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l .  I n t r o d u c t i o n  

When viewed in a certain light, Tomita's theorem (the main result of the Tomita-  

Takesaki theory--see [3, 14, 15, 16, 17]) appears as the combination of a result on "un- 

bounded" similarity between self-adjoint operator algebras and the special structure of 

a yon Neumann algebra and its commutant relative to a joint separating vector. The main 

purpose of this article is to introduce and develop the theory of such similarities. (See 

section 3.) Our secondary purpose is to present a full proof of Tomita's theorem in the 

style mentioned. (See section 4.) In  connection with this argument, we develop a new 

density result (Theorem 4.10). In  section 2 we prove a bounded similarity result. 

The author is indebted to the Centre Universitaire de Marseille-Luminy, the University 

of Newcastle and the Zentrum ffir interdiziplinaire Forschung Universit~t Bielefeld for 

their hospitality during various stages of this work and to J.  Ringrose, M. Takesaki & 

A. Van Daele, for important  insights into the Tomita-Takesaki theory. Thanks are due 

to the NSF (USA) and SRC (UK) for partial support. 

2. Bounded slmi]arity 

If ~/is a complex Hilbert space and H is an operator on ~/such that  0 < a I  ~ H ~ hi ,  

then H is bounded and sp (H), the spectrum of H, lies in [a, b]. In  addition, H has an 

inverse with spectrum in [b -1, a-X]. H ~ ( T ) = H T H  -1 for T in ~(~/), then ~ is a bounded 

operator on ~(~/) and sp (~) (relative to ]~(B(~/))) is contained in [ab -1, a-lb]. To see this, 

note tha t  left multiplication by  H on ~(~/) has the same spectrum as H, that  right multi- 

plieation by  H -1 has the same spectrum as H -1, and that  these two multiplications com- 

mute. 

We employ the Banach-algebra-valued, holomorphic function calculus (see, for ex- 

ample, [1; Chapter VIII) to discuss holomorphic functions / of an element A of a Banach 
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algebra B. If / is analytic on an open sot containing sp~ (A), we define /(A) to be 

(2hi) -1 fc/(z) (z -A ) - l d z ,  where C consists of a finite number of rectifiable Jordan curves 

(positively oriented) constituting the boundary of an open set containing sp~ (A). The theory 

assures us tha t / (A) ,  as defined, is independent of C. 

LEM.'~A 2.1. I /  "~o is a closed linear subspace o /a  complex, normed, linear space ~q 

stable under the bounded operator A and / is holomorphic on a compact neighborhood ~ o/ 

sp~ (A), where B is the Banach algebra o/bounded linear trans/ormations on ~ and ~ does 

not disconnect the plane C o/complex'numbers, then ~o is stable under/(A). 

Proo/. Let C be a curve, disjoint from ~, in an open set O containing Tl such that / 

is holomorphic on O and [(A)=(2~i) -1 Sc/ (z ) (z -A)- ldz .  Since/(A) is the norm limit of 

approximating sums to the integral and ~0 is closedl it will suffice to show that  ~0 is stable 

under (zo-A)  -1 for each z o on C. Since z--*(zo-z) -1 is hotomorphic on Tl and Tl does not 

disconnect the plane, from Runge's theorem it is t h e  Uniform limit on ~, of polynomials 

Pn- Since ~ is a neighborhood of sp~ (A), p~(A) tends in norm to (% - A )  -L (see, for example, 

[1; Lemma VII.3.13, p. 571J). By assumption ~0 is stable under p~(A). Since ~0 is closed, 

it is stable under (z 0 -  A)-I. [ ]  

With reference to the following lemma, see Gardner's result [2; Corollary 3]. With 

the notation (H and ~) of the first paragraph of this section, we prove: 

LI~MMA 2.2. 1/ HOdH-1c~[ /or some closed subspace 9~ o/ B(~) then q~z is de/ined /or 

each complex number z, q~( A ) = IIZ A H -z /or all A in B(~),  and ~(~)_c?[. 

Proo/. Let vd(z ) (A) be HZAH -~. Then ~v(z) and ~z are entire functions of z with values 

in B(B(~)) (where ~z=(27ri)-I Sc Oz($-q~)-ld~) �9 If C~ is {z: z#= ]z I } (i.e. C "slit" along the 

negative real axis) and r is in (0, l), then z-~z ~ is a one-one, holomorphic mapping on C~ 

with range {z: - r ~  <arg z <rz}.  Thus z-~z ~ has a one-one, holomorphic inverse, z-*z 1/~ 

defined on {z: - r z < a r g  z ~: rr and having C~ as its range. With n a positive integer and 

1/n,in place of r, both q~/~ and ~v(1/n) have spectrum in [a~/~bL1/~, bl/~a-1/~] ( c  {z: - rzr  < 

arg z<r~}).  No w vd(1/n)h(A)=.HAH-1--q~(A), and (~1/~)~=~. since z--,z ~ is one-one on 

{z: -7~[n<argz<~/n}; vd(1/n)=q yn" As {1/n} accumulates at 0 and ~v(z), ~ are entire; 

~(z) = q0* for all z in C. 

Since ~-~$~ is holom0rphic on C~ and. sp q~_c [ab-1, ba-1] c C~, Lemma 2.1 applie s and 
~(~)_=~I. �9 

'The bounded Similarity result referred to in the-introduction appears next  (in slightly 

ex~;endcd form). 
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T a E O R E ~  2.3. I /  ~ and ~ are norm-closed, self-ad~oint subspaces o / ~ ( ~ )  and T is an 

invertible operator in 73(71t) such that TO.IT-I=B, t ~ n  U~U*-- B, where UH i,~ the polar 

decomposition o / T .  

Proo/. Since T is invcrtible, (T*T)t ( = H )  is invertibte and TII  -~ ( -  U) is a unitary 

operator. By assumption UHg~H=-IU*=B, so that  H~)AIt-~=U*BU. As U*BU is self- 

adjoint, H?IH -~ =H-~9,IH; and H~JIH-2=~[. I t  follows from (Gardner [2; Corollary 3]) 

Lemma 2.2 that  H ~ H  -~ =gA. Thus UH~H-1U * = U~U* = B. �9 

3. Unbounded similarities 

Various possibilities for the meaning of "Tg. IT-I=B '' present themselves when T 

is a closed densely-defined operator. A weak interpretation might be: for each A in ~,/, 

there is a dense linear subspace :Do0 f :D(T -x) such that  AT-l(~o)C_ :D(T), TAT-11 :Do is 

bounded, the (unique) bounded extension of TAT-1]:D o is in B, and each operator  in 

is such an extension, where :D(T) denotes the domain of T and T A T - I  I :Do denotes the 

restriction of T A  T -1 to :Do: A slightly stronger interpretation might include the assump- 

tion that  :Do can be found independent of A in ~. We begin our discussion with an example 

that  indicates the need for caution even when dealing with "potentially bounded" opera- 

tors. 

Example 3.1. With the preceding notation, we show that  unitary equivalence of 9~ 

and B does not follow from thc stronger interpretation noted above. In our Hilbert space 

. ~n-1 n),ne,~ ~/, we choose an orthonormal basis (en}. Let T -1 be the operator that  assigns -oo 
O0 O0 * O0 to ~n_l ).~e~, with domain {~.-1 2~e~. ~,,kx n~[2,12< ~}. Then T-~ is self-a~!joint. Let E o 

be the one-dimensional projection with range generated by ">'~_~ n-ie ,  (=xo)i Let Oo be 

the set of those vectors in :D(T -1) such that  ~ o  2 n =0 (so that  :D0 is a linear space). We L , n  -1 

prove that  :D0 is dense by showing tha t  we can approximate each %~ in norm as closely 

as we wish by an element of :D0. Note, for this, that e n o - ~ j ~  m-ien~ (=xm) lies in ~0 
and .that [[ %~ • x m II 2 ~ 1/m. Since ( T  -~x, .x0) = 0 for each x in :Do; Be T-~] :D0 is 0.. I t  follows 

that  (aEo+bl)T-~I :Do-bT-~ I :Do; so that  T(aEo+bI  ) T -~] Do=bl I  :Do for all scalars a 

and b. If 0/is the (two-dimensional):C*-algebra generated by E o and I and B is the algebra 

of scalar multiples of I,  then T ~ T  -1 - B  (in the stronger sense noted above) but ~[ and B 

are not even isomorphic. 

In  the preceding example, ~)0 is not a core for T - r  (i.e. the restriction of T -1 to :Do 

does not have closure T'~I)~. �9 To see this~ note that  tlie Closure of the graph of the restric- 

tion of T ~1 tO adorc is the graph of T-L 'In pa~tiCltlar,'lJhe range of this restriction is dense 
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in the range of T -1, hence in this case, dense in ~.  But  x 0 is orthogonal to the range of the 

restriction of T -x to Z)0 (this is precisely the crux of the example); so tha t  T-I(Z)0) is not 

dense in ~ ,  and Z)0 is not a core for T -x. I t  is exactly in the failure of the lemma tha t  

follows (when Z)0 is not a core) tha t  the pathology of the preceding example resides. 

LEMMA 3.2. I f  H and K are closed, densely.de/ined operators on the complex Hilbert space 

~,  Z)o is a core for H, A is a bounded operator (with domain ~), and KAH is de/ined and 

bounded on Z)o, then KAH has domain Z)(H) and KAH is a bounded extension o / K A H  I Z)o. 

In addition (KAH)* is a bounded operator with domain ~ and (KAH)*[ Z)(K*) = H*A*K*. 

Proo[. Suppose h 0 e Z)(H). Since Z)0 is a core for H, there is a sequence (h,) in ~o such 

tha t  h ~ h  o and H h ~ H h  o. Now A H h , ~ A H h  o, since A is bounded with domain ~ .  By 

hypothesis AHh~ e Z)(K) for each n (as h, E Z)o). Boundedness of KAH [ Z)o assures us tha t  

(KAHh~) is a Cauchy convergent sequence in ~ and, hence, has limit b in :U. But  A H h , ~  

AHh o, KAHh~/c ,  and K is closed. Thus AHh o E Z)(K) and KAHh o = k. 

I f  ]]h0l I = 1 we can choose hn, as above, so tha t  ]]hnl] = 1. I f  b is the bound of the restric- 

tion of KAH to Z)o, then IIKAHh~I I <~b; so tha t  ]]KAHho[ [ <.b. Thus KAHI Z)(H ) has 

bound b, and KAH has domain Z)(H). With x in O(H) and y in ~4, ](KAHx, y)] <. b[[x[[. []y[]; 

so tha t  yeO((KAH)*), and (x , (KAH)*y)=(KAHx,  y). Thus Z)((KAH)*)=~t and 

H(KAH)*yH <bl[yH; so tha t  (KAH)* is bounded. I f  we restrict y to Z)(K*), then (gAHx ,  y) 

=(Hx, A*K*y). Hence A*K*yeZ)(H*) and (KAHx, y)=(x,H*A*K*y); so tha t  

(KAH)*y =H*A*K*y. I 

Remark. I f  H is a positive operator with inverse H -x on the Hilbert space ~ ,  Em 

is the spectral projection for H corresponding to the interval [m -i, m], with m a positive 

integer, and ~m is Em(~), then  0~=1 ~m is a core for H k, for each integer k. To see this 

note tha t  Emx-~x for each x in ~ so tha t  HkEmx=EmHkx~Hkx for each x in ]0(Hk). We 

denote this particular core for H by ~00(H) and observe tha t  ]00(H) = ~00(H-1). 

LEMMA 3.3. I[ H and its inverse H -1 are densely-defined, positive operators on the 

Hilbert space ~,  Z)o is a core/or H -x, 9~ is a norm-closed, linear subspace o[ B(~) such that, 

/or each A in 9~, HAH -1 is de/ined and bounded on l)o, and ~(A) is the (unique) bounded 

extension to :it o[ HAH -x [ ~o, then 9 is a bounded linear mapping o/~I into B(74). 

Proo[. From Lemma 3.2, HAH -1 has domain Z)(H -1) and is a bounded extension of 

HAH-I] Z)o. Thus HAH -1 is the restriction to Z)(H -1) of the (unique) hounded extension 

of HAH-X I ~o. We may  assume, without loss of generality, tha t  ~0o is ~(H-1).  

Let  E m be the spectral projection for H corresponding to [m -x, m], Hm be Emil, "~tm 
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be Era(74), and Hm be the operator on 74 inverse to H m on 74m and 0 on (I-Era)(74). If 

epm(T)=HmTH'~ for T in B(74), A is in the unit ball of 9~, x and y are unit vectors in 74, 

and b is the bound of HAH-I[D(H-I) ,  then ](HmAH'x ,  y~[ = [(HAH-~Em x, E,,y)[ <- 

b]lEmxl[" IEmyH <~b. Thus {II~vm(A)H: m =  1, 2 .... } is bounded. As this is true for each A in 

2,  { ]]~0~ ]9~ ]]: m = 1, 2,.. .  } is bounded, say, by b 0, from the Uniform Boundedness Principle. 

Hence [(HmAH'mx, y~[ <'-.b o for all A in the unit ball of 9~, each pair of unit vectors x and 

y in 74, and all m. With x and y unit vectors in 74m, we have 

[(HAH-tx,  y~[ = ](HmAH~x, y~] <~ bo, 

when A is in the unit ball of 9~. Thus I (~0(A) x, y) I ~< bo for unit vectors x and y in U ~=174~, 

a dense subspace of 74. As ~0(A) is bounded, Hr ~<b o. Since this holds for all A in the 

uHt ball II ll <bo �9 

PROPOSITION 3.4. I[ H and its inverse H -t  are densely-de/ined, positive operators on 

the Hilbert space 74, Do is a core/or H -a, and 9A is a C*-al(lebra such that H A H  -t  i8 de/ined 

and bounded on Do and has a (unique) bounded extension q~(A) bdongin9 to ~ ]or each A in 

9A then q~ is an automorphism o[ 9A (necessarily, bounded) and there is a positive H o in 9A" 

such that HoAH~ t [ D(H -~) = H A H  -t  /or all A in 9A. Moreover q~z is de[ined /or each complex 

z and H~AH -~ has a (unique) bounded extension/rom Do(H) to 74 equal to q~(A) (in 9A)/or 

each A in 9~. 

Proo/. From Lemma 3.3, ~v is bounded. From Lemma 3.2, (HA*H-l) * is bounded and 

everywhere defined; and its restriction to D(H) is H-1AH. Thus the same considerations 

apply, with the roles of H and H -1 interchanged, to yield a bounded linear mapping ~o 

of 9~ into 2.  Now ~p(~0(A)) restricted to D(H) is H-lqJ(A)H. Since the range of H is D(H -1) 

and ~0(A) restricted to D(H -1) is HAH-I; ~0(~v(A))] D(H)=A[D(H) .  As both ~0(~v(A)) and 

A are bounded, A =~0(~0(A)). Symmetrically A =cf(v2(A)). Hence ~ and ~0 are inverses of 

one another. Since the range of H is the domain of H -1, 

ef(A )ep( B) l D(H -t) = H A H - t H  BH -~ = HA BH -t = ~0(AB) [ D(H-~). 

Thus cp(A)cp(B) =~0(AB); and ~0 is an automorphism of 2 .  

Gardner shows [2; Theorem A, p. 395] that  an automorphism of a C*-algebra is imple- 

mented by a bounded invertible operator in the reduced atomic representation of tha t  

algebra. Let  9~ acting on 74o be that  representation and T be a bounded operator with 

bounded inverse such that  ~(A)= T A T  -1 for each A in 9~. From Theorem 2.3, with UK 

the polar decomposition of T (i.e. K = (T*T)t and U = T(T*T)-t),  U2U* = 2  and K 2 K  -t = 

2. Let  ~01(A ) be UAU* and ~0~(A) be K A K  -1 for A in B(74o)- Then ~=~0t~v2; and ~0~ has 
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spectrum (relative to B(B(~) ) )  in some closed, bounded subset of the positive real num- 

bers. From Lemma 2.2, KZO, IK-Z~_~ for each complex number z, and ~0~(A)=KZAK -~. In 

particular, t - ~  is a norm-continuous, one-parameter group of automorphisms of ~. 

Hence (cf. [6; Theorem 5] or [11; 4.1.19]) there is an operator H o in ~" (recall that  9~" acts 

on ~)  such that  q~2(A)---HoAH01 for each A in ~. Note that  ~*=~0 -1 and ~=~p~l (for 

q)*(A) =of(A*)*-(HA*H-I) * =q~-l(A), and, similarly for q%); and q~'--q~r Thus q ~ l  =q~t:  

~ '  =qg*q~2 -1. =q9-1~2; and ~ = ~ .  As in [7; Lemma 2], ~ - - e  t~ for some derivation 5 of~[. 

Now (cf~)*=(cf~)t=q;~t=e-t~=(et~)*=e t~*. Comparing series coefficients, (~* . . . .  5. If A 0 in 

~[" is such that  5=adA0[9~ (cf. [4, 13]), then - 5 ( A ) = A A o - A o A = ( ~ * ( A ) = ( A o A * -  

A*Ao)* ~-AA~ - A ~ A .  Hence A o - A ~  e~ ' ,  ~t =ad  �89 0 +A~)I~, and we may assume that  A 0 

is self-axijoint. I t  follows that  q~(A) --e~(A) = eA~ -A~ for each A in ~, and II o can be chosen 

as the positive operator e A~ (in ~ ' ) .  

]-~t E~ be the spectral projection for H corresponding to [m -1, m], for each positive 

integer m, and ~m be Em(~ ). We show, now, that  for each A in ~[, H~AH -z has a bounded 

restriction to D0(H) ( = U ~-1 ~ )  which coincides with the restriction of HoAH~ z to O0(H). 

Ize~t H m be Emil, H~ be the operator on ~ equal to H z on ~4~ and 0 on ( I -  E~)(~) ,  and 

~ ( T )  be Hm TH~ 1 for T in B(~m), m =3, 4, ... (since ~t and q~z have other meanings). Since 

q)~=q)~; Hq)(A)H -1 and H~AH~ ~ have the same restriction to ~00(H). But Hq~(A)H -~ 

restricted to ]00(H) is HeAH -~. Let ~(B) be H~BH~ ~ for each B in B(:~). The spectrum of 

~7 relative to B(B(W)) is a closed bounded subset of the positive real numbers. The same 

is true for the spectrum of q~ relative to B(B(W~)). Fixing m, let ~ be a closed neighbor- 

hood of both these spectra and let C be a simple, closed curve in the open, right-half plane 

with ~ in its interior. Note that,  for each polynomial p and all x and y in ~m, (P(~) (A)x, y) 

= (p(q~)(E~A Era)x, y). With $ on C, using Rungo's theorem to approximate z-+ (~ -  z) -1 

uniformly on ~ by polynomials, as in Lemma 2.1, there is a sequence of polynomials p~ 

such that  p~(~) tends in norm to (~ - ~ ) - I  and p~(~)  tends to (~ -q ~ ) - I  in norm. I t  follows 

that  
(($ _~)- t  (A )x, y) = ( (~ -~f~)-~ ( EmAEm)x, y) 

for each ~ on C. Hence 

=-~ i  r162 y)dr y) 

= ( H ~ ( E , , A E ~ ) H , ~ x ,  y)  = (AH-e~x, (I-I~)*y). 

Thus H~AH -~ has a bounded restriction to ~O0(H), and this restriction coincides on 

D0(H) with H~)AH~ z. �9 
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THV. ORE~ 3.5. I /  T is a closed ~ densely-de/ined, linear trans/ormation /rom one complex 

Hilbert space "4t into another ~( and T has a (closed) densely-de/ined inverse T -t with core 

~ such that ~)1=-~(TAT-1), TAT- l [  ~ has a (unique) bounded extension to 7K in the 

C*-algebra B /or each A in the C*-algebra ~[, and each B in B is such an extension, then 

U~U-I=B,  where U is the unitary trans/ormation o/ ~ onto ~ appearing in the polar 

decomposition, UH, of T, and II~AH -~ has a (unique) bounded extension to ?H in ~[ /or each 

complex z. There is a positive H o in ~" such that IIo AIt~ ~ I ~)(H-l) = HAH-I  /or each A in 9~. 

Proo/. From our hypothesis,  U- I (Ol )  ( =  ~)o) is a core for H -1 such t h a t  HAH-I[ Do 

has a (unique) bounded extension to ~ in U-IBU, a self-adjoint family  on ~ .  F rom L e m m a  

3.2, (HAH-I[Oo) * is a bounded,  everywhere-defined opera tor  on ~ in U-1BU, whose 

restr ict ion to ~0(H) is H-1A*H. B y  assumption,  U(HAH -I ] 0o)* U -I is the  extension of 

UHAoH-1U-11 ~1 to :~, for some A 0 in 9~. Thus  (HAH-11 ~00)* is the  extension of 

HA oH-I] O0; and H-~A*H2[ 0o(ti) = A o [ Oo(H). From Proposi t ion 3.4, we conclude t h a t  

H - ~ A H ~  I Oo(H) has a (unique) hounded extension in 9~ for each A in 9~ and  all complex z. 

In  part icular ,  H A H  -t ] ~)o(H) has a bounded extension ~(A) in ~,  and T is an au tomorph i sm 

of 9~. I t  follows tha t  Uq~(A) U--l[  O1 --  TAT-11 ]01; and  U~U -1 = B. �9 

LEMMA 3.6. 11/ H is a positive, densely-de/ined operator with a densely-de/ined inverse 

H -1 on the complex Hilbert space ?H, ~)o is a core/or H -1, and A is a bounded, everywhere 

defined operator on ~ such that ~)o ~_ ~)(HAH -1) and H A H  -1 ] ~o is bounded, then, for each 

complex number z in the strip {z: 0 < R e  z < 1} (=S1)  , H~AH-~I ~)o is bounded with (unique) 

bounded extew~ion q~z( A ) to :H. I / x  and y are unit vectors in ~4, then the/unction z ~ < q)z( A ) x, y> 

is holomorphic on St, bounded by m a x  {]JAIl, HHAH-1H} on the closure S;  o / S  t and con- 

tinuous on S~. 

Proo/. Let  Em be the  spectral  project ion for H corresponding to  [m -l, m], with m a 

posit ive integer; and  let :Hm be Em(:H). The  opera tor  E,nH (=Hm)  on :Hm is a bounded,  

posit ive opera tor  wi th  a bounded inverse; so t ha t  H~ is defined and  bounded for each 

complex z. F rom L e m m a  3.2, HAH-11~)o(H } is bounded (with the same bound as 

HAH-1 [ ~0). I f  x o and  Y0 are uni t  vectors  in :Hm, then,  with z in S~, AH-~xo e ~)(H) ~_ ]0(H-'), 

and  

< H~AH-~xo, Yo> = < EmH~AH~E,~xo, Yo> = < H~ EmAH;'~ xo, Yo>, 

and  z-~ / H~ Em A H~ z Xo ' Yo) is entire. Now 

[(Hl+'SAH-l-JSxo, Y0)[ < ][EmHAH-IE, ,][  < ]]HAH-11[ 
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and I(Ht~AH-'Sxo, Yo)l <IIA]] �9 By (a variant of) the Hadamard Three Circle Theorem, 

I(HZAH-Zxo, Y0)] ~<max {IIAII, IIHAH-1]I } for all z in S ;  and all unit vectors xo, Y0 in 

Do(H). Note for this tha t  

I(HZAH-~xo, Yo)] < ]IH~EmAEmH~Z]I <~ m2~I]AH ~ m~HAll 

for ~ ( = t + ~ ) i n  St.  Since :~,~_= :~+~ and We(H)is dense in ~, ]IHUH-%II <ma,~ {IIAU, 
I[I-IAH-lll ), for each unit vector x o in Z)o(H). Thus ii~z(A)H ~max  {IIAII, IIHAH-1ll), for 

z in  S~. 

Let (xn), (yn) be sequences of unit vectors in D0(H) with limits x and y, respectively. 

Then 
[ (~z(A)x, y) - (HZAH-~x,, Y~)] 

<~ l (qpz(A )x, y ) -  (%(A )x,, Y) I + [ (q)~(A )x,, y)  -(H~AH-~x~, Y,~) I 

< II~z(A)It" t l~- z.Jl + [I~(A)II" IlY- Y.II ~ 0 

uniformly for z in S; .  Thus z->(cp~(A)x, y)  is continuous on S~ and holomorphic on S r �9 

With notation as in the preceding lemma, repeated application of it (or changes of 

notation in the argument) yields: 

{.~OROLLARY 3.7. 1] n 1 and n 2 are positive integers, such that 

H-n'AHn'I ~o, H-(n'-I)AHn'-ll ~o .... , H-1AHI ~)o, A, H A g  -1] ~)o ..... H ~ A H - ~ I  ~o' 

are bounded, then z-+(qp~(A)x, y)  is holomorphic on the strip {z: - n  1 <Re  z <n~) (=S~,.~), 

continuous on its closure, and bounded there, where H~AH -~] ~o is bounded/or z in Sn .... 

and q)z(A) is its (unique) bounded extension to ~ .  In  particular, i / H n A H - n l O  o is bounded ]or 

all integers n, then z~(q~z(A)x, y) is entire/or each pair el vectors x, y in "~t; and 

where kA.n=max ([iAll, IIHnAH-n I Doll) and Re z lies in the interval with 0 and n as end- 

points. 

LE~MA 3.8. I / H  is a positive, densely-de/ined operator with a densely-de/ined inverse 

H -1 on the complex Hilbert space ~ ,  ~)o is a core/or H -1, 9~ o is a *-algebra o] bounded operators 

on ~t such that,/or each A in ~o, Do-  ~ D(HAH-~) and H A H  -~ ] ~)o has a (unique) bounded 

~ension ~(A) to ~ in % satis/yi~ [[~o"(A)[[-<<~"~ /or each int~er n and some ~onstant 

k~ (depending on A ); then H~AH ~ ] ~)o(H) is bounded/or each complex number z and each ,4 

in 9g o, and its (unique) bounded extension q~(A ) to ~t lies in 9f~. 

Proo]. From Lemma 3.2 and our hypothesis, HnAH-'*I ~0(H) is bounded for each 

integer n. Thus, from Corollary 3.7, H~AH~[ ~o(H) is bounded for all complex numbers z, 
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z~<cp~(A)x, y> is entire for each pair of unit vectors x, y in ~H and ]<~(A)x, y>[ ~<k~, 

where IRe z] ~< n. If 2~ contains no projections other than 0 and I then q~(A)e B(~4)=9~. 

Suppose E'  is a projection in 9J~ distinct from 0 and 1; and let xo, Yo be unit vectors in 

E ' (~) ,  ( I -  E') (~), respectively. Then 

<cf~(A)xo, Yo) = <q~'(A) E' x o, ( I  - E')yo) = O, 

for each positive integer n, since ~n(A) is in 20. Let/(z)  be k](Z+l)<cfz(A)xo, Yo), for z in 

(~, the (open) right half-plane. Then I/(z) I ~< 1 for z in Cr and/(n) = 0 for each positive integer n. 

Thus/(z) = (z-1)k/l(Z), where/1 is bounded and holomorphic on C~. Multiplying by a posi- 

tive scalar, we may assume that  I/i(z) I ~< 1 for z in (~. Let Fn(z) be ( 2 -  z ) (3 -  z) ... ( n -  z)/n!. 

With e positive, 1 - e  <~lF~(z)[ for all z near the imaginary axis. Thus/1/Fn is bounded 

and holomorphic on Or and ]~l(Z)/F~(z)l <~ (1 -e )  -~ for z near the imaginary axis. From the 

Phragmen-Lindelbf theorem, I/l(Z)/F~(z)l < 1 for z in C~. In particular [/1(1)1 ~< I F~(1)I = 

1In. I t  follows that/1(1) =0 and that  1 is a zero of infinite order for ]. Hence / is identically 

0 on (~r; and ( I -E ' )q~z(A)E '=O for each projection E'  in 2~, each A in 20 and each 

complex z. From this 

(I  - E')cf~(A) E' = 0 = E'cf~(A)(I - E'); 

and E'q~z(A ) =~(A)  E'. Thus ~(A) ~9~. �9 

THEOREM 3.9. I /  T is a closed, densely-de/ined trans/ormation /rein one complex 

Hilbert space ~ into another ~ ,  T has densely-defined inverse T -1 with core 01 such that 

TA  T-11~) 1 has a (unique) bounded extension in a *-algebra el operators 73o acting on ~ /or 

each A in a *-algebra o/operators 2o acting on ~ ,  each B in 73o is such an extension, and 

II HnA H-"  I ~o( H ) II <~ kA I~1/or each integer n and some constant k A (depending on A ), where U H is 

the polar decomposition o / T  and ~0 = U-1(O1); then U2oU -1 = ~ ,H~AH-Z  I Oo(H) isbounded 

/or each complex number z and each A in 2o, and the (unique) bounded extension o/ H~A H -~ I ~o( H) 

to ~ lies in ~ .  In  particular, t ~ H  tt is a strong-opera, or-continuous, one-parameter unitary 

group which gives rise to a one-parameter group o/*-automorphisms o/ 9J~. 

Proo/. Arguing precisely as in the proof of Theorem 3.5, we conclude that, with A 

in 2o, H-*AH~[ ~0o(H)=Ao I ~o(H) for some A o in ~ .  By hypothesis H-2nAH2n I ~o(H)is 

bounded and IIH-~nAHenl Oo(H)II < k~ hI" From Lemma 3.8, H-2ZAH~Z[ ~0o(H) is bounded for 

each complex z and each A in 9~ o and its (unique) bounded extension to ~4 lies in 9J~. In 

particular, H*tAH-UEgf(~ for each A in 20 - hence, for each A in 9J~. At the same time, the 

(unique) bounded extension ~(A) of HAH-S[ ~o is in 9~. Since Uq~(A) V-11 ~1 = TAT-11 l)1 

and, by assumption, T A T  -11 ~)1 has a (unique) bounded extension to ~ in B0; Uq~(A) U -1 e Be. 
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On the other hand, given B in B0, by hypothesis, there is an A in 9/0 such that  B is 

the unique extension of TA T-11 01 ( = Ucf(A) U-11 7D1). Hence B = Uq~(A) U-l; and U-1BU = 

~(A) E~{o. Thus U-1/~ U~10 .  

We note, next, that  the hypotheses apply with the rSles of T and 9~ o interchanged 

with those of T -1 and B0, from which we can conclude, as above, that  ugh0 U - I ~ / ~  

U~[0 U -l, and, hence, that  U2o U -1 = ~ .  To see this note that  

T-~ B T  [ Do(H) = H-~ U-~ B U H [ 7Do(H) = H-Icf( A ) H [ D o ( H ) -  A [ 7D0(H); 

that  is, T-XBT[ 7Do(H) has a bounded extension A in ~[0 and each A in 9~ o is such an exten- 

sion. For the growth condition on the bound, let WK -1 be the polar decomposition of T -1, 

where K -1 : ( T - l ' T - I )  t = (TT*)-t.  Then K =  (TT*)i, and KU is a polar decomposition for 

T. Since T = K U = K W  -x, we have W - l =  U and K =  UHU -1. Thus 

KnBK-n= UHnU-I( Ucf(A ) U -1) UH-'~U-I= UHnq~(A)H-'~U-1; 

so that  Kr~BK -n ] 7Do(K) is bounded and 

[[KnBK_n] 7Do(K)]I = [[Hn+IAH-(n, 1)1 7Do(H)[[ ~ klAn~-l[ 

for all integers n, which establishes the symmetry  between the rSles of T and 9~ o and those 

of T -x and/~0. �9 

4. The T o m i t a - T a k e s a k i  theory  

Throughout this section }~ denotes a yon Neumann algebra acting on the Hilbert 

space ~ /and  x o is a separating and generating unit vector for )~. Let ~ denote the Hilbert 

space conjugate to ~/(so that  ax+y=a'2+ff  and ( i ,  if) = (y ,  x)). With z in ~ ,  we denote 

by 5 the element of ~/corresponding to z. With T an operator on ~/, let T1 be Tx. Then 

T ~ T  is a conjugate-linear, *-isomorphism of /~(~/) onto B(~/). Let SoAx o be A*x o and 

FoA'x o be A'*xo, where A E R and A'E ~ ' .  We shall note (Lemma 4.3) tha t  S o and F o are 

preclosed. Let JAt  be a polar decomposition of the closure S of S o. In  this notation, Tomita 's  

theorem asserts that: 

J ~ J *  = ~ '  and A -,. A~tAA-U is a *-automorphism of ~ for each real t. 

The relation of this theory to unbounded similarity theory lies in the identity 

S A S - I  ~O~o = BCA*~ o = BSAS-IO~o; 

so that ,  if S A S  -~ is bounded, its extension to ~ / i s  in R--'. In  the results that  follow, we 

locate strong-operator.dense, self-adjoint subalgebras of R and ~ '  between which S effects 

art unbounded similarity satisfying the growth condition of Theorem 3.9. 
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LEMMA 4.1. I /  xE]O(F~) and ~G~(S~) then there are closed operators L x and Ry a/- 

/iliated with ~ and ~' ,  respectively, such that L~A'x  o - -A 'x  and R~Axo=Ay  , /or each A in 

and A'  in ~'.  In  addition ~'Xo___ ~)(L*), R x 0 ~ ( R * ) ;  L * B ' x o = B ' F ~ x  , and * R~ Bx  o 

Proo/. With A',  B' in ~ ' ,  

( L~A ' x o, B' xo~ = ( x, F0/~'*~I'~o) -- ( A'  x o, B' F* x~. 

Hence B'xoeO(L* ) and L * B ' x o = B ' F ~ x .  Since L* is densely defined, there is a closed 

operator Lx (mapping ~ 'x  0 as defined). Now U'*Lx U'A 'x  o = L x A'xo for each unitary operator 

U' in ~'. Since ~ 'x  o is a core for L~, L~U~. (See Remark 4.2.) Similarly for ~y. �9 

Remark 4.2. I f  A is a closed, densely-defined operator with core ~)o, and U'*A U'x :-:Ax 

for each x in ]0o and each unitary operator U' in ~ ' ,  then A~?~ (that is, O(U'*AU')  = O(A) 

and U ' * A U ' y = A y  for all y in ~)(A)). To see this, note that,  with y in ~)(A), there is a 

sequence (yn) in 90 such that  y n ~ y  and A y n ~ A y  (since ~)0 is a core for A). Now U'yn~ U'y 

and A U' yn - U 'A yn~  U'Ay. Since A is closed, U' y E ~ ( A  ) and A U' y--  U'Ay. Thus O(A)_~ 

U'*(~)(A)). Applied to U'*, we have ]0(A)~ U'(~(A));  so that  U'(~) (A) )=~(A) .  Hence 

7D(U'*AU') = ~(A) and U'*AU'y = A y  for each y in ~)(A). 

LEMMA 4.3. The operators S o and F o are preclosed linear operators and their closures 

S and F saris/y: S~_ F~, F~_ S~. 

Proo/. With A in ~ and A'  in }~', 

(SoAxo, ~'~o) = (Axe,  A'*xo), 

so that  ~I'~ o E ~(S~) and S~./I'~ o = Fo/~"2 o. Thus S o is preclosed and F0~_ S~. �9 

LEMMA 4.4. I /  TUn and XoEI)(T)N ~)(T* ) then TXoE~)(S ). I /  T '~R '  and xoE 

~0(T') N O(T'*) then T'  xo ~ TO(F). Moreover S T x  o = T*x o and F T '  xo= T'*x o. 

Proo/. Let  VH be the polar decomposition of T. Let E~ be the spectral projection for 

H corresponding to [ - n ,  n] and H~ b e HE~ ( ~ E ,H) .  Then VH~xo~ Tx  o, and S o VH~x o = 

HnV*xo-*T*x o. Thus TXoGD(S), and S T x o = T * x  o. Similarly T ' x o ~ O ( F  ) and FT 'xo= 

T'*x o. �9 

COROLLARY 4.5. The operators S and F are each others ad]oints. 

Proo[. F r o m L e m m a  4.3, S ~  F~. If  x~ ~)(F~), from Lemma 4.1, there is a closed opera- 

tor L~ affiliated with R such that  XoeO(L~)n O(L*). From Lemma 4.4, x=L~xoE]D(S ). 

Thus S = F~. Similarly, F = S~; so that  F* = S~* -- S and S* = F~* = F. �9 
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Since S is a closed operator, it has polar decompositions JAt  and ~ J ,  where J is an 

isometric linear transformation from ~,  the closure of the range of S*(=F),  onto the 

closure of the range of the range of S (viz. ~--), A = F S ,  and ~ t = S F .  Le t  J x  be J*~. Then 

J is a unitary transformation of ~ onto ~ .  Since S -1 is a closed operator (obtained by 

interchanging the rSles of • and ~, x e and x0, and ~ and ~)  with polar decomposition 

A- t J  *, we have 

( s  ~)  = (y,  h -~J*J~o)  = (y,  A*xo) = (J*~0, ~) = (SAx0, ~), 

for each A in ~. Thus/~-�89 is a polar decomposition for S. From uniqueness of the polar 

decomposition for S, A-t = / ~  and J = J.  I t  follows that  JA�89 = ~-~J, from which we have: 

LEMMA 4.6. For each real t, 

JA~J * = s (SF)  ~ = s = (FS) -t  = s 

Among other things, Lemma 4.6 tells us that  if we interchange ~ and R' and let 

~ A ' x  o be J'*x0, -P~Xo be A*x 0, and ~ be _~,  then ?~--A -1. Thus statements proved for 

and A apply to R' and A -~. In view of this symmetry, we need prove only the first asser- 

tion of the crucial "bridging lemma" that  follows. 

LEMMA 4.7. I [  x= (A 1 ' - h i ) -  Aoxo, where a ~ l a  ] and A ~ e ~ '  then L x e ~  and IIL~II <~ 

ao H A~ H, where a o = (2 [a ] - 2 Re a) -t. 1 / y  = (A -1 - h i )  A o x o, where A o e ~,  then Rye  ~ '  and 

][ R~[[ ~<aollAo] [ . 

Proo[. Since A is positive, A ( A - a I )  -x is bounded. Thus xE~)(A)~_D(A�89 

D(F~). From Lemma 4.1, L~7~. Let U H  and K U  be the polar decompositions of L~. Let 

M and N be the spectral projections for H and K corresponding to the[same closed, finite 

subinterval of (a0HA~ll, c~). Then U, M, and N are in ~, U M H = K N U ,  and 

S N x  = SNL~x  o = S N K  Ux o = U * K N x  o = M H U * x  o = ML* x o = M S x .  

If N . 0  then Nxo~O.  By choice of N, 

HA~II ~ IINXoll ~ < ag~HKNxoll ~ = ak~]] v*  gNxoll  ~ 

= a~2HMHU*xoH 2 = a~eHML*xo[[ ~ = a~2[[MSx[[ 2 

= a~2(MSx,  S z )  = a ~ ( S N x ,  S x )  = ag~(Nz,  Ax) 

= 2 ] a [ ( N x ,  Ax) - 2  Re  (a~Vx, Ax) < [[NAx]]~ 

+ [a]~]]Nx][~-2 Re (aNx ,  N A x ) =  HN(A-aI)xH~ 

= IINA;xoI[ ~ < IIa;ll ~ IlN~oll ~ 

Thus N=O, L:  is bounded, and IIL~II <aollA~ll. �9 
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When  A z o = A ' z  o with A in R and A '  in }T, we shall say tha t  A '  is the reflection of A 

(about zo) and tha t  A is the reflection of A ' .  

Definition 4.8. A reflection sequence (of operators for R and 7~' relative to Xo) is a 

sequence (..., A '  ' ' -8, A_~, A_I,  Ao, A1, A~ ... .  ) such tha t  each operator  is the reflection of the 

adjoint  of the operator  following it, and  there is a constant  k such tha t  IIA,II ~<k mnl, 

I[A II-<k 

LEMMA 4.9. The elements in R that belonq to a reflection sequence/arm a *-subalgebra 

Re o/R. 

Proof. I f  A and B are in the reflection sequences ( .... A ' I ,  Ao, A1, ...) and ( .... B ' I ,  

Be, B~ . . . .  ), renumbering,  we m a y  assume tha t  A = A  o and B = B  o. Then aA + B  belongs 

to  the  reflection sequence 

( . . . .  dA'_I + B'_ i, aAo + Be, 5A~ + B'I, aA2 + B2 . . . .  ); 

while A B belongs to  the reflection sequence, 

( .... A_~B_~, A ' - IB' - I ,  AoBo, A[B'I,  ..:). 

Moreover A* belongs to the "ad jo in t"  reflection sequence 

(. A~,Ai* ,A~,  '* * .., A _ t , A _ 2  . . . .  ). �9 

We will speak, too, of a reflection sequence of vectors, ( .... Y-e, Y-I, Yo, Yl, Y2 .... ), when 

Y-~=A-~xo,  Y - l = A ' - i x o ,  Yo=Aoxo, Yl=A' lxo,  Y~=A~x~ and ( .... A j . ,  A'-I, A 0, A'I, A2 . . . .  ) is 

a reflection sequence of operators. Note  tha t  a vector  Yo lies in a reflection sequence of 

vectors if and  only if Yo E D(A ~) and Any 0 E 7~x o N R'x  0 for each integer n, and  provided the 

norm-growth condition holds for the associated reflection sequence of operators. To see 

this, if yo=Aoxo=A'l*xo,  let YL be Alxo  and let y ~  be A-nyo (=Az~xo) and Y~+I be AnY1 �9 

Then ~2~?o = ~Tz = ~ - ~ o  = SF.4'~* Xo = SA~ Xo; so tha t  S-x~2~o = A~ x o = A'I Xo. Since Yx = Fyo; 

we have 

A~y~ = A"+tJ*~o = J*J  A"++J*~o = J*~-"- t~o  = F ~ - ' ~ o  = FYI~'~+ ~ o  = A'~,+ ~ x o 

for some A~,+I in ~ ' .  Thus 

.~21 ~'0 = y -1  = s  = SF2~I  ~0 = '~A;*x0 = S A 0  XO = A~z0" 

A'  Contin, ing in way, and that IlA  ll<k 2  , II for some 
constant  ]r we construct  the reflection sequence of vectors ( .... Y-~, Yo, Yx .. . .  ). 

I f  A*x o = A ' x  o with A in ~ and  A '  in ~ ' ,  then, with B in }~, 

SAS-1B~o = S A B *  xo = B-~*~o = B~I'~o = YI'B~o. 
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Thus S A S - I [ ~ s  has a ~(uniqne) bounded extension ~ '  to ~ / a n d  .4 '~ ~ .  If  A o is in a 

reflection sequence then A0 x0 = A _~x0; so that  SAoS- I [  Rxo has a (unique) bounded exten- 

sion to ~ and this extension, A'  lies in a reflection sequence of operators for ~ and ~ '  

relative to 20. I t  follows that  S induces a similarity (unbounded) of R0 onto the *-subalgebra 

of elements in ~ '  that  lie in a x eflection sequence. The conditions of Theorem 3.9 apply 

and yield the main theorem of the Tomita-Takesaki  theory once we note that  R0--R. 

For this last, we must produce an abundance of vectors and operators in reflection sequen- 

ces. Having done this, we employ the density theorem '(of independent interest) whose 

proof follows. In [5] we gave an example of a type Ioo factor and a proper type Ioo subfact0r 

and a unit generating and separating vector for both. This cannot occur in the finite- 

dimensional case (nor even for finite yon Neumann algebras--and that  forms the basis for 

the results of [5]). In  Theorem 4.10 we supply the condition on the generating vector that  

is needed to return the conclusion to the classical framework. 

THnOR~M 4.10. I /  ~ is a v o n  Neumann  algebra acting on the Hilbert space :H, ~o is 

a sel[-ad]oint subahjebra o[ ~ azwl x o is a unit vector in "~ th~tt is separating and generating 

/or ~,  then the/ollowing three statements are equivalent: 

(i) ~o is strong-operator dense in ~;  

(if) (~o)~Xo is dense in (~)s~Xo; 

(iii) ~,oXo is a core ]or At. 

Proo/. (i)-+(ii). Since ~0 is weak-operator dense in R and the adjoint operation is 

weak-operator continuous, (~o)s~ is weak-operator dense in (R)s~- As (R~)sa and (~),~ are 

convex, (Ro)s~ is strong-operator dense in (R)s~- 

(ii)-~(iii). Since Rx 0 is a core for At, given A in ~, it will suffice to find operators A n 

in Ro such tha t  An.xo-:*Ax 0 ~nd AiAnxo (=J*SAnxo=J*A*~20)->AIAxo (=J*~I*:~o), or, 

equivalently, such that  A* Xo-> A*xo (since J* and x.-,~ are isometrie~s). Now A = H I § iH  2, 

with H 1 and H 2 self-adjoint operators in R. By assumption, there are self-adjoint operators 

Kin and K2~ in ~0 such that  Kl,~Xo-*HlX 0 and K2nxo-~H2x 6. If A ~ K l n + i K 2 n ,  then 

An E Ro, Anxo--> Axo, and A* xo-~ A*x o. 

(iii)-~ (i). We show that  Ro_  ~ R' by  showing that  each self-adjoint H '  in Ro lies in R'. 

Since Ro ~ _ R, we have R ' ~  }~0; so that  ~ = R' and ~0 -- R" = R. With An in ~0, 

(,,SA~xo, H'~o) =: (-4" ~o, H'~o) = (H'2o, A~O} 

If  xE~)(A~), by assumption, there are opel'ators An in ~o s u c h ' t h a t  A ~ x o ~ X  and 

AJA n Xo ( = J*~* 20) --* A Ix.' In  th iscase  <~qA ~ x o, H'2o~ = (JA+A ~ x o, H ' 2  o) ~ <JAtx, H'2o) = 
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< Nx, H'xo); and (/~'Xo, z~n xo) = <An Xo, H'  xo) ~ ( x, H ' xo).. Thus < Sx, H ' xo) = < x, H'  xo) . I t  fol- 

lows that  H'fCoe~)(S* ) (=:D(F)) and FH'~o=H'x  o. Hence the mapping A x o ~ A H ' x  o has 

closure II~ affiliated with ~',  where A takes on values in ~, from Lemma 4.1. If A 6 ~o 

then H~Ax o = A H ' x  o ~HeAxo, since ,HiE P,~. With x in ~/and A~ in }~0 such that  Anxo~x ,  

we have . . . . .  is closed, xE~(H~)  and H~x=H'x .  Thus HoAnx o = H  A n x o ~ H  x. Since H0 

Ho=H'6}q'. m 

In the discussion that  follows, we complete the proof by showing that  vectors in 

(~Xo) f3 E(k -1, k)(~/), where E(k -J, k) is the spectral projection for A (and also A-l) corre- 

sponding to the interval (k -1, k), lie in a reflection sequence; and that the set of these 

vectors, with k taking values in (1, cr is a core for At. Thus ~0x0 is a core for At; and the 

density theorem (4.10) just proved establishes that  R~ -~.  

The essential steps in the argument that  follows are drawn from part (Lemmas 3-7) 

of Haagerup's argument [3]. Using the Bridging Lemma (4.7) and some preliminary ana- 

lysis of the special functions involved, we shall prove: 

LEM~A 4.11. I /  /~(t)=exp ( - - ] t - - a l )  with a real, anvl A 6 ~, then/~ (log A)Axo= Bx o, 

where B 6 ~  and HB]I ~ IIAH. 

Assuming this result, for the time, we prove: 

L E M M A 4.12. I / A  o Xo E E(k -1, k) (=g)/or some k greater than 1 and Ao 6 ~, then A~Ao x o = 

Anxo, where A n 6 ~ and [[A ~[[ ~< k N [IA0[[. In  addition Aox ~ = A 'x  o, where A ' 6  ~'  and llA'll <~ 

k~l[AoH. The statement obtained by interchanging ~ and ~'  in the preceding is also valid. 

Pro@ Since k exp ( - ] t - log k [ ) and exp t coincide on [ - log k, log k.]; we have 

AA0x o = k/logk (log A)A0x 0 = AlX o, 

where A~e R and llAdl < kliAol I. (The last equality uses Lemma 4.11.) Replacing t by -t, 

we also have 

A-1Ao% - / c  / log~ (log A)Aoxo = A .lxo, 

with A_~ in R and IIAdl klI/ol/, Since A~Xoe(RZo) n E(k- ' ,  k)(~/), it follows from wh~t 

we have p r ove d tha t  A A ~ x o J A z x  o, where Ao6R and IIAhI[ <k'llAoll. Itt 'addition A2xo6 

(Rxo) N E(k-1, k.)(:H). Continuing, we construct A= with the desired properties. 

As A-1 plays the r61e e r A  when R and R' /~re interchanged (with the same xo) and 
�9 . : . . 

E(k -1, k) is the spectral projection corresponding to (k -1, k) for both ~" and A -x, we-c/~n 

apply the result just estabhshed to R' and A-~ with the only modification of the conclu- 

sion being the replacement of R by R ' . '  
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From the Bridging Lemma (4.7), (kI+A-1)4Aoxo=A~x o, where A~e R' and [[A~[[ < 

+A- )Aoxo=IcAox o +AlXo, where A, e ~'  and IIA;I] ~kllAoll. (4]c)-t IIAo)I. Thus Aox o = (kI 1 . . . .  ~<~ ' 

(Note for this that  As -x, k)(~) and apply the result of the 

preceding paragraph.) Letting A' be ]cA; +A; ,  the last assertion of this lemma follows. �9 

We conclude from Lamina 4.12 that  each y in (Rx0) N E(k -1, k)(~)  (or in (R'x0) N 

E(]c -1, ]c)(~4)) lies in a reflection sequence. We want, next, to show that  the set of such 

vectors (as/c takes values in (1, ~ )) forms a core for Ai. We prove this in the lemma that  

follows. 

L~MMA 4.13. The linear mani/old [J~=2(~xo) N E(n -1, n)(~) (= ~)) is a core ]or A�89 

Pro@ If A e ~ and 

gn($) = e - N  _ (e n + e - n ) - I  (e- l t -nl  + e-It+nl) 

with n an integer greater that  l, then (gn) is an increasing sequence of positive functions 

vanishing outside (but not on) ( - n ,  n) and converging at each t to e x p ( - I t  I ). (Note, 

for this, that  gn(t)=gn(-t);  so that  we may assume 0~<t; and write gn(t) as exp (--t)[1 -- 

(exp (2n)+ 1)-1 (exp (2t)+ 1)] when 0 ~< t ~ n.) From Lemma 4.11, gn (log A)Az 0 = Bxo, where 

B E ~. Moreover g~ (log A)E n = g~ (log A), where E n = E (exp ( - n ) ,  exp n), since g~ vanishes 

outside ( - n ,  n); and g~ (log A) E~(~) is dense in En(~  ) since gn does not vanish on ( - n ,  n). 

Thus gn (log A)Axo=gn (log A)EnAxo60  for each A in ~ and all n (=2 ,  3, ...). Since 

{EnAxo: A E ~} is dense in En(~); {g~ (log A)E~Axo: A E ~} is dense in En(~). If y E En(~),  

we can, therefore, choose gm in ]0 N En(~ ) such that  (Fro) tends to y. As A~ is bounded on 

En(~), A~gm-~ A�89 Hence (g, A~y) is in the closure of the graph of A�89 [ ]0. Since LJ ~=e E~(74) 

is a core for A~, ~ is a core for A~. �9 

I t  remains to prove Lemma 4.11. 

Proo[ el Lemma 4.11. If 

ha(t) = [eosh (t - a)] -1 ( = 2[e t~  + ea-t] -1) 

then 

h a (log A) = 2(e-~A + e-A-l)-1 = 2i(A + ie"I) -1 (A -1 + ie~l)  -1. 

From the Bridging Lemma, with A in ~, we have ha(log A)Axo=Boxo, where BoER and 

IIB0]] ~< ]JAIl. We use the fact that,  for all real t, 

QO 

e - j~j  = ~. an[cosh t ]  - ( 2 n - ~ )  
71=1 
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and convergence is uniform on the reals, where 0 <an  and ~..n~ art = 1. (This can be proved 

by  s tudying the  inverse to s~2s(s~+ 1) -1 on [ - 1 ,  1] and letting s be exp ( - t ) . )  F rom this, 

we have 

/,(log A ) =  ~ art[h~(log A)] 2rt-1, 
n = l  

where convergence is in the operator-norm topology. Thus, for each A in R, 

oo 

/~(log A ) A x 0 =  ~ an[h~(log A)]2n-IAx0= ~ anBnxo, 
n = l  n ~ l  

where BnE ~ and ]lBnll < {IA]]. Since 0 <an and ~ an = 1; we have tha t  ~n~l anBn converges 

(in norm) to an operator  B in R and [IBII ~< llAl[ �9 
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