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1. Introduction

When viewed in a certain light, Tomita’s theorem (the main result of the Tomita—
Takesaki theory—see [3, 14, 15, 16, 17]) appears as the combination of a result on ‘“un-
bounded” similarity between self-adjoint operator algebras and the special structure of
a von Neumann algebra and its commutant relative to a joint separating vector. The main
purpose of this article is to introduce and develop the theory of such similarities. (See
section 3.) Our secondary purpose is to present a full proof of Tomita’s theorem in the
style mentioned. (See section 4.) In connection with this argument, we develop a new
density result (Theorem 4.10). In section 2 we prove a bounded similarity result.

The author is indebted to the Centre Universitaire de Marseille-Luminy, the University
of Newcastle and the Zentrum fiir interdiziplinaire Forschung Universitit Bielefeld for
their hospitality during various stages of this work and to J. Ringrose, M. Takesaki &
A. Van Daele, for important insights into the Tomita—Takesaki theory. Thanks are due
to the NSF (USA) and SRC (UK) for partial support.

2. Bounded similarity

If ¥ is a complex Hilbert space and H is an operator on 3 such that 0 <al <H<b],
then H is bounded and sp (H), the spectrum of H, lies in [s, b]. In addition, H has an
inverse with spectrum in [, a7!]. If ¢(T)=HTH for T in B(H), then ¢ is a bounded
operator on B(H) and sp (¢) (relative to B(B(H))) is contained in [ab-1, a~1b]. To see this,
note that left multiplication by H on B(‘H) has the same spectrum as H, that right multi-
plication by H-1 has the same spectrum as H-1, and that these two multiplications com-
mute.

We employ the Banach-algebra.valued, holomorphic function calculus (see, for ex-
ample, [1; Chapter VII]) to discuss holomorphic functions f of an element 4 of a Banach
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algebra B. If f is analytic on an open set containing sp, (4), we define f(4) to be
(270)™ { f(z) (z— A)~1dz, where C consists of a finite number of rectifiable Jordan curves
(positively oriented) constituting the boundary of an open set containing spg (4). The theory

assures us that f(4), as defined, is independent of C.

LeMma 2.1, If W, is a closed linear subspace of a complex, normed, linear space B
stable under the bounded operator A and f is holomorphic on a compact neighborhood N of
spg (4), where B is the Banach algebra of bounded linear transformations on ‘U and N does

not disconnect the plane € of complex numbers, then Y, is stable under f(A)

Proof. Let C be a curve, disjoint from 71 in an open set O containing N such that f
is holomorphic on O and f(4)=(2n)~! [ f(2 )~1dz. Since f(A) is the norm limit of
approximating sums to the integral and ¥, is closed, it will suffice to show that U, is stable
under (z,—A)~! for each z, on C. Since z—(z,—z)~1 is holomorphic on } and ¥ does not
disconnect the plane, from Runge’s theorem it is the uniform limit on M, of polynomials
P, Since M is a neighborhood of sp; (4), p,(4) tends in norm to (z— A)~* (see, for example,
[1; Lemma VIL.3.13, p. 571]). By assumption ¥, is stable under p,(4). Since Y, is closed,
it is stable under (z,—4)-L. [ ]

With reference to the following lemma, see Gardner’s result [2; Corollary 3]. With
the notation (H and ¢) of the first paragraph of this section, we prove:

Lemma 2.2. If HUH<U for some closed subspace N of B(H) then ¢° is defined for
each complex number z, ¢*(A)=H*AH* jor all A in B(H), and (A=A

Proof. Let y(2)(4) be H*AH~*. Then y(z) and ¢* are entire functions of z with values
in B(B(H)) (\.vhere @ =(2m0) 7 fo (C — @) 1dl). If Gy is {z: 2 - |2|} (i.e. € “slit” along the
negative real axis) and r is in (0, 1), then z—>2" is a one—one, holomorphic mapping on C,
with range {z: —rn <arg z<rn}. Thus z—>2" has a one—one, holomorphic inverse, z—2!/"
defined on {z: —rmw<arg z< 7z} and having C, as its range. With » a positive integer and
l/n in place of r, both ¢1_/" and y(1/n) have spectrum in [al/"b"l/n bl a —1/"] {z —rn<
arg z<ryz} Now Y (I/n)* ‘ (4) HAH—1.=<p(A), and (gV/")"=g. Since z—>2" is one-one on
{z —m/n <argz<7r/n} yp(1/n)=@V". As {l/n} accumulates at 0 and y(z ), ¢ are entire;
y(z) =¢° for all z in C.

Since {—{? is holomorphic on C; and. sp ¢ < [ab~1, ba~1]< C,, Lemma 2.1 applies and
A <A. ]

"The bounded similarity result referred to in the introduction appears next (in slightly
exténded form).
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TueoREM 2.3. If A and B are norm-closed, self-adjoint subspaces of B(H) and T is an
invertible operator in B(H) such that TAT-'=B, then UNU*= B, where UH is the polar

decomposition of T.

Proof. Since T is invertible, (7*T')t (= H) is invertible and T'II-! (=U) is a unitary
operator. By assumption UHUH-'U*--B, so that HYH-1=U*BU. As U*BU is self-
adjoint, HUH'= H‘QIII and H“)IH 2=9[. It follows from (Gardner [2; Corollary 3j)
Lemma 2.2 that HAH-1=9(. Thus UHAH-1U* = UAT* =B. [ ]

3. Unbounded similarities

Various possibilities for the meaning of “7TAT-* =B” present themsclves when T
is a closed densely-defined operator. A weak interpretation might be: for each 4 in ¥,
there is a dense linear subspace D, of D(T-1) such that AT~ l('DO)C D(T), TATY| D, is
bounded, the (umque) bounded extension of T7AT!| 'DO is in B, and each operator in B
is such an extension, where D(T') denotes the domain of 7" and TAT-!| D, denotes the
restriction of TAT-! to D,. A slightly stronger interpretation might include the assump-
tion that D, can be found independent of Ain % We begin our discussion with an example
that indicates the need for caution even when dealing with ‘“potentially bounded” opera-

tors.

Ezample 3.1. With the preceding notation, we show that unitary equivalence of 9
and B does not follow from the stronger interpretation noted above. In our Hilbert space
H. we choose an orthonormal basis {e,}. Let 7! be the operator that assigns 2% 1 ni,e,
o DX 1 Ane,, with domain (D01 Anen: D1 m?| 4,2 < 00} Then 7-1is self-adjeint. Let E,
be the one- dlmenalonal projection with range generated by >X1nle, (==,). Let D, be
the set of those vectors in D(T-1) such that ®14,=0 (so that D, is a linear space). We
prove that D, is dense by showing that we can .approximate each e,, in norm as closely
as we wish by an element of D,. Note, for this, that e, — >7.; mte,,.; (=x,) lies in D,
and that [[e,, ¥xm||2 ~1/m. Since (T -z, z,> =0 for each x in Dy; B, T-1| D, is 0..It follows
that (aE(+b]) T2 Dy=bT"2| Dy; so that T(aB,+bI)T-2| Dy=bI| D, for all scalars a
and b. If 9 is the (two-dimensional) Q*-algebra generated by E, and I and B is the algebra
of scalar multiples of 1 ,‘then TAT-1= B (in the stronger sense noted above) but A and B
are not even isomorphic.

In the preceding example, D, is not a core for 71 (i.e. the restriction of T-! to D,
does not have closure 7~1). To see this; note that the closure of the griph of the restric-
tion of 71 to a core is the graph of 7-1.'In particular, the range of this restriction is dense
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in the range of T2, hence in this case, dense in }{. But z, is orthogonal to the range of the
restriction of 7-! to D, (this is precisely the crux of the example); so that T-1(D,) is not
dense in H, and D, is not a core for 7'-1. It is exactly in the failure of the lemma that

follows (when D, is not a core) that the pathology of the preceding example resides.

Leuma 3.2. If H and K are closed, densely-defined operators on the complex Hilbert space
H, D, is a core for H, A is a bounded operator (with domain H), and KAH is defined and
bounded on Dy, then KAH has domain D(H) and KAH is a bounded extension of KAH | D,.
In addition (KAH)* is a bounded operator with domain H and (KAH)*| D(K*)=H*A*K*.

Proof. Suppose hy€ D(H). Since Dy is a core for H, there is a sequence (k,) in D, such
that h,—h, and Hh,—Hh,. Now AHh,—> AHh,, since A is bounded with domain }. By
hypothesis AHh, € D(K) for each n (as h,€ D,). Boundedness of KAH | D, assures us that
(KAH",) is a Cauchy convergent sequence in H and, hence, has limit k in . But AHhb,—
AHhy, KAHh,~F, and K is closed. Thus AHh,€ D(K) and KAHhy=F.

If ||ho|| =1 we can choose h,,, as above, so that [|k,|| =1. If b is the bound of the restric-
tion of KAH to D,, then |KAHhA,||<b; so that |[KAHh| <b. Thus KAH|D(H) has
bound b, and KAH has domain D(H). With zin D(H) and yin ¥, |<KAHz,y>| <b|z| - ||¥|;
so that y€ D(KAH)*), and {(z, (KAH)*y>=(KAHz,y>. Thus D(KAH)*)=} and
[(KAH)*y|| <bl|y|; so that (KAH)* is bounded. If we restrict y to D(K*), then (KAHz,y)>
={(Hz, A*K*y>. Hence A*K*y€D(H*) and (KAH=z, y>={x, H*A*K*y>; so that
(KAHY* y=H*A*K*y. ]

Remark. If H is a positive operator with inverse H-! on the Hilbert space ¥}, E,
is the spectral projection for H corresponding to the interval [m~1, m], with m a positive
integer, and H,, is E, (), then UZ., H,, is a core for H*, for each integer k. To see this
note that E,, x>« for each  in ¥ so that H*E,x = E,, H*z-; Hz for each z in D(H*). We

denote this particular core for H by Dy(H) and observe that Dy(H)= Dy(H™).

Lemma 3.3. If H and its inverse H-1 are densely-defined, positive operators on the
Hilbert space W, D, s a core for H-1, U is a norm-closed, linear subspace of B(H) such that,
for each A in N, HAH- is defined and bounded on D,, and p(A4) is the (unique) bounded
extension to W of HAH| Dy, then ¢ is a bounded linear mapping of A into B(H).

Proof. From Lemma 3.2, HAH-! has domain D(H~') and is a bounded extension of
HAH-| D,. Thus HAH-! is the restriction to D(H') of the (unique) bounded extension
of HAH*| D,. We may assume, without loss of generality, that D, is D(H?).

Let E,, be the spectral projection for H corresponding to [m~!, m], H,, be E, H, #,
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be E,(}), and H,, be the operator on ¥ inverse to H,, on I}, and 0 on (I—E,)(H). If
@n(T)=H,,THy, for T in B(}), A is in the unit ball of ¥, = and y are unit vectors in H,
and b is the bound of HAH-1|D(H), then |(H,AHnz,y>|=|CHAHE,zx, E,y)| <
O|| Epnz| - | Enyll <b. Thus {||@.(4)|: m=1,2, ...} is bounded. As this is true for each 4 in
A, {llgn|U]|: m=1, 2, ...} is bounded, say, by b,, from the Uniform Boundedness Principle.
Hence |(H,AH,z,yy| <b, for all 4 in the unit ball of %, each pair of unit vectors x and

yin ¥, and all m. With z and y unit vectors in H,,, we have
[<HAH 2, )| = |<H,AHnz, y>| <by,

when A is in the unit ball of A. Thus |<{p(4)z, y>| <b, for unit vectors z and yin UR-1 Hy,
a dense subspace of H. As @(A4) is bounded, ||@(4)| <b,. Since this holds for all 4 in the
unit ball of ; ||@[| <b,. |

ProrosiTioN 3.4. If H and its inverse H™' are densely-defined, positive operators on
the Hilbert space W, D, is a core for HY, and U is a C*-algebra such that HAH™! is defined
and bounded on D, and has a (unique) bounded extension p(A) belonging to U for each A in
U then @ is an automorphism of U (necessarily, bounded) and there ts a positive Hy in A"
such that HyAH;' | D(H-Y)=HAH for all A in A. Moreover ¢* is defined for each complex
z and H*AH has o (unique) bounded extension from Do(H) to Y equal to ¢*(4) (in A) for
each A in U.

Proof. From Lemma 3.3, ¢ is bounded. From Lemma 3.2, (HA*H~1)* is bounded and
everywhere defined; and its restriction to D(H) is H-1AH. Thus the same considerations
apply, with the roles of H and H-! interchanged, to yield a bounded linear mapping v
of Y into A. Now y(p(4)) restricted to D(H) is H-'p(A) H. Since the range of H is D(H?)
and @(A4) restricted to D(H-Y) is HAH™Y; y(p(A))| D(H) =A| D(H). As both y(p(4)) and
A are bounded, 4 =y(p(4)). Symmetrically 4 =p(p(4)). Hence ¢ and y are inverses of
one another. Since the range of H is the domain of H-1,

@(A)p(B)| D(H-Y) = HAH-'HBH-' = HABH-! = (A B)| D(H).

Thus ¢(A4)@(B)=¢(A4B); and ¢ is an automorphism of .

Gardner shows [2; Theorem A, p. 395] that an automorphism of a C*-algebra is imple-
mented by a bounded invertible operator in the reduced atomic representation of that
algebra. Let U acting on I, be that representation and T be a bounded operator with
bounded inverse such that g(4)=TAT-1 for each 4 in Y. From Theorem 2.3, with UK
the polar decomposition of T (i.e. K =(T*T)t and U = T(T*T)t), UAU*=A and KUK =
A. Let ¢y(A) be UAU* and p,(4) be KAK-! for A in B(H,). Then ¢ =@, ¢@,; and @, has
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spectrum (relative to B(B(H,))) in some closed, bounded subset of the positive real num-
bers. From Lemma 2.2, K K-*c ¥ for each complex number 2, and ¢3(4)=K°4AK*. In
particular, t—~@h is a norm-continuous, one-parameter group of automorphisms of .
Hence (cf. [6; Theorem 5] or [11; 4.1.19]) therc is an operator H, in " (recall that A" acts
on H) such that gy(4)--HyAH," for each 4 in Y. Note that ¢g* =@~ and ¢; =@;" (for
P*(A) =p(4*)* = (HA*H-1)* =@~ 4), and, similarly for @,); and ¢} -=¢,. Thus Pz’ =@, —
@f —@*ps™* —p~lg,; and ¢?=¢i. As in [7; Lemma 2], gh=e" for some derivation ¢ of .
Now (@h)* =(gz) =@z’ =e"" =(e')*=¢"* Comparing series coefficients, ¢*— --0. If 4, in
" is such that d=ad 44| (cf. [4, 13]), then —d(4) =AA0—A0A =0"A)=(4,4*—
A*A)*=AAF — A A. Hence Ay—AF€N’, §=ad 3(4,+45) |, and we may assume that 4,
is self-adjoint. It follows that g,(A4) =e¥(4) =e*Ae~* for each A in 9, and JI, can be chosen
as the positive operator e (in A”).

Let E,, be the spectral projection for H corresponding to [m~1, m], for each positive
integer m, and H,, be E,(H). We show, now, that for each 4 in A, H*’AH~* has a bounded
restriction to Dy(H) (= UZ., N,,) which coincides with the restriction of H5 AI5* to Do(H).
Let H,, be E, H, H be the operator on ¥ equal to HZ on H,, and 0 on (I — E,)(H), and
@n(T) be H,, TH," for T in B(H,), m=3, 4, ... (since ¢, and ¢, have other meanings). Since
@?=g¢5; Hp(A)H' and HiAH;® have the same restriction to Do(H). But Hp(4)H™!
restricted to Dy(H) is H24H-2. Let 5(B) be H3 BHy” for each B in B(H). The spectrum of
7 relative to B(B(H)) is a closed bounded subset of the positive real numbers. The same
is true for the spectrum of ¢ relative to B(B(H,,)). Fixing m, let N be a closed neighbor-
hood of both these spectra and let C be a simple, closed curve in the open, right-half plane
with H in its interior. Note that, for each polynomial p and all z and y in #,,, {p(n) (4)z, y>
={p(gh)(E,AE,)z, y>. With ¢ on O, using Runge’s theorem to approximate z—({ —z)~*
uniformly on # by polynomials, as in Lemma 2.1, there is a sequence of polynomials p,
such that p,(») tends in norm to ([ —%)~* and p,(p%) tends to ({ —¢n)~! in norm. It follows
that .

) A)z, > = —pn)  (EndE,)x, )

for each £ on C. Hence

CHY AHg%z, yy = (f(A)z, y) = 57171 LCZ«C )Y A)z, y>dl
1
T omg

= <H?,,2(E",AE,")H,;22$, Y= <AH_2237’ (sz)*?/>

L (g2 (B AE) %, 4 4L = (92 (B AB) 7, 9>

Thus H?AH—* has a bounded restriction to Dy(H), and this restriction coincides on
Do(H) with HFAH;”. ]
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THEOREM 3.5. If T is a closed; densely-defined, linear transformation from one complex
Hilbert space W into another X and T has a (closed) densely-defined inverse T-* with core
D, such that D= D(TAT), TAT-'| D, has a (unique) bounded extension to K in the
C*-algebra B for each A in the C*-algebra N, and each B in B is such an extension, then
UANU-1=B, where U is the unitary transformation of W onto K appearing in the polar
decomposition, UH, of T, and II*AH-* has a (unigue) bounded extension to H in U for each
complex z. There is a positive Hyin N" such that HyAH; ll DHYY=HAH for each A in 9.

Proof. From our hypothesis, U~Y(D,) (= D,) is a core for H-! such that HAH-'| D,
has a (unique) bounded extension to ¥ in U-1BU, a self-adjoint family on ¥. From Lemma
3.2, (HAH-'|D,)* is a bounded, everywhere-defined operator on # in U-'BU, whose
restriction to D(H) is H-1A*H. By assumption, U(HAH-1| D,)*U~! is the extension of
UHAH-'U-Y D, to X, for some A, in Y. Thus (HAH 1| D,)* is the extension of
HA,H| Dy; and H-2A*H?| Dy(H)=A,| Do(H). From Proposition 3.4, we conclude that
H-¥AH%| Dy(H) has a (unique) bounded extension in I for each 4 in A and all complex z.
In particular, HAH-!| Dy(H) has a bounded extension ¢(4) in Y, and ¢ is an automorphism
of Y. It follows that Up(4) U-1|D,==TAT-| D,; and UAU-1=B. [}

Lemma 3.6. If H is a positive, densely-defined operator with a densely-defined inverse
H-' on the complex Hilbert space H, D, is a core for H1, and A is a bounded, everywhere
defined operator on W such that D,= D(HAH™) and HAH'll D, is bounded, then, for each
complex number z in the strip {z: 0<Rez<1} (=S8,), HZAH*| D, is bounded with (unique)
bounded extension @,(A) to . If x and y are unit vectors in H, then the function z—{p,(4)x, y>
is holomorphic on S,, bounded by max {||4||, |HAH||} on the closure Sy of S, and con-

tinuous on Sy.

Proof. Let E,, be the spectral projection for H corresponding to [m-1, m}, with m a
positive integer; and let W, be E_ (H). The operator E, H (=H,) on H, is a bounded,
positive operator with a bounded inverse; so that H is defined and bounded for each
complex z. From Lemma 3.2, HAH'| Dy(H) is bounded (with the same bound as
HAH-| D). If x, and y, are unit vectors in W, then, withzin S;, AH *r,€ D(H)< D(H?),
and

CHPAH 24, yop = (B H* AHZE g, yo» = (HHE,, AH 7 %4, Yo,

and z—~{(H, E,,AH, x,, y,> is entire. Now

|<H1+‘3AH_1_'310, yo>| S "EmHAH_lEmn < "HAH‘llI
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and |(H®AH-*z,, y,»| <||4|. By (a variant of) the Hadamard Three Circle Theorem,
|[<H?AH xy, yo>| <max {||4|, |[HAH-||} for all z in S; and all unit vectors z,, ¥, in
D,(H). Note for this that

|<H?AH 2y, yo»| < |Hp B, AE,H?|| <m®| A]| <m?|| 4|

for z (=t-+is) in S7. Since W, < H,,,, and Dy(H) is dense in ¥, ||H*AH x| <max {|| 4],
[[HAH-1|}, for each unit vector z, in Dy(H). Thus ||p,(4)| <max {||4], [HAH|}, for
zin S7.
Let (z,), (y,) be sequences of unit vectors in Dy(H) with limits x and y, respectively.
Then
[<p:(d)z, y> —CHAH "z, y,) |
< Kol d)z, y) — @A) 2a, )| + [P A) 2y, y) —CHAH "2y, y> |
<l o=zl + o]l —all >0

uniformly for z in 87. Thus z—>{g,(4)z, ¥> is continuous on S; and holomorphicon §;. W

With notation as in the preceding lemma, repeated application of it (or changes of

notation in the argument) yields:

CorOLLARY 3.7. If n, and n, are positive integers, such that
H-"AH™| Dy, H ™ DAH"|D,, ..., H-2AH| Dy, 4, HAH-| Dy, ..., H*AH ™| D,
are bounded, then z—{@,(A)x, y> is holomorphic on the strip {z: —n, <Re z<ng} (=8, 1),
continuous on its closure, and bounded there, where HZAH-ZI D, is bounded for z in Sy, »,
and @,(A) is its (unique) bounded extension to . In particular, if H*AH-"| D, s bounded for
all integers n, then z—{@,(A)z, y) is entire for each pair of vectors xz, y in H; and

[<pd)z, y>| <kanl]l-||y]l.
where k, ,=max {||4], [H*"AH-"|Dy||} and Re z lies in the interval with 0 and n as end-

points.

Lem»ma 3.8. If H is o positive, densely-defined operator with a densely-defined inverse
H on the complex Hilbert space W, D, 15 a core for H1, U, is a *-algebra of bounded operators
on H such that, for each A in Uy, Dy< D(HAHY) and HAH-| D, has a (unique) bounded
extension @(A) to H in Ny satisfying ||e™(A)|| <K' for each integer n and some constant
k4 (depending on A); then H*AH—| Do(H) is bounded for each complex number z and each A
in o, and its (unique) bounded extension @ (A) to W lies in Ag.

Proof. From Lemma 3.2 and our hypothesis, H"AH-",DO(H) is bounded for each
integer 2. Thus, from Corollary 3.7, H*AH—*| Dy(H) is bounded for all complex numbers z,
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z2—>{p,(4)x, y) is entire for each pair of unit vectors z, y in ¥ and |{p,(4)x, y>| <ki,
where |Re z| <n. If Ap contains no projections other than 0 and I then ¢,(4)€ B(H) =As.

Suppose E’ is a projection in 9, distinet from 0 and I; and let x,, , be unit vectors in
E'(}), (I—E')(H), respectively. Then

<(pn(A)w0, y0> = <(pn(A)Eles (I_E,)?/0> =0,

for each positive integer =, since ¢"(4) is in U,. Let f(z) be k1 V(p.(A)zy, Yo, for z in
C,, the (open) right half-plane. Then | f(2)| <1forzin C,and f(r) =0for each positiveinteger n.
Thus f(z) = (2 —1)¥f,(z), where f, is bounded and holomorphic on C,. Multiplying by a posi-
tive scalar, we may assume that |f,(z)| <1 for z in C,. Let F,(z) be (2—2)(8 —2) ... (n —2)/n!.
With ¢ positive, 1 —¢<|F,(z)| for all z near the imaginary axis. Thus f,/F, is bounded
and holomorphic on €, and |f,(z)/F,(2)] <(1 —¢)~! for 2 near the imaginary axis. From the
Phragmen-Lindelsf theorem, |f,(z)/F,(z)| <1 for z in C,. In particular |f,(1)] <|F.(1)| =
1/n. It follows that f,(1) =0 and that 1 is a zero of infinite order for f. Hence f is identically
0 on C; and (I—E')p,(A4)E =0 for each projection E’ in p, each 4 in U, and each
complex z. From this
(I—EYp(A)E =0 = Eg(A) (B

and E'p,(A)=g¢,(A4) E’. Thus ¢,(4)€As. | |

TaEOREM 3.9. If T is a closed, densely-defined transformation from one complex
Hilbert space W into another X, T has densely-defined inverse T-' with core D, such that
TAT|'D, has a (unique) bounded extension in a *-algebra of operators By acting on X for
each A in a *-algebra of operators Uy acting on W, each B in B, s such an exlension, and
|H*AH-"| Dy(H)|| <k,™ for each integer n and some constant k, (depending on A), where UH is
the polar decomposition of T and Dy=U-Y(D,); then UN U = By, H*AH~*| Dy(H) is bounded
for each complex number z and each A in g, and the (unique) bounded extensionof H*AH-*| Dy(H)
to W lies in Ay In particular, t-H™ is a sirong-operator-continuous, one-parameter unitary

group which gives rise to a one-parameter group of *-automorphisms of Ng.

Proof. Arguing precisely as in the proof of Theorem 3.5, we conclude that, with 4
in Wy, H2AH?| Dy(H)=Ay| Do(H) for some 4, in A,. By hypothesis H*"AH>"| Dy(H) is
bounded and ||H~**AH*"| Dy(H)|| <ki™. From Lemma 3.8, H-*AH?| Dy(H) is bounded for
each complex z and each 4 in %, and its (unique) bounded extension to ¥ lies in Ag. In
particular, H*AH-*€; for each A4 in 9, — hence, for each 4 in . At the same time, the
(unique) bounded extension p(4) of HAH-| D, is in Ag. Since Up(4) U-| D, =TAT-| D,
and, by assumption, 774 7-| D, has a (unique) bounded extension to X in By; Up(4) U-1€B,,.
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On the other hand, given .B in B,, by hypothesis, there is an A4 in 9, such that B is
the unique extensionof TAT-1| D, (=Ugp(4) U~1| D,). Hence B=Up(4) U~};and U1BU =
@(4) €Y5. Thus U8B U< Us.

We note, next, that the hypotheses apply with the roles of 7' and ¥, interchanged
with those of 71 and B,, from which we can conclude, as above, that UdoU1c By
pAo U1, and, hence, that UY; U-! — By. To see this note that

T-\BT|Dy(H) = H*U-*BUH | Dy(H) — H-'p(A) H| Do(H) = A| Do(H)

that is, T-*BT| Dy(H) has a bounded extension 4 in 9, and each 4 in %, is such an exten-
sion. For the growth condition on the bound, let WK-! be the polar decomposition of 7'-1,
where K-t = (T-1*T-1){ —(T7T*)-}. Then K =(TT*)}, and KU is a polar decomposition for
T. Since T=KU=KW-1, we have W-1=U and K=UHU-L. Thus

K"BK-"=UH"UYUg(A)UYYUHU = UH"p(AYH"UY;
so that K*BK-"| D,(K) is bounded and
| K*BK-"| Dy(K)|| = || H"AH " V| Do(H)|| < k"
for all integers n, which establishes the symmetry between the roles of T' and 9, and those
of T-! and B,. |
4. The Tomita-Takesaki theory

Throughout this section R denotes a von Neumann algebra acting on the Hilbert

space H and z, is a separating and generatmg unit vector for R. Let H denote the Hilbert
space conjugate to H (so that az+y az+4 and (Z, §>={y, x)). With z in H, we denote
by Z the element of H corresponding to z. With 7T an operator on %, let T be T. Then
T-T is a conjugate-linear, *.isomorphism of B(¥) onto B(:I_(). Let SyAz, be ﬂ, and
Fozzl’_xo be A™*x,, where AER and A’ € R’. We shall note (Lemma 4.3) that S, and F, are
preclosed. Let JA! be a polar decomposition of the closure S of S,. In this notation, Tomita’s

theorem asserts that:
JRJ* =R and A —>A"AA-" is a *-automorphism of R for each real .
The relation of this theory to unbounded similarity theory lies in the identity
SAS-1BCi, = BCA*z,= BSAS'Ci,
so that, if SAS-1 is bounded, its extension to 5{ is in ﬁ’. In the results that follow, we

locate strong-operator-dense, self-adjoint subalgebras of R and R’ between which § effects

an unbounded similarity satisfying the growth condition of Theorem 3.9.
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LeMma 4.1. If x€D(F§) and §€D(S;) then there are closed operators L, and R, af-
filiated with R and R', respectively, such that L, A'xy—=A'x and R, Axy= Ay, for each A in
Rand A" in R. In addition R'z,< D(LY), Rx,< D(RY); L* Bwy=B'F¥z, and R} Bx,—
BSGj.

Proof. With 4, B’ in R,

(L,A'xy, Bzy> = (x, Fy B*A'z)> — (A'x,, BFiz).

Hence B'x,€D(L!) and L* B'z,— B'Fjx. Since L¥ is densely defined, there is a closed
operator L, (mapping R'r, as defined). Now UL, U’A'xy=L, A’x, for cach unitary operator
U’ in R'. Since R'x, is a core for L,, L,nR. (See Remark 4.2.) Similarly for Ry. [

Remark 4.2. Tf A is a closed, densely-defined operator with core Dy, and U*AU'x - Az
for each  in D, and each unitary operator U’ in R’, then AnR (that is, D(U*AU")--D(4)
and U™AU'y= Ay for all y in D(4)). To see this, note that, with y in D(A), there is a
sequence (y,) in D, such that y,—y and Ay,— Ay (since D, is a core for 4). Now U'y,—~ U’y
and AUy, = U’ Ay, U’ Ay. Since A is closed, U’y € D(4) and A Uy=U'Ay. Thus D(A) =
U™(D(4)). Applied to U™*, we have D(4)< U'(D(4)); so that U'(D(A4))=D(A4). Hence
DWU'*AU'y=D(4) and U*AU'y - Ay for each y in D(A4).

LeMMma 4.3. The operators S, and F, are preclosed linear operators and their closures
8 and F satisfy: Sc Fy, F< S§.

Proof. With Ain Rand A’ in R,
<S0A1'0, AICEO/\ = <Ax0’ A,*x0>:
so that 4'%,€ D(Ss) and S§A'%,= F,A'%,. Thus S, is preclosed and F,=S;. [ ]

Lemma 44. If TR and z,€ D(T)N D(T*) then T €D(S). If T'nR’ and x,€
DTy 0 D(T™) then T’xOE'D(F) Moreover STxg=T*z, and FT'xy=T"*z,.

Proof. Let VH be the polar decomposition of 7. Let E, be the spectral projection for
H corresponding to [ —», n] and H, be HE, (2 E, H). Then VH,x,~>Tx,,and Sy VH,x,=
H, V*xy~>T*x, Thus Txy€D(S), and STx,=T*x, Similarly T'z,€ D(F) and FT'z,—
T4z, |

CoROLLARY 4.5. The operators S and F are each others adjoints.

Proof. From Lemma 4.3, S< Fy. If x€ D(F3), from Lemma 4.1, there is a closed opera-
tor L, affiliated with R such that xz,€ D(L,) N D(L}). From Lemma 44, x =L x,€ D(8S).
Thus 8 = F3. Similarly, F =83; so that F*—=83*=S and 8*= =F. [ |
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Since § is a closed operator, it has polar decompositions JAt and A}J, where J is an
isometric linear transformation from H, the closure of the range of S*(=F), onto the
closure of the range of the range of § (viz. ), A=FS, and A, =SF. Let Jz be J*Z. Then
J is a unitary transformation of } onto . Since S-! is a closed operator (obtained by
interchanging the réles of R and R, z, and &, and H and H) with polar decomposition
A-1J*, we have

(A4S Az, 5 = (y, AW Ag) = (y, A¥eo) = (A%, T = (S Az, ),

for each A in R. Thus A-+J is a polar decomposition for S. From uniqueness of the polar
decomposition for 8, A-*=A} and J=J. It follows that JAt =A-4J, from which we have:

LEMMA 4.6. For each real t,
JAU* =A-t, (SF)t=A; = (FS)-t=A-t.

Among other things, Lemma 4.6 tells us that if we interchange R and R’ and let
SA'z, be A'*%,, F Az, be A*z,, and A be FS, then A =A-1. Thus statements proved for R
and A apply to R’ and A-1. In view of this symmetry, we need prove only the first asser-

tion of the crucial “bridging lemma” that follows.

LEMMA 4.7. If x=(A—al) 1 Ayz,, where a==|a| and AG€R' then L,€R and |L,|| <
ao|| 4o||, where ay=(2|a| —~2 Re a)-t. If y=(A"1—al)Ayx,, where A,€ER, then R,ER’ and
"Ru” <aol|4|-

Proof. Since A is positive, A(A—al)? is bounded. Thus € D(A)<S D(A})=D(S) =
D(F3). From Lemma 4.1, L,y R. Let UH and KU be the polar decompositions of L,. Let
M and N be the spectral projections for H and K corresponding to the same closed, finite
subinterval of (ag]|4o||, ©°). Then U, M, and N arein R, UMH=KNU, and

SNz = SNL,x, = SNKUx, = U*KNxy = MHU*zy = ML} zy = M Sx.
If N30 then Nz,=-0. By choice of N,
l|do||* | o ||* < a5 *|| KNy = ag *|| U* K N ||?

= 4| MHU |[* = ag”|| ML¥ z,* = ag*|| M Sz[*

— ag X M8z, Sx> = ag*(SNz, 8z> = a; Nz, Ax)

=2|a|{Nz, Az) —2 Re (aNz, Az) < | NAz|?

+ |a|2||Nx]|2—2 Re (aNz, NAz) = | N(A —al)x|?

= | Aoz, || < [ Ao||* | o |-

Thus N =0, L, is bounded, and ||L.|| <a,||4o||- [ |
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When Azy=A'zy with A in R and A’ in R’, we shall say that A4’ is the reflection of 4
{(about ;) and that A4 is the reflection of 4'.

Definition 4.8. A reflection sequence (of operators for R and R’ relative to z,) is a
sequence (..., A'g, A_y, A" 1, Ay, A1, A,, ...) such that each operator is the reflection of the
adjoint of the operator following it, and there is a constant k such that ||4,| <k™,
ol <

LEMMA 4.9. The elemenis in R that belong to a reflection sequence form a *-subalgebra
Roof R.

Proof. If A and B are in the reflection sequences (..., 4, 4,4, 41, ...) and (..., B/,
B,, Bi, ...), renumbering, we may assume that 4 =4, and B=B,. Then a4 + B belongs
to the reflection sequence

(-..,GA 1+ BL1,ad,+ B,, aA1+ By, ady,+ By, ...);
while 4B belongs to the reflection sequence,
(. Ay By, A1 B.y, Ay By, A1 By, ...).
Moreover A* belongs to the “adjoint” reflection sequence
(..., A3, A", A5, AN, A%, ... |

We will speak, too, of a reflection sequence of vectors, (..., ¥_a, Y1, Yo» Y1, ¥2» --+), When
Y_oa=A_3Tg, Y_1=A 120, Yo=Ao %0, Y1 =A1%¢, Yo =A,7, and (..., A_y, A", 4y, A3, 4y, ...) is
a reflection sequence of operators. Note that a vector y, lies in a reflection sequence of
vectors if and only if y,€ D(A™) and A™y, € Rz, N R'z, for each integer », and provided the
norm-growth condition holds for the associated reflection sequence of operators. To see
this, if yo=A,2,=A41"7,, let y, be A;z, and let y,, be A"y, (=Aym7,)} and Yy, be Aty,.
Then A,%y=ijy=A-1§,=SFA;*§,=84;x,; so that S-14,%,= A3 x,=A4;z,. Since y, = Fi,;
we have

Ay, = AmJYg = JXTAMT 4G, = J* A"V = FA-"jy = FAg, .1 %y = Ayni1 %y
for some Aj,,; in R'. Thus

AL Zy=§_1=A"'G, = SFA| £,~ 8A "z, = SAy o= s,

Continuing in this way, and assuming that ||du,||<k®, ||Azn.| <k*** for some
constant k, we construct the reflection sequence of vectors (..., ¥_,, ¥g, ¥y ---)-
If A*x,=A'z, with A in R and 4’ in R’, then, with Bin R,

SAS8™'Bi,=SAB*xy=BA*:,= BA'i,= A'Bi,.
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Thus SAS_IIR_I_O has ‘a {unique) bounded extension A’ to N and Aer. If A, is in a
reflection sequenco then Ajz,=A".z,; so that SAOS—1|72£0 has a (unique) bounded exten-
sion to H_.and this extension, fT "1 lies in a reflection sequence of operators for Rand R’
relative to Z,. It follows that S induces a similarity (unbounded) of R, onto the *-subalgebra
of clements in R’ that lic in a reflection sequence. The conditions of Theorem 3.9 apply
and yield the main theorem of the Tomita—Takesaki theory once we note that Ry=R.
For this last, we must produce an abundance of vectors and operators in reflection sequen-
ces. Having done this, we employ the density theorem (of independent interest) whose
proof follows. In [5] we gave an example of a type I, factor and a proper type I, subfactor
and a unit generating and separating vector for both. This cannot occur in the finite-
dimensional case (nor even for finite von Neumann algebras—and that forms the basis for
the results of [5]). In Theorem 4.10 we supply the condition on the generating vector that

is needed to return the conclusion to the classical framework.

TurorEM 4.10. If R is a von Neumann algebra acting on the Hilbert space W, Ry is
a self-adjoint subalgebra of R and x, is a unit vector in W that is separating and generating

for R, then the following three statements are equivalent:

(i) R, s strong-operator dense in R;
(“) (Ro)saxo ’L.S dense ’H’L (R)saxo;
(iil) Rox, s @ core for AL

Proof. (i)—(ii). Since R, is weak-opecrator dense in R and the adjoint operation is
weak-operator continuous, (Rp)s. i8 weak-operator-dense in (R)s,- As (Rp)sa and (R)s, are
convex, (Ry)s i8 strong-operator dense in (R)g,-

(ii)—(iii). Since Rz, is a core for A}, given A in R, it will suffice to find operators 4,
in R, such that A,zy~>Az, and A4z, (—=J*SA,zy—J*A%Ee)~AlAz, (=J*A*E,), or,
equivalently, such that A}z,~>A*r, (since J* and z—Z are isometries). Now 4 =H;+1ll,,
with I, and H, self-adjoint operators in R. By assumption, there are self-adjoint operators
K., and K,, in R, such that K, z,~>H,z, and Ky,x,~ I x5 If A, =K, +1Ky,, then
A,€ERy, Apxy—> Axy, and A%z~ A*x,.

(iii)— (). We show that Ry R’ by showing that each self-adjoint II' in R lies in R'.
Since R, R, we have R'< Ry; so that Rg=R’ and Ry— R"—R. With 4, in R,,

(SA,xg, H'EyY = (A%Ey, H'E) = (H'Zy, A,&o>

If x€D(AY), by assumption, there are operators A, in R, such that 4,2~z and
AVA, xy (=J*A%2,)~ Mz In this case (SA,zy, H'Eyy = (JAYA, 2, H'Zyp— (JAbz, H'Zo» =
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Sz, H'zyy; and CH' g, A, 8,> = Any, H'ryd>— (x, H'zy>. Thus Sz, H'Ey> —{x, H'zy>. It fol-
lows that H'Z,€ D(S*) (= D(F)) and FH'Z,—H'z,. Hence the mapping Az,~AH'x, has
closure I, affiliated with R’, where 4 takes on values in R, from Lemma 4.1. If A€ R,
then HyAxy=AH'z,— H'Ax,, since JI"€ Ry. With z in ¥ and 4, in R, such that 4,z,—>z,
we have HgA,x,=H'A,xy—~H'z. Since H, is closed, x€ D(H,) and Hox=H'z. Thus
H,=H'ER'". ]

In the discussion that follows, we complete the proof by showing that vectors in
(Rz) N E(k1, k) (H), where E(k™, k) is the spectral projection for A (and also A~!) corre-
sponding to the interval (k-1, k), lie in a reflection sequence; and that the set of these
vectors, with k taking values in (1, o), is a core for A}. Thus Ry, is a core for Al; and the
density theorem (4.10) just proved establishes that Ry - R.

The essential steps in the argument that follows are drawn from part (Lemmas 3-7)
of Haagerup’s argument [3]. Using the Bridging Lemma (4.7) and some preliminary ana-

lysis of the special functions involved, we shall prove:

LeMMa 4.11. If {,(t)=exp (— |t—a| ) with a real, and A € R, then f, (log A) Az, = Bx,,
where BER and || Bl < ||A||

Assuming this result, for the time, we prove:

LEMMA 4.12. If Agxy € E(kY, k) (H) for some k greater than 1 and A,€ R, then A"A x,=
A, %y, where A,€R and || 4,]| k™| 4,)]. In addition Agxg=A'z,, where A’€ R and ||A"|| <
k|| 4,||. The statement oblained by interchanging R and R’ in the preceding is also valid.

Proof. Since k exp (- |t —log k}) and exp ¢ coincide on [ — log k, log k]; we have
AAyxy =k frogr (log Ay Agzy = A7,

where 4,€R and ||4,|| <k|[4,]l- (The last equality uses Lemma 4.11.) Replacing ¢ by -t,

we also have

A_lexo ]C/ log k (log A) oxy — -4 ,1:1:0_,

with 4_, in R and ||4_,|| <k||4,]|. Since A4,2,€(Rxz,) N E(k-1, k) (H), it follows from what
we have proved that A4, z,=A4,x,, where -4,€R and || 4, <k A4,[|. In addition A,z,€
(Rxo) N E(k1, k) (). Continuing, we construct 4, with the desired properties.
As A-1 plays the role of A when R and R’ are mterchanged (w1th the same z) and
E(k, k) is the spectral projection correspondmcr to (Ic -1, k) for both A and A- 1 we-can
apply the result just established to R’ and A-! with the only modification of the conclu-
sion being the replacement of ® By R’ '
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From the Bridging Lemma (4.7), (kI +A-1)1A4,z,=Aox,, where A4,€ R’ and || 4yl <
(4k)H| 4y)|- Thus Ayzo= (kI + A1) Agzy=kAgzy+ Aj o, where A1€R’ and [|4;] <Fk|| 4o
(Note for this that Agwy=(kI+A-1)1A4,z,€E(k, k)(H) and apply the result of the
preceding paragraph.) Letting A’ be kAo + A, the last assertion of this lemma follows. W

We conclude from Lemma 4.12 that each y in (Rx,) N Bk, k)(H) (or in (R'zy) N
E(k1, k) () lies in a reflection sequence. We want, next, to show that the set of such
vectors (as k takes values in (1, o)) forms a core for A*. We prove this in the lemma that

follows.
LemMMA 4.13. The linear manifold ULz (Rz,) N E(n1, n)(H) (=D) is a core for At

Proof. If A€R and

galt) = e — (e e )Ll eI M)

with % an integer greater that 1, then (g,) is an increasing sequence of positive functions
vanishing outside (but not on) (—=,n) and converging at each ¢ to exp (— |t|). (Note,
for this, that g,(t) =¢.(—1%); so that we may assume 0<¢; and write g,(!) as exp (—#)[1—
(exp {2n) +1)"1(exp (2t) +1)] when 0 <¢<n.) From Lemma 4.11, g, (log A) Ax,= Bx,, where
BER. Moreover g, (log A)E, =g, (log A), where E, = E (exp (—n), exp n), since g, vanishes
outside ( —n, n); and ¢, (log A) E,(H) is dense in E,(H) since g, does not vanish on (—n, #).
Thus g, (log A)Ax,=g, (log A)E, Az €D for each 4 in R and all n (=2,3, ...). Since
{E,Axy A€ R} is dense in E,(H); {g, (log A) B, Ax,: A€ R} is dense in E,(H). If yE E (W),
we can, therefore, choose ¥, in DN E,(H) such that (y,,) tends to y. As At is bounded on
E,(H), Aty,—Aly. Hence (y, Aty) is in the closure of the graph of At| D. Since U5 E.(H)
is a core for A}, D is a core for At. n

It remains to prove Lemma 4.11.

Proof of Lemma 4.11. If

h,(t) = [cosh (t —a)]~2 (= 2[e* % +e*])
then
ho(log A) = 2(e—*A + A1) = 24(A +ie* )L (AL + de—2I)1,

From the Bridging Lemma, with 4 in R, we have h, (log A) Azy= B,,, where B,€ R and
[| Boll <||4]]- We use the fact that, for all real ¢,

w0
e =S g,[cosh §]"®"V
a=1
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and convergence is uniform on the reals, where 0 <a, and Y%.; ¢, =1. (This can be proved

by studying the inverse to s—2s(s2+1)~1 on [—1, 1] and letting s be exp (—¢).) From this,

we have

follog A)= 2. a,[hy(log 8",

where convergence is in the operator-norm topology. Thus, for each 4 in R,

<] w0
fa(log A)Ax0= Z a‘n[h’a(log A)]Zn—leoz Z Ay Bn Ty,
n=1

n=1

where B,€R and || B,|| <||4]]. Since 0<a, and > a,=1; we have that >3, a, B, converges
(in norm) to an operator B in R and || B]| <] 4]. [ ]
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