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Introduction. In an earlier paper, Michal' has defined an abstract projective
curvature form in a Hausdorff space having coordinates in a Banach space with
inner product, under the condition that the associated Banach ring of linear
functions possess a contraction operation. The basis for a general flat projective
geometry under the same restrictions was also sketched in the same paper. More
recently the authors® have considered a general geometry of paths in which the
concept of projective connection and projective curvature form was generalized
to geometric spaces having coordinates in Bamach spaces without independently
postulated inner product or contraction.

In the present paper we study an abstract flat projective geometry from two
initial viewpoints. In the first, which is developed in sections one and two, we
begin with a general geometric space with postulated allowable and preferred
(projective) coordinate systems. We then show that transformations from allowable
to projective coordinates determine in their domains the solutions of a char-
acteristic second order differential system. The latter involves a projective linear
connection which determineg an identically vanishing projective curvature form.
Our second approach seeks to characterize locally the projective coordinate systems
by means of a second order differential system. In developing this other view-
point in the third and fourth sections we assume that our geometric space is a

Hausdorff topological space, and establish existence theorems for the solution of

! Michal ITT. Roman numerals refer to the bibliography at the end of the paper.
* Michal and Mewborn VII.
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a certain first order differential system involving a postulated projective connec-
tion whose curvature form is identically zero, and whose Fréchet differential has
the d-property. This d-property is a particularly interesting development of our
general treatment, for we show that it may or may not be satisfied for functions
in infinite dimensional spaces, whereas it automatically holds for the finite di-
mensional arithmetic case. In the concluding section we show that the solution
of our first order differential system is unique in a restricted neighborhood of
each point of our projective coordinate space B;. Further we show that it is
of such form that it determines projective coordinates satisfying the postulates
used in our first approach to the problem, and hence that the two methods yield

equivalent (local) characterisations of a flat projective geometry.

1. Projective Coordinate Systems and their Differential Properties.

We shall assume that we have a geometric space of points H having allowable
coordinates already defined in a Banach space B, and shall consider the geometry
of this space from the standpoint of an undefined set of »preferred homogeneous
coordinate systems» (hereafter called »projective coordinate systems» or briefly
»p.c.s.»), valued in a second Banach space B, of couples X = (x,2°) where x
is in B and «° is a real number hereafter called the gauge variable. These p. c. s.
will be subject to the following five postulates®:

P 1. In a p cs there will correspond to each point p of the geometric space
H at least one element X of the space B,, and to each Y in B except (0, 0) there
well correspond just one point q of H.

P 2. Two elements X and Y of By represent the same point p of H if and
only if they lie on the same straight line® through the origin (o, o) of B,.

P 3. Any p.c.s. can be transformed into any other by a linear transformation.®

P 4. Any homogeneous coordinate system obtained from a p.c.s. by a linear
transformation s a p.ec.s.

P 5. There exists at least one p.c.s.

From the above postulates it can readily be proved that any transformation

between two p.c.s. is a solvable linear transformation.

! Veblen and Whitehead I, p. 29.
2 I.e. if and only if they satisfy a relation of the form X=aY where ¢ is a real number.

3 J. e, a transformation X = X(X) additive and continuous in X and hence homogeneous of
degree one.
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Definition 1. 1. Allowable Coordinate System. Any (1—1) solvable trans-
formation on H to an open subset B'— B is an allowable coordinate system and
will be denoted by z(p) and its inverse by p(x) where p is in H and z in B'< B
and z(p,)==o0 in B’

Definition 1. 2. Transformation of Coordinates from Allowable to Preferred
Coordinates. This is any transformation from a given allowable coordinate
system x(p) to a p.c.s. U(x(p). The range' of U(x(p) is the entire space H
less the point p,, and its domain' is an open subset B, of B,.

Definition 1. 3. Change of Representation. The simultaneous transformation
of allowable coordinates # = Z(x) and the change of gauge variable z°=° +
+ log ¢(x) where ¢(z) is a positive scalar field valued function of x of class C®

will be called a change of representation.

Definition 1. 4. Projective Scalar Field. By a projective scalar field we shall
mean any geometric object whose components S(X) transform according to the
law S(X)= S(X) under the change of representation X — X (X).

Definition 1. 5. The Projective Scalar Frield A (X). By this we shall denote

the transformation
(1. 1) A(X)=¢"U (x)

whose domain is the subset (B'y, |2°| < ) of B,, and whose range is the subset
of B, obtained by adjoining to B, all elements of B, lying on a straight line
through the origin with any element of B’,. Furthermore A (X)
a) is of class C® on its domain,
b) is a projective scalar,
¢) has a first Fréchet differential A (X; Y) which is a solvable linear func-
tion of the projective ¢.v. ¥ with inverse A~ (X, Y).

Definition 1. 6. Projective Contravariant Vector. A geometric object ¥ asso-
ciated with the point p whose component undergoes the transformation

(1. 2) V=X(Xu; V)
under the change of representation X (p)= X(X(p)) will be called a projective

contravariant vector associated with the point p.

! The set of values of the indicated independent variable for which a function is defined will
be called the domain of the function with respect to that variable. The corresponding set of values
of the function will be called its range, e. g. here the domain of U/(x) is B/, (the set B’ less the
zero element), and its range is B].
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Definition 1. 7. Projective Contravariant Vector Field or p.c.v.f. A set of
projective contravariant vectors associated one to each point of some set in H
will be called a p.c.v.f.

Definition 1. 8. Hyperplane through the Origin of B,. The set of elements
X of B, which all satisfy a given numerically valued linear function (not ident-
ically zero) equated to zero will be said to lie on a hyperplane through the
origin (0, o) of B,.-

The condition c) of definition 1.5 implies that the values of A(X) do not
lie on a hyperplane through the origin of B,. For if we assume condition c)
and assume that there exists a linear function L (V)= o such that L(4(X))=o0
for all values of A(X), and differentiate, we get

(1. 3) L(AX; Y)=o.
Let Y= A~1(X, W) whence L(W) =0 for all W contrary to assumption.

Definition 1. 9. The Function 3(X). Any solvable linear function F(S) of
the projective scalar A4 (X) will be denoted by

(1. 4) 3(X)=F(AX)=e¢"F(U ).

By a well known theorem of Banach-Schauder it follows that the inverse
F1(S) of F(S) is also linear in S.

Theorem 1.1. Let Ulx) be a transformation of coordinates from x(p) to a
particular p.c.s. Ulxp). Let 3(x) be a transformation of coordinates from the same
allowable coordinate system x(p) to any p.c.s. 3{x ). Then the function 3(X)
(def. 1. 9) satisfies the differential system

) {a) 3(X;Y;2)=8X; IX, Y, 2)
1. g
b) B (X; 0, %% =y"3(X)
where
(1. 6) X, Y,2)=4"1(X, A(X; Y; 2).

Proof: Taking two successive Fréchet differentials of equation (1. 4) we obtain

B Y)=F(4X; T)
and
3(X;Y;2)=F(4X; Y; 2),
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whence, from the solvability of 4 (X; ¥) and of F(S)
3(X; 47 (X, ) = F(AX; 41(X; T) = F(T).

Now let Y= A4 (X; Y; Z), which completes the proof. Q.E.D.
The second order differential system (1. 5) of this tbeorem can be replaced
by the equivalent system of three first order differential equations:

a) P(X,Y;2)=P(X, I0IX,7, 2)
(1. 7) b) 8 (X; ¥)=P(X, Y)
e) 8(X; 0,9 =y"B(X).

This modification is important, as it is with a differential system of this type
that we shall be dealing in section 3. In particular, compare

P(X,, (0,5%) = B(X,; ©0,%%) = y° B(X,)

obtained from b) and ¢) of (1.7) with the analogous relation in the initial
condition ¢) of equation (3. 1).

2. The Flat Projective Connection.

The function I1(X, Y, Z) defined by equation (1. 6) plays an important role
in the geometry of our space, and is the component in the given coordinates of
a geometric object which we shall call the projective connection'. Some of its
important properties are exhibited in this section.

Theorem 2. 1. The projective connection II(X, Y, 'Z) 28 symmetric and bilinear
m Y and Z, and satisfies the relation

(2. 1) (X, (0, 9% Z)=y° Z.

Proof: The symmefry of the function is an immediate consequence of Kerner's
theorem on the symmetry of the second Fréchet differential. An application of
the before mentioned theorem of Banach-Schauder and the definition of Fréchet
differential, shows the function to be bilinear. A direct computation of the
differentials in (1. 6) verifies (2. 1). Q. E.D.

! For brevity we shall hereafter, if there is no ambiguity, use this term for the component
of the projective connection. In general we shall similarly apply the name of a geometric object
to one of its components.
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Theorem 2. 2. The projective connection is invariant under a solvable linear
transformation of A(X).

Proof: Let L(V) be a solvable linear transformation of ¥ with inverse
L7(V) and let
A(X) = L{4X).

A (X; Y) has the inverse A (X, Y)=A4"Y(X, L~ (Y)), hence 14~“1(X, 4X; v, Z)=
=AM (X, AX; Y, Z2)=1(X,7Y, 2). Q. E. D.

Theorem 2. 3. Under a change of representation the projective connection trans-

Jorms as a component of a linear connection,
(2. 2) NX Y 2=X(X, 0IX,Y,2)+ X(X; X X; ¥: 2)
when Y and Z are projective contravariant vectors.
Proof: By definition we have in the new representation
(2. 3) O(X,7,2)=41X,AX;Y; 2).
From b) and ¢) of definition 1.3 and definition.-1. 6 we have
(2. 4) AX; Y)=A(X; Y)=4(X; X(X; ).
By taking inverses of this,
(2. 5) A1(X, §)=X(X; 47 (X, 9),

showing that A~ (X, S) is a p.c. v. f. valued linear form in the projective
scalar S.

Differentiating the first and last of (2. 4) we have
(2. 6) AX; Y 2)=AXY; 2)+AX; XX, Y, 2)
which, with the aid of (2. 5) and (2. 3) yields
Iﬁ()_(, Y, 2)= A" (X, AX; Y; 2)
(2. 7) l =X(X; 47X, AX;Y; 2 + AX; X(X; T; 2)).

Equation (2. 2) follows at once from (2. 7). Q. E. D.
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It can be shown that the inverse of A (X; Y) is of the form
(2. 8) A7 X, Y)= ("1, Y), ¢ )

where x is in B, l(2x,Y) and ’(x, Y) are linear in ¥ of B, and valued in B
and the reals respectively. Using this property of 47 (X, Y) and theorem 2. 3

we obtain

Theorem 2. 4. The projective connection II(X, Y, Z) is independent of x° and
is of the form

(2. 9) (X, Y, Z)=T@y 2o+ 2+ 2y, Iy +ys

where, in the notation of (2. 8),

Iz, y &)=1x Uk y;2)
(2. 10)

I (z,y,2)=1(x U y; 2)
are bilinear and symmetric in y and z. If y and z are contravariant vectors,

I'(x,y,5) transforms as a component of a linear connection; and I'°(x,y,2), called
the gauge form, is absolute scalar field valued.

Theorem 2. 5. Under a change of representation

(2.11)

{X<X) = (Z(@), 2° + log o(x)
X(X)=(z@, 2°— logo@)

of Y and Z are projective contravariant vectors, equation (2. 9) goes over into the X
representation as

(2. 12) (X, Y,2)=(T'@ 50+ 5+ 25, G755+ 52,

where

(, §, &) = & (x; T'@,y,2) + &(x; 2 ; F; 2)

N

+ O, y) & (z; 2) + O (x,2) Z(x; ),
(2. 13) ﬁo(‘f:ng): Fo(x’y,g) + é{(p(x>y7'g) -+ (D(%‘,Z,y)}

— Oz, I,y 2)— Ox,y) D, 2),

@(x,v)z—%%Z—df log o (x).

N

34—~39615. Acta mathematica. 72. Imprimé le 4 mai 1940
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This theorem may be proved either by a direct computation from (2. 9) or by
reversing the order of steps in the proof of a theorem we have given elsewhere®

in connection with a general, not necessarily flat, projective geometry.

Corollary 2.1. If we use the notation

(2. 14) oOX, Y, Z)=(j@ Y, 2), )’ Y, Z)

then

Jx, @, 0, 0) =T (2,9, )
(2. 158)

7 (x, @, 0), (2, 0) = I"(x, y, 2).
Definition 2. 1. The Projective Curvature Form. The function By (X, Y, Z, W)
defined by the relation
(2.16) Buy(X, Y, Z W)=I(X,Y, Z, W)—1I(X, Y, W, Z)
+ (X, 1X, Y, 2), W)y—II(X, IIIX, Y, W), Z)

where II{X, Y, Z) is the projective connection of equation (1. 6) will be called
the projective curvature form based on II(X, Y, Z).

Theorem 2. 6. The curvature form (2. 16) is a p. c. v. f. valued trilinear form
in the projective contravariant vectors Y, Z and W, and vanishes identically.

Proof: It is easy to verify that By (X, ¥, Z, W) satisfies the conditions of
definitions 1.6 and 1.7 by using theorem 2.3. The trilinearity property follows
from theorem 2.1 and the definition of Fréchet differential.

We next must show that By (X, Y, Z, W)=o0. From equation (1.6) it
follows that
(2. 17) X, Y, Z)=—A"YX, AX; Y); Z)
whence
(2.18) N(X, Y, Z; W)= —A—YX, AX; Y); Z; W)

— A Y X, AX; Y; W); Z).
This exists from the conditions of definition 1.5, and is clearly trilinear in
Y, Z, W. From (1.6) and (2.17) we have

! Michal and Mewborn VII, Theorem 2. 1.
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(2. 19) nNxX, nXxX, Y, z, W)= — A"YX, AX; Y, Z); W).

Substitutions by means of (2. 18) and (2. 19) in (2. 16) complete the proof of
the theorem. Q. L D.

3. Local Characterization of a General Flat Projective Geometry.

We now change our point of view, and set up a converse problem to that
treated in section 1. Suppose that we are given the differential system (1. 7)

and the initial conditions

[a) P(X,, V)= P,(V), a linear solvable function of 7,
(3. 1) b) 3 (Xo) = 3o,
l ¢) Py(lo, 1) = 3,

under what restrictions can this be said to characterize a flat projective geometry?

In the present section we impose the needed broad restrictions upon the
structure of our space. In the next we develope a number of necessary pre-
liminary results of a general character, and in section 5 we show that, under
these restrictions, the solution of (1.7) exists and satisfies the postulates of
section 1 for a p.c.s. Hence we may say that this system actually characterizes
our flat projective geometry.

Let the geometric space be a Hausdorff space with Banach coordinates, but now
by »allowable coordinate systems» we shall mean allowable K® coordinate
systems.! Clearly each geometric domain of such an allowable coordinate system

is a metric space whose metric is defined as
(3. 2) 6(2?17]92)———‘le(pl)—x(pQ)H, . pi€Hy= H.
Let the Banach space of couples B, be as in section 1.

Definition 3.1. Change of Representation. The simultaneous transformation
&= {x) of allowable K'® coordinates and the change #°= x° + log ¢(x) of
gange variable, where ¢(x) is as in definition 1.3, will be termed a change of
representation.

Further we assume that there exists a function II(X, Y, Z) with arguments
and values in B, andbhavin‘g the following properties when x is in the

coordinate domain in B of each allowable K® coordinate system:

! Subject to postulates I—IV page 5, Michal-Hyers (II).
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a) H(X,Y, Z)=HI(X, Z, Y);
b) (X, Y, Z) is bilinear in Y, Z;
c) I(X,(0,4% Z)=y"Z;

d) II(X, Y, Z) is of class C" locally uniformly® such that the differ-
ential II(X, Y, Z; W) has the dJ-property (definition 4.1) with

(3-3) respect to Y for each Z.

e) Under change of representation, II(X, Y, Z) transforms formally

as a component of a linear connection whenever Y, Z are pro-

jective contravariant vectors.

f) The curvature form Bw(X, Y, Z, W) based on II(X, Y, Z) is
identically zero.

4. Theorems on Differentials.

Definition 4.1. The J-property. Let f(x, y) have arguments and values in
Banach spaces (not necessarily the same). The Fréchet differential f(z,, y; 2)
of fl(, y) at =z, is said to have the d-property (with respect to y) if for every
¢ > 0 there exists a d (e, z;) > 0 independent of y such that

- 1) |1 flao + 2, 9) — flo, ) — Flag, w5 2) || = el 2]] for || 2]} < 0 (e, a,)

and [y < 1.

Theorem 4.1. If flx,y), lnear in y, has a differential with the S-property

y 3o @) and ||yl <

where b is an arbitrary positive number. Conversely if (4. 1) holds for ||y]|| < b,

at x =, then (4.1) is satisfied for ||z|| < d (e, ;) =

any chosen positeve number, then the differential has the d-property.

Definition 4.2. The Banach Bing R,. The set of all linear transformations
with the domain B, and ranges in B, under suitable definitions of operations
and norm?® form a Banach ring which we shall call R,.

In general, we shall denote the R, correspondent of a B, valued function,

linear in X,

' Michal-Hyers (IT).
* Michal (ITI) p. 547, but note carefully that in the present discussion no inner product or
contraction is postulated.



Abstract Flat Projective Differential Geometry. 269
(X, ..., Xpa, Xiy Xigr, o0, Xi),
considered as a linear function of its B, ‘valued argument X;, by
o (X, ..., Xio, Xivy, ..., X

To avoid ambiguity, however, the following two exceptions will be made to
this notations:

(A) I(X, %, Z; W) and @(X, %, Z) in R, will be respectively the cor-
respondents of IT(X, Y, Z; W) and any @(X, Y; Z)in B, considered as linear
functions of Y.

(B) II(X, Z; W) and ®(X; Z) in R, will mean the Fréchet differential of
(X, Z) and @(X) in R, respectively, and not the correspondents of I1(X, Y,
Z; W)and (X, Y; Z) of B,.

Theorem 4.2. Let II(X, Z) be any function with arguments in B, and values
in R, and linear in Z. Then, if it s of class OV in X wniformly’ on (X)a in
B, and satisfies

(4.2) Buw(X, Z, W)=H1n(X, Z; W)—II(X, W; Z)

+ (X, WynX, z)y—nX, Zzynx, w)=o
Jor X in (X,)a, the differential system
(4. 3)
b Px)=n,
where P, is an arbitrarily chosen element of Ry, has a unique solution

(4. 4) P(X)=1lm P,(X)

n—> o

for X in {X)a, where Pu(X) 45 defined recurrently by
1
(4.5) Pori(X)=P, + an(Xo + (X — X)) (X, +s(X— Xy, X— X)ds.
0

Proof: The condition of complete integrability for the system (4. 3) can
readily be shown equivalent to the condition (4. 2) of the hypothesis. Hence

! Lemma 3 p. 651, Michal-Hyers (IV).
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this theorem becomes a particular case of a known theorem on completely

integrable differential equations.! Q. ED.

Corollary 4.1, The unique solution of system (4. 3) is given by

P(X) I+Zf ftl—lt;f..

(4. 6) o
H(X,+ b (X — X, X —X,) ..

(X, + (X — X, X— X)dt,...dt)

where T, the unit element of R,, is the correspondent of the linear function L(X) = X.

Corollary 4.2. The function

(4. 7) «I)(X)=I+Z] o [tjﬁ1...tglI(X(,+t;...t1(X—X0), X—-X,)...
i=1 ‘0

X, +t(X—Xp, X—X)dt,...dt:=I+ C(X,, X — X,)
s Fréchet differentiable in X for X in (X,)a

Proof: If we choose the P, of (4. 3) to be I, the corollary follows at once,

since by Corollary 4. 1
P(X)= o (X). Q. E D

Corollary 4.8. The function C(X,, X — X,) of (4. 7) satisfies
(4. 8) [|C(Xg, X — Xo)|le, <1
Jor X in a sufficiently small neighborhood (X,).

Proof: By corollary 4.2, C(X, X — X,) is differentiable and hence con-
tinuwous for X in (X,). Since I(X, Z) is linear in its second argument,
C(X, X,— X,)=o0. The norm in the Banach ring R, (denoted by || ---||z) is
defined as the modulus of the correspondent linear function in B; hence there
exists a b, 0 < b =< a, such that (4. 8) holds for X in (X,).

Corollary 4.4. The function D (X) has a unique inverse of the form

! Theorem 3.1, p. 85, Michal-Elconin (IX).
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(4. 9) P (X)=TI— P(X) + [P(X)]P— -
Jor each X in the neighborhood (Xo) of corollary 4. 3.

Proof: By the definition of the product of elements of the Banach ring R,,
the use of corollary 4. 3, and an obvious modification of a theorem of Michal
and Martin! we obtain (4. 9). Q. E.D.

Corollary 4.5. If, n addition to the hypotheses of Theorem 4. 2, we assume
that P, has an inverse Py then there exists a number b, o < b < a, such that for
all X in (Xy)s the unique solution P(X) of the differential system (4. 3) has an

nverse

(4. 10) P 1(X)=o (X)) P

Theorem 4.3. A wnecessary and sufficient condition that a function F{Z) on
B, to R, be linear in Z is that the correspondent I'(Y, Z) be bilinear in ¥ and Z.

Proof: Sufficiency: From the hypotheses and definitions there exist numbers
My, and My= || F(Z)||r, tfor each Z such that

| (Y, Z)|| <= My|| Y|| = My,

Z|I-]| Y| for all Y.

This implies that || F(Z)||r, = Myz|| Z|| which is equivalent to the condition
for continuity of F(Z) at Z=o0. The additivity of F(Z) is clear from its
definition.

Necessity: By definition (Y, Z) is linear in Y, hence

WE(Y, 2)[| = My|| Y|= | E(Z)|le (| Y| = M|| Z]|-]| Y|

by the hypothesis on continuity of F(Z). The additivity of F(Y, Z) in Z
follows from the linearity of F(Z), which completes the proof. Q. ED.

Theorem 4. 4. If ¥ (X)is Fréchet differentiable at X = X, then ¥ (X, *#; Z)

exists and

(4. 11) W(X,; Z)=¥(X,, *; Z).
Proof: By hypothesis, for any ¢ > o there exists a d, such that

182, |z, = 0 (Xo + Z) — ¥ (Xo) — W(Xo; Z)|Ir, = ¢|| Z]] for || Z]] <9,

! Theorem §.1I, p. 77, Michal-Martin (V).
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But
N2 =M YII=Llr|| YI|=ell Z]|. ]| Y| for || Z]|| <4,

where

Q(Y)=F(X, +Z Y)-FX, Y)-¥(X, ¥, 2)
and ¥'(X,, Y, Z) is the B, correspondent of ¥ (X,; Z) and is bilinearin Y, Z
by theorem 4. 3. Hence for any & > o there exists a d, (¢, Y) such that

12 (Y)]| = ]| Z]| for [| Z|| < (e, Y).

From this, ¥ (X,, Y, Z) evidently satisfies the definition for ¥ (X, Y; Z),
which completes the proof. Q. 5. D.

Theorem 4.5. Let W (X, Y) be linear in Y, and have its arguments and
values tn By, and let W (X) be its correspondent in R,. Then a necessary and
sufficient condition that W(X; Z) ewist at X = X, and that (4. 11) hold is that
the Fréchet differential ¥(X,, Y; Z) of ¥ (X, Y) exist and have the d-property
at X = X,.

Proof: We shall establish the sufficiency of the condition as follows, and
since the steps are all reversible, this proof also holds for the necessity.
The d-condition inequality can be rewritten in the form

2]
0]
for || Z|| < d,(e, X,) and

| 2(X) | =¥ (X, + 2, Y)—#(X,, Y)—F (X, Y'; Z)]|<e|| Z]|

where Y’ is now any element of B, and o < 6O < 1.
By the modular condition there exists a least number M satisfying

1 G,(X)]| = M| Y.
Hence
Z||

M=)l =2 gor ) 211 < 6,

®

where

~

=YX+ Z)—" (Xo) — W (X, #; Z),
which implies that
12y lln, = 11 21| for || 21| < 6, @4,

From this, ®(X,, #; Z) clearly satisfies the definition for ¥ (X,; Z) which
completes the proof. Q. E.D.
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Corollary 4.6. Let ¥ (X, Y) be lincar in Y. A necessary and sufficient
condition that ¥(X,, Y, Z) exist and have the o-property with respect to Y 7s that
Y(X,; Z) exist.

Proof: Use Theorems 4. 5 and 4. 6.

Corollary 4.7. This theorem 4.5 holds iof we replace || Y|| < 1 in definition
41 ||Y]|=1

Proof: Exactly as before except that o < @ < 1.

Clearly theorems 4.3, 4.4, 4.5 and corollaries 4. 6 and 4. 7 can be gen-
eralized in an obvious way to the case B; is any Banach space and B, is its
associated Banach ring of linear transformations.

Let us consider now how this theory applies in certain finite and infinite
dimensional cases and illustrates its use in a general Banach space.

First, suppose that B, is the (» + 1)-dimensional arithmetic space of elements

X = (") == o, ... o"
«' a real number such that :
71“7
Xl =llwll=}/ 3 @,
=0
and that R, is its associated Banach ring of linear functions

L corresponding to L (X) = ((A}#%), A a real number,

such that || L||g, = M == the modulus of L(X).
Lemma. If L(X)=((A}z) as above, then

(4. 12) | Lilp,=M=(n+ 1)_%1/ S anw)?

Jj=0

Proof: By hypothesis we have || L(X)|| < M|| X|| for all X, hence in part-

icular for '
Xe=((0%), || Xxll=1, k=0, 1, 2

s ey

we have || L(Xy)||® < M2, whence by summing on %

(4. 13) ]/anL(Xk)H?: 2 i(z;)stﬂ"TM.

k=0 i=0

35—39615. Acta mathematica. 72. Imprimé le 26 juin 1940.
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Now since any arbitrary X can be expressed as

Xzé 2 Xp= (2 2%, ..., a"),
@) NEEN=|| 3 LX) | = 3 Il L]
— ez =ixi]/ 3z
whence - =
(4. 13) w= |/ SiLx)

But the least numbher M which will satisfy both (4. 13) and (4. 13) is

M=(né 1) %l/ZHL X) ||2

which is equal to the M of (4. 12). Q. L. D.

Theorem 4.6. Any function ¥(X, Y) with arguments and values in the
arcthmetic B, space, of the form

(4. 16) B (X, ¥)= ((@(X)y),

necessarily has a differential n X at X = X, with the d-property <f the a]‘: (X) are
differentiable in X at X = X,

Proof: By the hypotheses, for any ¢ > O there exists a d(X,, Y, ¢) such that

I i i 0 4;(Xy) kb g0
laj(Xo'f‘Z)""“j(Xo)—*—Ogi—z U

=<l|2]|

for || Z|| < d(X,, Y, o),
or, to define a briefer notation

[12(X, Y, D[ =118(Xo, Z)y7|l: = ¢l Z]|

for || Z|| < d(X,, ¥, &), and all Y.
Now let Y= ((d},)) so
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| 85, (Xo, Z)|ls < el 2], k=o,1,...,n
for || Z|] < d(X,, &) = mkin 0(X,, Y, &)
By squaring, summing on % and applying the lemma we get
(4. 17) 12X, ¥, 2)[[=M[| Y=l Z]]-I Y]]

for || Z|| < (X, &) and all Y. From this it can be shown that

WX, Y, Z)— ((mggfe)_ yjzk))

which, from the hypothesis on aJ’f(X), exists and has the d-property. Q. L D.

Next we take our B, space to be a Hilbert space, and exhibit two in-
stances of solvable linear functions whose Fréchet differentials exist but do not

have the d-property.
Example A. Let [z, y] denote the Hilbert inner product, then the function

x
Sl y) =2l gl + [o, aly = & {2, 2] 2)
is linear in % and has the inverse

y 2z yx
x, x) 3z, 2

x # 0

S (xa ?/) = [
also linear in y. The partial Fréchet differential
A% fla, ) =2l glz + 2[x, 9]z + 2[2, 2y

does not have the d-property.
Example B. The function
flo, y) =2, ylz+ o 2ly + [y, dlo + [z, dly + [a, ]y

=d§{{x, x|z + [z, alz + [a, alz + b}

has the inverse f~!(o, y)==||a||~%y at x =0 if a % 0. Its differential

{dgf(x, y)} =y, alz + [z, a]ly at z=0

=0

likewise lacks the d-property.
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Lastly, we show by examples that the J-property is not vacuous in a general
Banach space.

Let A(x,y)=1(y)a(x) be a function on B, B, to B, (arbitrary Banach
spaces), where I(y) is linear on B, to R (the real numbers) and a(x) is on B,
to DBy, differentiable at x =, Hence for any &> o0 there exists a 0(x,, &)
such that

(4. 18)  Nlalwy + &) — alm) — alxy; 2) || < el 2] for {|2}} < d(ax, e).
By the modular condition |I(y)| < M||y|| for some M, and hence there exists

an N~—=ﬁ such that ||y|| < N implies |1(y)| < 1. Multiplying (4. 18) by this

inequality we obtain

14 (o -+ 2, y) — Az, 9) — L) a (2o 2)|| = &]] 2|
tor ||z|| < d(xg, &) and ||y|| < NV.

But this, together with theorem 4. 1, implies the existence of A (x,, y; 2)=
= 1(y) @ (xy; 2) with the d-property.
This example may be modified by placing the differentiability condition on
A (z, y) instead of on «(x) since this implies that the latter is also differentiable.
A somewhat more general example is that of functions of the type

Afw, y) =2 lily) ()

where the I;(y) and «;(x) are subject to the same restrictions as I(y) and «(x)
above.

5. Solution of the Local Characterization Problem for a
Flat Projective Geometry.

The results established in the preceding section now enable us to show the
existence and exhibit the form of the solution of the complete differential system
consisting of equations (1. 7) and initial conditions (3. 1). Furthermore, we show
that this solution satisfies the postulational system of section 1, and hence the
above complete differential system is a (differential) characterization of this
geometry. In the hypotheses of all theorems of this section we shall assume that
all conditions of section 3 are satisfied.
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Theorem 5.1. There exists a neighborhood (Xy)s of each X, of any coordinate
domain such that

o {a) P(X, Y; Z2)=P(X, IIX, Y, Z)
5.1

b) P(X,, V)= P,(V), a linear solvable function of V,
has a unique solution P(X, Y) linear and solvable in Y, for all X in (X).
Proof: By conditions b) and d) of (3. 3) and theorem 4. 3
(5. 2) (X, Z; W)=1I(X, %, Z; W).
Let
F(X, Z, W)=1(X, %, Z; W)—I(X, *x, W; Z)
v (X, WX, Z)~— (X, Z)11(X, W),

and let By (X, Z, W) be defined by the first part of equation (4. 2). Then
by condition f) of (3. 3) and (5. 2)

Buyi(X, Z, W)= F(X, Z, W)=o.

The hypotheses of theorem 4. 2 being satisfied, system (4. 3), which is now equi-
valent to system (5. 1), has a unique solution P(X) for X in (Xpa.

Hence P(X, Y), the correspondent of P(X), is the unique solution of (5. 1),
and by corollary 4. 5 is solvable and linear in ¥ for X in (Xo). Q. E D.

Theorem 5.2. Let P(X, Y) be the solution of system (5. 1), then the system
(2 8% ¥)=P(X, V)
1 b) B (X,) = Bo, Py{o, 0) =3,

has a unique solution of the form

(5. 3)

(5. 4) &m:&+fP@ﬁw@~X&X—&WU

b
for X in the neighborhood (Xy)s of theorem 5. 1.
Proof: The condition for complete integrability of (5. 3) is
PX, Y, Z)=P(X, Z; T),
which is clearly satisfied from our hypothesis a) of (5. 1) and condition a) of (3. 3).
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Hence a special application of a known theorem' on completely integrable
differential equations completes the proof. Q. E. D.

Corollary 5.1. The unique solution 3(X) of theorem 5. 2 satisfies

(5. 5) 3(X; ©, 9% =y B(X).

Proof: If we let #= X — X, for X in (X,), then we can write?

1
P(X, + 4, ¥) - P(X,, Y)sz(X0+sd, Y, A ds

0

1
= /P(Xo—i—sd, OX,+sd4, Y, A)ds.
0

Now let ¥ =1(0,%°) in (5. 6) and we have from property ¢) of (3. 3)
1
‘P(XO + d) (O, ?/0>) = P(XO» (O’ ?/0)) + fP(XO ‘[' Sda yod)ds
0

whence by linearity, a) of (5. 3) and (5. 4)

3(X; (o, y°>)=y°[80 +fP(X0 + s (X — Xy, X~Xo)d8]=y°8(X)-

Q. E. D.
Theorem 5.3. The solution B(X) of theorem 5.2 is of the form

(5. 7) B(X) =" U (),
where X = (x, 2%, X, = (x,, 23) and U(x)= 8 (=, a)).

Proof: The abstract Volterra integral equation of the second kind

(s. 8) B(X) = U() + j'a«x, Bdt

is equivalent to the system (5. 3).

! Theorem 3.2, p. 87, Michal and Elconin (IX).
? Definition 1.7 and Theorem 1.7, pp. 74—76, Michal-Elconin (IX).
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This non-homogeneous equation has a unique continuous solution for each x
in B. The continuous function (5. 7) satisfies (5. 8) and (5. 5) or its equivalent?®

a3 (x, 2%) x°

02 N T 0 — ,,0

Yy dyo?)((x,x)) ¥ 8(X),

hence it is the form of the required unique solution. Q. ED.

The results of the theorems and corollary in this section can be collected
in the single

Theorem 5.4. If the condstions of section 3 are satisfied, then there exists a
number b >0 for each x, of any allowable coordinate domain such that the differ-
ential system

) 8(X; ¥; Z)=3(X; 0X, Y, Z)
b) 8(X; (0,9 =y"8(X),
(s.9) e) B(Xo) = Bo,
d) B3(X,; V)= P,(V), a linear solvable function of V,
e) Polo, 0)= 23,

has a unique solution B(X) for X an (X,)s. This solution has the form =% U (x),
and its differential 3(X; Y) ¢s a solvable linear function of Y.

All that now remains to show that the system (5. 9) affords a differential
characterization of the geometry of section 1, is to verify that its solution
establishes p.c.s. which satisfy the five postulates. We therefore consider these
postulates one by one in connection with (5. 7).

P1. a) If x is in some allowable coordinate domain of B, then it is the
unique correspondent of some geometric point p of H. But by the form of
B(X) there is at least one value B of B, for this x, and hence for the point p.

b) There exists a b;, o < b, < b, such that 3{(X) does not take on the value
(0,0) for X in (X,). For, since 8,0, if we had 8, = 8(X,)=o for X, in
(X,)o, we can always find a neighborhood (X)s, not containing 3.

¢) There exist numbers &', and b, % 0, 0 < b'; < b, < b, such that Z(X) for
X in (Xy), has a unique solution X = X(8) for 3 in (8y)s,. This local solv-
ability follows from the general implicit function theorem?® since the differential
B(X; Y) is solvable linear for X in (X,).

! P. 74, Michal and Elconin (IX).
? Theorem 4, p. 150, Hildebrandt.and Graves (VI).
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d) Since by definition the allowable coordinate system z(g) is a homeo-
morphism, and by b) above 3(X)# o for X in (X,)y,, the correspondence q <~ 8
is biunique in the specified neighborhoods.

Note that these neighborhoods (Xg), and (8,), remain the same for the
verification of the remaining postulates.

P 2. If a point ¢ in H corresponds to two elements

Bi=e"% Ulx(@) and B, =%~ (U (x(p)

of (Bp)s, then 3, = e 17% 3,.
P 3. If Py,(V) and Py(V) are two choices (distinct or not) of the arbitrary

function in d) of (5. 9) giving rise to two solutions §(X) and 3(X) (correspond-
ingly distinet or not), then there exists a solvable linear function

L(X) = P,(P7'(X)) with inverse

L—1(X)= P,(P;1(X)) such that
P, (V)= L (P, (V).

P 4. Conversely, any solvable linear transformation of a P, (V) yields a

P, (V) which is solvable linear and hence gives rise to a 3(X) having the same
properties as 8(X), i.e. a p.c.s.
P 5. This postulate is evidently satisfied.
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