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1. Introduction

In two papers fundamental to the theory of measure, Halmos and von Neumann [3]
and Maharam [4] have characterized the measure algebras associated with totally finite
measure spaces by showing that each such algebra is isomorphic to the measure algebra
of some canonical measure space. In this note, we shall show that the measurable
sets of a given measure space are constructed of certain null subsets of that space
in essentially the same manner as the measurable sets of the standard measure space,
to which the given one is isomorphic, are constructed of points. The technique used
depends on a theorem concerning the relation between the lattices of measurable func-
tions modulo null functions defined on isomorphic measure spaces. We conclude the
discussion with some applications to problems that arise in connection with the study
of a theorem of Saks and Sierpinski [5] on the approximation of real functions by

measurable functions.

2. Preliminary considerations
Let (X, 8, x) be a measure space, and let N be the class of all measurable sets

of measure zero. If E and F are-elements of §, and if A denotes the operation of
symmetric difference, we write E~F if and only if EAF belongs to N. The relation
~ thus defined on 8 is an equivalence relation. The quotient space 8/N to which ~
gives rise, is denoted by S(u). If E is an element of §, we denote by [E] the equi-
valence class determined by E. The binary operations +, -, are (well) defined on
S(#) by means of the equations

(1) The author would like to express his thanks to Professor Casper Goffman with whom he
has had many stimulating discussions on the topics discussed herein. The author is also indebted to
the Purdue Research Foundation and to the National Science Foundation (G-18920) from which he
received support while portions of this article were being written.
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a+b=[EAF], a-b=[EnF)

where E is an element of @ and F is an element of b; it is easily verified that
{S(u); +, +} is a Boolean ring. We write a<b if and only if ab=a. It is clear
that < is a partial ordering and that {S(u); <} is a o-complete lattice. Moreover,
if (E,]=a,, n=1,2, ..., then

n\{l Ay = { L’1 En] and nAl An = [nr_]l En]y

where V and A denote least upper bound and greatest lower bound. The difference
of two elements of S(u) is defined by

a—b=a+ab.
If [E]=a and [F]=0, then
a—b=[E—F]

thus, a<b if and only if E~F is an element of N. A measure, also denoted by u,
is (well) defined on S(u) as follows: if [E]=a, then

The pair (S(u), u) is called the measure ring associated with (X, 8, u).
The measure rings (S(u), u) and (T(»), ) associated with (X, §, u) and (Y, T, »)
are isomorphic if there exists a one to one mapping 0 of S(u) onto T(») such that

(@avb)0=ab Vil (a—b)0=ab—0b0 and »(ad)=pu(a),

whenever @ and b are elements of S(u). Equivalently, (S(u), ) and (T(»), ») are
isomorphic if there is a measure preserving ring isomorphism between {S(u); +, *} and
{T(»); +, -}. We remark that the conditions imposed on 6 also imply that

(*7 an)0= {; an.o-
n=1 n=1

An element a of S(u) is called an atom if u{a)>0 and if the conditions b<a,
b+a imply that 5=0. A measure ring containing no atoms is termed nonatomie.

A family F of measurable sets is dense in 8 if to each measurable set £ and
positive number ¢ there corresponds an element F of F for which u(EAF)<e. The
smallest cardinal number corresponding to a dense subset of 8 is called the character
of the measure space. If its character is 8, then (X, 8, x) is called separable. The
character of (S(u), ) is defined analogously. If every principal ideal of a measure
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ring has the same character as the measure ring, then the measure ring and the
measure space are homogeneous.

If f and g are extended-real-valued measurable (8) functions that assume different
values only on a set of measure zero, then we write f~g. The relation ~ is an
equivalence relation on the set of all measurable functions. We denote by [f] the
equivalence class determined by the measurable function f and by § the collection of
all such equivalence classes. If f and g are measurable functions and if f(zx)<g(x)
a.e., then we write [f]<[g]. The relation < is well defined, and {§; <} is a o-
complete lattice.

The following fundamental theorems occupy a central position in the rest of the
discussion. Let (I, L, m) denote the ordinary Lebesgue measure space associated with
I=[0, 1]. '

THEOREM 1. (Halmos and von Neumann). If (X, 8, u) i3 totally finite, nonatomic
and separable and if u(X)=1, then (S(u), u) ts isomorphic to (L(m), m).

If y is an ordinal number, we denote by (I, L?, m”) the Cartesian product
Ko<y (I, L, m),, where each (I, L, m), is a copy of (I, L, m).

TeEOREM 2. (Maharam) If (X, 8, u) s totally finite, nonatomic and homogeneous
and if w(X)=1, then (S(u), ) s isomorphic to (L?(m?), m*), where vy is the least ordinal
corresponding to the character of (X, 8, u).

TeEOREM 3. (Maharam) If (X, S, u) is totally finite, then there exists an a most
denumerable family of homogeneous measure spaces (X,, 8., u,) such that:

(i) Xu||Xm if nEm,

(i) Ui X.=X,

(iii) {UP-1B,:E,€8,}=S, and

(iv) wE)=27_1u(ENX,), for all E in 8.

3. The main theorems

In [6] Segal has established a theorem connecting measure spaces with the algebras
of bounded measurable functions defined on those spaces. We give now another theo-
rem of this type, which, together with the isomorphism theorems of the last section,
gives some ingight into the point set structure of a wide class of measure spaces.

TEEOREM 4. Let (X, 8, u) and (Y, T, ») be isomorphic totally finite measure spaces.
To each isomorphic mapping 0 of S(u) onto T(v) there corresponds an isomorphism ¢
between S and T satisfying the following condition:
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(*) if f is measurable (8), if f, is any element of [f]p and if B is any Borel subset
of the two-point compactification of the real line, then [f~*(B)}0=[fs"(B)].

The author is indebted to the referee for the elegant demonstration of this theo-
rem that is given below. The argument is based on two lemmas, the second of which

is known from one proof of the Radon-Nikodym theorem.

LeMma 5. Let (X, 8, u) be a measure space with 8 a o-algebra, and let f and g
be extended-real-valued measurable (S) functions. Then

[1<lg] if and only if [f'[— o0, @)]=[g [~ oo, )],
for every extended real number a.

Proof. The necessity of the condition is trivial.
Suppose that {z:f(x)>g(x)} were a set of positive measure. There would then

exist a rational number » for which

{z:f(x)=r}n{x:g(x)<r}

would be a set of positive measure. But, in this ease, g~![ — oo, r) — f}[ — oo, r) would
not be a null set, whence the inequality [f'[— oo, r)]>[g [ — oo, 7)] could not ob-
tain. The sufficiency of the condition is thus established.

COROLLARY 6. Subject to the general hypotheses of Lemma 5,

[f1=[g) if and only if [f'[— oo, @)]=[g7'[— o, )],
for every extended real mumber «.

LemMma 7. Let (X, 8, u) be a measure space with 8 a o-algebra, and let o—>e, be
a mapping of R, the set of all extended real numbers, into S(u). In order that there
should exist an extended-real-valued measurable (8) function f such that

ex=[f [~ o, a)l,
for all o in R, it is both necessary and sufficient that the following conditions be satisfied:
(i) ¢f a<p, then e, <eg
(ii) if sup, an=a, then V,ex, =¢€y
(i) e_ =0.
In the affirmative case, [f] is uniquely determined.

Proof. The necessity of these conditions is obvious, since if f is such a func-

tion, then
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(1) =, )cf [~ oo, f), if a<f;
(2) Unf [~ oo, an) =f[— oo, a), if sup, @, =a; and
B) f—oo, a)=9, if a=—oo;
from which immediately follow (i), (ii), (iii).
Now suppose that (i), (i), (iii) are satisfied. For each rational number r let Fr

be an element of ¢, and let
E,= UFn

r<ax

for each « in R. Certainly the E, are measurable sets satisfying the conditions:
(1) E,cEp if a<§B,
2) U.E, =E, if sup, a,=a,
B) E_=9;

moreover, [Ed=[UE]=VIE]= Ve =e¢.

r<a
Thus, if = is an arbitrary element of X, then
{a:z€ B} =(flz), + ],
where f(z) is a uniquely determined extended real number. The function f thus spe-
cified has the property that
fd{ - oo,!a) =E,,
for every « in R. The uniqueness of [f] follows at once from Corollary 6.

We now proceed to the proof of Theorem 4. Let f be an extended-real-valued

measurable (8} function. For each extended real number «, let
e¢=[]‘-1[— oo, “)]’ es=e¢0-

According to Lemma 7, the elements e, possess properties (i), (ii), (iii). Since § is an
isomorphism, these conditions are also satisfied by the elements e§ of T(»v). Hence,

again by Lemma 7, there exists a unique element [f,] of J such that

e§=[f5"[— o, @)],
for each a in R.
We shall show that the mapping ¢ of § into J defined by the equation

e =T1fo]

is the sought for isomorphism.
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Suppose that [f] and [g] are two elements of § such that

[fle=[g] =/l

Following the notation introduced above, we write, for each «,

ea=[f_1[_ 2, “)]: dz=[g—l[—— o, a)]’
eg=e,0, df=d,0.

According to the definition of [f,], the following equalities hold for all « in R:
€0 =€ =[fo'[— oo, a)] =d§ =d,0.

Since § is one to one, we must have e, =d,, for all « in E. Hence, by Corollary 6,
[f1=I[g], and it follows that ¢ is one to one.
Now let f, be an arbitrary function defined on ¥ and measurable (T). For each
« in R, let
=o' [— o0, @}], ex=eZ07L,
In exactly the same manner as before, Lemma 7 implies the existence of a function
f, defined on X and measurable (§), such that

ea=[f_1[_ oo, a)],
for all & in R. Since it is clear that [flg =I[f,] and since [f,] was arbitrarily chosen

from J, it follows that ¢ is onto.

Hence, to prove that ¢ is an isomorphism, it will suffice to show that ¢ and

@~ are order preserving, i.e.

[(1=[g] if and only if [flp=>[glp.

Let f, be an element of [flp, and let g, be an element of [g]p. By virtue of Lemma 5
and the fact that § is an isomorphism, the following assertions are mutually equivalent:

1<lgh
[f = o0, @)]=[g7[— o0, @)], for all real «;
ol — oo, @)]1=[gs'[— o0, @)], for all real «;
Ve <Ilglp-
Finally, we note that the method of construction ensures that ¢ has the prop-
erty (*), at least for intervals of the form [— o, ). Since it is clear that the class

of all Borel subsets of R for which (*) subsists is a o-algebra, the theorem is proved.

The following converse of this theorem is also true.
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TrEOREM 8. Let (X, S, u) and (Y, T, ») be totally finite measure spaces, and let
0 be a one to one mapping of S(u) onto T(v) such that v(af) =pu(a), for all a in S(u).
In order that 0 be an isomorphism, it is sufficient that there should exist an isomorphism,
@ of § onto T satisfying the following condition:

(*) if | is measuradle (8), if f, is an element of [flg and if B is any Borel subset of
R, then [f"1(B)16=[fo"(B)].

Proof. Observe first that if E is an element of § and if g is an element of
[Xe] @, then

lg77{0, 131 =[xz {0, 1}16 =[X10 =[Y];

thus, g~ X5, where [Eg]=[g " {1}]=[xz"{1}]0 =[E16.
Suppose that @ and b are elements of S(u) satisfying a<b. Let 4, B be ele-
ments of @, b, and let 4, B, be elements of af, bf. It is clear that [X,]<[X5] and,

since @ is a lattice isomorphism, that

[Xa]=[Xal¢ <[Xs]@ =[%5,])-

By Lemma 5, wehave [X2][ — 0, 1)] > [X35![ -- =, 1)]; hence, [22![1, + o011 <[¥5}[1, + ]I,
since the latter elements are the complements in T(») of the former. Therefore, sum-

marizing the above remarks,
af =[A4g]=[22; [1, + ]1<[X5 [L, + oo]] =[B,] =b6.

Using the fact that ¢! is also a lattice isomorphism, we can show, by an entirely
parallel argument, that a6 <bf only if a<b.

Since a proof of the equivalence of a <b and af <bf is sufficient, in this case,
to show that 6 is an isomorphism, the proof is complete.

By application of Theorem 4 and the fundamental results of Halmos, von Neu-
mann and Maharam, we are now able to obtain some interesting theorems on the
structure of the measurable sets of a totally finite measure space. We first consider

the separable case.

THEOREM 9. Let (X, 8, u) be a totally finite, nonatomic and separable measure
space with w(X)=1, let I=[0, 1] and let (I, L, m) be the Lebesgue measure space. There
ezists a family {X,:r€I} of measurable subsets of X for which the following conditions
are satisfied:
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(i) w(X,)=0, for all r in I,

(i) X,||X,, if r=+s,

(ili) 2o each element E of S there corresponds an E, in L such that E~ U{X,:r €E,},

and pu(E)=m(E,).

Proof. By virtue of the theorem of Halmos and von Neumann, there exists an
isomorphic mapping 6 of S(u) onto L(m). Thus, by Theorem 4, there exists an iso-
morphism ¢ between § and L satisfying the condition [f~(B)]0=Ifs'(B)], whenever
{ is measurable (S), f, is an element of [f]g and B is a Borel subset of B. Let i,
be the identity function on I, and let ¢ be a function, real valued and measurable (8),

for which [{]¢ =[¢]). For each » in I, define
X, =i ({1’})

We see at once that X,”X,, whenever r=+g, and, since

wX,) =pui" ({r})) =m(is* ({r})) =m({r}),

the first condition is also satisfied. Now consider an arbitrary element E of 8. If E,
is a Borel set belonging to [E}0, then

[UA{X,:r€E}10=[i"" (E,)]10 =[ig ' (Eo)] = [Eo] =[E]6,
whence E~U{X,.:r€E,}.

Since [E,]=[E£]0, it is immediate from the definition of isomorphism that u(E) =m(E,);
hence, the proof is complete.

We may assume that U {X,:r€l}=2X, for if need be we could adjoin the ex-
ceptional null set to one of the sets X, without affecting any of the conclusions
of the theorem. Hence, the following proposition is an immediate consequence of

Theorem 9.

CoroLLARY 10. Let (X, S, u) be a totally finite, nonatomic and separable measure
space with w(X)=1, let I=[0, 1] and let (I, L, m) be the Lebesgue measure space. There
exists a measure preserving transformation T of (X, 8, u) into (I, L, m) such that T (L)
s equivalent to 8.

Thus, (I, L, m) is, in a sense, minimal for the class of normalized, totally finite,
nonatomic and separable measure spaces.

In nonseparable spaces the situation is only slightly more complicated. By virtue

of Theorem 3, we need to consider only the homogeneous case.
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LemMa 11. Let (X, 8, u) be a totally finite measure space, and let R be a subset
of 8. If E belongs to S and if to each positive ¢ there corresponds an R in R satis-
fying u(E A R)<e, then E ts equivalent to an element of the o-ring generated by R.

Proof. Let 6>0 be specified. Choose R, in R so that y(EAR,)<d-27", let
8, =Uk1 R, for n=1,2, ..., and let S=U»-1 S.. Then

WE—8)=lim w(E - 8,)=0,

and since uSn—E)< > u(By—E)<éd, n=1,2, ...,
k=1
we have u(S8— E)=lim u(S,— E)<4.

Proceeding in this manner, it is possible to choose, for each natural number », a set

T, belonging to R, and satisfying the conditions

WE~T)=0, wT,—E)<nt.

Let U,=Nk-1 Ty for n=1,2, ..., and let U=N71 U,

Then, WE-U,)< > uwE—-T,) =0,
k=1

whence WE—-U)=lim u(E-U,)=0.

On the other hand,
wU,—B)y<u(T,—E)<n!, n=1,2, ...,

whence wU—E)y=lim w(U,— E)=0.

Thus, u(E AU)=0, where U is an element of Ry, and the lemma is proved.

TuarorEM 12. Let (X, 8, u) be a totally finite, nonatomic and homogeneous measure
space, with w(X)=1. There exist an ordinal number y and a family {X..:a€[1, y), r €I}
of measurable subsets of X such that the following conditions are satisfied:

(i) w(Xer)=0, for all a<y and for all r in I,

(i) Xar|| Xas, of s, for all @<y,

(ili) the o-ring generated by the class {U {X.r:7€E,} :a<y, B €L} is equivalent
to 8, in the sense that every element of 8 differs from ome of these sets by a
set of measure zero, and conversely,

(iv) w(U {X.r:r€Ey, Ej€L}) =m(E,), for all a<y.
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Proof. By Maharam’s theorem there exists an isomorphic mapping 6 of S(x) onto
L?(m*) ,where 7y is the least ordinal corresponding to the character of (X, 8, u). For
each <y, let

Li={Ex X I,: E€L}

a<y
a+f

and let N; denote the family of null sets in Ls. It is clear that (Lg/N, m”) is iso-
morphic to (Lg/N, m”) and that the latter is isomorphic to (L(m), m). Thus, if

S;={E:E€S, [E)0€L;/N},

then 8 is a o-subalgebra of 8, and (Sg(u) u) is isomorphic to (L(m), m). Hence, by
Theorem 9, there exists a family {Xg, :7 €I} of measurable subsets of X, such that:
(i) u(Xp)=0, for all r in I,
(i) Xpr|| Xps, if rs,
(iii) to each E in 8; there corresponds an E, in L such that
E~U{Xs :r€E,}, and u(E)=m(E,).

Let E be the class of all finite intersections of elements of Upg<, Ls, and let R
be the class of all finite disjoint unions of sets belonging to E. We note that R is
an algebra of sets and that the o-algebra generated by R is L”.

Consider an arbitrary element E of S. Let E, be a member of [E]6, and let
¢ be a specified positive number. By a well-known approximation theorem [2; 56],
there exists a set (fj in R such that m?(E, A Gy)<e. Suppose that

m ny

0= A o

where F; belongs to L,gﬂ. Then, there exist in § sets Fy satisfying [F},]0 = [Fy] and
Fyo=U{Xp,,:r€Ly, Ly€L},

for j=1,2, ..., m; k=1, 2, ..., n;. Certainly

m ny

G=U N Fy

=1 k=1

is an element of [G,]67%; hence,
"WE A Q)y=m¥ (By A Gy)<e.

By virtue of the lemma, the proof is complete.
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Since we may assume without loss of generality that U {Xs,:r€I} =X, for each
f <y, the preceding theorem also can be couched in the language of measurable trans-
formations.

CoroLLARY 13. Let (X, 8, u) be a totally finite, nonatomic and homogeneous
measure space, with w(X)=1, and let y be the least ordinal corresponding to the character
of this measure space. There exists a measure preserving transformation T of (X, S, u)
tnto (I', L7, m?) such that T~ (I?) is equivalent to S.

Proof. We recall that the points of I” are precisely the functions defined on
(1, y) and taking values in I. For each such point 7, define

Y1 = n {Xa:. T P A< 7}

(where X,, has the same meaning as above). It is clear from the foregoing remarks
that each Y, is a null subset of X and that {¥,:7 € I"} is a partition of X. The trans-
formation 7 is defined on X in a natural way as follows:

Te=1 if z€Y,
It is not difficult to show that
X =T {z:7(0) =71},

for each ¢<y and each r in I, and from this fact the desired conclusion follows
rapidly from the theorem.

4. Applications
In [5], Saks and Sierpinski proved the following remarkable approximation theorem.

THEOREM 14. If f is a real-valued function defined on I =[0, 1], then there exists
a Lebesgue measurable function @ such that, whatever be the positive number ¢, the in-
equality

[f(z) — ()| <e

holds for all = in I, save for a set of inner measure zero.

We now consider functions defined on the set X of an arbitrary totally finite
measure space (X, S, u) and taking values in a metric space (Y, p). We shall show
that a theorem of Saks-Sierpinski type holds when (Y, p) is separable. Indeed, the
proof given by Saks and Sierpinski, when modified only slightly, is sufficient to
establish the more general result. However, if the given metric space is not separable,
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we find that the Saks-Sierpinski theorem fails to hold in every case, save perhaps
the most trivial one, (X, S, u) totally atomic.

DeviniTION 15. Let (X, 8) be a measurable space, and let (Y, p) be a metric
space. A function f defined on X and taking values in Y is measurable (8) if f(U)
belongs to S, whenever U is an open subset of Y.

In all that follows, we assume that the measures with which we deal are com-
plete. Thus, if x is a finite measure defined on 8, a o-algebra of subsets of X, and
if u* is the outer measure generated by u,

u*(A)=1inf {u(E): A< E, E€8}, for all AcX,
then the class of u*-measurable sets coincides with 8.

THEOREM 16. Let (X, 8, u) be a totally finite measure space, and let (Y, o) be a
separable metric space. If f is an arbitrary function defined on X and taking values
in Y, then there exists a function g defined on X, taking values in Y and measurable (8)
such that, whatever be the posilive number &, the inequality

o{f(x), g(x))<e

holds on a set having outer measure equal to the measure of X.

Proof. We give a somewhat abbreviated argument. The omitted details can be
supplied easily with the aid of [5]. Without loss of generality, we may assume that
uX)=1.

LeMMa A. If E is a subset of X and if f assumes at most a denumerable number
of different values on E, then there exist a measurable (8) function g and a set H con-
tained in E such that p*(H)=u*(E) and f(x)=g(x), for all z in H.

Lemma B. If E i3 a subset of X and if ¢ is a positive number, then there exist
@ measurable (8) function g and a set H contained in E such that u*(H)=u*(E) and
o(f(x), g(x))<e, for all 2 in H.

Proof of Lemma B. Let {y,:n=1, 2, ...}, be a denumerable dense subset of Y.
For each z in E, let n(z) be the least integer n for which o(f(z), y.) <e, and let
h(z) =Yne, for all z in E. By Lemma A, there exist a measurable (S) function g
and a set H contained in E, such that u*(H)=pu*(E) and h(z) =g(z), for all z in H.
Evidently, the inequality o(f(z), g(x)) <& is valid for all z in H.

We now proceed with the proof of the theorem. Let H, be a subset of X, and
let g, be a measurable function such that u*(H,)=u*(X)=1 and p(f(z), g,()) <27,
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for all « in H,. Now let » be a natural number greater than 1, and suppose that
the set H,_, and the function g¢,_, have been defined. Let H, be a subset of H,_,,
and let g, be a measurable function such that u*(H,)=1 and p(f(z), ga(x))<27", for
all x in H, The sets H, and the functions ¢, are thus defined for all natural
numbers n,

u'Hy) =1, H,oH,yy, n=1,2, ...,

and o(f(2), gnlx))<27", for all z in H,, n=1,2, .... ™

Since each g, is measurable and since ¢ is a continuous mapping of Yx Y into the

reals the sets
P,= {x 1 0(gn+1(), gnlx)) < 2_’”1}

are measurable. Evidently P, contains H,,,, whence f%-1 P, contains H,.,, and thus
#(Ni-1P)=1. Let P=N%-1P, Then, P is measurable, u(P)=1 and g(gs1(7),
gn(x)) <27"*1, for all x in P. Hence, the sequence {g,} converges uniformly on P to
a measurable function g. We extend the domain of definition of g to all of X by
setting g(x) =a, for all x in X — P, where a is an arbitrary element of Y. The func-
tion thus defined is measurable, because P is a measurable set. It follows without
difficulty that

o(g(@), ga(x)) <27"*%, for all z in P;
thus, in view of (*),
o(f(z), g(x)) <27"*3, for all x in PNH,.
Now P is measurable; thus,
u*(Hy) =p*(H, 0 P)+ p*(H, — P).

Since u(P)=1, H,—P is a null set, and it follows that u*(H,n P)=1.

Finally, if N is chosen so large that 27 ¥*®*<¢ and if H=Hyn P, then u*(H)=1
and o(f(x), g(x)) <e, for all z in H.

To facilitate our further study of the approximation problem, we first recall the

following lemma (see, for example, [7]).

LeMma 17. Let (Y, o) be a nonseparable metric space. There exist a positive
number & and a nondenumerable subset D of Y, such that o(d,, d;)> 8, whenever d, and
dy are distinct points of D.

5— 62173067 Acta mathematica. 107. Imprimé lo 27 mars 1962
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DEFINITION 18. We call a subset E of Y a §-set if o(ey, e;) > 8, whenever e; and
e, are distinct elements of K.

TaEOREM 19. Let (X, 8, u) be a totally finite, nonatomic and hmnqgenecms mea-
sure space, with u(X)>0, and let (Y, p) be a nonseparable metric space. There exists a
function defined on X and taking values in Y that cannot be approximated by a mea-
surable function in the sense of Saks and Sierpinski.

Proof. Without loss of generality we may assume that u(X)=1. According to
Lemma 17, there exists a positive number § such that Y contains a nondenumerable
26-set. Thus, assuming the continuum hypothesis, there is contained in ¥ a 2J-set D
of potency ¢, say D={y,:r€I=[0,1]}. Let {X,:7€I} be a family of null sets such
that X =U {X,:r€I} and X,| X,, if r#s (by virtue of Theorems 9 and 12, such a

family always exists), and define the function f on X as follows:
)=y, if z€X,.
Suppose that g is a function on X to Y satisfying the inequality
| elf@), g() <

for all points z lying in a set P of outer measure one. We shall show that g is
necessarily nonmeasurable.

Let T=SNnP, and let » be the measure defined on T in the following manner:
if F=EnNP with E in 8, then »(F)=pu(E). If »* is the outer measure generated by
», then for every subset 4 of P,

v*(4)=inf {(»(F): A<F, FET}

= inf {u(E): A< E, E€8}=u*(4).
Since » is a complete measure on T, the class of all »*-measurable sets coincides with
T. If », is the inner measure engendered by », then for every subset 4 of P,

v, (A)=sup {»(F): A>F, FET}

=1-9"(P—A).
Since » is totally finite, the »*-measurable sets are precisely those sets 4 for which
v (4) =v,(4).

We assert the existence of a set 4, contained in I for which the following in-

equality holds:

WEPNU{X, red N+ u*PnU{X,:rel-A4,})>1. (1)
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Were there no such subset of I, we should have

WPNUL{X,:r€B})+u* (PN U{X,:r€I—-B,})=1,
for every B, contained in I. Then, for all such B,, the following equality would obtain:

(PN U{X,:r€B}) =v (P 0 U{X,:7€B,}),

and, as a result, T would contain all sets of the form Pn U{X,:r EB(,}. Consequently,
the set function A defined on X, the class of all subsets of I,={r: PN X,+0}, by
means of the equation,

ABy)=v(P N U{X,:7€B,}), for all B, in I,

would be a nontrivial, countably additive, totally finite and nonatomic measure on
2. According to the theorem of Banach and Kuratowski [1], this is impossible; hence,
(1) most hold for at least one subset A, of I.

For such an A4, let U, =U{S(y,, 6):r€4,}, and let Uy=U{S(y,, 8):r€l— A},
where S(y, 7) ={z:0(y, 2) <n}. In view of the fact that D is a 24-set, the open sets
U, and U, are disjoint; hence, g~*(U,) and g !(U,) are also disjoint. Moreover,
PnU{X,:r€4,} is a subset of ¢g"'(U,), and Pn U{X,:r€I—A,} is a subset of
971 (U,). Thus,

pHgTH (U +pt g™ (U > 1

But this inequality shows that at least one of the sets ¢~ (U,), ¢ *(U,), is non-
measurable; hence, g is a nonmeasurable function.

Since the above demonstration shows that

pr{z: o(f(z), glx)) <e}) <1,

for every ¢ not exceeding é and every measurable function g, the theorem is proved.

Now let (X, 8, u) be a totally finite and not totally atomic measure space. Again
we suppose that u(X)=1. By Theorem 3, we are able to decompose (X, 8§, y) into
a countable number of homogeneous measure spaces (X,, S,, u,) that are related to
(X, 8, u) by these conditions:

(i) each X, is a measurable subset of X,

(i) X,|| Xm if nm,

(iii) S={U%-1E,:E,€8,},

(iv) w(B)=27-1u.(ENX,), for each E in 8.
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Since each of the component measure spaces is homogeneous, either [X,] is an atom
or (X, 8,, u,;) is atom free. We denote by Z the union of all those sets X, for which
[X,] is an atom, and we let W=X-2Z. Then u(W)=w>0, for (X, 8, u) is not
totally atomic. Since W and Z are disjoint measurable sets and WU Z=X, it is

clear that
WAy =p*ANZy+u*(AnW),

for all subsets A of X; hence, if u*(P) =1, then u*(P n W)=w, We note the existence of
a continuum of nonintersecting y null sets { W, :0 <r <1} such that W = U{W,:0<r<1}.
This follows from the fact that W is the union of an at most denumerable family
of sets each member of which has this property. Therefore, by the same argument
as before, we see that it is possible to split PN W into disjoint subsets P; and @,
such that u*(Py)+u*(Q,)>w. Writing @,=(PNZ)U P, we have P=Q, U @,, @, @,
and u*(Q;)+p'(@)>1.

Let (Y, g) be a nonseparable metric space, let D={Y,:r€I} be a 24d-set (6>0)
contained in Y, and let the function f be defined on X as follows:

Yrs if x€W,;

f(x)z{yo, it z€Z.

By means of an argument completely parallel to the one given in Theorem 19, it
can be deduced easily that f has no Saks—Sierpinski approximant. Taking account

of Theorem 16, we have proved the following general theorem.

THEOREM 20. Let (X, 8, u) be a tolally finite and not totally atomic measure
space, and let (Y, o) be a metric space. In order that every function defined on X and
taking values in Y have a Saks—Sierpinski approximant, it is both mecessary and suf-
fictent that (Y, p) be separable.

The following elementary examples show that no general statement can be made
in the totally atomic case.

Ezample 21. Let X=1=[0,1] let S={o, X} and let u be the measure satis-
fying u(g) =0, u(X)=1. Then, every nonempty subset of X has outer measure one,
and every function defined on X and taking values in an arbitrary metric space Y
is trivially Saks-Sierpinski approximable.

Example 22. Let X =1, let S be the g-algebra generated by the denumerable
subsets of X, and let u(E) be 0 or 1 according as E is countable or X — & is count-
able. Let (Y, o) be a nonseparable metric space, and let D={Y,:r€I} be a 2d-set
(6>0) contained in Y. The function f, where '



ON THE STRUCTURE ON MEASURE SPACES 69
f(x)=y,, for all z in X,

is not Saks-Sierpinski approximable. This follows from the fact that every set of
outer measure one can be written as the union of two disjoint sets each having outer
measure one.

We conclude the discourse with a remark suggested by the proof of Theorem 19.

THEOREM 23. Let (X, 8, u) be a totally finite, nonatomic and separable measure
space. Suppose that p is a complete measure, and let u* be the outer measure engen-
dered by p. If E is a set of positive outer measure, then there exist (nonmeasurable)
subsets of E, E, and E,, suck that E,||E,, E=E,UE, and u*(E,)=p"(B,)=u*(E).

Proof. Suppose first that E is an element of 8. Without loss of generality, we
may assume that u(E)=1. The proof of Theorem 19 assures us of the existence of
sets Ey; and E3; satisfying the conditions:

EL | B3, B UL =E and p*(Bh) +u*(Bh) > 1.
Let F,, and F, be measurable kernels of E}; and E3, and let F,=F, UF,. Since
/"*(Efl) + /‘L*(E;l) < ,“‘(E —Fy)+ #'(E —F)=2 —H(Fl),
it follows that u(F,)=a,<1. Since
EYZ—Fy<E-F,

it follows that u*(EY, —Fy,)<1—a;; moreover, it is easy to see that the equality holds.
For if u*(EY; —F,,) were less than 1—a,, there would exist a measurable set G con-
taining Ej; —F,, and satisfying the inequality u(@)<1—a,. But then E—@G would
be a measurable subset of Ej UJF,, having measure greater than a, and, thus,
(E—@)—F, would be a nonnull measurable subset of E3; —F,, contrary to the fact
that F,, is a measurable kernel of E3;. In similar fashion, we find that u*(E3 — Fy) =
l1—a,.
If a, =0, then EYf;, and E3, are the desired sets. If a,>0, then let
E11 = Erlﬁ-Fl) E21 =E’2"1_' Fl'
Applying the foregoing technique to F,, we obtain disjoint sets 4,, and A,, such that
A1, U Ay =F, — Fy and p*(dy5) = p*(dys) =0, — 0,
where F, iz measurable subset of F, with u(F,)=a;<a;. Let

B, =EUAy, Eypy=E, U Ay,
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Then Epul| By, Eyy U Egy=E— F, and u*(Ey,) =pu*(Ey) =1—a,.

If a,=0, then E, U F, and E,, have the desired properties. If a, >0, then we repeat
the process. We proceed by transfinite induction to construct for each ordinal &<

(the first uncountable ordinal) a measurable set F, and disjoint sets Ey,, Es, such that
E\.>E,, Ey;,oE, and F,cF, if y<a
wF)=a,<a,=p(F,), if y<a and a,>0;
B VE;,=E—F, and p*(Bi)=u"(Es%)=1—a,

Suppose that the sets Ky, E., and F, have been constructed for each a<p
(<€Q). If B is not a limit ordinal and if ag_; =0 we may take

Fg=Fg_y, Bip=E1 51, Bog=E2 4 1,

while if ap_;>0, we find in the same manner as before, a measurable subset Fs of
Fp_y, with u(Fg)=ag<as_,, and disjoint sets Ay, Ags such that

A1pU Aog=Fp 1~ Fp and  p™di) = p*(das) =ap_1 —ap
In the latter situation, we define
Ey=Ey 51U Ayp, Eep=E3 51U Asp.
Clearly, Eis||Bes, BipUEopy=E—Fs and u*(Eip) = p*(Ezp) =1 —ap.

If B is a limit ordinal, let Els= Ua.cpEis, let B3y = UocpBo, and let Fi=Nocp Fa
Certainly Fj is measurable and

aj = u(F3) = inf {u(F,): < p}.
It is also clear that the inclusions

ErﬂDEla and E;gDEza
hold for all w<f and that Ej3U E3s= E— F;. Since E— F; > Ej3> By, for all a<f,
we have

1-a5>u*(E)>1—a, for all xa<§p,

and thus u*(Ef5)=1-—a;. By the same argument we find that u*(E3s)=1—aj. If
as =0, we set
E1ﬁ= E;ﬂ, Ezﬁ:E;‘;, F8= F;.

If a3>0, we apply the basic technique once again in order to obtain a measurable
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subset F; of Fj, satisfying u(Fsz) =as<aj, and disjoint sets A,5, As; satisfying the
conditions

Asp|| Aop, A1pU Azg=Fj; — Fp, p*(Asp) = p*(Asp) =05 —ay.
Letting
Eiy=EljU Aig, Exp=E3VU Ay,

we have Ey|| By, EipUEy=E— Fy and  u*(Eyp) = u*(Ezp) =1—ag.

By the principle of transfinite induction, the sets E,,, E,,, F., having the properties
prescribed above, are thus defined for all ordinal numbers a < Q.
Now it is clear that there must exist for each natural number =, an ordinal 8,

such that ag,<n™?

; for otherwise we should have ag>n"! for all f<Q, and this
is impossible. If f= sup, f,, then az=0; thus, {x:a,=0} is a nonempty set. Let
y=inf {«:a,=0}. Then E;, and E,;, have outer measure 1 and are disjoint, and
N=E—(E,, U Es,) is a null set. The proof of the theorem is completed in the mea-

surable case by taking, for example,
E,=E,,UN and E,=E,,.

In the general case, let F be a measurable cover of E, and let » be the measure
(well) defined on SN E as follows (cf. the proof of Theorem 19): if G is an element
of 8, then »(GNE)=u(@NF). As the argument given above shows, when applied to
v, there exist sets E, and E, such that

EIHEz, E=E VE,
and v'(E,) =v*(Ey) =v(E) = u*(E).

Since u* and »* agree on the subsets of E, the theorem is proved.
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