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The present paper has several objectives. The first apparent theme is an investigation

of holomorphic functions f(u, z) on € x §, which generalize the classical theta function
B(u,2)= > exp(milleza+2-t2u)) (ECT, 2€9,),
TeZ?

where §), is the Siegel upper space of degree n, and €7 the vector space of all # x s complex
matrices. As is well known, 0 satisfies a transformation formula under Sp(n, Z), and also
another formula under a translation w—u +za +b with a, b in Z". Generalizations of these
two formulas are the conditions we impose on /. Multiplying / by a certain exponential
factor, we associate with f a non-holomorphic function f,(u,2) whose value at a point
% =2p +¢ is a holomorphic modular form on §, if p and ¢ belong to Q, the set of Q-rational
elements of C. In the special case f=0, we have

0,.(u, 2) = exp (i~ H(u — @) (z —Z)Lu)B(u, 2).

Now we consider the group & of similitudes of an alternating form and its restricted adeliza-
tion Gy, the restriction to the identity component being made at the archimedean place.
In order to deal with the modular forms of half integral weight, we introduce a certain
covering & of G4, which is modelled on the metaplectic group of Weil [10]. Then we de-
fine the action of every element of & both on modular forms on §, and on the functions

f(u, 2) with eyclotomic Fourier coefficients so that a reciprocity-law
(1) F(€0, 2) = (), (€2, 'av, 2)

holds for all y€® and all v€Q2", where Q,—(z 1,) and z is the projection of y to Gy
can replace y if the forms are of integral weight (Theorem 3.10). The action of G4, or &

(1) Supported by NSF Grant MCS 76-11376.
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on modular forms is consistent with the concept of canonical models in the sense of [4].
Formula (1) may be considered a “‘generic form” of the main theorem of complex multipli-
cation of abelian varieties or of Siegel modular functions, which was originally proved with-
out theta functions, and then formulated in terms of theta functions in our recent paper
[7]. In fact, (1) enables us to give a simplified proof of the main theorem of [7].

The first two sections of the present paper are devoted to the action of G5, and &
on modular forms on §,, which may be of independent interest, though this part is preli-
minary to the rest of the paper. Formula (1) and its “specializations” will be proved in
§ 3. The next two sections are of technical nature; the proofs of some statements of the
previous sections will be completed there. In § 6, we first observe that if F is a modular

form on §,.,, and if a point Z of §,,, is expressed in the form

#=(i )
U w,

with w €CY, 2€9,, and w€ ,, then F has a Fourier expansion

(2) Fz) =EZ fe(u, 2) exp (7i-tr (§2))

whose Fourier coefficients f, belong to the functions of the above type, where £ runs over
non-negative rational symmetric matrices of degree n. We shall then prove another reci-
procity-law concerning the action of & and its counterpart &’ of degree n+s on f, and F
(Theorem 6.2).

We shall present all these for holomorphic modular forms with a rather general auto-
morphic factor det (cz+d)*"2p(cz +d), where k€Z and g is an arbitrary rational representa-
tion of GL,. The “theta functions” f will also be defined relative to a representation = of
GL,, . The consideration of an arbitrary g or v is made not merely for the sake of generality,
but because there are good reasons for believing that such is natural and even necessary
for the future development of the arithmetic theory of modular forms and zeta functions.
It should be pointed out, however, that the nature of the reciprocity-laws is essentially
revealed in the case of trivial ¢ and trivial 7, and therefore if the reader wishes to have a
quick grasp of the ideas, he may be advised to assume throughout g and 7 to be trivial. In
fact we have stated (1) in that special case.

While our theory may be accepted on its own merits, it has one significant and hidden
aspect. Expansion (2) is actually an example of Fourier-Jacobi series in the sense of
Pyatetskii-Shapiro [3]. Such a series occurs naturally as a Fourier expansion of an auto-
morphic form on a Siegel domain of the third kind. When the discontinuous group is

arithmetically defined, one can ask whether there is a natural class of “‘arithmetic auto-
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morphic forms” which is characterized by some properties of Fourier coefficients and
which plays the role similar to that of the elliptic modular forms with algebraic or cyclo-
tomic Fourier coefficients. Now our results, especially the above two laws of reciprocity,
seem to suggest an affirmative answer to this question. A detailed explanation of the ideas
about this is another of our main purposes of this paper, and will be given in the last
section, to which the preceding sections may serve as a long introduction.

Notation. For a ring X with an identity element, the set of all r xs matrices with
coefficients in X is denoted by X, and simply by X" if s=1; the identity element of X3
is denoted by 1,. Further X denotes the group of all invertible elements of X, The diagonal

matrix with diagonal elements d, ..., d, is denoted by

diag [dy, ..., d,].
For T €C;, we put
eo(T) = exp (2mi-tr (1),

and especially e(u)=e (u)=€*™* for w€C. If T is a hermitian matrix, we write 7>0 or
T >0 according as T is non-negative or positive definite. The Siegel upper space of degree
n is denoted by §,, thus

9, ={z€C;|%2=2, Im (z) > 0}.

We put Q,=(z 1,) for 2€5,.

If K is an algebraic number field, K, denotes the ring of adeles of K, K, the group
of ideles of K, and K, the maximal abelian extension of K. By class field theory, every
element y of K acts on K, as an automorphism. We denote by o’ the image of a €K,
under y. In particular, if K =@, we put, as usual, @, =A and Q3 =A*; further, we denote
by A; the non-archimedean part of A, and by A% the subgroup of A* consisting of the
elements whose archimedean components are positive. For 0 <N€Z and x, y€A], we
write =y (mod N) if 2, —y, € N(Z,); for all primes p, where z, and y, are the p-components
of x and y, respectively. For b€A*, we denote by |b| the positive rational number such
that |b|Z,=b,Z, for all p. We define a compact subgroup Z; of A* by Z; =[], Z,, where

the product is taken over all primes p.

1. The action of G, on modular forms of integral weight

Throughout the first six sections, we let @ denote the algebraic subgroup of GLs,
defined over Q such that

Go = {2 €G Ly, (Q) | ' = v(a)J with »(x)€Q},
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where

0o -1,
1.1) J= (1,, 0),

and G, its adelization. The map »: Go—>Q can be naturally extended to a continuous
map of G, into A”, which is still denoted by ». We denote by Gy, G, and G, the non-
archimedean part of G4, the archimedean part of G4, and the identity component of G,
respectively. We then put Gy, =G; G, and

Go, =G4, NGo = {xEGo|¥(x) > 0}.

2) of Gq, acts on §, by the rule a(z)=(az +b)(cz+d)™ for 2€$,.

Now we take an arbitrary rational representation

Every element o= (Z

e: GL,(Q)~ GL,(Q),
and extend it to a holomorphic representation GL,(C)—>GL,,(C), which is again denoted by

- For o= (Z 2) €Gq, and a C™-valued function f on §,, we define a function f|,o on §,
by
(1.2) (flox) (2) =0(cz+d) f(x(z)  (2€Dn)-

Given a congruence subgroup I' of Go,, we denote by M,(I") the vector space of all C"-
valued holomorphic functions f on §, which satisfy f|,y=f for all y€I' and which are
finite at cusps. Such f may be called modular forms of weight p. If f€ M,(I'), f has a Fourier

expansion

(1.3) 1) =§ c(§)en(é2)

with ¢(&) €C™, where & runs over positive semi-definite symmetric elements of Qn. If n>1,
every holomorphic f satisfying f|,y =f for y €I" has such an expansion, and hence belongs
to M,(I") (see for example [1]). For a subfield i of C, we denote by ,(I', N) the set of all
fin M) with c(£) in R™, and by M,(N) the union of (L', N) for all congruence sub-
groups I'. Further we denote by A,(R) the set of all quotients g~k with A€ 1 (%) and
0=g € M, (N), where w(X)=det (X)*, T=wp with some integer k. Then we put

AL, R) ={f€AR)| [loy=f forally€l}.

It can easily be shown that (T, R) consists of all the holomorphic elements of A4,(T", R)
finite at cusps. If o(X) =det (X)* with k€Z, we write f|,o, My, A for [l o, M, A,
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Let ¢ be a field-automorphism of C. Define the action of ¢ on €™ component-wise.
For f€ M,(C) with expansion (1.3), we define f by
(1.4) f7(2) =2 c(§)7 en(&2).

&

If o(X) =det (X)¥, f is actually an element of M(C); moreover o can be naturally extended
to an automorphism of A4,(C) (see [6, § 4]). We shall prove in § 5 that these hold for an
arbitrary ¢. The notation f is meaningful if ¢ is an isomorphism of a subfield R of € onto
another subfield and f€ A,(R); in particular f* is meaningful for €A™ if f€ A4,(Q,p)-

Now we define an injection «: AX >G4, by

1 0
1.5 =1 5)
In our treatment, we shall often need the strong approximation theorem in Gy, which can

be given as

Lemma 1.1. Let T be an open subgroup of {x€Gy|v(z)= 1} G Then Gy is the product
of Goy, UL{), and T in an arbitrary order, i.e., Gy, =Go L) T =TuZ;)Gq,.= - .

Cf. [4, 1, 3.4; II, (3.10.3)].

We are going to define the action of G4, on 4,(Q,). First we recall that G, acts on
the field A4,(Q,) as a group of automorphisms, and for every tEA’, the action of (t) on
Q. is the same as that of ¢ (see [4], [5], [6]).

TrEOREM 1.2. There is an action of Gy, on A,(Q,y), written as (x, f)r>f* for x€G,,
and {€ A,(Qay), with the following properties:

(i) My(Qay) ts stable under the action;

{ii) the action of G4, on AyQ.) is the same as that mentioned above;

(iii) the action is associative, i.e., [~ = (f°);

iv) (f@gF =F@g", (®g)*=FRg", where [Dg and f®g are naturally defined as ele-
ments of Ayp(Qun) and Auw(Qa) for 1€ AfQus) and g€ A,(Qa);

(v) f*=f| oo if x€Gq.

(vi) fO=f* for t€Zs;

(Vi) f*=f if ®€ Gy

(viii) for each f€ AQ(Qab), the element x of G4 such that f*=f form an open subset of Gy.

This extends the previous result [6, Theorem 5], which concerns the action of G,
on A(Qq) with k€2Z. In the previous papers, we defined f|,« for a€G,, with a scalar
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factor v(x)*'2

, which is different from our present definition (1.2). This change is necessary
to guarantee (iii) in the general case. Before proving our theorem, we first state the unique-

ness of the action as

Prorosition 1.3. The action of Gy, on AyQu) is uniquely determined by (iii), (v),

(vi), (viil).

Proof. Let U={x€G,,|f =f} with any given f. By Lemma 1.1, if U is open, each
element x of G4, can be written as x=w(f)a with €U, t€Z; and «€Gq,. Therefore,
assuming (iii), (v), (vi), we have f*=/*|,a, which proves our assertion.

In this section, we prove our theorem only for 4,(Q,,) with k€Z. The general case
will be discussed in § 5. First put
(1.6) 0@)= > e(vawf2) (2€9,),

veZ®

and for each positive integer &V,

(1.7,) I'y={y€Gq N SL,,(Z)|y =1,,(mod N)},
(1-7b) S1 =G4+ N {Goo+ H GLG(Zp)}:
»
, 1, © .
1.7,) SN={x€Slle (0 1 )(modN) WlthtEZf},
(1.74) ' Sy={x€8,|z=1,,(mod N)}.

Obviously it is sufficient to consider the case k>0. Fix a positive integer k, and put A(z) =
6(z)**. As shown in {7], there is a positive integer M such that h€ M, (I"y). Take any such
M that is a multiple of 4, and put 7' =8}, By Lemma 1.1, every element z of G, can be
written as w=wucx with €7 and x€Gq,. Now we have 4,(Q.,) = A¢(Qup). Define the
action of z on A(Qay) by g% =(9/h)* (h|re) for g€ A4x(Qas)- By [6, Th. 4] or [7, Prop. 1.5],
h|w o€ M(Q,y), so that g* € 4,(Q,p). We see easily that this does not depend on the choice
of » and . Also we have obviously g==g|,.«, g8 =(g2)%, g** =(g%)°, §"*=(¢"*)* for a, BEGy,
and u, vE7. Assume that

(1.8) (g*) = g% for g€ 4(Qap), x€Goy, YEGA,

holds. Given z and y of G4, put x=wux as above and ay =vf with v€T and f€Gq,. Then,
by (1.8), (¢°V =(g"*F =(g")™ =(g*)*f = (g**)# =g**# =g®. Thus the proof of (iii) can be
reduced to (1.8). Observe that if (1.8) is true for some fixed «, y, and g==0, then it is true

for all g in 4,(Q,,) and for the same « and y; if (1.8) is true for e, then so is for a1, There-
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fore it is sufficient to prove (1.8) for g=A and for « belonging to a set of generators, say B,
of Gq,. Given «€ B and y€G,,, put y=vf with v€T and BE€Gq,, and aw=uy with u€T
and y€Gq.,. Suppose (h*)’=h*. Then (he)¥ = ((h2)*)8 = (h*?)# =((h*)?)f =h"*f =h*. Thus it

is sufficient to prove

(1.9) (h*)? = h** for «€B and v€T.

Now by [7, Lemma 2], we can take B to be the set consisting of J and the elements of the form

(a b) contained in Z2". First consider the case a=J. Ifv€ T, we have v = (1 :)) (mod M)

0 d 0
11
with t€Z;. Take (‘f Z) €SLy(Z) so that s >0, (1: q) = (0 ?_1) (mod M), and put =

8
(flln Zi"), ov=wpPx. Then w=v (mod M), so that we€T. Hence A’ =h*, By Prop. A.2
n n.
— kn
of the Appendix, we have hf — (Tl) h. On the other hand, A% =(—14)*"h by [7, (16”)] and

— —_ kn ]
3= (-8—1) 1, so that (h*)’= (Tl) (—2)"h =hb2=h*", which proves (1.9) for a=J. Next

b
g d) €Go, N Z3n. Let N =M -det («) and put v =wf with w€Syand f€G,,.

Then w=(t)(mod N) with t€Zy. Let s be a positive integer such that ~1=s (mod N),

assume «= (

and put y= (g S;) , w=awy 1. Then u€S,,. Therefore h** =h"*f =hv#. On the other hand

(h*)? = (h*)“8 = (ho|h)*P 1A, Let h(z) =2 c(&)e,(6z) be the Fourier expansion of 4. Then
he(z) = det, (d)*3, o(€) en(EbdY)e, (d-1Ea2),
&
hY(z) = det ()72 c(£) e, (sEbd 1) e, (d—1Eaz).
&
Since 2£€Zy, we see that h*€ M, (T'y,Q (¢(1/N))), and hence (h*)*=~k”. By [6, Th. 2, (ii);
Th. 8, (i)], we have (h2/h)® = (h*)/h =h?[h. Therefore (hz)’ =h*® =h**. Thus (1.9) is true for
all = (g 3) and o =J. This completes the proof of (iii). Now assertions (ii), (v), (vi), (vii),

(viii) are obvious from our definition of the action and [6, Th. 2, (ii)]. If /€ M(Q,,) and
2€G,,, fF=(f")* with suitable ¢ and « as shown in the proof of Prop. 1.3. This together
with [6, Th. 2, Th. 4] proves (i).

The above property (vi) can be generalized as follows:

(1.10) (% o(§)en(82))” =o(|b]1,) g o(§) en(|b] £2)
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if bEAY and 3 c(£)e,(£z) € M,(Qup). This can be shown by decomposing b as b=stu with
s=|b|, t€Z{, and u€Qy,.

Let S, be an open compact subgroup of Gy, and let 8=8,G,, ['s N Gq=8. Further
let kg be the subfield of @, corresponding to the subgroup Q*»(S) of A*. Suppose that the

following condition is satisfied:
(1.11) tt)ES if t€ZS and t gives the identity map on ks.

For example, the above Sy and Sy satisfy this.

PrOPOSITION 1.4. The notation being as above, if (1.11) is satisfied, then AyLs, ks)=

{f€ A, Qup)|f* =1 for all x€S}.

Proof. Given f€ A4,(Is, ks) and z€8, put U={y€S|f*=f} and z=w(t)a with w€U,
t€Z{ and a€Gq,. Then ((t)€S by (1.11), so that a€l's. Therefore f is invariant under «,
Ut), and «, and hence f*=f. Conversely, if f*=f for all €8, f is invariant under I'y and
{Zi) N 8, so that f€ 4,(T's, ks), Q.E.D.

2. The forms of hali-integral weight

The purpose of this section is to define a group & acting on the modular forms of half-
integral weight in exactly the same fashion as G,, on A4,(Q.). Let ¢ be as in § 1. With
k€2-17Z and a subfield N of €, we define A, ,(R) to be the set of all functions of the form
6% f with f€ 4,(R), where 6 is defined by (1.6). Also we denote by M, (9) the set of all holo-
morphic elements of 4, (M) that are finite at cusps. If k£ —!€Z and 7(X) =det (X)*~!o(X),
then A4, ,=A;,, and M, =M, ;. If g is trivial, we write A4, , and M, , simply as A,
and M,. The action of an isomorphism ¢ of R onto a subfield of C can be defined on
A (M) by fo =(f/0%)70% for f€ A, ,(R). We shall prove in § 5 that M, (C) =M, Q) ®oC
so that o maps M, ;(C) into itself; its action is defined again by (1.4).

Let € denote the group of all Q-linear automorphisms of the module 4;5(Q,,). For
any finite subset F of 4,2(Q,,), take

{ve€E|f*=f forall fEF}
as a neighborhood of the identity element of €. Then € becomes a topological group. Let
W be the group of all roots of unity. Now we define a subgroup & of Gy, x € with induced
topology by
(2.1) G = {(x, V) €Gs, xE[(f*)2 = L(f)* for all f€ A15(Qu)
with { € W independent of f}.
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The root of unity { being determined by (/)%= {(f2)*, we shall write (x, v} also as (x, {, v)
to emphasize {. If (x, £, v)E® and f, g€ A15(Quy), We have ((f +9)")2={((f+¢)?)°, so that
f'9° =L(fg)*, and hence

(2.2) gIfF=9lf) i (x,v)€@ and f, g€ Au2(Qan)-

For every (€W, we can define an element of € by fi—{f, which is denoted again by C.
Then (1, £2, ) is an element of . Let W, denote the set of all such elements. Then we see

easily that

(2.3) 1>W, >G>0, ~1

is exact, with a natural projection map of @ into G,.. In fact, to see the surjectivity, let
U={y€ea@, |(6?¥=0%}. Given x€G,,, we have z=yif)a with y€U, t€Z, and a=

b
(Z d) €@, by Lemma 1.1. Define v€€ by

2 = (f/0)°0(x(2)) det (cz+d)'7?

with any choice of det (cz+d)™'%. Then (, 1, v) €G.
Now we define the action of & on A4, ;(Q,,) as follows. For (z, v) €® and f€ A, 1(Qup),
we put

(24) Fo0 = (/127 (o)

with any non-zero h€ 4;5(Q,s). This is independent of the choice of h. Moreover f* ="
if g is trivial and k=1/2; further, if (z, ¢, v) €® and k€ Z, we have f©&? =**. As mentioned
above, A, (Qap) = A, 1(Qup) if T(X)=det (X)*~’o(X). But the action of (x, v) on this same
set depends on (g, k). To avoid a complicated notation, we hereafter understand that if
the set is denoted by A, ,(Q.y), the action of & is defined with the same o and k. Notice
that the action of (x, 1, v) is independent of g and k.

b
Let &4 denote the set consisting of all pairs («, w) formed by an element o = (Z d) of
Gq. and a holomorphic function y on §), such that y(z)2=_-det (cz+d) with EW. A law

of composition

(o p(2) (', 9'(2) = (o', e’ (2)) 9" ()

makes B¢ a group. For a function f on §, and f=(a, p) EBq, we define a function f|,,, 8
by

(2.5) HloxB = (Floo)yp™™
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By [7, Prop. 1.5], we see easily that A, (Q,,) is stable under this action, and hence, in

particular, it defines an element of €. Then

(o, p)> (o (@, )

gives an embedding of B¢ into @. Identify @¢q with its image in . Then g is the inverse

image of Gg,, and thus
1->W,~ Eo—>Go,~1

is exact. We see easily that fA=f|, . B if €Gq and f€ A4, 1(Qup)-

Next, for t€Z{, denote by t' the element of § given by fi>f° for f€ 4;,2(Qa). Then
(«(t), ') E®. We see easily that the map t—>(i(t), t') can be extended to an injection ¢ of
A7 into & so that
(26) (Ze@)enE = 8]0l |B]1) TelePen o162
if 2¢ o()en(62) € My, 1(Qan) and DEAL.

Now we can state the properties of the action of & on A4, ,(Q,s) in exactly the same
fashion as in Theorem 1.2 with ®q and ¢, in place of Go, and «. In substance, this is already
done in the above discussion. (See also Prop. 2.2 below.) We note that if I'y is defined by
(a.1) of the Appendix, then

(2.7) y>(y, (Boyp)/0)

defines an injection of I'y into Gq. By a congruence subgroup of Gq, we understand a sub-

group A of B¢ such that:

(2.8,) the projection map of Gg to Gq, gives a one-to-one map of A onto a subgroup I' of
{x€Gq|v(x) =1} which has T'y as a subgroup of finite index for some N;
(2.8,) the inverse of the projection map coincides with (2.7) on Iy for sufficiently large N.

For such a A and a subfield i of €, we define M, (A, R) (vesp. A, x(A, R)) to be the set
of all elements f of T, »(N) (resp. A, (R)) such that f4=f for all BEA. If n>1, (2.8,) is
always satisfied by virtue of the congruence subgroup property of Sp(n, Z).

ProPoOSITION 2.1. For every k€2-1Z, >0, we have M, (C)=M(Q)®oC. Moreover,
for each even positive integer N, let Ay be the image of I'y under (2.7); then M (Ay, C)=
Mi(Ay, Q)®eC.

Proof. As shown in [5] and [6, § 3], there is a model V defined over Q for the compacti-
fication of §,/I"y whose function field can be identified with 4y(I'y, Q); moreover, there
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is a non-zero element ¢ of A4,(I'y, Q), for some positive integer #, whose divisor on ¥ is
rational over Q. We can take k so that 6%*€ M, (T',, Q). Then 6% /g€ 4Ty, Q). It follows
that the divisor of 6 on V is rational over Q. Therefore, identifying M, (Ay, Q) with a linear
system on V rational over @ in the same manner as in the proof of [5, Th. 6], we obtain

the second assertion, from which the first one follows immediately.

ProrosiTion 2.2. The projection map of & onto G, is open and continuous. More-
over, & is locally compact, and 1,(Z)B oGy, is dense in &, where we embed Gy, in & by
wdentifying x with (x, 1) for x€GQ,..

Proof. With an open compact subgroup 8 of G;, a neighborhood Y of the identity in
Gy, and a finite subset F of 4;,2(Q,;) containing 0, we put

(2.9) UBY, F)={(x,v)€G|r€SY,h* =h forall hLEF}.

The sets of this type form a basis of neighborhoods of the identity element of &. Given
such a set, let
T = {x€8|[(h/0)" = /0, (h*)* =h? for all hE F}.

Then T is an open compact subgroup of G;, and U(SY, Fy> U(TY, F). For every z€TY,
define an element v of € by f*=(f/0)*6. Then (x, v) € U(TY, F). Thus we see that the projec-
tion of & onto G4, gives a one-to-one map of U(TY, F) onto T'Y. Our assertions except
the last one follow from this fact. Let (y, w) be an arbitrary element of &. Given S and F,
define 7' as above, and put y=wzi(t)x with x€TG, ., t€EZ{, and x€Gq, by Lemma 1.1.
Define again v for z as above. Then (y, w)~1(z, v),(f) is an element of & whose projection
to G4, is o, and hence it belongs to . This proves the last assertion.

Given F, 8, and T as above, take an even positive integer N so that Sy < TG ,. Ob-

viously
Thus the sets U(Sy, {§}) with 0 <N €Z form a basis of neighborhoods of 4§ modulo G,.

ProrosiTioN 2.3. For every even positive integer N, we have
(2.11) U(Sy, {03) N Bg = Ay,
(2.12) =t if yEUSy, {0}) and f€ A, (Ax, Qe(l/N).

Proof. Equality (2.11) is obvious. To show (2.12), let y€EU(Sy, {0}), € A, 1A,
Q(e(1/N))), and V={u€U(Sy, {63})|(f/0%)*=//0F}. By Prop. 2.2, y=uy(t)f with u€V,

t€Zy and fE€Gg. We see that t=1 (mod N}, and hence 4 (t)€ U(Sy, {8}), so that fEAy by
(2.11). Therefore f* =(f*)8 =f.
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3. Generalization of theta functions

In this section, we consider a certain class of holomorphic functions on €7 x §,, which

includes classical theta functions as special cases, where s and n are arbitrary positive

Z) of Go, on €7 x H, by

. . . . a
integers. First we define the action of an element a = (c

8.1 o(w, z) = (Hcz+d) u, uz)) (w€EC}, 2€PD,).

We also define the action of an element f=(x, y) of Gy on §, and on €] x§H, to be the
same as that of «, and put »(8) =»(a). Throughout this section, & will denote a non-negative
element of 2-1Z, and & a non-negative symmetric element of Q3. Also we fix a polynomial

representation
(32) 7: GLy,(Q) > GL(Q),
and use the same notation v for its natural extension to GL, (). For a C"-valued func-
tion f(u, z) on C7 x §, and f= (e, ) EGq with a= (Z Z) , we define functions f|, .8 and
flee.eB on € x 9, by

czt+d 0

33) by =pe (55", 0 ) Hotm o,

cz+d cu

B4)  (floreB) (, 2) =vp(2) e (— 3 v() & tulcz+d)? cu) T ( 0 »a) ls) i floe(u, 2)).

When k€Z and y(z)?=det (cz+d), we denote f|, .8 and f|, (B also by |, ;xand

f | T,k & &.
Let us now associate with a given f two C"-valued functions P* {fand P, ¢f defined by

1, (z—2)'u

35) E == w0 © ) ),

ln (z—z)hl (u_d)

AN VOR)

(3.6) (Peef) (u, 2) =e(3E - Hu—@) (2—2) )T (
It can easily be verified that for every f€®,,

(37) Pr'n(flt.k.Eﬁ)=(Pt'ef)l‘t-kﬁ’
(3.8) P, (fleieB)=PreDlerB  @=v(B)E).

From this and an obvious relation f|, 4(86) =(f|+.x B)| +.x 6, We obtain

(3-9) (Flae. P lcknd = Flee.e(BO) i =»(B)7E.
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Let A be a congruence subgroup of Gq as defined in § 2, and A a lattice in Q3". Our
main object of study in this section is a holomorphic C™-valued function f on €} x ), satis-

fying the following two conditions:
{(3.10) flee,ey =1 forall yEA,

(3.11) flutzp+q,2)=e—E(} - 'pep+pu)) T ((1)" a f ) Hu,2)

for all (2) €A with p and ¢ in Q7.

Obviously such an f is periodic as a function in the real parts of % and z, so that it has a

Fourier expansion of the form

(3.12) flu,2)= 2 3 c(n, A)eq(nz+ud)

neY AelL

with ¢(y, A)€C™, where L is a lattice in Q3, and Y is a lattice in the vector space
{n€Qz|'n=n}. I n>1, we denote by T, ; A, A) the vector space ofiall holomorphic f
satisfying (3.10) and (3.11). In the case n=1, we define 7', , ((A, A) under a certain addi-
tional condition (3.23) below. For the moment, let us assume either #»>>1, or as if the
definition for n=1 is already given.

For a subfield 3 of C, we denote by T, ; (A, A; ) the set of all fET, , (A, A)
with expansion (3.12) whose coefficients ¢(), A} have components in . Further we denote
by T'; &, ¢(N) the union of T, , (A, A; R) for all possible A and A,and put 7', 5, =T 4 ¢(C).
I k€Z, T, (', A) and T, (T, A; R) can be defined for a congruence subgroup I' of
Go. in a similar way. To simplify our notation, we write hereafter f*, f,, and f4 for P™¢f,
P, .f, and f|, ;. ¢B, when f€T, . . or more generally when f satisfies (3.10) and’(3.11);
further, if 7 is trivial we write T  for T'; , ..

For each z€§),, define a hermitian form Hy , and an alternating form E, , by
(3.13) He (u, v)=2i-tr (&-"a(z—2)" ),
(3.14) 2¢- By (u,v)=Hg (u,v)— He (v, u) (u, vECT).
Put Q,=(2 1,). Then
(3.15) E: (Q.a, Q,b)=tr (£-%aJb) (a, bDER).

Tf €T, . (A, A) and I=2p+q with (;") €A, we have

316)  furba-adé e (GHequrn)e(e €70 rus

3.17) w1, 2) = (3¢ - 'p) e(Be., (1, w)(2) f,(u, 2).
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Now, for f€T, , ; and elements r and r’ of Ry, we have

‘ 1
(3.18) Tulzr +7',2) =e (A& fr(er + 1)) T (0" ; ) fer +1', 2).
8.
This is obviously holomorphic in z. Now for f=(«, y) €E@q with a= (: 2) and v€RZ",
we have

cz+d 0

(3.19) Fo(Qucor, oz)) = w(z)”‘r( 0 v ls) (P)u(Q, -2, 2)

This follows immediately from (3.8). Therefore, if we define a representation g of GL, by

X 0
(3.20) e(X)=r(0 1s),

and put k,(2) =1,(Q,v, 2) and h,(z) = (f8), (Q,v, 2), then

1, ©
0 )

(8.21) PoloxB=7 ( 1 ) by, where w=taw.

s
On the other hand, put g(v) =f,(Q,, 2) for v €Q2" with a fixed z. Then (3.17) together with
(3.15) shows that, given any lattice L in Q3", we can find another lattice L' < L so that g
defines a function on L/L’. Therefore, if A; denotes the non-archimedean part of A, then
g can be uniquely extended to a continuous function on (Ag)?". (Cf. [7, pp. 683—4].) Thus
f+(Q,v, 2) for v€(A;)*" is meaningful. Coming back to the above A,, (3.21) implies

(3.22) k| .17 =y if vEQS" and y belongs to a sufficiently small congruence subgroup of Gq
depending on v.

Therefore if n>1, we see that

(3.23) 1,(Q,, 2) for every fixed vEQZ" belongs, as a function of z, to M, «(C), where o is
defined by (3.20).

Now in the case n=1, we define T', . (A, A) to be the set of all holomorphic f satisfying
(3.10), (3.11), and (3.23). Condition (3.23) is essentially a condition on the Fourier coef-

ficients of f (at all cusps) as shown by the following proposition and its proof.

ProrosIiTION 3.1. If { is an element of T, ,  with expansion (3.12), then c(n, 2)==0
only when 1 >0, and moreover, for a fized 7, there are only finitely many A such that c(z, 2)=0.
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Proof. Observe that if p, g€QF, we have

I,
peptaa=c(; 2 )Saed
s/ &
with
(3.24) a(8) = e&-'pa(2) 2. elAg)elr, A),
.7
where the sum is taken under the condition
(3.2¢4) 20 =20 +pé-*p+pA+ii-p.
If { is not non-negative, (3.23) implies that (3.24) must be 0 for all g€ Q. Therefore
(3.25) c(n, 1) =0 only if 2n+p&-p+pA+'A-p=0 forall p€Q;.

Taking p to be 0, we see that c¢(#, 1) =0 unless % >0. For a fixed 7, there are only finitely
many A in a given lattice satisfying the inequality of (3.25) for all p€Q;. This completes
the proof.

Note that the sum of (3.24) is a finite sum. In fact, if c(s, 1)3=0, we have 2 +4p&-fp +
2pA+2-t2-"p>0 by (3.25), so that (3.24’) shows 9 <2{+p&-'p. There are only finitely
many such 7 >0 in a lattice for fixed p and £, which proves the desired finiteness.

ProrosiTiON 3.2. Let R be a subfield of C containing Qg and let f€T, ; .. Then (i)
FET; 1, e(R) if and only if [,(Q,0, 2) €M, (R) for all v€QY; (ii) if fE€T, 1. ¢(R) and BES,,
then fE€T, . (R) with { =v(f)1&.

Proof. Consider expansion (3.12) for f. If f€T, , (), then obviously f,(€2,v,2)€
M, 1 (R) for all v€QF". Conversely suppose f,(, z) has Fourier coefficients in R”™ for every
r€Q;. This implies that

> cln, Aye(Ar)ER™  for all r€QF,
7

and hence c(, ) €M™ To prove assertion (i), first assume R=C. If n>1, the desired
conclusion follows easily from our definition of T,  ;; if » =1, we need (3.21). This result
together with assertion (i), (3.21), and the fact that M, «(R)F =M, (RN) proves assertion
(ii) in the general case.

Typical examples of functions of 7', ; with s=1 are provided by

(3-26) 0w, 20, 9) = 2 e(} ‘vz +"e(u+q)),
z-peZ”

(3.27) P(u, z; p, ¢) =e(}"u(z—2)"u)0(x, 2 p, 9),

(328) ‘PI(% %P, Q) = e(% t(u -—?Z) (Z '—2)_1?")6(”: 2P, Q),

4 — 782901 Acta mathematica 141. Imprimé le 1 Septembre 1978
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where w€C* and p, g€R™ In fact, if f(u, 2) =0(4u, uz; p, q) with p, ¢€Q" and positive
rational numbers A, u, then f€ T2 ,(Q,,) with v =242/, and

f*(u, 2) = 9, pz; 9, 9)s - [, 2) = ¢'(Au, pz; p, 9)
(cf. Appendix and [7, § 1]). To give an explicit example of (3.21) or (3.22), put

(3.29) 1z v, wp, q) =@ (zv+w, 2 p,q) (v, w, p, gER"),
v, = (Boy)/0 (y€ly).

We obtain, from (a.3) of the Appendix,

(3-30) 1(¥(2); v, w; p, q) = e(("pg —P*T*)[2)p,(2) x(2; V¥, w*; P*, €%)
for every y €Iy, where
v* v\ (p* P
—t =t
()= () (7))
Also we note that
(3.31) 1z 0w p, q) = e(— - fow~'v)0(0, 2, v +p, w+g).

This follows from [7, (11)] and was actually stated as [7, (27)].
For fET, 4 (A, A; R) and e €GL,(Q), put

g(u’ z) =7 (:)n g) ]‘(ue, Z), C =gk %,

Then g€T, ; (A, Ae~1; R). Therefore, to discuss the nature of f, we can simplify our

discussion by assuming that
(3.32) & =diag [&, ..., &, 0,...,0], r=rank (&),
with positive integers £;, and also that A > Z3™
ProrosiTion 3.3. Suppose that & is given by (3.32), and write the variable u on C
in the form u = (v, w) with v€C; and weC}_,. Define a representation w of GL, . by

X 0

XEGLy4,).
50 ) wean.)

w(X)=1:(

Then, for each f€T, , ., there is an element g of T,y n such that f(v, w,2)=g(v, z), where
n=diag [&, ..., &]. Moreover, f,(v, w, 2) =¢,(v, 2) and

o, w,z)=1 ((1)"” v(ﬂ)gl i ) g°(v,2) for every BEG,.
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Proof. For any fixed v and z, let 2(w) be a component of the vector f,(v, w, z). Then
(3.17) implies that

(3.33) h(w+2zp +q) = h(w) for all p, g€EL,

where L is a lattice in QF_,. Now (3.6) shows that 4 is a finite sum >, 4,(w) B,(x) with
holomorphic functions 4, and monomials B, of the components, say z;, of =1Im (w).
Let us consider this as a polynomial in z;, and prove, by induction on the degree of the
polynomial, that it is a constant, involving neither w nor z. First suppose that it is of
degree 0, i.e., & is holomorphic in w. Then (3.33) implies that k is a holomorphic function
on a complex torus, which must be a constant. In the general case, applying the induc-
tion assumption to oh/0w,;, we see that h(w)=Ayw)+>, ; a,;%,; with a holomorphic 4,
and a;€C. Then (3.33) shows that 04,/6w,, is invariant under w+>w +2zp+¢, and hence
is a constant. It follows that h(w)=b +tr (Dw+ E®) with b€C and D, E€Cy". Again
from (3.33), we obtain

tr (D(zp+q)+E(Zp+q)) =0 forall p,q€EL,

s0 that D = E =0. Thus we have proved that f,(v, w, z) does not depend on w. This together
with (3.6) shows that f(v, w, 2), for fixed v and 2, is a polynomial function in w —. Being
holomorphic in w, it must be a constant. Thus we can put f(v, w, z) =g(v, 2). Then it is
straightforward to verify all our assertions.

Before proceeding further, we prove an easy

LeEMMA 3.4. Let A be an arbitrary set, and B a domain in €, and let f,(u, 2), ..., fu(u, 2),
g(u, ) be complex valued functions on A x B, holomorphic tn z, where w€ A and z € B. Suppose
that the functions f,(u, 2,), ..., fx(t, 2,) on A are linearly independent over C for every z,€ B,
and g(u, 2) = D1 bylz f,,(u z) with functions b, on B. Then hy is holomorphic on B for every k.

Proof. For fixed u and z, put

X(u, 2) = {(1, --» €n) €C| D Cifilu, 2) =0}

For any fixed z,€ B, we have (uc4X(u, 2,)={0}, so that there exist m points u,, ..., %,
of 4 such that Njl1X(w;,2)={0}. This means that det (f,(u;, %)), 0. Solving the
equations

ujaz)_ zhk fkunz) (j=17--';m)>

we see that Ay is holomorphic in a neighborhood of z,, QED.
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ProrosITION 3.5. If n>1, every f of T} (R) has an expression

(3.34) fd)= 3 oe) S efd(}-tmzetton)

heH/IK z—heK
with ¢, € Mi_ai2)(R), where H and K are lattices in the vector space

Q7 /{y€Qs|ys =03,

and r=rank (§). Conversely, any such expression defines an element of Ty (R); this is so

even if n=1,

Proof. Suppose f€ Ty, (A, A). Take ¢ € GL,(Q) so that Z;» = Ae~! and &&- e =diag [{;, ...,
£, 0, ..., 0] with positive integers ¢,. Put { —e&- % and g(u, z) =f(ue, z). Then g€ T (A, Z7").
Let u, be the v-th column of . By Prop. 3.3, ¢ depends only on uy, ..., #,, and if v <7, we
have

glores Uy T2p 4+ ¢, .. 2) = e( = (3 "p2p + P ))g( -, %y s 2)

for p, g€Z". Therefore, as a function of u,, it is a linear combination of 6((,w,, {,2; %, 0)
with % in a set of representatives for £, Z"/Z". Consequently we obtain, in view of Lemma
34,

(3.35) o0,2)= S s r=11 0, up, Cyzs by 0) (= (hy, .., By)
= 3 ¢&) 2 (L'} twew+tau’))
heM/L z-hel

with holomorphic functions ¢, on §,, where {'=diag [y, ..., {,], o' =(uy, ..., u,), L=27,
and M =Z7{'-1. Since g satisfies (3.10), we can easily verify that c, € Mi_qey(R) if n>1.
Consider I and M as submodules of Q7 in an obvious way, and let I and K be their images
under &. Then we obtain our first assertion. The converse part follows immediately from
the fact that 6(Au, uz; b, 0) defines an element of T, ,(Q) with ¥ =A%/u.

Lemma 3.6. For f€ T, (R), put

[ L o ]

2m 3u;,1
1
(3.36) dif=| omi Oy (A=1, ..., s).
Enf

| fsi. f _
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Then dif €T, 4 (R) with ©(X) =X, and

, 1,
3.36) W= o

This can be verified in a straightforward way, except the fact that d,(f) satisfies
(3.23) when n =1, which can be shown as follows. Since f# satisfies (3.25) for every S€®q,
we see easily that d,(f#) satisfies the same condition. Therefore, by (3.36") and (3.21),
(d11)4 (€,v, 2)# is finite at so0 for every v€Q? and every B€ . Q.E.D.

) (drf)? for every BEG,.

ProrosiTion 3.7. Suppose that & is non-degenerate. Then, for an arbitrary point

(tgs Z9) Of CF X O, there exists a function A on C; x §,, with values in C; such that

(i) the columns of A belong to T, ; (Q), where § is a positive element of 271 L depending
only on T;
(i) det (A(uo, 2)) 0.

Proof. If 7 is trivial, the function f defined by
flue, 2)=c(2) I 0(C,u,, C,2; by, O)
y=1

with suitable ¢ € M;_¢2,(Q) and &, can be taken as A, where ¢ and {, are as in the proof of
Prop. 3.5. In this case j may be arbitrarily chosen under the condition j>s/2. Next assume
7(X)=X. Let k>s/2 and take €T, ((Q) so that f(uy, z,) +0. We are going to define 4 by

Ly L a
omi duyy T 2mi Qug, M
1 of 1 of
A(u, z)— i aunl "t o 8—7;; 1 s brm
Eaf .. & O ... 0
| &af ... &f O .00 J

with a snitable B=(b;,(u, z)). Let ¢ be the identity representation of G.L,(C) onto itself.
By [8, Prop. 1.2] and its proof, we can find an element P of M,,1,2(Q) such that det (P(z,)) =+
0. Take g€T)_(112),6(Q) so that g(uy, z5)==0, and put B(u,z)=g(u, z)P(z). By virtue of
Lemma 3.6, 4 has the required property. In this case, j must be >s/2. Let o(X)=X® ...
®X and (=A® ...®A4 (both ¢ copies). Then det (C(uy, 2,))==0, and the columns of C' be-
long to T, s, :(Q). Since an arbitrary irreducible 7 is a Q-rational component of such w,

we obtain our assertion.
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PrOPOSITION 38. T, . ; =T, . :(Q)®qC.

This will be proved in the next section.
We are going to define an action of & on 7', ;. £(Q,). First, for f€T'; ;. () with expan-
sion (3.12) and an injection ¢ of § into C, we define fo by

(3.37) fo(u, 2) =2 e, A)%e,(nz+ul).
2

/0

By virtue of Prop. 3.8, fo actually defines an element of 7, , . In particular, if
J€T; & ¢(Qap), f° is meaningful for bEA*.

As already shown, f,(Q,v, z) is meaningful for v€(A;)2", and defines, as a function of
z, an element of M, ;(C), where g is given by (3.20). Now we let G, act on (A)2" by left

matrix multiplication, of course ignoring the archimedean part.

ProrosiTionN 3.9. Let f€T, ;. ¢, vE(A)S", r€Z;, and let ¢ be an automorphism of
C that coincides with the action of r on Q. Then

f*(sz’ Z)” = (fU)* (QZL(T)’I), Z):
where the left-hand side is defined by the action of o on M, A(C).

Proof. If v= (g ) with p and ¢ in QF, and if f has expansion (3.12), then, as shown in

the proof of Prop. 3.1, we have
1
f(82,0,2) = T( " p) 2.a(8)ea(l2)
0 1/)7%
with a({) given by (3.24). Since the sum expressing a(() is a finite sum, we have

a(é‘)o’ = 33(5 ' tPQ'/Z)AZ 63(1‘1')0(’?, }.)a’

where ¢’ is an element of Q7 sufficiently close to r~1¢. This proves our proposition.

We are now ready to state our first main result:

TEEOREM 3.10. Given f€T, ;. ((Qap) and y €S, there is a unique element f* of T'; ;. »(Qan)
with n = |v(x)| 1€ such that
1, 0

(3.38) fullsv, z’“’(o |v(@)|1,

) (fg)*(gz ‘ ‘zv, 2) fO’I' all v€ (Ai)zn’

where % is the projection of y to Gy, and f,(Q,v, 2)V is the image of f,(Q,v, z) as an element of
M, {Qap) under y as defined in § 2. 1f k€L, the assertion holds with G, and x in place of
& and y.



ON CERTAIN RECIPROCITY-LAWS FOR THETA FUNCTIONS AND MODULAR FORMS 55

Proof. Define Ay, as in Prop. 2.1. In view of Prop. 3.8, we can find a positive integer
N and a lattice A such that ff€T, , (Ay, A; Q(e(1/N))) for all t€Zy. Define U(Sy, {0})
by (2.9). By Prop. 2.2, we have y=y'y,(t) 8 with y’ €U(Sy, {0}), t€Z and BEB. Now
we define ¥ to be (f¥)8. By our choice of N, we see easily that this is independent of the
choice of ¥, ¢, B, in view of Prop. 2.3. Moreover, f*€T, . (Qa) by Prop. 3.2, since »(f8)=
|#(2)]. To show (3.38), given v € QZ", take a multiple M of N so that Mv€Z;" and f,(Q,v, 2) €
M, i(Ay, Qe(1/M))). Changing y',t, and B if necessary, we may assume that y' € U(S,, {0}).
By Prop. 2.3, (2.5), (2.6), (3.19), and Prop. 3.9, we have

Fo(Quw, 2) = (£u(Q,0, 2)') = (), (Qu1(t) v, 2

= 1" 0 Y ¢

=7 (0 'V(a) ls) (f )*(Qz “L(t) v, z)’
where o is the projection of § to Gq.. This proves (3.38) and completes the proof, since it
is obvious that f¥ is uniquely determined by (3.38).

ProrosITION 3.11. The action of the elements of & on T', ;. (Qu) has the following

properties:

(i) (af +bg)’ =a'f* +b¢" for a, bEQg, and f, gET'; i (Qun);
(i) (f7) = for , y€©;

(i) 8 =F|z.x.68 if BEGq;

({v) O =f if re Ly,

(V) FP=f of €T, 1. e(An, A; Q(e(1/N))) and y € U(Sy, {6}).

Proof. The first four properties follow immediately from the above proof and (3.38).
The last one can be proved in exactly the same fashion as Prop. 2.3, since {y €S |f*=f}
is an open subset of &, as our definition of f# in the above proof shows.

Notice that Theorem 3.10, together with Proposition 3.11, gives an analogue of the
main theorem of [7], which concerns the action of the idele group of an algebraic number
field on the theta functions with complex multiplication. Let us now state a consequence
of Theorem 3.10 as a theorem in which an abelian variety and its division points are more
conspicuous.

Let & be a diagonal matrix whose diagonal elements are positive integers &, ..., 0,
such that 3<4,, 6,|0,4, and let L(z, 8) =2Z" + 6Z" for each z€S),. We define a projective
embedding 0, of C*/L(z, 8) by

(3.39) ur> G (u) = O(u, 2; §, 0))jeg  (WECH),
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where J is a complete set of representatives for 6-1Z"/Z". We denote by A(z, J) the image
variety. Put, for simplicity, &= 4,(Q,,). Fix any point 3 of §,, and let B; be the ring
consisting of all elements of { holomorphic at 3, and ®, the field generated over Q by the
values F(3) for all ¥ € B,. The set of all F in B, such that F(3)=0 form a unique maximal
ideal P; of B;, and Fr>F(3) gives an isomorphism of B;/P; onto &;. Now let = be an

element of ¢4, such that

(3.40) (BF = B,

Obviously (P;)*=P,, so that F(3)~F*@3) (with FE€B,) gives an automorphism of &;.
For example, if 3 is “generic” for the functions of &, (3.40) is satisfied for all x€G,4,.
Another extreme case is the points 3 with complex multiplication, which we shall discuss

afterwards. Now we have the following theorem which generalizes [8, Th. 2.4].

TaEOREM 3.12. Given an element x of G4, and a point 3 of , sotisfying (3.40), let o
denote the automorphism of R obtained from x as above, and let R, be the subgroup of Gy
defined by [8, (1.11)]. Put z=qx with g€ R; and a€Gq, as guaranieed by Lemma 1.1. Put

b

a
also oc—(c d

) and A="*(c3 +d)! with any such « and q. Then

(i) A(3, 8)7 =A(x(3), 9),
(i) G)a(Qa”)" = 0, (AQ; - fav) = O (Qucry tqv) for all ve€(Ag*.

Proof. Put f,(u, 2) =0(u, z; §, 0) for each j€J. As noted above, f,€T'1/2,1(Qap). Let y and
r be elements of & lying above x and g, respectively. By Th. 3.10, we have

(3.41) (e (e, 2)" = ()4 (Q-'2m, 2)  (VE(A™", JEJ).

Put I';=R; N Gy. This is the group defined in [8, (119)]. Let r=1"t,(t) B with ' €U(Sy, {6}),
t€Z;, and BEGq as in the proof of Theorem 3.10 with a suitable N. Then f;=f4, and{p
has an element p of I's as its projection to Gq,. Therefore, by (a.2) of the Appendix, we

have fulfi=filff =(fultf =hlf; for h, j€J. Consequently (f),/()s=1lff =(filf)oa=
(fro@)/(f;o ). Therefore the values of (3.41) are proportional to

filel €2, -t 2)) = AL, - taw, a(z)) = fj(Qx(z)' fqu, (2)).

This proves (ii). Since the points ®,(€2,v) with v € (A.)*" are dense in A(3, §), we obtain (i)

from (ii).
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Equality (ii) can also be expressed by the commutative diagram

an/L ___a_)_> A?’
(3.42) ‘xi 10‘
Q*/taL — Ay

where L = ((1) g

and o’ are bijective maps onto the groups of all points of finite order on A4; and 4,4,

) 2", (v) = 04(Q;v), and ' (v) = O .3 (Qysy - f10). Notice that wL =‘aL; w

respectively.

We insert here a proposition concerning a non-vanishing of an element of 4,(Q,y)
at a point 3 of the above type, which generalizes [8, Lemma 2.5] and is similar to [5, Prop.
10].

Prorosition 3.13. Suppose that a poini § of 9, and an element x of Gy, satisfy
(3.40). If {€ A Qup), kEZ, | is finite at 3, and [(3)==0, then f* is finite at 3 and 5(3)=0.

Proof. This is obvious if k=0. The case of negative k can be reduced to positive k by
taking f~1. Assuming k>0, take any non-zero element g of T;(Q,,). Since Gq, is dense in
Gr,, We can find an element a of Gg, so that g(a(3))==0. Put A=¢g=". Then h*(3)==0,
hf€ A)(Q.), and R/f€B;. By (3.40), A7/f*=(h/f)*€ B, and hence f*(3)==0. Applying this
result to A* and x 1, we see that k(3)3=0. Thus f/h € B,, so that f*/A* € B;, which proves that
f* is finite at 3 and f°(3) =0.

Let us now briefly show that§the main theorem of [7] can actually be derived from
Th. 3.10. Let 3 be a point of §, such that A4(3, §) has many complex multiplications in
the sense of [7, §2]. Define ¥ and K’ asin [7, p. 684], and let ®: Y —C} be the anti-
representation which gives the action of ¥ on A(3, ) as the endomorphism algebra. Define
an injection ¢ of Y into Q3 by ®(a)Q,=Q; %s(a) for a€ Y, and a map 7: K~ Y} by
[7, (25)]. Then eony maps K, into G,,. Given any rEK}, put z=¢(n(r))2. By [4, I,
(2.7.3); 11, (6.2.3)], we have (B,)*=B,, and

(3.43) F(3) €KL, and F(3) = F¥3) for all FEB,

Now let f€ T £(Qq). Choose any h of M(Qay) so that h(3)==0, and put g(u) =f.(u, 3)/A(3)
for u €CY. Then

9(Qyv) = [(Qsv, 3)/h(3) € Koy
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for all v€Q:" by (3.43), since f,(Q,v, z) € My(Q,p). Take an element y of & lying above z,
and put g'(u) =(f*), (u, 3)/h*(3). This is meaningful since #*(3)==0 by Prop. 3.13. By (3.43)
and Th. 3.10, we have

9(Qs0)" = [fu(Q0, 2)[M2)I| 2=5 = (") (- "0, 3)/H¥(3)

=g'(Qytzv) = g'(D(n(r)™) Q3v),
and thus

(3.44) g(w) =g (O(n(r))u) for all u€Q,Q?" and all r€K ",

When s=1 and k=1/2, this is exactly the fundamental relation needed for the proof of
the main theorem of {7]. Since the functions h(3)~1f* span the space of “arithmetic theta

functions” as shown by [7, Prop. 2.5], we obtain the theorem.

4. Proof of Proposition 3.8
Given a lattice Y and an element { in the vector space {€Q7|% =7} and a lattice L
in Q;, consider all formal series of the form

(4.1) plu,z)= 2 3 am, Ne,mztul) (€C,2€9,)

{<neY Ael

with complex coefficients a(7, 1) satisfying the following condition:
(4.2) For a fixed 1, there are only finitely many A such that a(n, A) ==0.

As proved in Prop. 3.1, the components of an element of T,  , satisfy (4.2). Let ® denote
the set of all such formal series, with all choices of ¥ and L. Obviously @ forms a ring.
Take linearly independent positive definite symmetric elements {,, ..., &y of Qn, where
M =n{n+1)/2. To each (5, 1) we can assign its “coordinates”

(tr ($11)s +ees b7 (Caem)s Arrs Arzs ooy Agn)-

By means of these coordinates, we introduce a lexicographic order into the set of all (7, ).
Then, for 0==p € ®, the “first” non-vanishing coefficient of p is meaningful. Therefore ®

is an integral domain.

Lemma 4.1. Suppose p, q, r€D, pg=r, p=0, p has coefficients in a subfield F of C,

and r has coefficients in a vector space W over F. Then q has coefficients in W.

This can be easily proved by means of the above lexicographic order.
Our proof of Prop. 3.8 needs special care when n=1, since the holomorphy on §, does
not guarantee the finiteness at cusps. To avoid the difficulty, let S, (A, A) denote the
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set of all holomorphic f satisfying (3.10) and (3.11) with trivial v such that f,(Q,v, z) be-
longs, as a function of z, to 44(C) for all v€Q?". Then we define Sy ((R) for a subfield K
of C to be the set of all such f, with any possible A and A, and with Fourier coefficients
(i.e., ¢(n, A) of (3.12)) in R. Obviously § =7 if n>1.

LEemMa 4.2. Let C(R) denote the set of all elements of A(R) holomorphic on §, (but not
necessarily so at cusps). Then (€)= L£,(Q)®oC-

Proof. Given f€ £,(C), consider a cusp form

7(2) = e(2/24) nEII (1 —e(nz)),

and observe that #°*f€ M,,,(C) for a suitable positive integer k. Therefore #°*f is a finite

C-linear combination of elements of M,,,(Q), Dividing this by n*", we obtain our lemma.

Leuma 43. If n=1 and €8, ((C), then

N

(4.3) flu, 2)= ;1 ¢;(z) Fy{w, 2)

with ¢;€ Li_q2)(C) and F,€ Tyys, £(Q), where r =rank (£), and hence f has a Fourier expansion
of type (4.1).

Proof. The proof of Prop. 3.5 shows at least an expression (4.3) for f with ¢, holo-
morphic on §, and functions F,€T,5 ((Q) such that F;(u, z,) for j=1, ..., N are linearly
independent over C for every z,. Put, for each »€QZ and for any fixed z,,

N
X{wy= {(61, sees bN)ECﬁ: 2. b, F{Q., v, 20) =0}-
j=1

The intersection of all such X(v) is {0}, and hence we can find N elements v,, ..., v, of Q>
such that N, X(v,)={0}. This implies that

det ((F;), (€., 2)); ;= 0.

Denote this determinant by D(z). The equations
N
[, 5, 2 Z 2) (F)(Q,v,,2) (i=1,...,N)

show that Dc,€ 4,(C) with I=Fk+(N —1)r/2. Since D€ Mu(C), we obtain the desired

conclusion.
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Now, to prove Prop. 3.8, we may assume, in view of Prop. 3.3, that £ is non-degenerate.
Obviously any elements of 7', , ((Q) linearly independent over @ are also linearly in-
dependent over C. Therefore our aim is to show that T, , . is spanned by T'; ; Q) over
C. Let f€T. ., and let W, be the vector space spanned over Q by the Fourier coefficients

of the components of 7. Let us first prove

(4.4) W, is finite-dimensional over Q;

(4.5) If {r,} is a basis of W, over Q and 7 is trivial, then f =2 r,g, with g,€8; £(Q).

If 7 is trivial, we see, from Prop. 3.5 and Prop. 2.1 when »>1 and from Lemmas 4.2 and
4.3 when n =1, that f is a finite sum > ¢, . with ¢, €C and £, €S, ,(Q). Therefore W, is con-
tained in > Q¢, and hence finite-dimensional. Given a basis {r,} of W, take a basis of
> Q¢ of the form {r,} U {r,} and express each t, as a Q-linear combination of r, and 7;.
Then =2 r,9,+> r.g, with g, and g, in S, ((Q). Since f has coefficients in W,, comparison
of coefficients shows that g, must be 0, and thus f=2 r,g,, which proves (4.5).

In the general case with an arbitrary z, take 4 as in Prop. 3.7 with any point (u,, 2,),
and put d=det (4), B=d-‘A-1, and g="Bf for a given f€T, , .. Then the components of
g belong to T, ¢ with some I, and W,c W,. By Lemma 4.1, the relation df=A4g shows
that W,< W,, so that W,=W,. Since (4.4) is true for trivial 7, we have (4.4) for an ar-
bitrary 7. Let {r,} be a basis of W, over Q. By (4.5), g=> r,h, with &,€S, »:(Q)", so
that f=>r,d-14h,. Note that d(u,, 2,)4=0. Given another point (u,,?), we take 4, By,
and d, similarly so that d,(u,,z,)40, and obtain an expression f=> r,d; 1Ak, with
k1, €81, me(Q)™ and with the same r,. Obviously

2. 1(dA,hy, —dy Ah,) = 0.
Now dA,h,, and d, Ak, have Fourier expansions of type (4.1). Since the components of
4, 4,, d, and d, satisfy (4.2), each sum expressing a Fourier coefficient of dA,k,, or d; 4h,
in terms of those of d, d,, 4, 4,, h,, and h,, is a finite sum, so that d4,h,, and d, 4h, have
coefficients in Q™. Since {r,} are linearly independent over Q, we have d4,h,,=d; Ah,,
and so d-14h,—d;* A, h,,. This shows that d-14h, is holomorphic on the whole €7 x §,.
Obviously it satisfies (3.10) and (3.11). For every automorphism ¢ of C, define a holo-
morphic function f; by f,=>, rid-14h,. Both df and Ak, have Fourier expansions of type
(3.12). Define the action of ¢ on any such series by (3.37), which, in general, is only a
formal series. Since Ak, has coefficients in Q™ for the same reason as above, we have
(df)e =2 1S Ah,=df,, and thus (df)* is meaningful as a function. Let ¢ be an element of



ON CERTAIN RECIPROCITY-LAWS FOR THETA FUNCTIONS AND MODULAR FORMS 61

Z¢ whose action on @), coincides with ¢. Then the proof of Prop. 3.9 is applicable to both
d and df, so that for v€Q2", we have

@4 (L,1(0)v, 2) = dy(Q,v, 2)°,
(@fo)s (Qu(t)v, 2) = ((df)7) 4 (Qe1(t) v, 2) = (df) (0, 2)7.
Since (df)y =d, [, and (df.). =d.(f)., We have
(4.6) (fo)s (1), 2) = fu(Q,0, 2)7

if d,(Q,v, 2)==0. For every v€QZ", we can take A so that d,(Q,v, z)==0, and so we have
(4.6) for all v€Q3". (Note that f, is independent of the choice of 4.) This shows that f,
satisfies (3.23), ie., [,€T; k¢ Now, by Lemma 4.4 below, we can find a set of automor-
phisms {o} such that det(ry),,,==0. Then the relations f, = rJd-14h, show that d-144,€
T k. By Lemma 4.1, we obtain d-24k,€T, ; (Q), which completes the proof.

Lemma 44, If ry, ..., ry are N complex numbers linearly independent over Q, then there
18 a set {0} of N automorphisms of C such that det (r7),,,=F0.

Proof. Let H denote the linear subspace of Cy consisting of all (z,, ..., zy) of C} such
that 3,01 7yx,=0 for all automorphisms ¢ of C. Obviously H is stable under the map
(@45 oy Zy) > (2, ..., 2F) for all o. Therefore H is defined over Q. If H=={0}, H contains a
non-zero vector of Qy, which contradicts the linear independence of {r,}. Hence H ={0},

from which our assertion follows.

5. Proof of Theorem 1.2

We shall now complete the proof of Theorem 1.2 in the case of non-trivial p. Observe
that the theory of § 3 concerning 7'  is independent of Theorem 1.2 with non-trivial g.
Consider T ; with s=1 and 0 <£€Q. Given an element f(u, z) of Ty , define a C"-valued
function Df on §, by

(0f[ow,) (0, 2)

(5.1) (Df) ()= (2€D)-

2mi
(0f[0u,) (0, 2)

We see casily that, for every f~(a,y) €63 with «= (" 1),

(5.2) (Df)|5B = (cz+d) D(f#),
and hence DfEM, ,(C), where o(X)=X. If ¢ is an automorphism of €, we have obviously
(5.3) (Dfyr = D(f°).
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Given 7 elements f,, ..., f, of T} ., we consider a Ci-valued function f=(fy, ..., f,) on CI x §,,
1 K.£

and put
(5.4) Df = (Dfy, ..., Dfy).

Formulas (5.2) and (5.3) hold also with { in place of . We call { regular if det (Df) is not
identically equal to 0.

PropoSITION 5.1. (i) For every z,€$),, there exists a regular f=(f,, ..., f,) with f,
wn T, 1(Q) such that det (DF)(2,)==0.

(ii) Suppose that f,€T, Q) and §=(fy, ..., f,) is regular. Then {*=(fi, ..., f2) is regular
for every y€®.

(ii) Zf § is as in (ii) and § = (hy, ..., by) with h, € Ty ¢(Qap), then D(§*)~2 D(§*) = ((DF)2Dhy
for every y€@.

(In the last relation, (D§)~1 DY) has components in Ay(Qap), s0 that (D)~ DY) is meaning-
ful.)

Proof. Assertion (i) follows immediately from [8, Prop. 1.2] and its proof. Assertion
(ii) is obvious, since {¥={# for some f€®q, as shown in the proof of Th. 3.10. To prove
(iii), put E =(Df)2 D). We can find ¢ €Gal (Q,,/Q) and S€Gq such that {¥={, §¥ =())4,
and EY=(E°)f. Then

(D)2 Dhy = (((DH2DY)o)s = ((Df)7)A)* ((Dh)*)~
= D((f7)#)1 D((})#) = D(§)~* D(i’)
by (5.2) and (5.3). Q.E.D.

PROPOSITION 5.2. For every rational representation g of GL,(Q) and k€217, we have
M, 1(€) =M, 1(Q)®C.

Proof. Let m be the degree of p. For every z,€$),, there exist a positive integer j and

a Cp-valued function A4 on §, such that:

(i) the columns of 4 belong to ‘mg_ #Q);
(i) det (4 (z)) +0.

This follows either from Prop. 3.7 or from (i) of Prop. 5.1. With any such A and given
f€M,..(C), put d=det(4), B=d-*4-1, and g="'Bf. Then the components of g belong to
M,(C) for some ¢. Since M,(C)=M,(Q)®oC by Prop. 2.1, we obtain our assertion by the

same type of reasoning as in the proof of Prop. 3.8.
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This proposition shows that the action of an automorphism ¢ of € on , ,(C) defined
by (1.4) actually maps M, ,(C) onto itself.

To define the action of Gy, on 4,(Q,), first assume o(X)=X. Choose any regular
F=(f1> s fn) With f, in Ty 1(Q). Given g€ 4,(Q,,), observe that the components of (Df)~*
belong to A4:12(Qap), 50 that ((Df)~1g)¥ is meaningtul for y€®. Now for z€G,,, define
g° by g°=D(}") ((Df)'g)¥ with any element y of & with projection x on G,, of the form

=(z, 1, v). This is independent of the choice of y, and also of the choice of { because of
(iii) of Prop. 5.1. If o(X) =X ® ... ® X, then considering Df® ... ® Df instead of Df, we can
similarly define the action of G, on 4,(Q,,). Since every irreducible rational representa-
tion of GL,(Q) is obtained as a suitable power of determinant times a Q-rational consti-
tuent of such a tensor representation, it is now easy to define the action of G5, on 4,(Q,y)
with an arbitrary p. Then the properties (i-viii) of Theorem 1.2 can be verified in a straight-

forward way. In particular, to prove the associativity (iii), we need (iii) of Prop. 5.1.

6. Partial Fourier expansions of modular forms

Let n and s be positive integers. We shall now show that a certain Fourier expansion
of a modular form on §, ., yields naturally some elements of T'; .. First we write the

variable point Z of §,, in the form

(6.1) Z=([Z Z)) with 2€§,, weS,, uECL.

We define the objects G, &, A, x, M, x 'y, etc. with degree n +-s instead of #, and denote
them by G, &, A, x, M, x, I'y, ete. Let us now consider the elements of G of the form

1, 0 O q
(6.2) ?oLo €Qr, g€Qr, rEQ:
. = H S 3 S’r S*
o o 1, - PEQ, q Q

0 0 0 1,

Such a 9 belongs to G if and only if {gp +7 is symmetric. For Z as in (6.1), we have

U©+zp+
(6.3) 7(%)= ( pod )
u+pz+q w+ pzp+ pu—i— up + qp-i—r

Let t be a polynomial representation GL,,(Q)—~GL,(Q) as in § 3, and let F(Z)=F(z, u, w)

be an element of M., ,(C) with 0 <k€2-*Z. Then we have a Fourier expansion of the form

(6.4) -~ Flz, u, w) = nguzeséfw)
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with holomorphic C"-valued functions f¢(u, z) on €7 x §,, where & runs over non-negative
elements of a lattice in {£ € Q3| =£}. Notice that f; is defined on the whole €7 x §,, though

F(Z) is defined only for Im (Z)>0. Given = (Z 2) €@, define an element o' of G’ by
a 0 b 0
1, 0 0
(6.5) o = o L
¢c 0 d 0
0 0 0 wl;

The map ar>a’ is a Q-rational injection, so that it can be extended to a continuous map of
G, into G. With x€Gqo, and &’ as in (6.5), we have

— a(2) Yez+d)u
(66) ()= (tu(cz +d)™ v(e)rw— ()t ez + d)‘lcu) ?
c 0 d 0 \_(ezt+d cu
&0 6 07+ )= (70" )
(6.8) F(o(Z)) = 2, felo(w, 2)) e — F (@) € - tufez + d) " ou) e,(3v(2) ™ w).
§

If ' is the map of A} into G, corresponding to ¢, we see that
(6.9) B =J@) (E€EAL).

Let (a, ) €@q with a= (Z 2) . Define a holomorphic function ¢’ on §,,, by

(6.10) w( Q=mﬂw»

fu
From (6.7), we know that (', 9) €@g, and thus obtain an injection
(6.11) (o, Y)=>(a, 9')

of G into Go.

A good example of Fourier expansion (6.4) can be obtained from theta functions as
follows. Let 6’ denote the function defined by (3.26) with » +s instead of », and put &(Z) =
0'(0, Z; p, q) with

p= (1;1), g= (Zl) (1, 1. €Q"; D2y 1 €Q°).
2, 2,

Then
O(Z)= 2 e(lyq,)0(uy, z py, ¢1) e} - tywy).

y-p2eZ?
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Thus the coefficients f; for @ are linear combinations of O(uy, z; p;, ¢;). In particular, if
we put 6'(Z) =6'(0, Z; 0, 0), then

(6.12) 0'(Z)= 2, B(uy, 2; 0, 0)e(} - ‘ywy).

yelZs

Define I'y and A(y) for y €', by (a.1) and (a.2) of the Appendix, and similarly a subgroup
Ty of Gg and A'(B) for B€T%. From (6.8), (6.12), and (a.2), we see easily that A(y)=21'(y")
for every y €', or more precisely,

(6.13) 0'(y"(2))/6'(Z) = 0(y(2))/6(z) for every y€L%.

Therefore, if Ay and Ay are the images of I'y and I'y under the map (2.7) (respectively
with 7 and # +s), then the map (6.11) of G into Gq sends Ay into Ay.

Prorositiow 6.1. Suppose FEM, (T, R) or FEM: Ay, R) according as 2k s
even or odd, where R is a subfield of C. Then the Fourier coefficient f; of F defined by (6.4)
belongs to T . ((U'y, As R) or T, 4. Ay, Ay R) accordingly, with a suitable A.

Proof. Let F €M i(Ay, R). If d=(y, 1)€E@q with y defined by (6.2) and ‘gp+r=0,
formula (6.3) shows that

Pz, u, w)=7 ((l)" f) ges(f(% - tpap + pu)) fe(u + 2p + g, 2) e($5w).

It B=(a, ) €EGg and f'=(«, v') EGq with o' of (6.5) as above, we obtain, from (6.8),

(6.14) F (2, u,w) = v(a)™ 3 (fo)8 (u, 2)e(br(o) 2 w).
&

Therefore f, satisfies (3.10) and (3.11) with a suitable A and A=Ay. Obviously f; has
Fourier coefficients in R, and hence f, €T, , (Ay, A; R) if n>1. Suppose n=1. By (3.18)
and (3.19), we have

, 1, 0 \
%0, =2t ) Sen(— 100 - 90) (s 2Pl )
0 »P1l/) %
where tow = (5 ) . Since FP°€ M, ¢, this shows that (fg),(Q,v, 2)? is finite at ico for every

BEBq and every v€Q}. Therefore f€T, , ;.

THEOREM 6.2. There is a unique continuous injective homomorphism y—>y' of & into

&' which coincides with v (t)—>u(t) on 1,(AY) and with (6.11) on ®q, and which makes the
diagram

5—782901 Acta mathematica 141. Imprimé le 1 Septembre 1978
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& &’

|

Y 14
Gpar — Gy

commutative. Moreover, if F is an element of My, 1(Qup) with expansion (6.4), then, for every
Yy €S, we have

(6.15) F(z, u, w)=|»(y) |"‘s§ (fe) (w, 2) es(} [ (m)| " €w),
where (f¢) is defined as in Theorem 3.10. If k€Z, (6.15) holds with y€G s, and Yy EGy..

Proof. If y=(c, ) and y'=(a', y’) as in (6.11), we obtain (6.15) from (6.14). Next
(6.15) is obvious if y=1,(t) and ¥y’ =u(t) with {€Z;. Now, given y =(z, v) €, an element y’
of &' with projection z' on G, is uniquely determined by (6.15), if it exists. Let 5 be
the subgroup of ® generated by ¢(Z), Go,, and Bo. Then we can define an injective
homomorphism y+—y’ of P into &’ which satisfies (6.15) and makes the diagram

P ¢’

|

14
Gar — Gy

commutative. This homomorphism is continuous, since a basis of neighborhoods of the
identity element of & can be given by (2.9). By Prop. 2.2, {8 is dense in (¥, and &’ is locally
compact, and hence the map can be extended to the whole & as desired.

In the above, we assumed # >0, but the ordinary Fourier expansion F(w) = ;f, e (Ew)
of a modular form F on §, with f,€C may be regarded as the extreme case n=0. Then
(2.6) or (1.10) may be considered the extreme case of (6.15) with the map ¢ of A™ into Gy

in place of the injection G4 —~Gy.

7. Concluding remarks

A more informative title of this section may be “What Theorems 3.10 and 6.2 suggest
in the general theory of arithmetic automorphic forms”. Let ¢ be a Q-simple algebraic
group such that Gg modulo a maximal compact subgroup is a symmetric domain &, and
let T" be a congruence subgroup of G. Our main interest here is in the nature of the Fourier
expansion of an automorphic form on & with respect to I', when &/I" is not compact. If

@ is a tube domain and @ has a sufficiently large subgroup acting on & as a group
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of translations, an automorphic form has a Fourier expansion similar to the expansion
(1.3) of a Siegel modular form. In general, however, © may not be a tube domain;
even if © is a tube domain, the group of translations may not be large enough to guarantee
such an expansion. In order to study this point in detail, Pyatetskii-Shapiro introduced
in [3] the notion of Siegel domains of the first, second, and third kinds, and discussed a
certain Fourier expansion for an automorphic form, which he called a Fourier-Jacobi

series. When & is represented as a domain of the third kind, the series has the form
(7.1) AEL 9a(w, 2)e(<4, w)),

where {, > is a C-bilinear form in a certain complex vector space, g;(u, 2) is a theta function
in w€C™ with a parameter z, and 4 runs over a lattice L. Expansion (6.4) is actually an
example of (7.1). If & is of the first or second kind, g,(%, ) is just a constant, or a func-
tion only in » without z. Now suppose that we can construct canonical models with respect
to @, or rather, with respect to a reductive group containing @, and therefore can speak of
arithmetic automorphic functions with respect to I'. Then we may naturally ask the fol-
lowing questions.

(I) Can one define “arithmetic automorphic forms’ consistent with the notion of canonical
models and arithmetic automorphic functions?

This question can be asked even in the case of compact quotient.

(I1) Assuming the quotient non-compact, can one characterize such arithmetic forms in
terms of the properties of the Fourier coefficients g; of (7.1)?

(IIT) Are holomorphic Hisenstein series, up to constant factors, arithmetic?

The answers to all these questions seem to be in the affirmative. For example, the
results of our present and previous papers give affirmative answers to (I) and (IT) for the
symplectic groups. The works of Siegel, Klingen, Baily and others answer (ILI) posi-
tively for many groups I' when the Fourier coefficients are constants. In general, if the
Fourier coefficients are constants, it is reasonable to call (7.1) arithmetic when the g,
belong to Q.

Now, in the case in which & is of the third kind, the answers to (I), (IT) will probably
be given in the following way. First, the parameter z belongs to a symmetric domain &,
on which an algebraic group G, acts. There is an injection of G, into a symplectic group
which induces a holomorphic embedding ¢ of &, into £, for some n. Then g;(u, z), pos-
sibly modified by a suitable factor, is a function on €™ x &, whose behavior is similar to
h(u, &(z)) with an element h of T, ; of § 3. In other words, if z is a ‘‘generic point” of &,
and 4 is an abelian variety associated with the point &(z), then g; as a function in « is a

theta function of A4, behaving like 6(u, £(2); 7, s). Define (g,), in the same manner as in
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§ 3. Then we call (7.1) arithmetic if the values (g,), (v, z) for all 2 and all v commensurable
with the periods are arithmetic automorphic forms in z€&,. Thus question (IT) for G can
be reduced to question (I) for G,, which is comparatively easy. The quotient of &; by a
discontinuous subgroup of G, may be compaet. For example, let @ be the unitary group of
a hermitian form over a totally indefinite quaternion algebra whose center is totally real.
Then a natural choice of a parabolic subgroup yields Fourier expansions in a domain of
the first or third kind according as the degree of the hermitian form is even or odd. A
recent work of Garrett [2] gives affirmative answers to questions (I) and (II) in either case,
endorsing what we said above.

In general, it is expected that A4 is a generic member of a family of abelian varieties
characterized by their endomorphism algebras, or the product of several copies of such.
Then the action of the adelization of G, on g, is essentially obtained as a specialization of
Theorem 3.10, in a fashion similar to that explained at the end of § 3. Also, one should
be able to prove an analogue of Theorem 6.2 with & and &, in place of §,,, and §,.

The domain & of the second kind may be viewed as an extreme case where &, consists
of a single point; the behavior of g, in this case is similar to A* with A€T, ;. A typical
example of G with such an & is provided by the unitary group of a hermitian form over an
imaginary quadratic field, which we treated in [9]. The answers to questions (I) and (II)
can be given exactly in the above described fashion. The domain of the second kind occurs
also when @ is the unitary group of a skew-hermitian form over a definite quaternion alge-
bra. As for question (III), we indicated in the same article [9], if without details, that the

answer is affirmative at least if & is a complex unit ball

>lal< 1}.

y=

{(zl, ..y 2,) ECL

It is very likely that the same holds in a more general case.

Appendix

Our purpose here is to determine the constant factor in the transformation formula
of the function 6(u, 2; r, s) defined by (3.26). To simplify our notation, for every symmetric
matrix 8, let {S} denote the column vector consisting of the diagonal elements of S; also
put S[X]=?X8X for a matrix X such that SX can be defined. Let a subgroup I'y of I'; be
defined by

(a.1) L= {(‘: 2) €T, |{tac}={®d}=0 (mod 2z")} (cf. [8, §1]).
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b
For every y = (‘: d) €Iy, we have

(a.2)
0(*(cz+d)u, y(2); g, b) = Ay)e((igh —'g*h*)/2) det (cz +d)' P e(} 'u(cz +d)Lcu)O(u, z; g*, b*),

where A(y) is a constant depending only on y, and

9\ _. (9
(h) v (h) '
This is classical; for a short proof, see [7]. Define ¢ and ¢’ by (3.27) and (3.28). Then formula
(a.2) is equivalent with
(a3)  @'(fca+d)tu, p(a); g, B) = Ap)e(('gh—g*h*)[2) det (cz +d) g (u, 2; g%, ).

This holds also with ¢ instead of ¢'.

ProrosIiTioN Al If y= (: 2) €T, det (d) >0, and det (cz+d)'"? is chosen so as to
become positive when z=1y with real y tends to 0, then Aly)=det(d) ™" D,y e(bd-[v]/2),
where V is a complete set of representatives for L*/dZ1".

Proof. Put 6(z) =6(0, z; 0, 0), w="‘d2(cz4-d)™L, f =bdt. Then y(z) =w+f, so that

(a.4) Aly) det (cz+d)26(z) = B(y(2)) =B(w+/) = 3 e(3(f +w)z)).

reZ*
With V as above, put x=v-+ds with v€V and s€Z". Then
O(w+f) =2 2 e(3f[v +ds) +pwlv +ds])

=2, e(3f[v])6(0, z(cz +d)~1d; d~v, 0),

v
since flv +ds}{2=f{v}/2 (mod Z). Now, from [7, {16)], we obtain
det (—i2)%0(0, g, k) = e('gh)B(0, —2~%; —h, g).
Put z=147l, with 0 <7€R, and observe that

(a.5) lim v"26(0, iz1,; g, h) = e("gh) d(h),

70

where d(k) =1 or 0 according as h€Z" or k¢ Z". Taking the limit of 7"’ times (a.4) when t
tends to 0, we obtain the desired formula for A(y).
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ProOPOSITION A.2. Let 6 be a symmetric element of Z;, N GL,(Q), and let (f Z) €SLy(Z).

Suppose that 0 <s=1 (mod 2), ro~1€Zy, r==0, and {pro—1}={gsoc} =0 (mod 2Z"). Then

pl, go\  ,{—2r\"(det(o)
o 5)-o () ()

where g,=1 or ¢ according as s=1 or —1 (mod 4), and (—) 1s the quadratic residue symbol.

Proof. Substituting z+A for z in (a.2) with k="*h€Z7 such that {h}€2Z", we find

a b+ah a b
(&-6) l(c d+ch)_z(c d)'
Since (2r, s) =1, there is a prime [, not dividing det (g), of the form I =8myr +s with 0 <m€Z.
Put &k =8mp -+-¢. By (2.6) and Prop. A.1, we have

ply, qo\ . (pl, ko\ k
(a.7) /1( ” )_A(m_l lln)_l ’2Ze(zla[v]),

1o Sln veV

where V is a complete set of representatives for Z"/IZ". Now we can find an element «
of GL,(Q) N Z7 such that ! does not divide det () and ‘oo is congruent to a diagonal matrix

modulo /. Let &,, ..., &, be the diagonal elements of ‘aoa. Then (a.7) is equal to

n 1 n n
el e - )

. k .
Since (f l) €8L,(Z), we have kr= —1 (mod [). Also we have [=s (mod 8r), so that ¢;=¢,,
9 - —
and (Tk) = (—%) = (%) . Since 7™ det (6)~! is an integer, det (o) is a square times a
divisor of r, and hence (de{;(o‘) ) = (det;(o’)) , which completes the proof.
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