set for A relative to F. We shall call A pervasive if A is a pervasive 

subalgebra of C(F). (It  follows tha t  if A is a pervasive subalgebra of C(X) then X = F ;  

but  A may  be pervasive on F and not on X.) 

We begin our consideration of measures with two facts which were proved for essential 

maximal algebras by Bear [4]. 

THEOREM 5.1. Let A be a pervasive subalgebra o/ C(F), let p ES (A)  - F  and let #v be 

any positive measure on F which represents p. Then the closed support o//~v is all o /F .  

Proo/. Let K be the closed support  of ~up. Suppose K is a proper closed subset of F. 

Since l(p) = f ld~v, 
K 

[/(p) l <s p [/[, 

and since A is pervasive the measure/~p defines a multiplicative linear functional on C (K). 

Thus/% must  be a point mass, which is absurd since p ~F. 

COROLLARY: Let A be a pervasive subalgebra o/ C(F) and let / be a /unction in A 

which has norm I. I / there is a point pES(A)  - F  such that I/(P)[ = 1, then / is constant. 

Proof. Choose a measure #p representing p. Since #~ has mass 1, I/] ~ 1, and 

l=l/(P)l=lf/d  l, 
F 

it is clear tha t  / (x) = / (p) for all x in F. 

Of course Theorem 5.1 and its corollary hold for essential maximal algebras. We have 
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stated them for pervasive algebras to emphasize once again tha t  the pervasive proper ty  

of maximal  algebras is the fundamenta l  one (among the known special properties). 

We shall later need the following. 

T ~ O R ~ M  5.2. Let / be a/unction in A which has norm 1, and let K be the subset o/ 

S (A)  on which ] = 1 (assume K is not empty). Let AK be the algebra obtained by restricting A 

to the set K.  Then A K is closed and 

(i) S (A~) = K. 

(ii) 1 ~ (AK) c p N K. 

(iii) I /  p EK, then any measure #~ on F which which represents p (as a homomorphism o/ 

A) is supported on K N F. 

Pro@ A port ion of this theorem was proved by  Bear [5]. I t  is no loss of generali ty to 

assume tha t  K = [1II = 1], for we m a y  replace / by  1(1 + / )  if this is no t  so. Then / = 1 on 

K and ]/] < 1 on S(A)  - K .  I f  I is the closed ideal of functions which vanish on K then 

AK is isomorphic to A / I  and thus inherits the  quotient  norm 

[[go[[ = i n f  [ [g+ go [I- 

Clearly Ilgoll Ilg0ll = sup I gol. B u t  the  opposite inequali ty also holds since 
K 

IlY g0 II = I1 g0 II . 

Thus the quotient  norm is the sup norm on K so tha t  AK must  be complete in the sup 

norm. 

(i) S(A~:) = K is well known, because K is a hull, i.e., the set of zeros of the funct ion 

(1 - / ) .  

(ii) is clearly implied by  (iii). 

(iii) Let  p 6 K  and let #v be a positive measure on F which represents p. For  the func- 

t ion / we then have 

1 
Y 

and since I/I ~< 1 we must  have / = 1 on the closed support  of tt,. 

We should like to make some comments  which place theorem 5.1 in wha t  we believe 

is its proper setting. For  an algebra A 

(i) the  interior of S(A)  is the set I = S(A)  - P .  

(ii) the accessible set is the set L = i - I .  

(iii) the minimal support set is the subset S ,  of P obtained by  intersecting the closed 

supports  of all measures try which represent points p in I .  
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(iv) the maximal support set is the  set S* which is the  closure of the  union of the  

closed suppor t s  of all  measures /zp  which represen t  po in ts  p in I .  

Of course I is an  open subset  of S(A),  while L, S , ,  and  S* are  closed subsets  of F.  

I f  the  in ter ior  I is non-empty ,  t hen  S ,  c S*. I f  A is a m a x i m a l  suba lgebra  of C(F) ,  or 

more  general ly,  if the  a lgebra  AE ob ta ined  b y  res t r ic t ing  A to i ts essent ial  set  E is a pe rvas ive  

suba lgebra  of C(E) ,  then  theorem 5.1 tells  us t h a t  E is conta ined  in the  min imal  suppor t  

set S , .  

TH~O~]~M 5.3. For any algebra A, the accessible set L is contained in the essential set E. 

Proo/. Let  A 0 be the  ideal  in C(F)  of funct ions which vanish  on E. B y  def ini t ion of 

the  essential  set, A0 is con ta ined  in A.  As is well-known, eve ry  non-zero complex  homo- 

morph i sm of A 0 is eva lua t ion  a t  a po in t  of F - E.  Thus  if qb is a complex  homomorph i sm of 

A,  the  res t r ic t ion  of �9 to  A 0 is e i ther  iden t ica l ly  0 or is eva lua t ion  a t  a po in t  of F - E .  

I f  there  is a po in t  yoEF - E such t h a t  dp(/) =/(Y0) for every  / in A0, then  dp(/) =/(Yo) for 

all  / in A,  because a non-zero homomorph i sm on an  ideal  has  a un ique  extens ion to  a homo- 

morph i sm of the  full a lgebra.  Thus we see t h a t  if p is a po in t  of S (A) which does no t  lie 

in  F - E, t hen  eve ry  func t ion  in A 0 vanishes  a t  p. I n  pa r t i cu la r  th is  is t rue  for each po in t  

p EL. Thus,  no po in t  of L lies in F - E,  i.e., L c E,  q.e.d. 

T ~ n O R E M  5.4. For any algebra A, S* c E. 

Proo/. Le t  p be a po in t  of I and  l e t / ~  be a n y  measure  on I ~ which represents  p. W i t h  

the  no ta t ion  of 5.3 (and a por t ion  of the  proof), for each / in A 0 we have  

o=/(p)= f f 

where U = F - E. B u t  th i s  says  t h a t  t he  res t r ic t ion  of /zp  to U sends every  cont inuous  

func t ion  on U which vanishes  a t  inf in i ty  in to  0. Thus  th is  res t r ic t ion  is the  0 measure ,  i.e., 

t ~  (U) = 0. This  proves  t h a t  the  closed suppo r t  of/z~ is conta ined  in E.  

I f  we p u t  these resul ts  toge the r  for max ima l  a lgebras  we have  the  following. I f  A is 

a max ima l  suba lgebra  of C(F)  and  if P =~S(A), t hen  

L ~  E = S ,  = S * .  

I t  seems reasonable  to us to  conjec ture  t h a t  when A is m a x i m a l  and  I is n o n - e m p t y  then  

L = E = S ,  = S*. I n  fact ,  one might  conjec ture  t h a t  for a n y  a lgebra  A wi th  I n o n - e m p t y  

t h e  inclusion S ,  ~ L holds.  The  quest ion posed b y  this  conjec ture  has  the  following two 

equ iva len t  formula t ions :  

(i) I f  p E I does there  exis t  a measure /z~  represent ing  p whose closed suppor t  is con- 

t a i ned  in the  accessible p a r t  of the  ~ilov boundary ,  L = i - P.  
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(ii) I f  A 1 is the closure of the restriction of A to i ,  is the ~ilov boundary  for A 1 exact ly 

L? 

When  the question is s tated in form (ii), we see tha t  we are asking whether  a strength- 

ened max imum modulus principle holds for funct ion algebras. This seems to be a very  

interesting question. An  affirmative answer could have impor tan t  consequences. 

6. Tests for maximal i ty  

I n  our comments  about  pervasive algebras, we pointed out  t ha t  if A is a pervasive 

subalgebra of C(X) then P = X. F rom this it is easy to see tha t  if A is any  maximal  sub- 

algebra of C(X) then I '  = X.  So, in inquiring whether  an algebra A is maximal  we need 

only inquire whether A is a maximal  subalgebra of C (P). 

How does one tell if a given algebra A is a maximal  subalgebra of C(I')? This is, of 

course, a difficult question. One can a t t e m p t  to check whether it is t iue  t h a t  on the essential 

set for A the algebra is pervasive, an integral domain,  ant isymmetrie ,  etc. I n  section 7, 

we shall use the analytic proper ty  of maximal  algebras to give an example of an algebra A 

which is contained in no maximal  subalgebra of C(I ') .  But  there are algebras A which are 

pervasive subalgebras of C (F) wi thout  being maximal,  as we have seen. One is then cer- 

ta inly  led to a search for other tests for the maximal i ty  of A. We should like to outline now 

another  technique which, a l though simple, does seem to have some interesting conse- 

quences. 

LENMA 6.1. Let p be a point in S (A)  - I "  and let #~ be a representing measure ]or p. 

Then there is a proper subalgebra B o /C  (F) which contains A and is maximal with the property 

that #p de/ines a multiplicative linear/unctional on B. 

Pro@ Let  F be the family of all proper closed subalgebras of C(F) which contain A 

and on w h i c h / ~  defines a multiplicative linear functional.  I f  [B~] is a linearly ordered 

subset of F then /% is multip]icative on the closure of the union of the B~, and this closure 

is not  all of C(I ' )  since p ~ S ( A )  - I ' .  By  Zorn's  lemma, F contains a maximal  element B. 

By  a similar argument ,  one can prove 

LEMMA 6.2. I /  P is a proper subset o/ S (A)  then among all closed subalgebras B o/ 

C (S) such that 

(i) A c B 

(ii) F ( B ) = F ( A )  

there is a maximal one. 
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Of course, if A is a maximal  subalgebra of C(F) then A is already a maximal  closed 

subalgebra of C (S) with the proper ty  tha t  each function in the algebra assumes its m a x i m u m  

on F. However,  the  converse is not  t rue as is shown by  the following example, due largely 

to  H. Rossi [Thesis, M.I.T., 1959]. 

Let  A be the closed bicylinder Iz] ~< 1, Iwl ~< 1 i n  complex two-space, and let A 

be the algebra of all continuous functions on A which are analyt ic  in the interior of A.  

This algebra A is simply the uniform closure on A of the algebra of all polynomials in two 

complex variables. The space S(A)  is A, and F(A)  is the torus F = [(z, w); Izl = Iwl = 1]. 

The topological boundary  T of A is larger than  the ~ilov boundary  for A. 

T H E o RE M 6.3. Let B be a uni/ormly closed algebra o/continuous/unctions on the topo- 

logical boundary T such that each/unction in B assumes its maximum modulus on the set F. 

I / B  contains A,  then B = A.  

Proo/. Let  (%, w0) be a point  in F, i.e., I%1 = Iwol = 1. Then  the disc K = [(z, wo); 

[z I ~< 1] is contained in the topological boundary  T. We wish to show tha t  every funct ion 

] in the algebra B is an analyt ic  funct ion of z on the disc K. 

Let  F(z ,  w) = �89 (1 + ww~l). Then F eA,  II Eli = 1 and K = [I F I = 1] = [2' = 1] (these 

sets relative to  A ). Then, as we observed in theorem 5.2 the algebra BK obtained by  restrict- 

ing B to the disc K is a closed subalgebra of C(K) and F ( B K ) ~ F  • K.  Bu t  F ~ K is 

exact ly  the circumference of the disc K. Hence BK is a uniformly closed algebra of continuous 

functions on K each of which assumes its max imum modulus on the circumference. Also 

BK ~ AK, and A K is simply the algebra of all continuous functions on K which are analyt ic  

for Iz] < 1. By  the theorem of Wermer  which we ment ioned in section 2, the algebra AK 

is a maximal  subalgebra of the circumference of K.  Thus, it mus t  be tha t  AK = B~, or 

t ha t  every funct ion in B is analyt ic  in u on the interior of the disc K.  

Similarly we can show tha t  each function in B is analytic in w on the disc [(%, w); 

Iwl 
Since this holds for every point  (%, w0) EF, the Fourier  coefficients 

] (m, n) = / e -tin~ e- int /(e  i~ e u) d 0 d t 
I" 

vanish outside the quadrant  m/> 0, n ~> 0 for e v e r y / E B .  Thus B = A,  q.e.d. 

Of course the bicylinder algebra A is not  a maximal  subalgebra of C (1~). A larger algebra 

is for example the algebra of all continuous functions / on F such tha t  

2~ 

f e~n~ t~ 1 ) d 0 ~ 0 ,  n =  1,2 . . . . .  
0 
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I t  is interesting to contrast this algebra of analytic functions in the bicylinder with 

with the corresponding algebra when A is the closed unit sphere in complex two-space. 

The algebra A of all continuous functions on A = [(z, w); [zl ~< l, lwl ~< 1] which are 

analytic in the interior has A as its space of maximal ideals and the full topological bound- 

ary of A as its ~ilov boundary. In  this case there are larger closed subalgebras of C(A) 

in which every function assumes its maximum on the unit sphere. One such example is 

given in [9]. 

Let us return now to the consideration of our general algebra A and look more closely 

at  lemma 6.1. In  certain special cases it may  happen that  there is a point pES(A)  - F  

with these properties: 

(i) if A c B c C(F) and no measure representing p is multiplicative on B, then B = 

C(F). 

(ii) if A c B c C(F) and any  measure representing p is multiplicative on B then 

B = A. I t  is then clear tha t  A is a maximal subalgebra of C(F). 

This is a very special situation of course, but  it does arise. I t  was this idea which was 

exploited in [8] to give a very short proof of the Wermer theorem on the maximMity of 

the analytic functions on the circle (and some generalization thereof). Royden [13] and 

Bishop [6] have also exploited this idea. We should like now to indicate how a simple 

extension of this idea leads to some examples of the "pr imary"  algebras described in the 

introduction. 

For each positive integer k, let Ak be the uniformly closed algebra of continuous func- 

tions on the unit circle which is generated by 1, z ~, z k+l . . . . .  Then A is (isomorphic to) the 

algebra of continuous functions on [z [ ~< 1 which are analytic for [z ] < 1 and have derivatives 

of orders 1 . . . . .  k - 1 which vanish at  the origin. The space of maximal ideals of Ak is the 

closed disc [z[ ~< 1 and the ~ilov boundary for Ak is the unit circle F. The algebra A x iS 

(of course) the uniform closure on F of the algebra of polynomials, tha t  is, A~ consists of 

all continuous functions / on F such tha t  

2zr 

f/(e~~176 n = 1 , 2 , 3  . . . . .  
0 

THEOI~EM 6.4. Let B be a closed subalgebra o/C(F) which contains ~4k (/or some [ixed 

Ic). Then either B = C(F) or B is contained in A r 

Proo/. The origin of the unit disc defines a complex homomorphism of the algebra 

Ak bY 
2~ 

0 
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I f  this homomorphism h does not  extend to B, i.e., if no measure representing the 

origin is multiplicative on B, then the function /(e i~ = e ~~ is in B, since the funct ion 

z k inAk vanishes on the disc only at  the origin. But  then it is easily seen tha t  B contains the 

functions e ~n~ for every integer n, so tha t  B = C (F). 

Suppose the homomorphism h does extend to B. Then 

2z 

h(/)= f /(e~~ / eB  
0 

for some positive measure/~ on F. I n  particular then # must  evaluate every funct ion in 

Ak at the origin, or 
2n 

f e~n~ n>~]c. 
0 

Since/~ is a real measure of mass 1 we must  then have 

d # (O)=21--~ r (O)dO 

where q~ is a t r igonometric polynomial  

k - 1  

r (0) = 1 § ~ [ape w~ + 5~ e-~P~ 
p = l  

Now let ] be any  function in the algebra B, and let n ~> 0. Then 

2~ 

1 f e~nOei~O / o = h (z ~§ h (/) = h (z n § = ~ (e ~~ ) r (0) d O. 

0 

I f  we let ~p (e i~ = e~k~ (0) the above equation says tha t  for every /E B, F / i s  anaIytic,  i.e., 

2n 

f e*~~176176 = 0 ,  n =  1, 2 . . . . .  
0 

Thus e v e r y / E B  is (the boundary  funct ion of) a meromorphic function: / =  W//y~. So / is 

meromorphic,  y~ is analytic,  and for every positive integer n the function ~/~ is analytic.  

Clearly / is itself analytic.  Thus B c A 1. 

I n  the case k = 1, the above theorem states t ha t  A 1 is a maximal  subalgebra of C(F). 

Furthermore,  the theorem implies tha t  for any  k the algebra Ak is contained in precisely 

one maximal  subalgebra of C(F), namely  A 1. So, when k > 1, the algebra Ae is contained 

in a maximal  algebra but  is not  the intersection of the maximal  subalgebras of C(F) 

which contain it. Thus we might  say tha t  Ak is a p r imary  algebra. We shall see short ly 

tha t  this proper ty  of Ak(k ~ 2) is ra ther  easily deduced from the  maximal i ty  of A 1 and 

the fact  t ha t  Ak has finite codimension in A~. We have given theorem 6.4 separately to 



MAXIMAL ALGEBRAS OF CONTINUOUS FUNCTIONS 2 3 3  

show that the proof of the primary nature of Ak is not appreciably more difficult than the 

short proof of the maximality of A 1 given in [8]. 

We proceed now to enlarge our class of primary algebras. We shall need the following 

lemmas. 

LEMMA 6.5. Let A be a maximal subalgebra o/ C(F) and let B be a subalgebra o /C  (F) 

which contains an ideal I o / A .  I / B  contains a ]unction / which is not in A,  then B contains 

every continuous ]unction on F which vanishes on the hull o / I .  I / ,  in addition, the hull o / I  is 

/inite, then B = C (F). 

Proof. By the hull of I we mean the set of all points in F where every function in I 

vanishes. Since A is maximal and ] is not in A, the linear algebra generated by A and ] is 

dense in C(F). This means each function h in C(F) can be uniformly approximated by 

functions of the form 

~ gk /k, gk E A.  
k - O  

If  g is any function in the ideal I ,  then the function 

g gk /~ 
k 0 

belongs to B, because ] is in B and each ggk is in I ,  hence in B. From this it is clear that  

if hEC(F) and gEI ,  then gh is in B. In  other words, J = I .C(F)  is contained in B. Now 

J is an ideal in C (F) so that  the closure ] consists of all continuous functions vanishing on 

the hull of J.  Clearly J and I have the same hull. This proves the first statement of the 

lemma. 

If we now assume that the hull of I is a finite point set, then since B separates points 

of F and contains every continuous function vanishing on that  finite point set, it is clear 

that  B = C[F). 

LEMMA 6.6. Let A be a commutative linear algebra with identity and let A o be a subalgebra 

o / A  which has finite codimension in A.  Then A o contains an ideal 1 o/ the algebra A such 

that I has ]inite codimension in A.  

Proo/. Let I be the set of all elements a EA o such that  aA ~ A o. Then I is an ideal in 

A and I c A 0. For each element a EA 0 let La be the linear transformation of A into A 

which is right multiplication by a. Since A 0 is a subalgebra of A, the space A 0 is invariant 

under La. Thus L a induces a linear transformation L~ of the linear space A / A  o into itself. 

The mapping a-+L~ is an algebra homomorphism of A o into the algebra of linear trans- 

formations on the finite-dimensionM space A / A  o. The kernel of this homomorphism is the 

ideal I. Thus A o / I  is finite-dimensional, hence A / I  is finite-dimensional. 



234 K .  H O F F M A N  A N D  I .  M .  S I : N G E R  

THEOREM 6.7. Let A be a maximal  subalgebra o / C ( F )  and let A o be a subalgebra o / A  

which has finite codimension in A .  I] B is a subalgebra o/ C(F) which contains Ao, then 

either B = C (F) or B is contained in A .  

Proo/. By Lemma 6.6, A 0 contains an ideal I of the algebra A which has finite co- 

dimension in A. Thus the hull of I must be a finite point set. If  B is not contained in A, 

then by lemma 6.5, B = C(F). 

Under the hypotheses of Theorem 6.7, the algebra A 0 is contained in precisely one 

maximal subalgebra of C (F). This theorem applies (of course) to the algebras A~ of theorem 

6.4. We should like to discuss now some further examples of this situation. 

For the remainder of this section, let F denote the unit circle of the complex plane, 

and let A be the uniform closure on F of the algebra of polynomials. Suppose that /1 . . . . .  ].  

are functions, each analytic in a neighborhood of the unit disc, satisfying 

(i) /1 . . . . .  /~ separate the points of F 

(ii) at each point of F, one of the functions/j  has a non-vanishing derivative. 

Let A 0 be the subalgebra of C(F) generated by /1  . . . . .  /~. Results of Wermer [20; Lemma 

3.2] and [19; Theorem 1.2] imply that there is a function 

g (Z) = (Z - -  ~1)  p . . . .  (Z - -  h )  Pk  

such tha tA  0 contains the ideal I = gA  of the algebra A. Thus A 0 is contained in precisely 

one maximal subalgebra of C (F), namely A. As an approximation theorem, this result states 

that if/1 . . . . .  /~ are analytic in a neighborhood of the closed disc and satisfy conditions (i) 

and (ii) above, then given any continuous function h on F which is not in A, we can ap- 

proximate every continuous function on F by polynomials in ]1 . . . . .  /~ and h. 

There is a theorem similar to this where one assumes tha t /1  . . . . .  ]~ are analytic in an 

annulus containing F and satisfy conditions (i) and (ii). In this case the algebra A 0 generated 

by /1  . . . . .  /~ need not be a subalgebra of A; indeed, this algebra A 0 may be all of C(F). 

If A 0 =4= C (F), Wermer's results [19; 20; 21] state the following. There is a Riemann surface 

F and an analytic homeomorphism z---->z' of F onto an analytic circle F '  on F which bounds 

a domain D such that  D U F '  is compact. Each of the functions/1 . . . . .  /n extends analyt- 

ically from F'  into a neighborhood of D U F'. If A '  denotes the algebra of all continuous 

functions on F which extend from F'  analytically to D then A '  is a maximal subalgebra 

of C(F), which of course contains A o. I t  is once again true that  A o contains an ideal I of 

A" which has a finite hull. Thus, in this case, the algebra A 0 is contained in exactly one 

maximal subalgebra of C (F), namely A'.  But the algebra A '  may consist not of the functions 

which extend from F analytically to the unit disc but rather those which extend analyt- 

ically into the domain D on the Riemann surface F. 
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I f  we wish to state this last result  as an approximat ion theorem, it says tha t  if h E C (F) 

and h~iA' t h e n / 1  . . . . .  /~ and h generate C(F). Given the funct ion h on F it might  be ex- 

t remely  difficult to  determine whether  or not  h is in A' .  But  one can state a slightly weaker 

approximat ion theorem whose hypothesis  is more easily verified in specific cases. 

Because conditions (i) and (ii) are satisfied by  ]1 . . . . .  /n there will be an annulus con- 

taining F such tha t  the analytic homeomorphism z--->z' of F into the surface F can be 

extended to an analyt ic  homeomorphism of this annulus onto a neighborhood of the curve 

F' .  Thus one sees t ha t  if h is in A '  then in the plane h mus t  be extendable f rom F so as to 

be analytic in an annulus of one of the two types: [z; 1 < [z[ < p] or [z; p < ]z[ < 1]. Tha t  

is, /1 . . . . .  ]n determine a positive number  p, either less than  or greater than  1, such tha t  

each function in A '  is extendable to a continuous funct ion on [z; 1 ~< ] z I ~< P] which is 

analytic on [z; 1 < [z] < p ] ,  or a continuous function on [z;p<~lz I ~<1] analyt ic  on [z; 

p < [zl < 1]. We might  describe this by  saying tha t  /1 . . . . .  ]~ determine one side of the 

unit  circle such tha~ each function in A '  is analytic in an annulus on tha t  side of the circle. 

Now one can certainly state the  following. Suppose/1 . . . . .  /~ are analyt ic  in an annulus 

containing F and satisfy conditions (i) and (ii) above. If  h EC(F) and h is not  analyt ical ly 

extendable to an annulus on either side of F, then every continuous function on F can be 

uniformly approximated  by  polynomials in /1  . . . . .  /~ and h. 

7. Bounded analytic functions 

Let  L~  be the Mgebra of bounded measurable functions on the unit  circle of the 

complex plane, identifying functions which are equal almost  everywhere. Then L~r is a 

commuta t ive  Banach  algebra with the norm 

II/11 = ess sup l i (e I. 
0 

Let  H ~  be the (closed) subalgebra of L~r consisting of the functions f such tha t  

2= 

f e~O/(ei~ n=  1, 1, 2, 3 . . . . .  
0 

For  each ] EH~  the function 
2z 

] (z) = f / (e ~~ P~ (0) d 0, 
0 

where P~ is the Poisson kernel for z, is a bounded analyt ic  funct ion in the open uni t  disc, 

and 

I1 11= sup 
z l < l  

1 6 - 6 0 3 8 0 8  Acta mathematica. 103.  I m p r i m 6  le 21 j u i n  1960  
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Furthermore, a well-known theorem of Fatou states that  every bounded analytic function 

in the disc arises ~n this way. Thus H~ is isometrically isomorphic to the algebra of bounded 

analytic functions in the open disc. 

The algebra L~ is self-adjoint, i.e., closed under complex conjugation, and is therefore 

isometrically isomorphic to the algebra C(X) of all continuous functions on its space of 

maximal ideals. This follows from the commutative Gelfand-Neumark theorem, see [11; 

p. 88]. The space X is also the Stone space for the Boolean algebra of measurable subsets 

of the circle, modulo sets of measure 0. Thus X is an extremally disconnected compact 

Hausdorff space. We shall need to know only that  X is totally disconnected and that  a 

basis for the topology of X is given by the open and closed sets 

[x~x; k~(x) = o] 

where M is a measurable set on the circle and kM is its characteristic function. 

The algebra H~  is isometrically isomorphic to a closed subalgebra A of C(X). For 

the sake of simplicity we shall sometimes write A = H:r and/or  C (X) = L~. 

We proceed now to record some facts about the space of maximal ideals of H~  which 

are contained in an unpublished paper of I. J. Schark. 

Each point of the open unit disc defines a complex homomorphism of H~ by 

l-~l(z) 
and the open disc is thus "embedded" in the space S (H~r Also, there is a natural continuous 

mapping z~ of S(H~) onto the closed unit disc, as follows. The algebra H ~  contains as a 

closed subalgebra the algebra A 1 of continuous "analytic" functions on the circle. The 

mapping z mentioned above sends a homomorphism of H ~  into its restriction to the sub- 

algebra A], and this restriction corresponds to a point in the closed disc. The mapping 

is one-one over the interior of the disc; that  is, if (I) is a complex homomorphism of H~  

such that (I) evaluates each function in A 1 at some point z, I z I < 1, then �9 is simply evalua- 

tion at z on all of H~. This is evident from the fact i f / E H ~  then/ (z)  = 0 if and only if 

1(~) g(~)- z-~" 

is in H~. The mapping ~ certainly maps S(H~) onto the closed unit disc since ~(S) is a 

compact subset of the closed disc which contains each interior point. The mapping ~ is 

(as we shall see) not one-one over the circumference. Notice also that  - 1  actually defines 

a homeomorphism of [z] < 1 into S (H~) since the topology of the disc is in either case 

the weak topology defined by H~. Let us call A the image of the open disc in S(Hr162 
One unsolved problem in this context is whether A is dense in S(Hr Since H~  is an 
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algebra of continuous functions on A, it is at  least clear tha t  the closure of A in S(H~) 

will contain the ~ilov boundary  F (Hoo). 

We wish now to  show tha t  F ( H ~ )  is (homeomorphic to) S(Loo)= X. Since Ho~ is a 

subalgebra of L ~  there is a natural  continuous mapping ~1 of X into S(H~) ,  obtained by  

restricting each homomorphism of Loo to the subalgebra H~ .  

LEMMA 7.1. The mapping ~ is a homeomorphism o] X into S (H~) and xq (X) is exactly 

r (Hoo). 

Pro@ W h a t  we must  show is t ha t  the functions in Hoo, when regarded as elements of 

L~o, separate points  on X and tha t  the ~ilov boundary  for H~o is M1 of X. We shall first 

show tha t  the ~ilov boundary  condition is satisfied. F rom this proof it will be clear t ha t  

H ~  separates points on X. 

Let  xEX and let U be an open set in X containing x. We must  show tha t  there is a 

function h EHoo whose max imum modulus on U is greaLer than  the modulus of h anywhere  

on X - U. I t  will suffice to do this when U = [/CM = 1], M a measurable set on the uni t  

circle. Define 
2n 

( Z ) = ~  / e~O'3rZ iO . ~ 

0 

Then !P is analyt ic  for ] z [ < 1 and h = e ~ is a bounded analytic funct ion in the uni t  disc. 

Furthermore,  on the uni t  circle, [ h i =  exp kM almost  everywhere. Thus on X, ] h i =  e 

where kM -- 1 and [ hi = 1 where kM = 0; so h is the desired function. 

Let us now regard X as a closed subset of S(Hoo). We then have the following picture 

of S (H~). This space contains the open uni t  disc A. The closure of A contains besides A 

the ~ilov boundary  P (Hoo) which is the space X of maximal  ideals of L~.  I t  is no t  known 

whether  the closure of A is all of S (Hoo), but  it is easily seen tha t  there are points in A -- A 

which are not  on the ~ilov boundary.  For  example, the function 

z + 1] 
/ (z) = e x p  \~:-- l /  

is in H:r has no zeros in A, but  must  vanish somewhere on A since /(z) tends to 0 as z 

approaches 1 along the positive axis. No such 0 of / can occur on the ~ilov boundary  X 

since the function / has modulus I on the  unit  circle and is therefore invertible in Loo. 

This is the extent  of the information we shall need f rom the work of I .  J .  Schark. 

The space S(H~) - A  and a fortiori the space X,  is fibered by  a natural  continuous 

mapping 7r onto the uni t  circle, ~z being the map which sends each complex homomorphism 
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into its restriction to the algebra of functions in Hr162 which are continuous on the unit 

circle. If  ~ is a complex number, I~1 = 1, let us define the fiber of S (H~) over ~ [the fiber 

of X over ~] to be the set zr -1(~) [ - 1  (~) O X]. We shall denote this fiber by S (H~)r [X~]. 

If  we consider the function /(z) = z, this fiber over ~ is simply the set of all points in S (H:r 

IX] where/'  = ~. 

THEORE~ 7.2. Let B be a closed subalgebra o/ L~ = C(X) which contains Hr162 Then 

(i) /or each ~, I~l = 1, the algebra Be obtained by restricting B to the/iber Xr is a closed 

subalgebra o] C (Xr 

(ii) i / B  is a proper subalgebra of C (X) then/or at least one ~ the algebra Be is a proper 

subalgebra o /C  (X~). 

Proo/. (i) The algebra B contains the function/(z) = �89 + z~-l). Also U/II = 1 and Xr 

is exactly the subset of X on which f = 1. By theorem 5.2, B~ is closed. (ii) Suppose Be = 

C(X~) for each ~; we shall show that  B = C(X). The ~ilov boundary F(B) is X, because 

B is a subalgebra of C (X) and contains the algebra H~r whose ~ilov boundary is all of X. 

We wish to prove that  in fact X is the entire space of maximal ideals of B. 

Let (I) be a complex homomorphism of B. Suppose that  (I) sends the identity function z 

into a complex number ~ of absolute value 1. Considering once again the function/(z) = 

�89 (1 + z~ -1) and applying theorem 5.2, any measure/~r on F (B) = X which represents (P 

must be supported on the subset of X on which f = 1, that  is, on the fiber Xr But the restric- 

tion of B to Xr is all of C (Xr and since/~r is multip!icative on Be,/~r must be point mass 

and (I) must simply be evaluation at some point of X. 

Suppose that  the restriction of (P to Hr162 is in 4 ,  i.e., that  (I) sends the identity function 

z into 2, ]21 < 1. The homomorphism of H~ which is evaluation at 2 then extends to a 

homomorphism of B. But this means that  for any a, I:r < 1, the a-homomorphism of 

H~r must extend to B. If  not then (z - ~)-1 is in B, and since 1, z, z ~ . . . .  are in B every 

continuous function on the unit circle is in B. In  particular, (z - 2) -1 is in B, contradicting 

our assumption that  the 2-homomorphism extends. 

Now we claim that  the assumption that (I) restricted to H~  is evaluation at 2 is con- 

tradictory. For restriction to H~  is a continuous mapping of S(B) into S(H~).  We just 

observed that  if the range of this mapping contains any point of A it contains all of A. 

But the range is compact and would therefore contain all of A. We noted earlier that  A 

contains points which are neither in A nor in X, and we proved above that  every point of 

S(Hr162 - A which is in the range is in X. 

The space S(B) is thus X, and since X is totally disconnected B = C(X). This follows 

from a well-known theorem of ~ilov [15], that  a function algebra A must contain the charac- 

teristic function of any open and closed subset of S (A). 



M A X I M A L  A L G E B R A S  O~ C O N T I N U O U S  F U N C T I O N S  239 

T~EORE~[  7.3. The algebra H~r is contained in no maximal subalgebra o/Loo = C(X). 

Pro@ Suppose the  cont ra ry ,  and  let  B be a ma x ima l  suba lgebra  of C(X) which 

conta ins  Hoo. By  theorem 7.2, for each ~, I~l = 1, the  a lgebra  B C ob ta ined  b y  res t r ic t ing  

B to the  f iber  X C is closed. Since B is a p roper  suba lgebra  of C (X) there  is a ~ such t h a t  

B C is a p roper  subalgebra  of C(Xc). But  if B C is a p roper  closed suba lgebra  of C(X~), t hen  

since B is max imal ,  B mus t  conta in  every  cont inuous  funct ion  on X which vanishes  on 

X, ,  because  the  a lgebra  of all  /E  C (X) such t h a t  ] res t r i c ted  to X C is in B C is a p roper  sub- 

a lgebra  of C (X) which contains  B. Thus  the  essential  set  E for the  a lgebra  B lies whol ly  

inside one f iber  X C. 

I t  is no loss of genera l i ty  to  assume t h a t  E is conta ined  in  X1, the  f iber  over  1. Now 

the  a lgebra  B s ob ta ined  b y  res t r ic t ing  B to i ts  essential  set  E is ana ly t ic ,  t h a t  is, if ] E B 

and  / vanishes  on a n o n - e m p t y  open subset  of E then  / vanishes  on all  of E ( theorem 3.1). 

We  shall  now arr ive a t  a cont rad ic t ion  b y  showing t h a t  if E is any  d o s e d  subset  of the  

f iber  X 1 which conta ins  more  t han  one po in t  (as the  essential  set  for B necessar i ly  would)  

then  there  is a funct ion h EH~ which vanishes  on a n o n - e m p t y  open subse t  of E b u t  is 

no t  iden t ica l ly  0 on E.  

Le t  x o and  x~ be two d is t inc t  po in ts  of E.  Then there  is a measurab le  set M on the  

uni t  circle such t h a t  the  charac ter i s t ic  funct ion Ic~ is 0 a t  x o and  1 a t  x 1. Le t  

u (e :~ = [1 - kM (e~~ log I 1 -- e~~ I. 

Then u is a Lebesgue in tegrable  funct ion  on the  unit. circle which is rea l -va lued  and  bounded  

above.  I f  we define 
2~z 

1 f e ~~ + z ~0 
~ ( z ) = ~  J e , ~ _  u(e )dO 

0 

t hen  y) is ana ly t ic  for ]z I < 1, and  since u is b ounde d  above,  h = e v is a bounded  ana ly t ic  

funct ion in the  uni t  disc. Also, a lmos t  everywhere  on the  uni t  circle 

ihl=eU=[ 1, o n M  
/ I 1 - e~~ l, off M.  

I n  par t icu la r ,  the  funct ion  / def ined b y  

/ (e~o) _ [1 - ~ (e~~ h (e ~~ 
I -- e ~~ 

is a bounded  measurab le  funct ion.  W e  rewri te  th is  equa t ion  

h = ( 1  z ) /+k ih .  
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Let  r be a complex  homomorph i sm  of Lr162 which lies in the  f iber  X 1 and  for which (I) (kM) = O. 

Then  

cb (h) = @ (I - z) @ (1) + c~ (kM) @ (h) = O. �9 (f) + O" cp (h) = O. 

This says t h a t  h vanishes  on the  n o n - e m p t y  open subset  of the  f iber  X 1 on which lCM = 0. 

Also, no homomorph i sm of L ~  sends bo th  h and  (I -/CM) into  0. F o r  le t  

Then  

g = (1 - kM) + l~Mh. 

h, o n M  

g =  1, off M 

so t h a t  I g[ = 1 a lmos t  everywhere .  Thus  g is inver t ib le  in L ~  so t ha t  the  ideal  genera ted  

b y  (1 - kM) and  h conta ins  1. 

Re tu rn ing  now to our  two poin ts  x0, x 1 in E N X I ,  we have  cons t ruc ted  a funct ion  

h EHoo such t h a t  h vanishes  on the  n o n - e m p t y  open subset  E N [kM = O] of E and  does 

no t  van ish  on al l  of E ( h ( x l )  4:0). 

The above  a rgumen t  shows t h a t  a max ima l  suba lgebra  of L ~  conta in ing Hor s imply  

cannot  exist .  

We  migh t  po in t  ou t  one in teres t ing  fac t  which resul ts  f rom theorem 7.2. Le t  B be 

the  closed suba lgebra  of Lo~ which is genera ted  b y  H ~  and  the  set  of al l  cont inuous  func- 

t ions  on the  un i t  circle. Then  B is no t  all  of L:r because if [~] = 1 then  the  res t r ic t ion  of 

B to the  f iber  Xr is exac t ly  the  same as the  ~s~r ic t ion  of H ~  to X~, because each cont inuous  

funct ion on the  circle is cons tan t  on X.  
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