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Introduction

Let the equations
x=f(@), y=g() (0<t<l),

define a continuous arc in the plane Z, and let us assume that the derivative of
g (t) with respect to f(¢) vanishes everywhere. According to Lebesgue ([4], p. 296)
this means that

lim LM =9 ® _

S reem—r 0 OSIsD

where we ignore as A—0 those values of A which produce simultaneously vanishing
increments Af and Ag and where the above limit relation is assumed to hold, by
definition, in the interior of any common interval of constancy for f and g. Lebesgue
showed that g (f) is necessarily constant provided that we assume f (f) to be of bounded
variation. R. Caccioppoli [2] and J. Petrovski [6] showed that g ({) is constant even
without the last additional assumption concerning f (2).

H. Whitney [8] showed that the situation is different for skew arcs: Whitney

constructs in the complex a-plane a Jordan arc

Jiw=f@) (0<t<l), )

(1) The main results of the present paper were announced in the note: Sur les arcs ascendants
a pente partout nulle et des problémes qui s’y rattachent, C. R. Acad. Paris, 249 (1959), 1079-1080.
Subsequently M. G. Glaeser kindly brought to our attention the references [3] and [8] which helped
us to shorten and improve our paper.
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and also a real-valued, non-decreasing, non-constant continuous function g (¢) in [0, 1]
such that

glie+h)—g(®

}Lif(l)lf(wrh)—f(t)l:o for all ¢ in [0, 1]. (2)

It is clear that the point (f (¢), g (t)) describes a Jordan are, in the 3-dimensional space,
which is rising while having, in view of (2), everywhere vanishing slopes with respect
to the complex z-plane which is thought of as horizontal. For a particularly simple
example of such a skew arc (whose projection J is the arc of H. von Koch) see G.
Glaeser ([3], 57-58).

Our first result is

TEEOREM 1. There exists in the complex xz-plane a Jordan arc J, having the fol-
lowing properties: Let v and v’ be distinct points of J and let J (v, V') be the subarc
of J having v, v' as end points while my J (v, v') denoles its 2-dimensional Lebesgue measure.

To every positive ¢ there corresponds a constant C. such that for all subarcs
0<myd (v, v')<C|v—v [F° (3)

An arc enjoying these properties will be constructed in § 1 below. Before we
discuss the significance of Theorem 1 let us first show how it furnishes one more example
of an arc of the kind first constructed by Whitney. To obtain it we erect at each
point », of J, an ordinate y =G (v)=m,J (0, »). This is a continuous point-function
on J which increases strictly in view of the first inequality (3): If J (0, v) is a proper
subarc of J(0,9") then G (v')—G(v)=m,J (v, v')>0. By (3)

GW)—G®) myd (v, ?)

[ —v] o=+

<0 |v—v .

If we select e<1 and let v'—v we see that the skew arc described by (v, G (v)), v€J,
has everywhere a vanishing slope. ‘
Observe that the & appearing in Theorem 1 is required to be positive. This is

not an accident because of
TaroREM 2. Let J be a plane Jordan arc such that myJ >0. Then

Hsz(v,v)

= 4
vy |U—U,l2 + oo ( )

holds at almost all points v, of J, in the sense of the my-measure.
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This result allows an application to the notion of lower quadratic length of ares.

We use the following

DrriNiTioN 1. Let the complex-valued function z=f(t), (0<t<1), describe a
continuous arc B in the plane. If t,=0<t, <t,<---<t,=1, we define the lower qua-
dratic length of B by

L®B=lim 3 |f()~f @’ ©)

where the limes inferior is taken as max |t;—t;_1|—0.
It was shown by A. Ville [7] that L® B=0 provided that m, B~=0. It now turns

out that the additional condition may be ignored since we have the following

TrHEOREM 3. The lower quadratic length of any plane continuous arc vanishes.

Using Theorem 2 we first prove Theorem 3 for the case of a Jordan arc (Sec-
tion 2.2). A lemma to the effect that any continuous arc may be reduced to a Jordan
arc by removing appropriate loops easily allows to complete a general proof of Theo-
rem 3 (Section 2.3).

In contrast to Theorem 2 we have a different situation for Jordan arcs of finite

a-dimensional Hausdorff measure; we state this as

THEOREM 4. Let 1<a<2. There are plane Jordan arcs of finite and positive
A*measure such that
A“J(U,, v’)<K ()
lo—2"|*
for all subarcs J (v, v').
However, a weaker analogue of Theorem 2 still holds which shows that the ex-

ponent o« of |v—v’ |* in (6) can not be increased. Indeed, we have

TreEOREM 5. If J is a plane Jordan arc such that 0 <A*J < oo, 1<a<2 then

EA J (v, v')

V' |U ~9

=1 (7
at almost all points v in the sense of the A*measure.
We turn now to a discussion of Lipschitz classes of point-functions G' (v) defined

on an arc J. We shall use the following

DEerinNiTION 2. Let ¢ (2) be defined for x>0 and be positive, continuous, non-
decreasing and such that ¢ (+0)=0. Let J be a Jordan arc and G (v) be defined on J.
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We write G (v)€Lip; ¢ (x) provided that there is a finite-valued positive function A (v)
such that

|G@)—G )| <A@ (|lv—r]), @ v€EJ, v+v), (8)
and we say that G (v) is of Lipschitz class ¢ (x) along J. If A (v) is bounded we write
@ (v) €U Lip, ¢ ()

and say that G (v) is uniformly of Lipschitz class ¢ (z) along J.

It is well known that if J is the segment [0, 1] and ¢ (z)=o0(z), as x—0, then
constants are the only elements of the class Lip; ¢ (z). The situation is different for
plane arcs J: For the arc J of Theorem 1 and the function G (v)=m,J (0, v) we see
from (3) that

G (v) €U Lip; 2*°° (> 0),

while G (v) is certainly not constant.

What about the class U Lip; #* obtained by letting here & become zero? The
answer becomes obvious if we apply our Theorem 3. Indeed, let G (v) satisfy the
inequality

|G@)—G@)|<A]v—2']* (v,v' €J; A const.).

If J is traced out by x=f(#), 0<t<1, and if « and § are the endpoints of J then

lG(ﬂ)_G((x)I<ZlG(f(ti))_G(f(ti~1))‘<A%‘f(ti)_f(ti—lﬂz'

However, we know that the last-written sum will converge to zero for an appro-
priate sequence of divisions by virtue of Theorem 3. Thus G (&)=G (8). Since this

argument may be applied to any subarc we have established

THEOREM 6. If J is a plane Jordan arc and the function G (v) is uniformly of
the Lipschitz class «® along J, then G (v) is necessarily a constant.

Let now J be a Jordan arc in the plane such that
Ay J< oo (T<a<?2).

By Theorem 4 we see that Theorem 6 does not generalize to such ares, for if J is an arc
as described by Theorem 4 and G (v)=A*J (0, v) then (6) implies that ¢ (v) €U Lip,2*
while & (v) is not constant. However, a slightly weaker analogue of Theorem 6 holds

which we state as
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TureoREM 7. If J is a plane Jordan arc of finite A*-measure, 1 <a<2, and
G (v) is of Lipschitz class ¢ (x) along J, then

¢ (x)=o0(2*) as x>0, (9)

implies that G (v) is a constant.
We conclude our Introduction with a few results when the Jordan arc J is in

a space of dimension higher than two. There is a natural generalization of Theorem 7:

If J<E, A*J<co, l<a<n and G (v)€ELip,; ¢ (x), then

¢ () =0 (2% (10)

tmplies that G (v) in a constant.

Theorem 7 and its generalization just stated suggest that if J is an arc of the
real Hilbert space H, again the class Lip; ¢ (z) will contain only constants provided
that the scale-function ¢ (x) tends to zero sufficiently fast as x— +0. However, it

is a curious fact that such is not the case and we state this as our last

THEOREM 8. Let ¢ (x) be a given scale-function subject to the conditions of De-
finition 2. There are in the Hilbert space H Jordan arcs J such that the class U Lip; ¢ (x)
contains functions which are not constants.

Observe that the scale-function ¢ (x) may tend to zero as fast as we wish.

§ 1. Proof of Theorem 1

1.1. THE CONSTRUCTION OF THE ARC J. Let §, be the unit-square, one side of
which connects #=0 to x=1. This and all following squares will be assumed to be

closed. We shall now construct a continuum J, as follows: Let

0n=%—-1%2 m=1,2, ..). (1.1)
In 8, we construct four corner squares s, si, si, s of sides =6,. We now connect these
squares by three segments (or links) as shown in fig. 1, obserwing that two of these
links lie along the two vertical sides of 8, while the third link ab lies on the line
which carries the two lower sides of s and s2.

On the link ab we consider its Cantor middle-third set » and in particular its
complementary set of intervals. On each of these intervals as side we construct a
square, lying above ab, and denote by ¢ the set of squares so obtained. We now

form the union [a, b] U ¢ which is evidently a continuum joining a to b. We repeat
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Sy S

Fig. 1.

the same construction on each of the remaining two links placing the sets of squares
as indicated in fig. 1. This completes the construction of the continuum J,. Observe
that J, is composed of four corner squares, enumerably many intermediate squares and
finally three Cantor sets. Leaving out the Cantor sets we have a collection of squares
si which we denote by §;. We establish an order relation among the elements of
8;={si} obtained by traversing J, from x=0 to x=1. Each square s; has an entry
point and an exit point defined in an obvious way.

The second step of our construction is as follows: In each square s; (s, €S;) we
join its entry point to its exit point by a continuum similar in structure to J,
the only difference being that the sides of its four corner squares are now =6, -side s,.
Replacing in J; each square s; by its sub-continuum so constructed we obtain our
second continuum J, It is composed of a set S, of squares s,=s; and enumer-
ably many Cantor sets.

This construction is now repeated indefinitely by obtaining J,, from J,_; by
replacing each s, ;(€8,_1) by a continuum similar in structure to J,, having 4 corner

squares of sides =0, - side s, 1. S,={s,} will denote the set of squares of J,.

Evidently JioJ,o ...
and J=NJ, (1.2)
p=1

is easily shown to be a Jordan arc joining the point =0 to z=1.
Let us show that
myJ > 0. (1.3)
To see this let >, (=1, 2, ...) denote the set of those 4" elements of S, which are

obtained by constructing, starting from 8,, only corner squares while omitting the
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intermediate squares altogether. These 4" elements of >, are squares of sides =6, 6, ... 0,
and J,>>,. By (L.1) and (1.2) we therefore find
0 1 2
myJ = lim m,J, > lim m, >, = lim 4" (6, 0, ... 6,)* = [] (1 —§—2) >0
v

n—>00 y=1

and (1.3) is established.
A similar discussion shows easily that every subarc J (v, v') of J has positive
my-measure and this already establishes the first inequality (8). We now turn to a

proof of the second inequality (3).

1.2. Proor orF TEHEOREM 1. A proof of the second inequality (3) will require
a closer discussion of the relation between a subarc J (v, v) and the squares s, of
the continuum J,. The inclusion relation J (v, »’)<s, requires no explanation; if
s, NJ<J (v, v') then we shall say that J (v, v') contains the square s,, or that s, is
contained in J (v, v'). The symbol s, will also be used to denote the area of the
square s,. The square s, contains four corner squares s,.1; the least distance or the

width of the corridor between two of these will be denoted by corr s,, its value being

corr 8, =(1—20,,,) side s, = side s,. (1.4)

8(n+ 1)

Our proof is based on the following preliminary remarks:

1. The distance between two complementary intervals of the Cantor set is at least
equal to the length of the smaller interval. The distance between a complementary inter-
val and an endpoint of the Cantor set is never less than the length of the interval.

2. Given £>0 there is a constant B, such that

STL

— " <B, (1.5)

(corr s,)%7¢

for all n and all squares s,.
Omitting the simple proof of the first remark, we turn to the second. In view

of (1.4) and the evident inequality side s, <27", we obtain

Sn

W <8 (n+ 1)2(2_6) (Side Sn)s < 82 (n+ 1)4 2-en

which is a bounded sequence and (1.5) is established.
Given the arc J (v, v') we define the integer n such that J (v, »") is contained
in a square s, but not in any s,.;. We now distinguish three cases depending on

the relation of J (v, v') to the four corner squares of s,.
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1. J (v, V') contains points of at least two corner squares of s,. From the defini-
tion of corr s, and the inequality (1.5) we obtain that

myJ (v, V') Sy
[v—v"[2° ~(corr s,

<B.. (1.6)

)2—8

2. J (v, V') fully contains a corner square S,.1, of s,, but does not coniain points
of any of the other corner squares of s,. A glance at fig. 1 (where the large square

now represents s,) shows that
a1l 1 . 1 .
lv—v \>§ side sn+1=§6n+1 side >y side s,.

myJ (v, v’)/ Sy

But the <
U n [o—o'[*~° (87 !sides,)

— < 8 (side s,)° < 8% (1.7)
2—&

3. In the remaining cases (see fig. 1) all the squares s,.; containing points of
J (v, v") are based on one and the same straight line. This will imply that the arc

J (v, v") is fairly stretched, in fact we shall prove the following: If

d= diam J (v, v') (1.8)
then |v— ’|>id (1.9)
€ v—o /13 . .

Indeed, let v€s% .4, v'€sL., and to fix the ideas we shall assume that the square
sh .1 does not exceed s).; in size. Let v, be the orthogonal projection of v on to the
common base line of our squares. Let v, be the exit point of s, and v, the entry
point of s} ;.

We distinguish two cases depending on whether |v,—v,| is >d/13 or <d/13.
In the first case when |v,—v,|>d/13 it is evident that also

, 1
lv—v l>i§d (1.10)
1
Let us now assume I”z“”1|<ﬁd-

The opening remark 1 of Section 1.2 implies that side s}.,1<|v,—v,|<d/13 and a

fortiore

1
|v—vol<—1§d, (1.11)

as well as B
2 3
diam J (v, v,) < diam J (v, ;) + diam J (v, v,) <%d+ll/r;d<i§ d.
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We now conclude from (1.8) that
10
diam J (v,, v)> 3 d. (1.12)
Consider now the sequence of corner squares s,,,<s),; which have the common entry

point », (w=1,2, ...; $y,1=s},1) and let p be such that

’ r
¥V ESnip, ¥V §Snipia.

By (L12) diam 5,5 > diam J (v, o) >i—gd
and therefore
. | 10 2
v —w,|> side s >———diam Sy p2>——— 24.
, 2[ o+l 31/5 +» 3V§'13d>13

But then a forftori Iv'~00|>%d.

This and (1.11) imply (1.9) which has now been shown to hold in any case.
Returning to our proof of (3) we observe (1.8) implies that m,J (v, ¥') <d® and

now by (1.9)

myJ (v, ")
Iv _ Ul l2~s

<132d°<13% (1.13)
The estimates (1.6), (1.7) and (1.13) establish (3) and our proof is completed.

§ 2. The lower quadratic length of plane arcs

2.1. ProoF or THEOREM 2. The key to our discussion of quadratic length is
Theorem 2 which we are now going to establish. Let m,J >0. Denote by E the set
of points ¢ of J to which corresponds some o' (==v) such that

mlzv‘]_(:’;, IZ )o 4>, 2.1)

where A is a certain constant. E is open. Let E, be the complement of E on J.
We shall show that, for any 4, m, B, =0.

Suppose that for a certain A4 this is not true, hence m, E,>0, and let an in-
terior point v, of J be a density point of E;. Then to any 5 >0 corresponds an
7> 0 such that

my{c Wy, 1) — B} <n?r® if r<r, (2.2)

9 — 61173055. Acta mathematica. 106. Imprimé le 27 septembre 1961.
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where ¢ (v,, r) denotes the circle having center v, and radius r; this circle and all
circles of the present discussion will be considered to be closed. At this point we

select positive quantities d, %, r subject to the inequalities

a<§, nV324<8, 4Ar<r, 2.3)

and notice that the first two imply 9?3824 <6*<§-2/4 hence
16 A% 2 <é. (2.3")

We shall use the order relation among the points of J using the symbol <, and
shall speak of the first and last point of J in a given closed set, denoting both as
the extreme points of J. Let now o, and v, v;<v,<v, be the extreme points of J
belonging to the circle ¢ (v, ) so that no v<w;, or v>wv, belongs to the circle. Ob-
viously |v,—v,|=|v,—v,|=r, while the arc J (v;, v,) need not belong entirely to the
circle ¢ (vy, 7). In fact the diameter of the arc J (v, v,) may well be large compared

with 2. As v, does not belong to E we have

myd (vy, 1) < A|vy—v, [P =477

myd (Vg v5) < A |vy—v,|P =477,

and therefore mydJ (vy, v5) <2 A7 (2.4)
Writing U=EJ (vy, v,)
we have a fortior: my U<2 4% (2.5)

We denote by d (p; U) the distance from the point p to the set U and by {I, U}
the set of points p of the plane such that d(p, U)<! and not belonging to U. We
shall now study the set

V={6r, U}-c(vy, 4 A7)

in its relation to the arc J. First we add to V such points of U which lie in
¢(vy, 4 A7) to obtain the closure V. Let now v, and v, be the extreme points of J

belonging to V and let us show that
v3<0;, V=< (2.6)

To see this we have to show that »,€V and v,€¥V. Suppose that v,¢ ¥ so that
E,c(vy, 6r)=0. But evidently

my {¢ (vg, 7) +C (v, 87)}> 812,
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while the set of point of ¢ (v, ) which are not in , is of measure <z?#?, which
is <6*+®. A similar argument shows that v, € ¥ and the relations (2.6) are established.
We finally observe that v, and v, can not belong to U=E,J (v, v,) and therefore
v; and v, lie in V. Thus », and v, are also the extreme points of J belonging to

V. Since v, and v, belong to {d7, U}, there are points v;, v of U such that
|oy—vi| <87, |v,—vs| <. 2.7)
By (2.2) and the last condition (2.3)
my {c (v, 4 A7) — B} <5>16 A4*
from which, in view of V<e (v, 447), we conclude that
my (V—V B,) <916 A%, (2.8)

But the part of E, that belongs to V lies on the arc J (v,, v,), and again the points
of B,J (vy, v;)=U do not belong to V. We conclude that

B, Vad (v, v)+J (v, 1) (2.9)
Now V=(V-~E, V)+E,V,

my V=my(V—-VE)+mEV,
and (2.8), (2.9) imply

my V<9216 A% 1 +myJ (v, v;) +myJ (vy, ¥,)
and o fortiori

My J (v, v1) +myd (vg, 0)>my V—1216 A% 92, (2.10)

To estimate m, ¥V from below we shall introduce polar coordinates (o, ) with the

origin at v,, and we write

L= U0 (@, 0), (r,m 0)= U (o, 0).
(=4

n<e<ry
We consider the set of directions
0,[0] U-(1=n)r, r, 6)=0].
Observing that all points of E,c¢(v,, r) lie on the arc J (v, v,), we have
E c(vy, r)y=E,J (vy, v,) ¢ (v, 7)=Uc (v, 1)

and thus c (v, r)—H;=c vy, r)—U.
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By (2.2) my{c (v, 1) — U} <n?r?

from which it follows at once that

m®,<27. (2.11)

Consider now the set
O, [0|m{U-(r, 447, 0)}>4A—1-0)r].
By (2.5) and writing Sy=(r, 4 Ar, 6) we have

247 >m,Uzm,U- U (r, 447, §)

0@,
=ffgdgd0=f d@f gdg>rf dﬁf do>r"(44—-1-08)m0@,.
24 8
Hence m®2<zm<ﬁ (212)

Consider finally the set ©, which is the complement of 0+ @,.
By (2.11) and (2.12) m@,>2x—1. (2.13)

Let CU denote the complement of U. For any 6€0®; the segment ((1—75)r, », 6)
contains points of U while m{(r, 4 Ar, ) U} <(44—1-6)r and therefore

m{(r, 44r, 0)-CU}>5r. (2.14)

Consider now, for a fixed 0 €0,, the intersections of the sets U and CU with the
closed segment ((1—#%)r, 4Ar, §): Its intersection with U is a closed non-void set
while its intersection with CU is an open set, i.e. a collection of non-overlapping open
intervals of total measure >dr by (2.14). If none of these intervals exceeds dr in
length then they belong to {§r, U} by the definition of this set. If one of these
intervals, I say, exceeds Jr in length then obviously the two sub-intervals of length

&7, co-terminal with I, must belong to {67, U}. In any case we have shown that

m{((L—n)r, 4Ar, 0){8r, UH=48r.
Now by (2.13)

mzeeLé (A—=n)r, 4Ar, 0){6r, UY]>(1—n)rdrm@;>5720

and a fortior:, by the definition of V,

my V>51%4.
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By (2.10) and (2.3)

my J (vg, 01) +my J (v3, v,)>4720
and at least one of the terms on the left side, say the first one, satisfies the inequality

mg dJ (vg, 1) >21>4.
Now by (2.7) and (2.3)
myd (vg, v1) 276 2

> =<>A4
R A

which is impossible because v{€E,;. This contradiction establishes Theorem 2.

2.2. ProoF oF THEOREM 3 WHEN B 1s A JORDAN ARC. Let J=J (0, 1) be a

Jordan arc. Given ¢ we are to show that we can inscribe a polygon of vertices

O=uy<u,;<...<uz;=1, (2.15)
such that >lwi—wii[F<e. (2.16)
i=1

Suppose this to be already established; the additional requirement of the theorem,
that (2.16) can be achieved while max [ui—ui-ll is as small as we please, can now
be satisfied in an obvious way. Indeed, we can first subdivide J into a finite se-
quence of arcs of sufficiently small diameters and then apply the result (2.16) to each
of these arcs.

We may ignore the simple case when m,J =0 for two reasons:

(1) It is easily disposed of by the second part of our proof which uses coverings
U of small 2d% (2) It is covered by A. Ville’s theorem of 1936. We may therefore
assume that m,.J >0.

Let £>0 be given. For 6,>0 denote by s, the set of those points v, of J,

to which correspond points v with |v—%'|>¢, and satisfying the condition

myd (v, V') 2myJ

lo—o'F S (2.17)
By Theorem 2 lim my, E5 =m,J.
61—0

We assume §; so chosen that

2
szgl >§m2 J.
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Denote by Ej3, and Es, the disjoint sets of those points of Es to which correspond
points v'>v or v'<v respectively: Es =Es + Es. Let E; be one of the sets on the

1
right hand side whose measure is >§m2 J. Suppose it is Ej.

We can obviously select a sequence of disjoint arcs
! ? ’
J(Uu, V1), J(Ulg, V12)s e s J(vl, no U1, nl),

in natural order along J, where v,;, vy, ..., V1, », are points of Es = E3, and vy, v1s, ..., v1, s,
the corresponding points satisfying (2.17), so that the measure of Ej outside these n,
arcs be as small as we please. These arcs are picked successively along J and their
number 7, is necessarily finite because the m, measure of each arc exceeds 203 m, J/e.
Writing

T, =J @y, v11) +J (v39, v12) + ... + (V1,05 V1, n)5

we may therefore assume that

1
m2F1>§m2J.

Let now 8,>0 and denote by Ej; the set of those v of J—T'; to which corre-
spond points v’ satisfying (2.17), v' belonging to the same arc of J—1', as v, and

such that |v—v'|>d,. As before m, Bs,—~>m, (J —I';) as d,—>0. Assume §, so chosen that

2
szaz>§m2 (J'—F]_)

We now define the set Ej, as Es; was defined before and a set I', of disjoint ares
in J—T',, such that for each arc J (v, v} of I'y (2.17) holds, while

my Iy > % my (J —1Y).
Similarly sets I'y, I'y, ..., I'; are defined successively such that
1 .
m2F1>§m2(J—‘F1—'...—Fi,1) (/L=2, ...,k).

Since the measure of each I'; exceeds a third of the remaining measure, we can reach

a value k such that

mz(J-I‘1—...—I‘k)<~§. (2.18)
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Let J (v, v7), (t=1, ..., N), be all the arcs of I',+...+ T, is ascending order.
By (2.17)

¥ ’ e y s &

?Ivi—vi lz<2m2J gsz(vi, vi)<§. (2.19)
The distance between any pair of ares of J—1I',—... -1, being positive, let it be
greater than 2« (>0). Denote by U=U(a, J—T,—...—T}) a collection of closed

convex sets (e.g. squares with sides parallel to fixed directions), each set of diameter
<a and such that every point of the closure m is an interior point of
at least one of the sets. U may always be assumed to consist of a finite number
of sets. If we denote by d the diameter of the general set of U then, by (2.18), we

can choose U so that

Sdt<i, (2.20)
T 2
We may write
N
J_Fl_ en _Fk=ZOJ (’Ui/, ?)i+1),

where vo=0 and vy.1=1, while the first and the last arc of this sum may not exist.

Any element of U can cover points of one arc only. Thus we can write

U=

IM =

Ui,

where U; consists of those sets of U which cover points of the arc J (vi, vi;1). Clearly,
by (2.20),

N
3 Zd2=%d2<§. (2.21)
i=0 1

Take the general arc J (vi, v:,1) and define on it a finite sequence of points
v;=wi,0, Wiy +ov s Wiipy= V511 (2.22)

in the following way: Let w; o be interior to the set UP. If also v;,q is in U then
p=1 and we are through. If not, let w;, be the last point of the arc J (v, Vi41)
which belongs to UP. Clearly w;, is on the boundary of U{; let w;, be interior to
UP. If also v,y belongs to UP then p,=2 and we stop the process. 1f not, let
w5 be the last point of J (wi,1, vi41) belonging to UP. Continuing in this way, we
obtain the sequence of points (2.22) such that the points w;,; ; and w; ; belong to
the same set U{” (j=1, ..., p;), where the p;, sets U are distinct elements of the
collection U;. We conclude that
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D 2 2
Dlwia—w2<>d
j=1 Us

1 |wi,j—1“wi.i|2<%:d2<§' (2.23)

N

M=

and therefore

i=

=]

7

We have thus obtained the following monotone sequence of points along J:

7
0=wy g W15 ---» Wo,p, =¥y, VI=Wyg Wiy .-, Wi p, =V,

7
Vg =Wy ¢y -.-» WnN,p =1.
N

Denoting them in order by 0=1wu,, %, ..., u,=1, we have

&

N p
LS Y1 15 b IS i S
i=0 j=1 2 2

by (2.19) and (2.23), and the desired inequality (2.16) is established and therefore
also the theorem for the case when B is a Jordan arc.

2.3. A LEMMA ON CONTINUOUS ARCS AND PROOF OF THEOREM 3. Let B
be a non-closed continuous arec in the plane. By omitting from B subarcs with coin-
cident endpoints (loops) we may reduce B to become a Jordan arc J joining the

original endpoints of B. A precise description of this intuitive idea is given by (1)

Lemma 1. Let z=f(t) be an continuous complex-valued function of t€I=[0, 1]
such that f(0)=f(1). We can find wn I a perfect set F such that the image f(F) is a
Jordan arc J, having as endpoints f(0) and f (1), in the sense that the relations

a€F, a'€F, a<a’ fla)=f(a') (2.24)

hold if and only if the open interval (a, a’) is contiguous to F.

Remark 1. The set F is by no means always uniquely defined. An arc B in
the shape of a pretzel, with its ends slightly extended, admits three distinet sets F

obtained by removing from I appropriate single open intervals.

Remark 2. The lemma and its proof require nothing beyond the continuity of
f (). The lemma therefore holds as stated if the values of f (f) are in a Hausdorff space.

(*) Lemma 1 is a special case of the following Arcwise Connectedness Theorem: Ewvery two
points a and b of a locally connected continuwm M can be joined in M by a simple continuous arc.
(See [9], p. 36.) However, a simple proof of Lemma 1 is here included for the reader’s convenience.
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Proof: We call the open interval 8= (¢, ¢') a loopsegment provided that f(f) = f (£').
Let L denote the totality of loopsegments. Since L is evidently compact, there exists
a longest loopsegment which we denote by S;= (¢, #1) and define F, =1 —.S;. Observe
that if S€L, ScF,, then S can not abut on S, since their union would give a longer
loopsegment. Let S, be the longest among the S<F, and consider Fy=1—8,;—8,.
We repeat this operation successively obtaining the loopsegments §,, S,, ... such that
the closed segments S, S,, ... are pairwise disjoint and 7 (8;)>1(8,)> ... . Either the
process terminates when F,=I—8,—...— 8, contains no further loopsegment, or else
it continues indefinitely when evidently [(S,)—0. In either case let Q=>,8; and
consider the perfect set F=1I1—Q.

Let (@, a') satisfy the conditions (2.24). We cannot have [a, ¢']J<F. Indeed,
(@, 'y €L and should have been removed before I(S,) has become <a'—a. Hence
o, a']E€F and therefore (a, a')>8,=(t;, t;) for some ¢ and where we choose for ¢ the
least value which will do. Now we must have (a, a’')=8;=(t, t;) for if (a, a’)+S; then
a' —a>1(8;) and (a, a’) should have been removed before S;. This proves our lemma
except, perhaps, the main point that J is a Jordan arc. To see this, let 7=1 (f) be
a continuous non-decreasing function in the range I, 7(0)=0, v (1)=1 and such that
v (@)=7 () for <t if and only if the interval (t, ¢') is contained in Q=28;. If we
now identify the two endpoints # and #; of 8, for all 4, we obtain a set F; which
by 7=t () is homeomorphic with the range 0<7<1. On the other hand, we have
shown that J=f(F)=F(F,) is a homeomorph of F,. It therefore follows that J is
a homeomorph of the interval 0<7<1 and our lemma is established.

A general proof of Theorem 3 now becomes obvious. Given ¢>0 and applying

Theorem 3 to the Jordan arc J just constructed we can find a division
0=tQ<tP < ... <t™=1

where all 1P €F and such that
2O —fe ) P<e
i-1

and this already establishes the theorem.

§ 3. On plane Jordan arcs of finite and positive A*-measure

3.1. Proor or THEOREM 4. To obtain an arc J having the properties required
by Theorem 4 we repeat with some simplifications the construction of § 1.1: We now

choose 6,=10, independent of n, satisfying the equation
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40°=1 (l<a<2).

Starting as in § 1.1 with the unit square S, let the continuum J; consist of four
corner squares of sides = § and of three rectilinear links (fig. 1). J, is obtained from
J1, by replacing each square s; by a continuum geometrically similar to J, (because
0,=0,=0) which joins its entry point to its exit point and so forth. Now J= nJ,

is our present Jordan arc. If we observe that J is covered by collection >, of 4"

squares having diameters 6" /2, we see that
A*J< (V2r

and we leave it to the reader to show that A*J>0. In terms of the notations of

§ 1 we can say that J consists of the set

2=1m>=N2

n—o0 N n

plus an enumerable set of links whose A*measure is 0. To any arc J (v, v"), which
is not a rectilinear segment, corresponds a value = such that J (v, v') n 2 belongs to

one square of >, but to more than one square of >,.i. From this it follows that
AT (v, v') < " 2%

On the other hand |v—+'| is surely greater than or equal to the width of the cor-

ridors of s,. Since corr s,=0"(1—-20) we obtain
|lo—v'|=6"(1—26).

A*J @, ') ( V2 )“=
—v ~\1—-20) ~%

Hence

which proves Theorem 4.
We might remark that there are plane Jordan arcs J of finite A*-measure,

1 <ax<2, such that

EA J(v,v)_

v o=V [

+ o

at almost all points v in the sense of A*measure, but we do not dwell on giving

an exemple here.

3.2. Proor ofF THEOREM 5. We pick 6>0 and A such that 0<A4 <1 and
denote by E the set of those points v of J, to which correspond v’ satisfying the

inequalities
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A*J (v, v)

lo—o"[*

>4, |v—-o'|<é. (3.1)

The set E is either void or open; in any case its complement E,=J—E is closed.

Let us now show that if

A* B, =0 (3.2)

for every fractional A and every § then our theorem follows. Indeed, let 4,, 0<4,<1,
and 8,(n=1, 2, ...) be such that

lim 4,=1, lim 8,=0,

and let E™, E{® be the corresponding sets defined above. We assume that A*E{” =0
for every n and therefore F= N7 E{” also has the property A*F =0. If v€J —F then

A*J (v, vy)

o A Jori] <o,

for appropriate points v,, and the inequality (7) follows on letting n—>oco.
To establish (3.2) let us assume that A*E, >0 and see that we get a contradiction.
By the definition of A*-measure, for every ¢>0 we can find a closed convex set U

of diameter dU as small as we please, in particular dU <48, and such that
A (B, U)>(1~¢)(dU),

and in particular such that

A* (B, U)> A (AU~ (3.3)

Let v,, v, be the extreme points of J belonging to the closed set B, U. In particular
J (vy, v) D E,U. But then A*J (v,, v,) = A*(E,U) and (3.3) implies

A% T (v, v,)

A0y >4

A*J (v, vy)

and a fortiort
|9, — "

>4, |v,—v,|<dU <.

However, these inequalities imply that v, and v, belong to E while they actually be-

long to E;, by construction. This contradiction establishes the theorem.
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§ 4. On Lipschitz classes of functions defined on Jordan arcs

41. ProoF or¥ THEOREM 7. It follows from the assumptions of Theorem 7,
namely @G (v)€Lip; ¢ () and (9) that to any @>0, however small, corresponds a
function 8 (v) >0 such that

|G ) =G @) |<a|lv=v]" if |v—0'|<d(v).
Let E, be the set of points v of J, for which
|G (v)— G )| <a|v—v'|* i |v—0v|<27"

The set F, is closed and lim E,=J. Take a sequence {&,}, &, > &n11, &,—>0, and such
that 2e,<A*J. Here we assume that A*J >0, the proof for the case when A*J =0
being a simplified version of the present one. For every n we can find a set
P,=P,(E,—E,_1,2™") of convex sets, each of diameter <27 ", and such that every
point of E,—E,_; is an interior point of at least one of the sets. We shall also
assume that

gd“<A“ (B, — En_1)+ &,

where d denotes the diameter of a general set of the collection P,. Every point of
J is an interior point of at least one convex set of the collection 2 P, and by the
Heine-Borel theorem there is a finite subcollection P of 2 P, with the same property.
We obviously have

gd“<A°‘J+Zen<2A“J. 4.1)

Let p®, p®, ..., p*® denote all the convex sets which are elements of P. If

pP€EP,, then let v® be a point of (E,— E,_1) N p®. Writing r®=dp®<27", we con-

struct the circle ¢®=¢ (v®, r®) which clearly contains p®.

Thus JcC=cP P4 . 1P
k .
and by (4.1) S (O <2 A%, (4.2)
i3

By the definition of E, we see that for any v€c® nJ
|G ) — G @) <alv—v®[*<a @r?)
and therefore for any pair ¢, »" of points of ¢ nJ

|G @)—G )| <2a (r®)
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Let vo<v* by any pair of points of J and let v, be an interior point of ¢™.
Denote by v; the last point v>wv, v=<v*, such that v€c™. We have

|G (v) — G (v) | <2 @ (r*)~

Now v, is an interior point of one of the circles of C, say of ¢®, i,=4,, and let v,
be the last point v>wv,, »<v*, such that v€c™. As before

|G (v) — G (v,)| <2 a (r®)*

and so forth. After a finite number of steps, in fact after ' <k steps, we shall reach
the point v*. By (4.2) we find

|G (v) — G (") | <| G (vg) — G(0) |+ |G (1) — Gwy) |+ ... |G (wx) — G (v7)]
<2a (@) + @Y + ..+ () <da A% .

Since @ was arbitrary we conclude that

G (v) — G (v*)=0

I

which was to be proved.

4.2. Proor oF TueoreEm 8. There remains as our last task to furnish a proof
of Theorem 8. Let the positive monotone function ¢ (x) of that theorem be given.
We select a function g (x) which is convexr and continuously differentiable in the range
[0, 1] and such that

O<yp@)<¢Vz) (0O<z<l) yp(0)=0. (4.3)
Let t=Ay (), A=n/yp(1). 4.4)

This is a relation which maps the range 0<z <1 onto 0<¢{<zw. We now invert (4.4)

obtaining the concave increasing function
z=(F () (0<t<zm, F@#)=0). (4.5)
We now consider the function
EO=1—(F @) (0<t<n), (4.6)

which has the following properties: A (0)=1, h(n)=0, k() is convex in [0, n] and
continuously differentiable in (0, 7). Notice in particular that in the range (0, 7),

A (x) <0 and non-decreasing. We now extend the definition of 4 (¢) to the range [ — 7, ]
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so as to be even, and expand it in cosine series
h(t)=2>4, cos vt.
0
Clearly 4,>0. But also all 4,>0. Indeed

EA,=f h (t) cosvtdt=1f (—H () sin vt dt>0.
2 0 Y Jo

the last integral being positive, because —P&’ (¢) is positive and decreasing.

Bochner [1], 76-77.)
We may therefore write the expression (4.7) as
h(t)=2Y2a2 cos vt, (a,>0),
0
and in particular, for ¢=0
1=>2dl.
0
Now (4.6) gives

=] o0 t
Fr(t)=32a%(1— cos vt)=> 4 a2 sin® %
1 1

@7

(Compare

(4.8)

This expansion implies that F(¢) is a screw function in Hilbert space which corre-

sponds to a closed screw line of that space. We refer to von Neumann and Schoen-

berg [56] for further information on this subject; we, however, need none whatever,

because what we need is perfectly elementary and explained in a few words: We mean

that there is in the Hilbert space H a closed curve
C:x=f(t), (0<t<2m; f(t) of period 2x),
such that for all real t and ¢
Fe-t)=Ife) -1l
This curve is immediately constructed, for (4.8) gives
F2(t—t)=> 4a? sin® —é— v (-1

0
=3 {(a, cos vt—a, cos vt')*+ (a, sin vt —a, sin vt')}.
y=1

(4.9)

(4.10)

(4.11)
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In the space H of real sequences {x,}?° with > 2% < oo and the usual norm || z||= (3 =)}
we indeed see by (4.11) that the closed curve O traced out by

f()={a, cost, a,sint, a, cos 2t, @, sin 24, ...} (0<E<2m)

enjoys the property (4.10).
Along the Jordan arc

INa=f@) (O<i<m), (4.12)

we now define the function g () =t. (4.13)

For any two values ¢, t' such that 0<i<t'<mx

g¢)—g @ £ —t

eV -fO) ¢ F ¢ —1)

t'—t

and by (4.3) this is <—tt
y (43) 1)

=4,

the last equality relation holding because the relation (4.5) is the inverse of (4.4).
We have therefore shown that

g g <4$(lf¢)-f@Ol) (O<t<t'<a).
Returning to our old notation v=f(t), G (v)=g (), this is precisely the relation
|G @) =G )| <A (v —v])

which was to be established and which shows that G (v)€U Lip; ¢ (x). Since
G (v)=g({t)=* ist not a constant our Theorem 8 is thereby established.
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