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Introduction. In an easier  paper, 1Michal 1 has defined an abstract projective 

curvature form in a Hausdorff space having coordinates in a Banach space with 

inner product, under the condition that  the associated Banach ring of linear 

functions possess a contraction operation. The basis for a general flat projective 

geometry under the same restrictions was also sketched in the same paper. More 

recently the authors ~ have considered a general geometry of paths in which the 

concept of projective connection and projective curvature form was generalized 

to geometric spaces having coordinates in Banach spaces without independently 

postulated inner product or contraction. 

In the present paper we study an abstract flat projective geometry from two 

initial viewpoints. In the first, which is developed in sections one and two, we 

begin with a general geometric space with postulated allowable and preferred 

(projective) coordinate systems. We then show that  transformations from allowable 

to projective coordinates determine in their domains the solutions of a char- 

acteristic second order differential system. The latter involves a projective linear 

connection which de~ermines an identically vanishing projective curvature form. 

Our second approach seeks to characterize locally the projective coordinate systems 

by means of a second order differential system. In developing this other view- 

point in the third and fourth sections we assume that  our geometric space is a 

ttausdorff topological space, and establish existence theorems for the solution of 

1 5~ichal I I I .  Roman numera l s  refer to the  b ib l iography  at  the  end of the  paper .  

Michal and Mewborn  VI I .  
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a cer ta in  first order  differential  system involving a postula ted project ive  connec- 

t ion whose curva ture  fo rm is identical ly zero, and whose Fr6chet  differential  has 

the d-property. This &proper ty  is a par t icular ly  in te res t ing  development  of our  

general  t rea tment ,  for  we show tha t  it  may  or may  not  be satisfied for  funct ions  

in infinite dimensional  spaces, whereas  it  automat ical ly  holds for  the finite di- 

mensional  a r i thmet ic  case. In  the concluding section we show th a t  the solut ion 

of our  first order  differential  system is unique in a res t r ic ted  ne ighborhood  of 

each point  of our  project ive  coordinate  space B1. F u r t h e r  we show th a t  i t  is 

of such form tha t  it determines  project ive coordinates  sat isfying the postulates  

used in our  first approach  to the problem, and hence tha t  the two methods  yield 

equivalent  (local) character isa t ions  of a flat project ive  geometry.  

i. Projective Coordinate Systems and their Differential Properties. 

W e  shall assume tha t  we have a geometr ic  space of points H having allowable 

coordinates already defined in a Banach  space B, and shall consider the geomet ry  

of this space f rom the s tandpoin t  of an undefined set of >>preferred homogeneous  

coordinate  systems>> (hereaf ter  called >>projective coordinate  systems>> or briefly 

>>p. e.s.>>), valued in a second Banach space B 1 of couples X =  (x ,x  ~ where x 

is in B and x ~ is a real  number  hereaf te r  called the  gauge variable. These p. c. s. 

will be subject  to the  fol lowing five postulates~: 

P I. In  a p. c. s. there will  correspond to each point  p of the geometric space 

H at least one element X of  the space B1, and to each Y in B1 except (o, o) there 

will correspond jus t  oue point q 02<' H. 

P 2. Two elements X and Y o f B  1 represent the same poin t p  of  H i f  and 

only i f  they lie on the same straight l i nd  through the origin (o, o) of  B 1. 

P 3. Any  p. c.s. can be transformed into any other by a linear transformation. ~ 

P 4. A n y  homogeneous coordinate system obtained f rom a p . c . s ,  by a linear 

transformation is a p. c. s. 

P 5. There exists at least one p. c. s. 

From the  above postulates  it can readily be proved t h a t  any t r ans fo rma t ion  

between two p. c. s. is a solvable l inear  t r ans format ion .  

1 Veblen  and  W h i t e h e a d  1, p. 2 9. 

I . e .  if  and  on ly  if  t h e y  s a t i s f y  a r e l a t i on  of t he  form X =  ~ Y  where  t~ is a rea l  number .  

3 I. % a t r a n s f o r m a t i o n  X ~  X(X) a d d i t i v e  and  c o n t i n u o u s  in  X and  hence  h o m o g e n e o u s  of 

degree  one. 
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Definition 1. 1. Allowable Coordi~ate System. Any ( I - - I )  solvable trans- 

formation on H to an open subset B ' ~  B is an allowable coordinate system and 

will be denoted by x (p) and its inverse by p(x) where io is in H and x in B'~ B 
and x (p0 )~  o in B'. 

Definition 1.2.  Transformation of Coordi~ates fi'om Allowable to Preferred 
Coordinates. This is any transformation from a given allowable coordinate 

system x(p) to a p.c.s .  U(x(p)). The range ~ of U(x(p)) is the entire space H 

less the point P0, and its domain t is an open subset B'~ of B~. 

Definition 1.3.  Change of Representation. The simultaneous transformation 

of allowable coordinates �9 ~-2(x) and the change of gauge variable 2 0 ~  xO+ 

+ log Q (x) where Q (x) is a positive scalar field valued function of x of class C (3) 

will be called a change of representation. 

Definition 1 .4 .  Projective Scalar Field. By a projective scalar field we shall 

mean any geometric object whose components S(X) transform according to the 

law S ( X ) =  S(X) under the change of representation X =  X(X). 

Definition 1. 5. The Projective Scalar ~u A (X), By this we shall denote 

the transformation 

(,. ~) A (X) = e "~~ U(x) 

whose domain is the subset (B'o, I x~ < ~ )  of B~, and whose range is the subset 

of B1 obtained by adjoining to B' 1 all elements of B l lying on a straight line 

through the origin with any element of B'  1. Furthermore .4(X) 

a) is of class C ('~) on its domain, 

b) is a projective scalar, 

c) has a first Fr6chet differential A (X; Y) which is a solvable linear func- 

tion of the projective c.v. Y with inverse A -1 (X, Y). 

Definition 1.6.  Projective Contravariant Vector. A geometric object V asso- 

ciated with the point p whose component undergoes the transformation 

(I .  2) V-~- [ ~ ( X ( j g ) ;  V)  

under the change of representation X ( p ) ~  f~(X(p)) will be called a projective 

contravariant vector associated with the point p. 

1 The set of values of the indicated independent variable for which a function is defined will 
be called the domain of the function with respect to that  variable. The corresponding set of values 
of the function will be called its range, e.g. here the domain of U(x) is Bo (the set B '  less the 
zero element), and its range is B'I. 
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Definition 1.7.  Projective Contravariant Vector Field or p. c .v.f .  A set of 

projective contravariant vectors associated one to each point of some set in H 

will be called a p . c .v . f .  

Definition 1 .8 .  Hyperplane through the Origin of Ba. The set of elements 

X of B 1 which all satisfy a given numerically valued linear function (not ident- 

ically zero) equated to zero will be said to lie on a hyperplane through the 

origin (o, o) of B i. 

The condition e) of definition I. 5 implies that  the values of A(X) do not 

lie on a hyperplane through the origin of B~. For if we assume condition e) 

and assume that  there exists a linear function L ( V ) ~  o such that  L (A(X))= o 

for all values of A (X), and differentiate, we get 

(~. 3) L(A(X;  Y))= o. 

Let Y =  A -~(X, W) whence L ( W ) - - o  for all W contrary to assumption. 

Definition 1.9.  The Function g (X). Any solvable linear function F (S) of 

the projective scalar A(X) will be denoted by 

(I. 4) g (x) = F(A <m)= e+ F(U<x>). 

By a well known theorem of Banach-Schauder it follows that  the inverse 

F -1 (S) of F(S) is also linear in S. 

Theorem 1. 1. Let U(x) be a transformation of coordinates from x(p) to a 

narticular p. c.s. U(x(p)). Let g (x) be a transformation of coordinates from the same 

allowable coordi~mte system x(p) to any p. c. s. g(x(p)). Then the function g(X)  

(def. z. 9) satisfies the differential system 

a) g (x ;  Y; z ) = g ( x ;  • Y,z/) 

(I. 5) b) g (X; (O, y0)):._=flog(x ) 
where 

(I. 6) 

and 

r~ (x, Y, z ) =  A -1 (x, A <X; Y; m). 

Proof: Taking two successive Fr6chet differentials of equation (I. 4) we obtain 

~ (X;  Y)=F(A(X; I+)) 

9 (x; y; z) = F(A (X; Y; Z)), 



Abstract Flat Projective Differential Geometry. 263 

whence, f rom the solvability of A (X; ]5) and of F ( S )  

3 (X; A -1 (X, Y ) ) =  F(A<X; A-I<X;  ]7)))--/~(]fl). 

Now let Y =  A (X; Y; Z), which completes the proof. Q .E .D .  

The second order differential  system (I. 5) of this tbeorem can be replaced 

by the equivalent  system of three first order differential  equations: 

a) P (x,  y;  z )  = ~ (x ,  rt <x, Y, z)) 

(I. 7) b) 3 (X; Y) = P(X,  Y) 

c) 3 (x;  <o, v~ = 7f 0 8 (x) .  

This modification is important ,  as it  is with a differential  system of this  type 

tha t  we shall be dealing in section 3. In  particular,  compare 

P (X 0 , (o, yo~) = 3 (Xo; <o, y~ = y ~ 3 (Xo) 

obtained f rom b ) a n d  c) of (I. 7) with the analogous relat ion in the init ial  

eondit ion c) of equation (3-I). 

2 The Flat  Projective Connection. 

The function H (X, ]7, Z) defined by equation (I. 6) plays an impor tan t  role 

in the geometry of our space, and is the component  in the given coordinates of 

a geometric object which we shall call the projecffve com~ection< Some of its 

impor tant  properties are exhibited in this section. 

Theorem 2. 1. The projective connection H (X, Y, ~ is symmeb'ic and bilinear 

in Y and Z, and satisfies the relation 

(2. ~) r t ( x ,  <o, yO), z ) = y ~  

Proof: The symmetry  of the funct ion is an immediate  consequence of Kerner ' s  

theorem on the symmetry  of the second Fr6chet differential. An application of 

the before ment ioned theorem of Banach-Sehauder  and the definition of Fr6chet  

differential,  shows the function to be bilinear. A direct computa t ion  of the 

differentials in (I. 6) verifies (2. I). Q..E..D. 

1 For brevity we shall hereafter, if there is no ambiguity, use this term for the comloonent 
oE the projective connection. In general we shall similarly apply the name of a geometric object 
to one of its components. 
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Theorem 2 .2 .  The projective connection is invariant under a solvable linear 

be a solvable linear tr8nsform~tion of V with inverse 

transformation of A (X). 

Proof:  Let L (V)  

L - I ( V )  and let 

.4 (X) = L (A (X)). 

(X; Y) has the inverse _~-1 (X, ~Y)--A -1 (X, L -1 (Y)), hence .4-1 (X, A (X; Y; Z) )=  

= A -1 (X, A (X; Y; Z)) = / / ( X ,  Y, Z). 

Theorem 2 .3 .  Under a change of representation the projective 

forms as a component of a linear connection, 

(2.2) h (X, ~, 2 ) =  X (x; l i  (x, y, z';) + 2 ( x ;  x (x; y; z)) 

when Y and Z are projective contrava~'iant vectors. 

Proof: By definition we have in the new representation 

(2. 3) i f(X:,  ~ ,  2)  - A-~ (x ,  ~i (x,-. y,-- z)) ~ . 

From b) and c) of definition I. 5 and defini t ion,I .  6 we have 

(2. 4) fi~(X; 1~) = A (X; Y) = A (X; X ( X ;  Y)). 

By t~king inverses of this, 

(2. 5) 3_ -1 (X, S ) =  2~(X; A -~ (X, S)), 

showing ~hat A -~ (X, S) is a p. c. v. f. valued linear form in the projective 
scalar S. 

Differentiating the first and las~ of (2.4) we have 

(2.6) : i  (X; fr; 72) = A ( X ;  y; Z)+ A(X; X(X; u 2)) 

which, with the aid of (2. 5) and (2. 3) yields 

[ / i  (_~, ~,  2) = A -~ (X, A (X; Y; 2)) 
(2 7) 

[ = X ( X ;  A - ~ ( X , A ( X ;  Y ; Z )  + A ( X ;  X ( X ;  Y; 2)))). 

Equation (2. 2) follows a~ once from (~. 7). Q . E . D .  

Q.E.D. 

connection trans- 
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I t  can be shown tha t  the inverse of A (X; Y) is of the form 

(2. 8) A -1 (X, Y) = (e -x~ l(x, Y), e -x~ l ~ (x, Y)) 

where x is in B, l ( x , Y )  and 1 ~ Y) are linear in :Y of B 1 ~nd valued in B 

and the reals respectively. Using this property  of A -1 (X, Y) and theorem 2. 3 

we obtain 

T h e o r e m  2 .4 .  The projective connection 11(X, Y, Z) is independent of x ~ and 

is of the form 

(2.9) H ( X , Y , Z ) = ( F ( x , y , z ) + y ~ 1 7 6  F ~ 1 7 6  ~ 

where, in the notation of (2. 8), 

F (x, y, z) = 1 (x, U (x; y; z)) 
(~ IO) | 

( F ~  ~, Y, z ) =  l~ (x, UIx; y; z)) 

are bilinear and symmetric in y and z. I f  y and z are contravariant vectors, 

F(x,  y, z) transJbrms as a component of a linear connection," and F~ y, z), called 

the gauge form, is absolute scalar .field valued. 

Theorem 2 .5 .  Under a change of representation 

2. I I) I 
X (x )  = (2 ~x), x ~ + log e (x)) 

x (;~) = (x (2), ~~ - log  ~ ~)) 

i f  Y and Z are projective contravariant vectors, equation (2. 9) goes over into the X 
representation as 

(2. I2) h ( X ,  ~, 2) - -  (F-(23, 9, 8 )+  ~)~ 8 + 8~ 9, F~ (3~, 9, ~) -}- 9o ~o), 

where 

(2. i3) 

34--39615. 

r (~, 9, 8) = 2 ( x ;  f i x ,  v, z)) + ~ (x ;  x I2 ;  9; 81) 

+ ~ (x, y) ~ (x; ~) + r (x, ~) �9 (x; y), 

i~~ (~, 9, 8) = r ~ (x, v, ~) + -~ { �9 (x, y; ~) + �9 (x, ~; y)} 
2 

- �9 (x, Fix,  v, ~) - * (x, y) �9 (x, z), 

(x, ~) - ~ (~; ~) ,o (~) - d~ log. Q (x )  

Acta mathematica. 72. Imprim6 le 4 mai 1940. 
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This theorem may be proved either by a direct computation from (2.9) or by 

reversing the order of steps in the proof of a theorem we have given elsewhere ~ 

in connection with a general, not necessarily flat, projective geometry. 

Corollary 2 .1 .  

(2. ~4) 

then 

I f  we use the notation 

n (x, r ,  z )  = (j (x, y, z), jo(~, y, z)) 

(2.15) 
j (x, (y, o), (z, o)) = r (x, y, z) 

j0 (x, (y, o), (z, o ) ) -  r ~ (x, y, z). 

Definition 2.1. The Projective Curvature Form. The function B(~)(X, Y, Z, W) 

defined by the relation 

(2. I6) B(,)(X, Y, Z, W ) =  H(X ,  Y, Z; W)- -  H(X ,  Y, W; Z) 

+ n ( x ,  n ( x ,  y, z), w) - n ( x ,  r~(x, ~, w), z) 

where H(X,  Y, Z) is the projective connection of equation (I. 6) will be called 

the projective curvature form based on I I (X,  Y, Z). 

Theorem 2. 6. The curvature form (2. I6) is a p. c. v. f .  valued trilA~ear jbrm 

iu the projective conb'avariant vectors Y, Z and W, and vanishes identically. 

Proof: I t  is easy to verify that  B(~/(X, Y, Z, W) satisfies the conditions of 

definitions I. 6 and I. 7 by using theorem 2.3. The trilinearity property follows 

from theorem 2. I and the definition of Fr6chet differential. 

We next must show that B(~)(X, Y, Z, W ) ~  o. From equation (I. 6) it 

follows that  

(2. ~7) 

whence 

(2. I8) 

l z ( x ,  y ,  z ) =  - A- ' (X,  :~(X; Y); Z) 

n ( x ,  y ,  z ;  w ) = -  A- l ( x ,  A(X; ~); Z; W) 

--  A -1  (X, A (X; Y; W); Z). 

This exists from the conditions of definition I. 5, and is clearly trilinear in 

Y , Z ,  W. From (I.6) and (2. I7) we have 

1 M i c h a l  a n d  M e w b o r n  V I I ,  T h e o r e m  2. I.  
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(2. I9) II(X,  II(X, ~Y, Z), W)-~ - A - I ( X , A ( X ;  Y; Z); W). 

Subst i tut ions by means of (2. I8) and (2. 19) in (2. I6) complete the proof of 

the theorem. Q . E . D .  

3. Local  Charac te r i za t ion  of  a Genera l  F l a t  P ro jec t ive  Geomet ry .  

We now change our point of view, and set up a converse problem to tha t  

t reated in section I. Suppose tha t  we are given the differential system (I. 7) 

and the init ial  conditions 

a) P(Xo, V ) =  P0(V), a l inear solvable funct ion of V, 

(3. b) 3 (Xo) -- 30, 
( C) ~90((0 , I)) = 30, 

under  what  restrictions can this be said to characterize a flat projective geometry?  

In  the present section we impose the needed broad restrictions upon the 

structure of our space. In the next  we develope a number  of necessary pre- 

l iminary results of a general  character,  and in section 5 we show that ,  under  

these restrictions, the solution of (I. 7) exists and satisfies the postulates of 

section I for a p. e.s.  Hence we may say tha t  this system actual ly characterizes 

our fiat projective geometry.  

Le t  the geometric ~pace be a lfausdorff ~wace with Banach coordinates, but  now 

by ;)allowable coordinate systems~; we shall mean allowable /~/3) coordinate 

systems. ~ Clearly each geometric domain of such an allowable coordinate system 

is a metric space whose metric is defined as 

(3. 2) ~ (P~, P~) -- I I x (p~) --  x (P~) l I, p, e zr o ~ H. 

Let  the Bauach space of couples Bx be as in section I. 

Definition 3 .1 .  67range of Represe.ntatiou. The simultaneous t ransformat ion  

2 = 2 ( x )  of allowable K (3) coordinates and the change ~.0~_ x 0 +  log O(x)of 
gauge variable, where q(x) is as in definition I. 3, will be termed a change of 

representation.  

Fur the r  we assume tha t  there exists a funct ion TI(X, Y, Z) with arguments  

and values in B 1 and having the following properties when x is in the 

coordinate domain in B of each allowable K (s) coordinate system: 

i Subject to pos~ulaCes I--IV page 5, Michal-Hyers (II). 
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a) ~ ( x ,  Y, z ) ~ - ~ ( x ,  z, r); 

b) I I (X,  Y, Z) is bil inear in Y, Z; 

c) u(X,(o, yO), Z)= yO Z; 

d) H (X, I7, Z) is of class C (1) locally uniformly ~ such tha t  the differ- 

ential  H(X,  Y, Z; W) has the (i-property (definition 4. ~) wi th  

respect to I ~ for each Z. 

e) Under  change of representat ion,  I I (X,  Y, Z) t ransforms formal ly  

as a component  of a l inear connection whenever Y, Z are pro- 

jective contravar iant  vectors. 

f) The curvature form Bo)(X, Y, Z, W) based on H(X,  Y, Z) is 

identically zero. 

4. Theorems on Differentials.  

Definition 4. 1. The &property. Let  f (x ,  y) have arguments  and values in 

Banach spaces (not necessarily the same). The Frdchet  differential  f(x0, y; z) 

of f (x ,  y) at x = x o is said to have the &property (with respect to y) if for every 

> o there exists a (i(~, x0 )>  o independent  of y such tha t  

(4. I) ][f(xo + z , y ) - - f ( x o ,  y)-- f(xo,  y;z)] I<-el]z][ for I]zll < ( i (e ,xo)  

and ItYlt< i. 

Theorem 4. 1. I f  f (x ,  y), li~ear in y, has a d(fferential with the &property 

(i(~, Xo) ~ d  llyll < b, at x = x o, then (4. I) is 8ati6fied for I I z I I < (i' (e, Xo) = 

where b is an arbitrarj positive number. Conversely i f  (4. i) holds fo," I lvl l  < b, 
any chosen positive number, then the differential has the &property. 

Definition 4. 2. 1'he Banaeh Ring I~. The set of all l inear t ransformat ions  

with the domain B 1 and ranges in B 1 under  suitable definitions of operations 

and norm ~ form a Banach r ing which we shall call /~1. 

I n  general, we shall denote the R1 correspondent  of a B~ va lued  function,  

l inear in Xi, 

i Michal-Hyers (II). 
2 Michal (III) p. 547, but note carefully that in the present discussion no inner product or 

contraction is postulated. 
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t o ( X 1 , . . . ,  X;-1, X~', Xi+l  . . . .  , X~), 

considered as a linear function of its B1 valued argument Xi, by 

~ ( X 1 , . . . ,  Xi-1, X~+i, . . . ,  X~). 

To avoid ambiguity, however, the following two exceptions will be made to 

this notations: 

(A) H(X,  *, Z; W) and to(X, *; Z) in R 1 will be respectively the cor- 

respondents of H(X,  Y, Z; W) and any .tO(X, Y; Z)  in B1 considered ~s linear 

functions of Y. 

(B) I I (X,  Z; W) and O(X;  Z) in /~1 will mean the Fr6chet differential of 

II(X,  Z) and O(X) in R~ respectively, and not the correspondents of / - / (X,  Y, 

z; W) and tO(X, Y; z) of B~. 

Theorem 4. 2. Let H(X ,  Z) be any function with arguments in B i and values 

in BI and linear in Z. Then, i f  it is of class C (~) in X uniformly ~ on (Xo)a in 

B i and satisfies 

(4. 2) B(~)(X, Z, W ) =  II(X,  Z; W) -- I I (X,  W; Z) 

+ n ( x ,  w) n ( x ,  z)  - n ( x ,  z)  n ( x ,  w) = o 

for X in (Xo)**, the differential system 

[ a) P(x;  z ) -  v(x)n(x,  z) 
(4. 3) 

z 

[ b) P(Xo)= 

where Po is an arbitrarily chosen element of Bi, has a unique solution 

(4. 4) P(X_) =- lira Pn (X) 

fo~. x i ,  (Xo)a, ~he,'~ ~,,(X) i~ defined ~'eeur,'entb by 

(4" 5) ~)n+l ( X )  = /30 + 

1 

f P,,, (Xo + s c x  - -  x~)  u ( x o  + s ( x  - xo), x - Xo) d s. 

0 

Proof: The condition of complete integrability for the system (4. 3 )can  

readily be shown equivalent to the condition (4. 2 ) o f  the hypothesis. Hence 

1 Lemma 3 P. 651, Michal-Hyers (IV). 
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this theorem becomes a particular case of a known theorem on completely 

integrable differential equations? Q . E . D .  

Corollary 4. 1. The unique solution of system (4- 3) is given @ 

(4. 6) 

x , ( x )  = I"o { I  + . . .  t~-~ t~_~,-~ . . .  t~ �9 
if( 

i ~ l  0 0 

" / / ( X  0 -~- t i  . . . .  t l ( X  - -  Xo)  , X - -  X o ) . . . .  

�9 R ( X o  + t~ ( x  - Xo),  x - X o )  d t ~ . . .  d t~} 

where Y, the unit element of R j, is the corre~Tondent of the linear function L (X) ~ X. 

Corollary 4. 2. The function 

1 1 

(4. 7) '~ ( x )  = I + ~.= ...(,). t,:, * . . .  t., , v  ( x o  + t, . . . t ,  < x  - xo ) ,  x - x o ) . . .  

H ( X o  + t, <x  - Xo), x - Xo) d t l . . .  d t, = I + c (Xo, x - Xo) 

is Fr&het differentiable in X for X i~ (Xo)a. 

Proof: If  we choose the 1X, of (4. 3) to be I ,  the corollary follows at once, 

since by Corollary 4. I 
P ( X )  -- ,~ (X). Q . E . D .  

Corollary 4. 3. The function C(Xo, X -- Xo) of (4. 7) satL~fies 

(4. 8) II C(Xo, x -  X o ) l r ~ <  ~ 

for X in a sufficiently small ne(qhborhood (Xo)l,. 

Proof: By corollary 4. 2, C ( X  o, X - - X o )  is differentiable and hence con- 

tinuous for X in (Xo)~. Since I I (X,  Z) is linear in its second argument, 

C ( X  o, X o -  Xo)= o. The norm in the Banach ring / l ,  (denoted by II "" IJ&) is 

defined as the modulus of the correspondent linear function in ]~1 hence there 

exists a b , o < b ~ a ,  such that (4. 8) holds for X in (Xo)> 

Corollary 4.4.  The function ,I, (X) has a unique inverse of the form 

1 T h e o r e m  3. I, p. 85, Micha l -E lcon in  (IX). 
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for each X in the ~,eighborhood (Xo)b of corollary 4.3 .  

Proof: By the definition of the product of elements of the Banaeh ring B,1, 

the use of corollary 4. 3, and an obvious modification of a theorem of Miehal 

and Martin 1 we obtain (4.9). Q . E . D .  

Corollary 4. 5. If, in addition to the hypotheses of Theorem 4. 2, we assume 

that Po has an inverse P-j~ then there exists a number b, o < b <--a, such that for 

all X in (Xo)t~ the unique solution P ( X )  of the d~'erential system (4. 3) has an 

inverse 

(4. IO) P - - ~  ( X )  = ~ - 1  ( X ) p ~ - l .  

Theorem 4.3.  A necessary and sufficient condition that a function F ( Z )  on 

B 1 to R 1 be linear in Z is that the correspondent F ( Y ,  Z)  be bilinear in Y a n d  Z. 

Proof: Sufficiency: From the hypotheses and definitions there exist numbers 

M,-z and M y =  IIF(Z)IIR~ for each Z such that 

II F ( r ,  z)  ll -<- ~,,11 r l l  -< Mrzll zl l-II  r l l  for all Y. 

This implies that l[ F ( Z )  IIR, --< MYzll  Zll which is equivalent to the condition 

for continuity of F ( Z )  at Z = o .  The additivity of F ( Z ) i s  clear from its 

definition. 

Necessity: By definition F ( Y ,  Z)  is linear in Y, hence 

IIF(Y; z)[I-< MrlI YII=IIF(z)IIR, IIYII <-Mllzll'll YII 

by the hypothesis on continuity of ~ (Z) .  The additivity of F (Y,  Z ) i n  Z 

follows from the linearity of F ( Z ) ,  which completes the proof. Q .E .D .  

Theorem 4.4 .  I f  ~ (X) is Erdehet differentiable at X = 320, then W (Xo, *; Z) 

exists and 

(4. I I) I /J ' (Xo;  Z )  = ~ (X0, * ; Z) .  

Proof: By hypothesis, for any e > o there exists a 61 such that 

I I ' % ] l - , =  II ' r (Xo + z ) -  ~ (Xo) - ~'(Xo; z )  lb~ -< e II z l ]  for ][ z l l  < 61. 

1 Theorem 5-II,  p. 77, Michal-Martin (V). 
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But  

where 
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11 ~o(~)11 ~ ~ / l l  YII = I1~o11~,11 YII ~ ~ l l z l l .  II YII for I l z l l  < ~ 

Oo (Y) = ~ (xo + z ,  ~ ) -  ~ Xo, Y) --  ~'(Xo, y,  z )  

and W'(X0, Y, Z) is the B~ correspondent of W(Xo; Z) and is bilinear in Y, Z 

by theorem 4. 3. Hence for any e > o there exists a d2(~, Y) such that  

I I ~ o ( Y ) l l ~ l l z l l  for I I z I l < ~ ( ~ ,  Y). 

From this, T'(X0, Y, Z) evidently 

which completes the proof. 

satisfies 

Theorem 4. 5. Let W(X ,  Y) be linear 

the definition for W(X0, Y; Z), 

Q . E . D .  

in Y, and have its arguments and 

values in B1; and let ~s (X) be its correspondent in R i. Then a necessary and 

sufficient condition that W(X; Z)  exist at X ~ X o and that (4. I I) hold is that 

the Fr~chet differential W(X0, Y; Z)  of T (X, Y) exist and have the &property 

at X =  X o. 

Proof: We shall establish the sufficiency of the condition as follows, and 

since the steps are all reversible, this proof also holds for the necessity. 

The d-condition inequality can be rewritten in the form 

Ilf io(V) l l = l l ~ ( X o +  Z, Y ' ) - - T ( X o ,  r ' ) - - ~ ( X o ,  Y'; Z)! I -<~ l l z l l  IIY'I[ 
69 

for II Z ll < ~1(~, Xo) and 
where Y' is now any element of B~ and o <  O <  I. 

By the modular condition there exists a least nmnber M satisfying 

Hence 

where 

which implies that 

II rio(Y)II ~ ~Sll YII. 

I lzl l  M : ] l , . ( 2 o l l R l < ~ s ~  - ,  for I ] Z ] l < d i  

~o  = v;(Xo + z ) -  w (Xo) - ~ (Xo, ~; z ) ,  

From this, h~ ~; Z) clearly 

completes the proof. 

11~.~2ol[Rl<-ellzI] for I I Z [ l < d 2 = O ( ~ i .  

satisfies the definition for W(X0; Z) which 
Q.~:.D. 
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Corol lary  4. 6. Let W (X, Y) be linear in Y. A )~ecessary m,d sufficient 

condition that W(Xo, Y;  Z) exist a~d have the ~-loroperty with res~veet to Y is that 

W(Xo;  Z) exist. 

Proof: Use Theorems 4. 5 and 4. 6. 

Corol lary  4. 7. This theorem 4. 5 holds i f  we replace ]] Y If < I in definition 

4 . ~ b u t i r i l - < I .  

Proof:  Exact ly as before except tha t  o < (9--< I. 

Clearly theorems 4. 3, 4. 4, 4. 5 and corollaries 4. 6 and 4. 7 can be gen- 

eralized in an obvious way to the case B~ is any Banach space and Ra is its 

associated Banach r ing of l inear t ransformat ions .  

Let  us consider now how this theory applies in certain finite and infinite 

dimensional cases and il lustrates its use in a general  Banach space. 

First,  suppose tha t  B 1 is the (n + ])-dimensional ar i thmet ic  space of elements 

x = (<x,))= (5 ~ x', . . . ,  xn) 

x i a real number  such tha t  

l i x i i = l i x ' i l i =  V• (x% 
i=o 

and tha t  R~ is its associated Banach r ing of l inear funct ions  

L corresponding to L ( X ) = ( ( ~ x J ) ) ,  ~ a real number,  

such tha t  [I L[[R, = M - -  the modulus of L (X). 

Lemma.  I f  L (X) = ((~ xJ)) as above, then 

(4. ~2) II~IIR,=M=(n § 1)--~ ~ (,$:)2. 
j=0 /=o 

Proof:  By hypothesis  we have I[ L(X)[]--< 3/]] X [I for all X, hence in part- 

icular for 
Xk c~ ~ = ( (  (k)))' [[ X k [ ]  = I ,  ~ = O, I ,  :2, . . . ,  , , ,  

we have ][ L(Xk)][~ <--M ~, whence by summing on k 

V . . . .  

(4. ' 3 )  I[ L ( X k ) l [  " =  ~ % (Z~) 2 ~ V-~ -}- I M .  
k=0 k=O i=o 

35--39615. Acta mathematica. 72. Imprim6 le 26 juin 1940. 
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:Now since any arb i t rary  X can be expressed as 

X = i xk  X k  ~-  (X 0, X 1 . . . .  , xn) ,  

k=o 

(4. I4) 

whence 

(n. I5) 

IIn(X)ll= ,~ xk L(Xk) <-- Z II x~ L(X,.)II 
k=o k=o 

k=O k=o 

k=O 

But  the  least number  M which will sat isfy both (4. ~3) and (4. I5) is 

M - - ( .  ~ ,)-'~ ~ II L(Xk)II" 
k=O 

which is equal to the M of (4. I2). Q.E .D .  

Theorem 4. 6. A~y function T ( X ,  Y) with a~yuments and values in the 

arithmetic B 1 space, of the form 

(4. 16) ~(x, Y)= ((~(x)yJ)), 

necessarily has a differential in X at X - - X  o with the &property i f  the a! (X) are 
�9 3 

differentiable in X at X - =  Xo. 

Proof :  By the hypotheses,  for any ~ > o there  exists a 8 (X o, Y, ~)such tha t  

{(Xo + z ) - ~ ( X o )  ~ J  ~ ~v~ i 

or, to define a briefer  nota t ion  
for I lZl l<~(Xo,  Y, ~), 

II&(x, ~, z)ll=ll~j(Xo, z)yal l ,~ l l z I I  

for IlZll < ~(So, 
Now let Yk = ((81k))) so 

Y, e), and all Y. 
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i Ilt,(~.)(Xo, z ) l [ , < ~ l l z l l ,  ~ = o ,  i, . � 9 1 4 9  

for  I I z lI < d (Xo, ~) = m i .  d (Xo, Y~, ~)�9 
k 

By squaring, summing on k and applying the lemma we get 

(4- '7) l i fo (X,  r ,  Z)I I - < M I I Y I I  - < ~ l t z l l ' l l r [ I  

for II Z II < d (Xo, ~) and ~ll r .  From this it ean be shown that 

which, from the hypothesis on a~(X), exists and has the d-property. Q . E . D .  

Next we take our B~ space to be a Hilbert  space, and exhibit two in- 

stances of solvable linear functions whose F%ehet differentials exist but do ~ot 
have the d-property. 

Example A. Let [x, Yl denote the Hilbert  inner product, then the function 

X 
f (x ,  u) = ~ Ix, u]* + [*, *] u -- d v {[~' ~] ~} 

is linear in y and has the inverse 

f - 1  (x, y ) -  S ~ ]  

also linear in y. 

3 Ix, x] ~ x # o 

The partial F%chet differential 

d ~ f(x,  y) = 2 [~, yl x + 2 [~, y] ~ + 2 Ix, ~] y 

does not have the d-property. 

Example B. The functio~ 

f ( x , y ) : 2 [ x , y ] x  + [x ,x]y  + [y, a]x + [x, a ly  + [a, a]y 

X 
= d y {Ix, x] x + El, al x + [., .] x + b} 

has the inverse f - l ( o ,  y)--I]a]]-2y at x = o  if a ~  o. I ts  differential 

{~ : . f ( x ,  y)}~=0= [y, ~]~ + [~, . ] y  at  x = o 

likewise lacks the d-property. 
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Last ly,  we show by examples t ha t  the d-property is not  vacuous in a general  

Banach space. 

Le t  A(x ,  y ) = l ( y ) a ( x )  be a funct ion on B 1 B  ~ to Bs (arbitrary Banach 

spaces), where l(y) is l inear on B1 to R (the real numbers) and a(x) is on B2 

to B.q, differentiable at  x = x  o. Hence for any ~ > o there exists a d(x0, ~) 

such tha t  

(4. IS) II=(xo + ~ ) - = ( ~ o ) - ~ r  z ) l l - <~ l l ~ l l  for I1~11 < d(Xo, ~). 

By the modular condition II(y) l .<-MI I?f l l  for some M,  and hence there exists 
I 

an 2V--  ~r  such that II Y ll < N implies z(y) l -< I. Multiplying (4. I8) by this 

inequali ty we obtain 

II a (x 0 + z, y) --  A (xo, y) -- 1 (y) a (x0; ~)ll --< ~ I I ~ I I 

for II ~ II < d (Xo, ~) and II y II < ~v. 

But this, together  with theorem 4. I, implies the existence of A(xo, y; z ) =  

= l(y) a (Xo; z) with the d-property. 

This example may be modified by placing the differentiabil i ty condit ion on 

A (x, y) instead of on a(x) since this implies tha t  the lat ter  is also differentiable. 

A somewhat  more general  example is t ha t  of funct ions of the type 

t 

A (~, y) = y ,  ~ (y) ~, (x) 
i = 0  

where the l~(y) and a~(x) are subject to the same restrictions as l(y) and a(x) 

above. 

5. Solu t ion  of  the  Local  Charac te r i za t ion  P r o b l e m  for  a 

F l a t  P ro jec t ive  Geomet ry .  

The results established in the preceding section now enable us to show the 

existence and exhibit  the form of the solution of the complete differential  system 

consisting of equations (I. 7) and init ial  condit ions (3. 1). Fur thermore ,  we show 

tha t  this solution satisfies the postulat ional  system of section I, and hence the 

above complete differential  system is a (differential) character izat ion of this  

geometry.  In  the hypotheses o f  all theorems of  this section we shall assume that 

all eouditions of  section 3 are satisfied. 
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Theorem 5.1. There exists a neighborhood (Xo)b of each X o of any coordinate 
domain such that 

a) P(X, Y; Z ) = P ( X ,  H(X, Y, Z)) 

(5. I) b) P(X o, V)=Po(V), a linear solvable fanction of V, 

has a unique solution P(X, Y) linear and solvable in Y, for all X in (Xo)~. 

Proof: By conditions b) and d) of (3. 3) and theorem 4. 5 

(5.2) H(X, Z; W)= H(X, ., Z; W). 

Let 

F ( X ,  Z, W ) = H ( X ,  *, Z; W ) - - / / ( X ,  *, W; Z) 

+ n ( X ,  W)n(X,  Z ) - - ~ ( X ,  Z ) H ( X ,  W), 

and let BI1)(X, Z, W) be defined by the first part of equation (4. 2). Then 

by condition f) of (3. 3) and (5. 2) 

B(,)(X, Z, W)--F(X, Z, W)=o. 

The hypotheses of theorem 4. 2 being satisfied, system (4. 3), which is now equi- 

valent to system (5. I), has a unique solution P ( X )  for X in (Xo)a. 
Hence P(X, Y), the correspondent of P ( X ) ,  is the unique solution of (5. I), 

and by corollary 4. 5 is solvable and linear in Y for X in (X0)~. Q. ]~. D. 

Theorem 5.2. Let P(X, Y) be the solution of system (5. I), then the system 

(5.3) [a) 3(x; r ) = P ( x ,  r), 
b) g (X0) = g0, Po (~o, ~) = 3o 

has a unique solution of &e form 

1 

(5.4) 3(X)-~ 30 + f P(Xo + a(X--Xo), X - - X o ) d a  
*d 

o 

for X in the neighborhood (Xo)b of theorem 5. I. 

Proof: The condition for complete integrability of (5. 3) is 

P(X, Y; Z ) = P ( X ,  Z; r ) ,  

which is dearly satisfied from our hypothesis a) of (5. I) and condition a) of (3.3)' 
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Hence a special application of a known theorem i on completely integrable 

differential  equations completes the proof. Q . E . D .  

Corol la ry  5. 1. The um'que solution ~ (X) of theorem 5. 2 satisfies 

(5.5) 3 ( x ;  (o, v ~  y ~  

Proof:  I f  we let J = X - - X o  for X in (Xo)b then  we can wri~e ~ 

(5.6) 

1 

P(Xo + ~,, Y) - P(Xo, Y) -- f p(Xo + 8J, 
0 

~Y; ~) ds 

1 

= f 1' (Xo 
0 

+ s d ,  I I ( X  o + s J ,  Y, J))ds,  

Now let Y :  (o, y0) in (5.6) and we have from property c) of (3. 3) 

1 

P(Xo + ~,  (o, yO))__ B(Xo ' (o, yO)) + f p ( x  ~ + s J ,  y ~  

0 

whence by l ineari ty,  a) of (5. 3) and (5.4) 

1 

0 

Q . E . D .  

Theorem 5.3 .  The solution ~ (X) of theorem 5. 2 is of the form 

(5. 7) 3 ( x )  = e ~o- ~o u (x), 

where X = (x, x~ X o ---- (Xo, x ~ and U (x) - 3 ((x, X~ 

Proof:  The abstract  Volterra integral  equation of the second kind 

~o 

(5. s) 3 ( x )  = U(x) + -/'3(Ix, t))d 
. ]  

~o 
is equivalent to the system (5. 3). 

1 Theorem 3.2, p. 87, MichM and Elconin (IX). 
Definition I. 7 and Theorem I. 7, PP. 74--76, Miehal-Elconin (IX). 
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This non-homogeneous equation has a unique continuous solution for each x 

in B. The continuous function (5. 7) satisfies (5. 8) and (5. 5) or its equivalent 1 

y0 0 ~ ((x, x~ x ~ 
0 x ~ = d yo 3 ((x, x~ = vo 3 (X), 

hence it is the form of the required unique solution. Q. 1~. D. 

The results of the theorems and corollary in this section can be collected 

in the single 

T h e o r e m  5.4.  I f  the conditions of section 3 are satisfied, then there exists, a 

number b > o for each x o of any allowable coordinate domain such that the differ- 

ential system 

a) 3 ( x ;  ];; z ) = 3 ( x ;  n(x ,  r ,  z))  

b) 3 ( X ;  (o, y0))= y 0 3 ( X )  ' 

(5.9)  c) 3 (Xo) = 3o, 

d) 3(Xo; V ) =  Po(V), a linear solvable function of V, 

e) Po((O, I ) ) = S 0  

has a unique solution 3 (X) for X in (Xo)~. This solutio,, has the jbrm e'*~176 U (x), 

and its differential ~ ( X ;  Y) is a solvable linear function of Y. 

All that  now remains to show that  the system (5.9) affords a differential 

characterization of the geometry of section I, is to verify that  its solution 

establishes p. c. s. which satisfy the five postulates. We therefore consider these 

postulates one by one in connection with (5. 7). 

P I. a) If  x is in some allowable coordinate domain of B, then it is the 

unique correspondent of some geometric point p of H. But by the form of 

~ ( X )  there is at least one value ~ of B1 for this x, and hence for the point p. 

b) There exists a bl, o < bl --< b, such that  ~ ( X )  does not take on the value 

(o, o) for X in (X0)b ,. For, since 30 # o, if we had 3~ = 3 ( X ~ ) =  o for X~ in 

(X0)b, we can always find a neighborhood (X0)b , not containing ~i. 

c) There exist numbers b'a and b~ r o, o < b'~ --< b~ --< b, such that  ~ ( X )  for 

X in (X0)b, , has a unique solution X = X(3)  for 3 in (~o)b,- Tiffs local solv- 

ability follows from the general implicit function theorem *, since the differential 

~ ( X ;  Y) is solvable linear for X in (X0)b. 

i p .  74,  Miehal and Eleonin (IX). 
Theorem 4, P. 15o, Hildebrandt and Graves (VI). 
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d) Since by definit ion the  allowable coordinate  system x(q) is a homeo- 

morphism,  and by b) above ~ (X) ~ o for  X in (Xo)b,,, the  correspondence  q ~ 3 

is biunique in the specified neighborhoods.  

No te  tha t  these ne ighborhoods  (X0)b, ~ and (~0)b~ remain  the  same for  the  

verification of the remain ing  postulates.  

P 2. I f  a point  q in H corresponds to two elements  

3, = e ~-~~ U(x(q)) and 3~ -~e~~176 

of (3o)b2, then  31 : e , ~ ~ 1 7 6  

P 3. I f  Po(V) and Po(V) are two choices (distinct or not) of the a rb i t ra ry  

func t ion  in d) of (5.9) giving rise to two solutions 3 (X) and ~ (X) (correspond- 

ingly dis t inct  or not), then  there  exists a solvable l inear  func t ion  

L (X) = P0 ( P o  1 (X)) wi th  inverse 

Po(P:o l<X))such that 

Po (V) = L < <1). 

P 4. Conversely, any solvable l inear  t r ans format ion  of ~ Po(V) yields a 

Po(V) which is solvable l inear and hence gives rise to a ~ ( X )  having  the same 

proper t ies  as ~ (X), i .e .  a p. c. s. 

P 5. This postulate  is evident ly satisfied. 
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