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1. Introduction 

I n  two papers fundamenta l  to the theory  of measure, Halmos and yon  Neumann  [3] 

and Maharam [4] have characterized the measure algebras associated with total ly  finite 

measure spaces by  showing tha t  each such algebra is isomorphic to the measure algebra 

of some canonical measure space. I n  this note, we shall show tha t  the measurable 

sets of a given measure space are constructed of certain null subsets of t ha t  space 

in essentially the same manner  as the  measurable sets of the s tandard  measure space, 

to which the given one is isomorphic, are constructed of points. The technique used 

depends on a theorem concerning the relation between the lattices of measurable func- 

t ions modulo null functions defined on isomorphic measure spaces. We conclude the 

discussion with some applications to problems tha t  arise in connection with the s tudy  

of a theorem of Saks and Sierpinski [5] on the approximat ion of real functions by  

measurable functions. 

2. Preliminary considerations 

Let  (X, S, /~) be a measure space, and let N be the class of all measurable sets 

of measure zero. I f  E and F are. elements of S, and  if A denotes the operat ion of 

symmetr ic  difference, we write E , , ~ F  if and only if E A F  belongs to N. The relation 

N thus defined on S is an equivalence relation. The quotient  space S /N to which N 

gives rise, is denoted by  S (p,). I f  E is an element of S, we denote by  [E] the equi- 

valence class determined by  E. The binary operations + , . ,  are (well) defined on 

S (ju) by  means of the equations 

(1) The author would like to express his thanks to Professor Casper Goffman with whom he 
has had many stimulating discussions on the topics discussed herein. The author is also indebted to 
the Purdue Research Foundation and to the National Science Foundation (G-18920) from which he 
received support while portions of this article were being written. 
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a+b=[EAF], a.b=[ENFJ, 

where E is an element of a and F is an element of b; it is easily verified that  

{8(/x); + ,  .} is a Boolean ring. We write a<b if and only if ab=a. I t  is clear 

tha t  ~< is a partial ordering and that  {S(ju); < } is a a-complete lattice. Moreover, 

if [En] =a , ,  n = 1, 2 . . . . .  then 

~] an=J5 E.] and. ~ a . = [ f i  En], 
n - I  n - 1  n - 1  n = l  

where V and A denote least upper bound and greatest lower bound. 

of two elements of S(Ft ) is defined by 

a - b=a  +ab. 
If  [E] = a  and IF] =b, then 

a - b = [ E -  F]; 

The difference 

thus, a ~< b if and only if E - F  is an element of N. A measure, also denoted by /x ,  

is (well) defined on S(/~) as follows: if [E] =a, then 

~(a) =g(E) .  

The pair (S(#), #) is called the measure ring associated with (X, S, #). 

The measure rings (S(#),/x) and (T(v), v) associated with (X, S,/x) and (Y, T, v) 

are isomorphic if there exists a one to one mapping 0 of S(g) onto T(v)such that  

(a vb)O=aO VbO, (a-b)O=aO-bO and v(aO)=/z(a), 

whenever a and b are elements of S(/u). Equivalently, (S(/x),/z) and (T(v), v) are 

isomorphic if there is a measure preserving ring isomorphism between {S(/z); + ,  �9 } and 

{T(v); + ,  �9 }. We remark that  the conditions imposed on 0 also imply that  

ao)O= a.O 
n = l  r t = l  

An element a of S(p) is called an atom if /x(a)> 0 and if the conditions b ~<a, 

b # a  imply that  b =0.  A measure ring containing no atoms is termed nonatomic. 

A family F of measurable sets is dense in S if to each measurable set g and 

positive number ~ there corresponds an element F of F for which # ( E A F ) < e .  The 

smallest cardinal number corresponding to a dense subset of S is called the character 

of the measure space. If its character is Z0, then (X, S, ~) is called separable. The 

character of (S(#), #) is defined analogously. If every principal ideal of a measure 
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ring has the same character as the measure ring, then the measure ring and the 

measure space are homogeneous. 

If  [ and g are extended-real-valued measurable (S) functions that  assume different 

values only on a set of measure zero, then we write [Ng. The relation N is an 

equivalence relation on the set of all measurable functions. We denote by [f] the 

equivalence class determined by the measurable function [ and by S the collection of 

all such equivalence classes. If  [ and g are measurable functions and if [(x)<~g(x) 

a.e., then we write [/]~<[g]. The relation ~< is well defined, and (S; ~<) is a a- 

complete lattice. 

The following fundamental theorems occupy a central position in the rest of the 

discussion. Let  (I, L, m) denote the ordinary Lebesgue measure space associated with 

I = [ 0 ,  1]. 

THEOREm 1. (Halmos and yon Neumann). I / ( X ,  S,/~) is totally finite, nonatomic 

and separable and i/ /a(X)= 1, then (S(/~),/~) is isomorphic to (L(m), m). 

I f  ~ is an ordinal number, we denote by (I r, L v, m v) the Cartesian product  

X~< r (I, L, m)~, where each (I, L, m)~ is a copy of (I, L, m). 

THEOREm 2. (Maharam) 1I (X, S, t~) is totally ]inite, ~ i c  and homoyeneq~ 

and i/ la(X)= 1, then (S(#),/z) is isomorphic to (LV(mY), mr), where ~ is the least ordinal 

corresponding to the character o/ (X, S,/~). 

THEOREM 3. (Maharam) I /  (X, S,/~) is totally /inite, then there exists an at most 

denumerable /amily o/ homogeneous measure spaces (Xn, S,, /~) such that: 

(i) xnllx , if n . m ,  
(ii) U , ~ I X , = X ,  

(iii) {[J~_IE, :E ,  ES,}=S, and 

(iv) /~(E)=]~r N Xn), /or all E in S. 

3. The main t h e o r e m s  

In [6] Segal has established a theorem connecting measure spaces with the algebras 

of bounded measurable functions defined on those spaces. We give now another theo- 

rem of this type, which, together with the isomorphism theorems of the last section, 

gives some insight into the point set structure of a wide class of measure spaces. 

THEOREM 4. Let (X, S,/*) and (Y, T, 7,) be isomorphic, totally [inite measure spaces. 

To each isomorphic mapping 0 o/ S(~u) onto T(~) there corresponds an isomorphism q) 

between $ and • satis/ying the /ollowing condition: 
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(*) if / is measurable (S), if /0 is any element of [/]r and if B is any Borel subset 

of the two-point compactifieation of the real line, then [/-I(B)]0 =[fol(B)]. 

The author is indebted to the referee for the elegant demonstration of this theo- 

rem that  is given below. The argument is based on two lemmas, the second of which 

is known from one proof of the Radon-Nikodym theorem. 

LEM~A 5. Let (X, S, if) be a measure space with S a a-algebra, and let / and g 

5e extended-real-valued measurable (S) /unctions. Then 

[]] ~< [g] /] and on/y /] U-l[ _ co, ~)] >/[g-l[ _ co, ~)], 

/or every extended real number ~. 

Proo/. The necessity of the condition is trivial. 

Suppose that  {x: / (x)>g(x)} were a set of positive measure. There would then 

exist a rational number r for which 

{x : l(x) >/r} n {~: g(x) < r} 

would be a set of positive measure. But,  in this ease, g - l [ _  co, r ) - / - : [ -  co, r) would 

not be a null set, whence the inequality [ / - 1 [ _  co, r)]~> [ g - l [ _  co, r)] could not  ob- 

tain. The sufficiency of the condition is thus established. 

COROLLARY 6. Subject to the general hypotheses o/ Lemma 5, 

[]] =[g] i] and only /] •-1[_ co, a)] =[g- l[_  co, a)], 

/or every extended real number o~. 

Lv.MMX 7. Let (X, S, if) be a measure space with S a a-algebra, and let o~-->e~ be 

a mapping o/ R, the set o/ all extended real numbers, into S(ff). In  order that there 

should exist an extended-real.valued measurable (S) /unet/on [ such that 

e~ = i f - l [ _  co ,  a) ] ,  

/or all ~ in R, it is both necessary and su//icient that the/oUowing conditions be satis/ied: 

(i) i/  a<fl ,  then e~<~e~; 

(ii) i/ sup, ~ = a, then Vn e~, = e~; 

(iii) e_~ =0.  

In  the a//irmative case, ~] is uniquely determined. 

Proof. The necessity of these conditions is obvious, since if / is such a func- 

tion, then 
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(1) 1-1[ - ~ ,  a t ) ~ / - ' [ -  c~, fl), if ~t<fl; 

(2) U . / - I [ - -  oo, ~ )  =1-1[-- Cr ~r if sup. ~tn =~t; and 

( 3 )  1 - 1 [  - ~ r  a ) = ~ ,  if a =  - ~ ;  

from which immediately follow (i), (if), (iii). 

Now suppose that  (i), (if), (iii) are satisfied. For each rational number r let Fr 
be an element of eT, and let 

E~ = UP, ,  
r<:gt 

for each ~ in R. Certainly the E~ are measurable sets satisfying the conditions: 

(I) E~cE~, if a< f l ,  

(2) U,,E~,,=E~, if sup. a . = a ,  

(3) E _ ~ = O ;  

moreover, [E~] = [ [J E.] = V [E.] = Ver = e~. 
r<~t T<r T<Ct 

Thus, if x is an arbitrary element of X, then 

{~:  �9 e E=} = (1(~), + ~ ] ,  

where /(x) is a uniquely determined extended real number. The function / thus spe- 

cified has the property that  

/ - 1 [ _  ~ , r a )  =E=,  

for every ~ in R. The uniqueness of [jr] follows at  once from Corollary 6. 

We now proceed to the proof of Theorem 4. Let  / be an extended-real-valued 

measurable (S) function. For each extended real number ~, let 

e = I f - l [ -  oo,  6r e~ = e c t 0 .  

According to Lemma 7, the elements e= possess properties (i), (if), (iii). Since 0 is an 

isomorphism, these conditions are also satisfied by  the elements e~ of T(v). Hence, 

again by Lemma 7, there exists a unique element [/0] of ff such that  

e~ = [to1[ - ~ ,  ~)], 

for each ~ in R. 

We shall show that  the mapping q of $ into ff defined by the equation 

is the sought for isomorphism. 
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Suppose t h a t  [/] and  [g] are two elements  of S such t h a t  

D'] ~ = [g] ~ = [/o]. 

Following the  no ta t ion  in t roduced above,  we write, for each ~, 

e~ = [ / - I [  _ (x), 6()], d~ = [ g - l [ _  oo,  (~)], 

According to the  definit ion of [/0], the  following equalities hold for all ~ in R: 

Ca0 = e ~  = [ f o i l  - oo,  ~)]  =d~ =d,O. 

Since O is one to  one, we mus t  have  e~ =d,, for  all ~ in R. Hence,  by  Corollary 6, 

[/7 = [g], and it  follows t h a t  tP is one to one. 

Now let )c o be an a rb i t r a ry  funct ion defined on Y and measurable  (T). For  each 

in R, let 
e'~=[/~l[- o~, a)], e~ =e'~O -1. 

I n  exac t ly  the  same manner  as before, L e m m a  7 implies the existence of a funct ion 

)c, defined on X and measurable  (S), such t h a t  

e~ = [ / - i [ _  ~ ,  (~)], 

for all a in R. Since it  is clear t h a t  [/] !P = [)co] and  since [f0] was a rb i t ra r i ly  chosen 

f rom if, i t  follows t h a t  IP is onto. 

Hence,  to prove  t h a t  ~ is an isomorphism, it  will suffice to show t h a t  iP and  

~p-1 are order  preserving,  i.e. 

[)c]/> [g] if and  only if [/]~p f> [g]q0. 

Le t  f0 be an  e lement  of []]tP, and  let go be an e lement  of [g]tP. B y  vir tue  of L e m m a  5 

and  the fact  t h a t  0 is an  isomorphism,  the  following assert ions are mutua l ly  equivalent:  

[)c] < [g]; 

i f - l [ _  co, a ) ] ~ > [ g - l [ _  ~ ,  a)], for all real a; 

[ /~1[_ ~o, ~)]~>[g~l[_  o~, g)], for all real ~; 

[/]~ < [g]~. 

Finally,  we note  t h a t  the  me thod  of construct ion ensures t h a t  ~ has the prop-  

e r ty  (*), a t  least  for intervals  of the  form [ -  co, ~). Since it  is clear t h a t  the  class 

of all Borel  subsets of R for which (*) subsists is a a-algebra,  the theorem is proved.  

The following converse of this theorem is also true.  
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THEOREM 8. Let (X, S,/1) and (Y, T, v) be totally /inite measure spaces, and let 

0 be a one to one mapp /ng  o/ S(/~) onto T(v) such that v(a0)=/z(a) ,  /or all a in S(/~). 

In order that 0 be an isomorphism, it is suHicisnt that there should exist an isomorphism, 

q~ o/ $ onto ff satisfying the lollowing condition: 

(*) i/ / is measurable (S), if /o is an element o/ [/]q) and if B is any Borel subset o/ 

R, then [f-l(B)] 0 = ~ I ( B ) ] .  

Proo/. Observe first  t h a t  if E is an e lement  of S and  if g is an e lement  of 

[ZE] ~, then  

[g-1 {0, 1}] = [g~'  {0, 1}] 0 = IX]0 = [ r ] ;  

thus,  g ~ ZE., where [E0] = [g-~ {1)] = [%~ (1}]0 = [E]0. 

Suppose t h a t  a and  b are elements  of S(/z) sat isfying a<~b. Let A, B be ele- 

men t s  of a, b, and let A 0, B 0 be elements  of aO, bO. I t  is clear t h a t  [ZA] ~< [XB] and,  

since ~ is a latt ice isomorphism, t h a t  

[z . . ]  = [z . ]  ~ < [z . ]  ~ = [z~].  

B y  L e m m a  5, we have  [Z],~ [ - o% 1)]/> [ZB: [ - -  oo, 1)]; hence, [XA: [1, + oo ]] ~< [Z~. ~ [1, + r ]], 

since the la t ter  e lements  are the complements  in T(v) of the  former.  Therefore,  sum- 

marizing the  above  remarks ,  

a0 =[A0] = [:~]1 [1, -t- oo]] ~< [Z~, ~ [I,  + oo]] = [B0] =bO. 

Using the  fact  t h a t  ~-1 is also a lat t ice isomorphism,  we can show, b y  an ent i rely 

parallel a rgument ,  t h a t  aO ~ bO only if a ~ b. 

Since a proof of the equivalence of a ~<b and a0 ~< b0 is sufficient, in this case, 

to show t h a t  0 is an  isomorphism,  the  proof  is complete.  

B y  appl icat ion of Theorem 4 and  the fundamenta l  results of Halmos ,  yon  Neu-  

m a n n  and Maharam,  we are now able to obta in  some interest ing theorems on the 

s t ruc ture  of the measurable  sets of a to ta l ly  finite measure  space. We first  consider 

the separable  case. 

THEOREM 9. Let (X, S, I~) be a totally /inite, nonatomic and separable measure 

space with I~(X) = l, let I = [0, 1] and let (I ,  L, m) be the Lebesgue measure space. There 

exists a /amily {Xr : r E I} o/ measurable subsets o/ X /or which the /ollowinfl conditionz 

are satis/ied: 
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(i) /z(X,)=0,  /or a// r in I,  

(ii) XrI IX , ,  i/  r:~s, 

(iii) to each element E ot S there corresponds an E o in L such that E ~ [3 {X ,  :r E Eo), 

and /z(E)=m(E0). 

Proof. By virtue of the theorem of Halmos and yon Neumann, there exists an 

isomorphic mapping 0 of S(/z) onto L(m). Thus, by Theorem 4, there exists an iso- 

morphism ~0 between $ and C satisfying the condition [ /-I(B)]0 =I/g1 (B)], whenever 

/ is measurable (S), /0 is an element of [f]~0 and B is a Borel subset of R. I~ t  i o 

be the identity function on I,  and let i be a function, real valued and measurable (S), 

for which [i]r = [i0]. For  each r in I ,  define 

x ,  =i-' ({r}). 

We see at  once that  X ,  IIXs, whenever r:~s, and, since 

~ ( x , )  = ~(~-1  ({r}))  = m ( i o '  ({r}))  = m({r} ) ,  

the first condition is also satisfied. Now consider an arbitrary element E of S. If E o 

is a Borel set belonging to [E]0, then 

[ O { x , :  r E E0}] 0 = [~-1 (~0)] 0 = [ ~  ' (E0)] = [E0] = [E] 0, 

whence E ~ U (Xr : r E E0}. 

Since [E0] = [E] 0, it is immediate from the definition of isomorphism that  #(E) = re(E0); 

hence, the proof is complete. 

We may assume that  U {X, :r  E I} = X, for if need be we could adjoin the ex- 

ceptional null set to one of the sets X, without affecting any of the conclusions 

of the theorem. Hence, the following proposition is an immediate consequence of 

Theorem 9. 

COROLLARY ]0. i ~  (X, S, ~) be a totally finite, nonatomic and separable meavure 

space with /~(X) = 1, let I = [0, 1] and /et (I, L, m) be the Lebesgue measure space. There 

exizt~ a mensure preserving trans/ormation T o[ (X, S, #) into (I, L, m) such that T-I(L) 

is equivalent to S. 

Thus, (I, L, m) is, in a sense, minimal for the class of normalized, totally finite, 

nonatomic and separable measure spaces. 

In nonseparable spaces the situation is only slightly more complicated. By virtue 

of Theorem 3, we need to consider only the homogeneous case. 
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L~.MMA 11. Let (X, S, p) be a totally finite measure space, and let It be a subset 

o/ S. 1/ E belongs to S and i/ to each positive e there corresponds an R in R satiz- 

lying p(E A R)< e, then E i8 equivalent to an element o/ the a-ring generated by R. 

Proo/. Let  0 > 0  be specified. Choose R ,  in R so t h a t  p ( E A R ~ ) < ~ . 2  -~, let  

S,---  [J~,-1Rk, for n = l ,  2 . . . . .  and  let S =  U~-x Sn. Then 

# ( E  - S) = lim p ( E  - S,)  = 0, 
n 

a n d  since p(Sn - E) ~< ~ ~u(Rk- E) < ~, n = 1, 2, . . . ,  
k = l  

we have  /~(S - E) = lira/z(S~ - E) < (~. 
yl 

Proceeding in this manner ,  i t  is possible to choose, for each na tura l  n u m b e r  n, a set  

T~ belonging to R~ and  sat isfying the conditions 

p ( E -  Tn) =O, p ( T ~ -  E) < n -1. 

Let  U n = N ~ . I T ~  for  n = l ,  2, . . . ,  and  let U=I'I~o.1Un. 

Then,  # ( E -  U~) ~< ~ p ( E  - Tk) = O, 
k - 1  

whence p ( E -  U )  ~ lira p ( E -  Un) = O. 
n 

On the o ther  hand,  

p( U~ - E) < p( Tn - E) < n -1, n =1, 2, . . . ,  

whence p ( U  - E) -- lira p(Un - E) = O. 
n 

Thus,  p ( E  A U ) = 0 ,  where U is an  e lement  of Ro~, and  the l emma is proved.  

THEOREM 12. Let (X, S, IZ) be a totally/inite, nonatomic and homogeneous measure 

space, with p(X) = 1. There exist an ordinal number y and a/amily  {X~r : ~ e [1, y), r E I}  

o/ measurable subsets o/ X such that the /ollowing conditions are saris~led: 

(i) # ( X ~ r ) = 0 ,  /or all g < y  and /or all r in I, 

(ii) X~,[IX~s, i/ r 4 s ,  /or all ~ < y ,  

(iii) the a-ring generated by the class ( [J {X~, : reEo} :a<~,, E0eL} /8 equivalent 

to S, in the sense that every element o/ S di//ers /rom one o/ these sets by a 

set o/ measure zero, and conversely, 

(iv) /~([.J {X~r :reEo, EoeL})=m(Eo),  /or all ~ < y .  
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Proof. By Maharam's theorem there exists an isomorphic mapping 0 of S(/~) onto 

Lr(m r) ,where 7 is the least ordinal corresponding to the character of (X, S, #). For 

each fl < 7, let 

L~={E• XI~:E6L} 

and let N~ denote the family of null sets in L~. I t  is clear that  (LffN, m r) is iso- 

morphic to (L#/N~, m r) and that  the latter is isomorphic to (L(m), m). Thus, if 

s~ = {E : E 6 S, [E]0 6 L~/N}, 

then S~ is a a-subalgebra of S, and (S#(ju)~u) is isomorphic to (L(m), m). Hence, by  

Theorem 9, there exists a family {X~, : r  61} of measurable subsets of X, such that: 

(i) #(X#r)=0,  for all r in I,  

(if) X~]IX~,, if r:~s, 
(iii) to each E in S~ there corresponds an E o in L such that  

E N  U{Xpr :r6E0},  and ~u(E) =m(Eo). 

Let E be the class of all finite intersections of elements of U~<r L~, and let R 

be the class of all finite disjoint unions of sets belonging to E. We note that  R is 

an algebra of sets and that  the a-algebra generated by R is L r. 

Consider an arbitrary element E of S. Let  E o be a member of [E]0, and let 

e be a specified positive number. By a well-known approximation theorem [2; 56], 

there exists a set G O in R such that  mr(Eo A Go)< e. Suppose that  

nt 

Go = [~ n Fojk, 
] = l k - 1  

where Fore belongs to LS .  Then, there exist in S sets Fm satisfying [Fm]O = [Fore ] and 

Fjk = U {X~,k, : r 6 L m, Ljk 6 L}, 

for ] = 1, 2 . . . . .  m; ]r = 1, 2 . . . . .  nj. Certainly 

nj 

G=(~ AFj~ 
1-1 k - 1  

is an element of [G0]0-1; hence, 

r/~(E ~ G) = m  r (E 0 ~ Go) < ~. 

By virtue of the lemma, the proof is complete. 
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Since we may assume without loss of generality tha t  U {Xp, :rE I}  = X ,  for each 

fl < ~, the preceding theorem also can be couched in the language of measurable trans- 

formations. 

COROLLARY 13. Let (X, S,/~) be a totally /inite, nonatomiv and homogeneous 

measure space, with /~(X)=l ,  and let ~ be the least ordinal corresponding to the character 

of this measure space. There exists a measure preserving trane/ormation T o/ (X, S,/~) 

into (F, L r, m r) such that T - I ( L  r) is equiva~nt to S. 

Proo/. We recall tha t  the points of I r are precisely the functions defined on 

[1, ~) and taking values in I.  For  each such point 3, define 

r ,  = N {X=, ~.) : ~ < r}  

(where X~, has the same meaning as above). I t  is clear from the foregoing remarks 

that  each Y, is a null subset of X and that  { Y, : r E I r} is a partit ion of X. The trans- 

formation T is defined on X in a natural way as follows: 

I t  is not difficult to show that  

T x = r  if xE Y,. 

X~r = T -1 {~:  r(a)  = r}, 

for each a <  y and each r in I ,  and from this fact the desired conclusion follows 

rapidly from the theorem. 

4. Applications 

In [5], Saks and Sierpinski proved the following remarkable approximation theorem. 

THEOREM 14. I[ / is a real-valued /unction de/ined on I = [0, 1], then there exists 

a Lebesgue measurable /unction q) such that, whatever be the positive number e, the in- 

equality 

holds /or all x in I ,  save /or a set o~ inner measure zero. 

We now consider functions defined on the set X of an arbitrary totally finite 

measure space (X, S,/~) and taking values in a metric space (Y, ~). We shall show 

that  a theorem of Saks~Sierpinski type holds when (Y, ~) is separable. Indeed, the 

proof given by  Saks and Sierpinski, when modified only slightly, is sufficient to 

establish the more general result. However, if the given metric space is not separable, 
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we find tha t  the Saks-Sierpinski theorem fails to hold in every case, save perhaps 

the  most  trivial one, (X, S, #) totally atomic. 

DEFINITION 15. Let (X, S) be a measurable space, and let (Y,  p) be a metric 

.~pace. A /unction / de/ined on X and taking values in Y is measurable (S) i/ /-I(U) 

belongs to S, whenever U is an open subset of Y. 

In  all tha t  follows, we assume tha t  the measures with which we deal are com- 

plete. Thus, if # is a finite measure defined on S, a a-algebra of subsets of X, and 

if /x* is the outer measure generated by  if, 

#*(A) = inf {ff(E) : A c E, E eS}, for all A = X,  

~hen the class of #*-measurable sets coincides with S. 

THEORV.M 16. Let (X, S, #) be a totally /inite measure space, and let (Y, O) be a 

separable metric space. I /  f is an arbitrary /unction de/ined on X and taking values 

in Y, then there exists a /unction g defined on X ,  taking values in Y and measurable (S) 

~uch that, whatever be the positive number e, the inequality 

eft(x), g(x)) < 

.holds on a set having outer measure equal to the measure o/ X .  

Proo]. We give a somewhat abbreviated argument.  The omit ted details can be 

supplied easily with the aid of [5]. Without  loss of generality, we may  assume tha t  

~u(X) = I.  

LEM~A A. I l E is a subset ol X and i I /assumes at most a denumerable number 

of di//erent values on E, then there exist a measurable (S) /unet/on g and a set H con- 

tained in E such that #*(H)=p*(E) and /(x)=9(x),  /or all x in H. 

L•MMA B. I /  E is a subset of X and i [ e  is a positive number, then there exist 

a measurable (S) /unction g and a set H contained in E such that ff*(H)=p*(E) and 

.e(/(z), g(x))<e,  for all z in H. 

Proo/ o/ Lemma B, Let  {y, :n = 1, 2 . . . .  }, be a denumerable dense subset of Y. 

F o r  each x in E, let n(x) be the least integer n for which ~(/(x), y , )<  e, and let 

h(x) =y,(x), for all x in E. By Lemma A, there exist a measurable (S) function g 

a n d  a set H contained in E, such tha t  g* (H)=#*(E)  and h(x)=g(x), for all x in H. 

Evidently,  the inequality O(/(x), g(x))<e is valid for all x in H. 

We now proceed with the proof of the theorem. Let  H 1 be a subset of X, and 

le t  gl be a measurable function such tha t  # * ( H 1 ) = # * ( X ) = 1  and ~(/(x), 91(x))<2 -1, 
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for all x in H r Now let n be a natural  number  greater than 1, and suppose tha t  

the set Hn-1 and the function 9n-1 have been defined. Let  Hn be a subset of Hn-1, 

and  let 9n be a measurable function such tha t  #*(Hn)= 1 and ~([(x), 9n(X))< 2 -n, for 

all x in Hn. The sets Hn and the functions gn are thus defined for all natural  

numbers n, 

~u*(Hn)=I, H n ~ H ~ + I ,  n = l ,  2 . . . . .  

and ~([(x), 9n(x))<2 -n, for all x in H,,, n = l ,  2 . . . . .  (*) 

Since each g~ is measurable and since ~ is a continuous mapping of Y• Y into the 

reals the sets 

P~ = {X : e (gn+l(X ), 9n(X)) < 2  - n + l }  

are measurable. Evidently Pn contains Hn+l, whence N ~-1Pk contains Hn+l, and thus 

p ( N ~ _ I P ~ ) = I .  Let  P = N ~ - I P n .  Then, P is measurable, p ( P ) = l  and ~(gn+l(x), 

qn(x))<2 -~+1, for all x in P. Hence, the sequence {g~} converges uniformly on P to 

a measurable function 9. We extend the domain of definition of g to all of X by  

setting g(x)=a, for all x in X - P ,  where a is an arbi t rary element of Y. The func- 

t ion thus defined is measurable, because P is a measurable set. I t  follows without 

difficulty tha t  

Q(g(x), g,(x))~<2 -"+2, for all x in P;  

thus, in view of (*), 

~(](x), g (x) )<2  -"+s, for all x in PNHn. 

Now P is measurable; thus, 

#*(H~) =#*(H, N P)+p*(H~-P) .  

Since # ( P ) = I ,  H n - P  is a null set, and it follows tha t  p*(HnNP)=I.  

Finally, if N is chosen so large tha t  2-N+8<e and if H=HNNP,  then # * ( H ) = I  

and ~([(x), g(x))< e, for all x in H. 

To facilitate our further s tudy of the approximation problem, we first recall the 

following lemma (see, for example, [7]). 

LEMMA 17. Let (Y, ~) be a nonseparable metric space. There exist a positive 

number ~ and a nondenumerable subset D o/ Y, such that Q(dl, d2)> ~}, whenever d 1 and 

d 2 are distinct points o/ D. 
5 -  62173067. Acta mar 107. Imprim6 le 27 mars 1962 
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DEFINITION 18. We call a subset E of Y a O.set i/ Q(el, e2) >O, whenever e I and 

eg. are distinct elements o/ E. 

THEOREM 19. I_,et (X, S, I~) be a totally /inite, nonatomic and homogeneous mea- 

sure space, w/th #(X) > 0, and let (Y,  ~) be a nonseparable metric space. There exists a 

~unction de/ined on X and taking values in Y that cannot be atrproxima~ by a mea. 

surable /unction in the sense of Salas and Sierpins]ci. 

Proo/. Without  loss of generality we may  assume tha t  ~u(X)= 1. According to 

Lemma 17, there exists a positive number  0 such tha t  Y contains a nondenumerable 

2 0-set. Thus, assuming the continuum hypothesis, there is contained in Y a 2 0-set D 

of potency c, say D = { y ~ : r E I = [ O ,  1]}. Let  { X , : r E I }  be a family of null sets such 

tha t  X = l J  { X r : r E I }  and x ,  llx,, if r . 8  (by virtue of Theorems 9 and 12, such a 

family always exists), and define the function / on X as follows: 

/(x) = Yr, if x EXr. 

Suppose tha t  g is a function on X to Y satisfying the inequality 

~(/(x), g(x)) < 0 

for all points x lying in a set P of outer measure one. We shah show tha t  g is 

necessarily nonmeasurable. 

Let  T = S  N P, and let ~ be the measure defined on T in the following manner: 

if F = E  f~ P with E in S, then ~(F)=#(E) .  I f  ~* is the outer measure generated by  

~, then for every subset A of P,  

~*(A) = i n / { v ( F ) : A c F ,  F e T }  

= ~ {~ (E) :ACE,  EES} =~*(A). 

Since ~ is a complete measure on T, the class of all v*-measurable sets coincides with 

T. I f  v. is the inner measure engendered by v, then for every subset A of P,  

~,(A) = sup { ~ ( F ) : A ~ ,  ~'ET} 

= 1 - ~ * ( P - A ) .  

Since v is totally finite, the v*-measurable sets are precisely those sets A for which 

~*(A) = v , (A) .  

We assert the existence of a set A o contained in I for which the following in- 

equality holds: 

#*(P N [3{X,  : rEAo}) + I~*(P N U { X ,  : r E I -  Ao}) > I. (1) 
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Were there no such subset of I,  we should have 

/~*(P n U{Xr: rEBo})+ Iff(P N U{Xr: rEI-Bo})= I, 

for every B 0 contained in I. Then, for all such B 0, the following equality would obtain: 

~,*(P N U{X,: rEBo}) =~,.(P N U{X~: reBo} ), 

and, as a result, T would contain all sets of the form P N U{X, :r EBo}. Consequently, 

the set function ~t defined on Y,, the class of all subsets of I o = {r:P N X,=~ o}, by 

means of the equation, 

~t(B0)=~(PN U{X~:rEBo}), for all B o in E, 

would be a nontrivial, countably additive, totally finite and nonatomie measure on 

Y~. According to the theorem of Banach and Kuratowski [1], this is impossible; hence, 

(1) most hold for at  least one subset A 0 of I .  

For such an A0, let V 1 = U {S(yr, O) : r E A0}, and let V 2 = O {S(y,, ~) : r q I -  A0}, 

where S(y, 7) = {z : ~(y, z) < r/}. In view of the fact that  D is a 2 8-set, the open sets 

U 1 and U S are disjoint; hence, g-l(U1) and 9-1(U~) are also disjoint. Moreover, 

Prl O{X,:rEAo} is a subset of g-l(Vl),  and PN U{X, : r f i I -Ao}  is a subset of 

g -1 (Us). Thus, 

F*(g-1 (U1)) +/~*(g-1 (Us)) > 1. 

But  this inequality shows that  at  least one of the sets g-l(U1) , g-I(U~), is non- 

measurable; hence, g is a nonmeasurable {unction. 

Since the above demonstration shows that  

~*({x : eft(x),  g(x)) < ~}) < 1, 

for every e not exceeding ~ and every measurable function g, the theorem is proved. 

Now let (X, S, #) be a totally finite and not totally atomic measure space. Again 

we suppose that  F ( X ) =  1. By Theorem 3, we are able to decompose (X, S, #) into 

a countable number of homogeneous measure spaces (X,, S , , /~ )  that  are related to 

(X, S,/z) by these conditions: 

(i) each Xn is a measurable subset of X, 

(ii) X. IIXm, if n*m,  

E (~i) s={U.-1 .:E.ES.}, 
(iv) ju(E)=~.~l~u.  (E N X.),  for each E in S. 
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Since each of the component measure spaces is homogeneous, either [Xn] is an a tom 

or (Xn, S~, ;un) is a tom free. We denote by Z the union of all those sets Xn for which 

[X.] is an atom, and we let W = X - Z .  Then ; u ( W ) = w > 0 ,  for (X,S, ;u)  is not 

totally atomic. Since W and Z are disjoint measurable sets and W U Z = X ,  it is 

clear tha t  

#*(A) =#*(A N Z) + #*(A N W), 

for all subsets A of X; hence, if #*(p) = 1, then I~*(P N W) =w, We note the existence of 

a continuum of nonintersecting/~ null sets {Wr : 0 < r ~< 1} such tha t  W = (J {Wr :0 < r ~ 1}. 

This follows from the fact tha t  W is the union of an a t  most  denumerable family 

of sets each member  of which has this property.  Therefore, by  the same argument  

as before, we see tha t  it is possible to split P N W into disjoint subsets P1 and Q1 

such tha t  ts*(P1) + #*(Q~) > w. Writing Q2 = (P N Z) 0 P1, we have P =QI U Q2, Q~ ]I Q2 

and g*(Q1) + #*(Q~) > 1. 

Let (Y, Q) be a nonseparable metric space, let D = { Y, : r E 1} be a 2 ~-set ((~ > 0) 

contained in Y, and let the function / be defined on X as follows: 

~y,, if xeWr ;  
/(~) / 

tY0, if x E Z. 

By means of an argument  completely parallel to the one given in Theorem 19, it 

can be deduced easily tha t  / has no Saks-Sierpinski approximant.  Taking account 

of Theorem 16, we have proved the following general theorem. 

THEOREM 20. Let (X, S, [~) be a totally finite and not totally atomic measure 

space, and let ( Y, ~) be a metric space. In  order that every /unction de/ined on X and 

taking values in Y have a Saks-Sierpinski approximant, it is both necessary and su/- 

]ieicnt that (Y,  ~) be separable. 

The following elementary examples show tha t  no general s tatement  can be made 

in the totally atomic case. 

Example 21. Let  X = I = [ 0 ,  1] let S = ( o , X }  and let ju be the measure satis- 

fying /~(o)=0,/~(X) = 1. Then, every nonempty  subset of X has outer measure one, 

and every function defined on X and taking values in an arbi t rary metric space Y 

is trivially Saks-Sierpinski approximable. 

Example 22. Let  X = I ,  let S be the a-algebra generated by  the denumerable 

subsets of X, and let /~(E) be 0 or 1 according as E is countable or X - E  is count- 

able. Let  (Y, ~) be a nonseparable metric space, and let D = { Y r : r E I }  be a 2O-set 

((~ > 0) contained in Y. The function /, where 
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](x)=y~, for all x in X, 

is not Saks-Sierpinski approximable. This follows from the fact tha t  every set of 

outer measure one can be written as the union of two disjoint sets each having outer 

measure one. 

We conclude the discourse with a remark suggested by the proof of Theorem 19. 

THEOREM 2 3. Let (X, S, ju) be a totally ]inite, nonatomic and separable measure 

space. Suppose that ~ is a complete measure, and let /~* be the outer measure engen- 

dered by /~. I f  E is a set of I~ositive outer measure, then there exist (nonmeasurable) 

subsets of E, E 1 and E~, such that Eli[E2, E=E~U E 2 and t~*(E1)=I~*(E~)=I~*(E). 

Prooj. Suppose first tha t  E is an element of S. Without  loss of generality, we 

may  assume tha t  p ( E ) =  1. The proof of Theorem 19 assures us of the existence of 

sets E~I and E* 21 satisfying the conditions: 

E* ' !* w - * 'E *~ E1*l][E~1, llt.J21:.cl and ~u*(E~I)• ( i 2 J> l .  

Let  ~11  and ~ 2 I  be measurable kernels of E~I and E* 21, snd let F 1 =Fl l  U F2I. Since 

* * * * ~ * 
/~ (EI1) ~-/~ (E21) "~/Z ( E  -- F21 ) -}-/~*(E - FI1 ) = 2 - ~I(F1) , 

it follows tha t  # ( F I ) = a  x < 1. Since 

Etl - F n  = E - F .  

it follows tha t  / ~ * ( E t l - F n )  ~ 1 - a l ;  moreover, it is easy to see tha t  the equality holds. 

For ff p*(E~l-Fll ) were less than 1 -  al, there would exist a measurable set G con- 

raining E ~ I - F  n and satisfying the inequality #(G)< 1 - a  r But  then E -  G would 

be a measurable subset of E~x U Fl l  having measure greater than al, and, thus, 

( E -  G ) -  F 1 would be a nonnull measurable subset of E ~ I -  F21, contrary to the fact  

tha t  F , I  is a measurable kernel of E~l. In  similar fashion, we find tha t  p* (J~21* - -  -~21) = 

1 - a  1. 

If  a 1 =0 ,  then E~I and E* 2i are the desired sets. I f  a 1 > 0, then let 

E l l = E ~ I - F  1, E 2 1 = E 2 * - F  1. 

Applying the foregoing technique to F1, we obtain disjoint sets A12 and A~2 such tha t  

A l z  U A22 = P1 - F2 and #*(A12 ) =/~*(A22 ) = a  1 - a 2 ,  

where F 2 is measurable subset of F 1 with /~(F~)=a 2 < a  1. Let  

EI~ = E n U A12, E~z = ~'~ U A29. 
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Then El2 H E~s , El,. U E2~ = E -  F s and /~*(E~s ) =p*(E22 ) = 1 - - a  2. 

I f  a s = 0, then E12 U F 2 and E22 have the desired properties. I f  a s > 0, then we repeat  

the process. We proceed by  transfinite induction to construct for each ordinal a < 

(the first uncountable ordinal) a measurable set F~ and disjoint sets EI~, E2~ such that  

E I ~ E I ~ ,  E~DE2~ and F ~ c F ~  if 9' <~ ;  

~u(F~) = a~ < ar = #(Fy), if ? < ~ and ay > 0; 

Ez,, IJ E2~,=E-.F~, and /~*(EI~) =/z*(E2~) = l  - a , .  

Suppose tha t  the sets EI~, E2~ and F~ have been constructed for each ~ < fl 

( < ~ ) .  I f  fl is not a limit ordinal and if a~_l=O we may  take 

.Ffl = 1,~_1, ElI3 = E I . ~ - I ,  E2~ =E2.~-1,  

while if a ~ - l > 0 ,  we find in the same manner as before, a measurable subset Fp of 

F~-I,  with #(F~)=a~<a/j_l, and disjoint sets AI~, A2~ such tha t  

AI~U Aw= F~-I- F~ and #*(AI~) =/~*(A2~) =a~_l-a~. 

In  the latter situation, we define 

Clearly, and 

I f  fl is a limit ordinal, let E ~  = (J~<~E~, let E ~  = (J~<~E~ and let F~ = ~ < ~ F ~ .  

Certainly F$ is measurable and 

a~ = u(F~) = inf {~u(F~) : r162 < fl}. 

I t  is also clear tha t  the inclusions 

E ~ D E ~  and E ~ E ~  

hold for all g < fl and tha t  E ~  0 E*2~ = E - F$. Since E - F$ ~ E ~  ~ E~,  for all ~ < ~, 

we have 

1-a$>~/~*(E~)>~l-a~ for all ~<f l ,  

and thus iz*(E~)=l-a$. By the same argument  we find tha t  * * # ( E z ~ ) = l - a $ .  I f  

a2 =0 ,  we set 

I f  a ;  > 0, we apply the basic technique once again in order to obtain a measurable 
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subset F~ of F~, satisfying /u(F~)=a~<a~, and disjoint sets A,~, A2~ satisfying the 

conditions 

A,~[IA ~, A I ~ U A ~ = F ~  F~, p*(A~)=p*(A2~)=a~-a~.  
Letting 

EI~ = E~ 3 U AI~, E2~ =E~.~ IJ A2~, 

we have EI~[[E2~, E I ~ U E 2 ~ = E - F ~  and /u*(E~)=/a*(E2~)=l-a~. 

By the principle of transfinite induction, the sets E~,  E2~, F~, having the properties 

prescribed above, are thus defined for all ordinal numbers a < ~ .  

:Now it is clear tha t  there must  exist for each natural number n, an ordinal ft, 

such that  a~,,<n-1; for otherwise we should have a~>~n -1 for all f l < ~ ,  and this 

is impossible. I f  f l=  sup. ft., then a ~ - 0 ;  thus, { a : a ~ = 0 }  is a nonempty set. Let  

? =  inf {~ :a~=0} .  Then EI~ and E2y have outer measure 1 and are disjoint, and 

_N = E -  (Elf U E2y) is a null set. The proof of the theorem is completed in the mea- 

surable case by taking, for example, 

E1 = Elf U N and E 2 = E2r. 

In  the general ease, let F be a measurable cover of E, and let v be the measure 

(well) defined on S N E as follows (cf. the proof of Theorem 19): if G is an element 

of S, then v(G N E ) = p ( G  N F). As the argument  given above shows, when applied to 

~, there exist sets E 1 and E 2 such tha t  

E~ [I E~, E = E~ ~ E~ 

and u*(Ex) = u*(Ez) = y(E) = #*(E). 

Since p* and u* agree on the subsets of E, the theorem is proved. 
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