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Vanishing residue characterization
of the sine-Gordon hierarchy

Francois Treves

Abstract. The sine(hyperbolic)-Gordon hierarchy is shown to be the extension of the modi-
fied Korteweg—de Vries (MKdV) hierarchy in the integrodifferential algebra extending the standard
differential algebra by means of one antiderivative. The characterization by vanishing residues of
the MKdV hierarchy yields the same characterization of the sine(hyperbolic}-Gordon hierarchy in
the integrodifferential algebra.

1. Introduction

This article is concerned with the hierarchy built upon the so-called sine-
Gordon (SG) equation

(1.1) 010z u =sinu.

one of the classical soliton equations. Another soliton equation intimately related to
(1.1) is the modified Korteweg-de Vries (MKdV) equation which plays an important
role in the present work:

(1.2) Au = Fu—6u?dyu.

Each one of the equations (1.1) or (1.2) is the starting point of a sequence (called
a hierarchy, see below) of evolution equations of increasing order m,

(1.3) Oyu = Plel fu].

where
ur— Plu] = P(u,0u. ..., 0™u)

is a differential polynomial. Here u is a smooth function of ¢ valued in a differential
algebra A, i.e., a commutative algebra equipped with a derivation @ (also equipped
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with a topology compatible with its differential algebra structure). In many ap-
plications A=C>(S!) (the periodic case) or A=S(R!). the Schwartz space (the
rapidly decaying case). Here. when we do make use of a differential algebra. it will
be the algebra M[[z]] of formal meromorphic series in one indeterminate .

(1.4) u(z)= Y a,a”.

n=—2X\

with coefficients in C (N €Z may vary with u). the derivation being the usual one,
0. =d/dz. But mostly we shall reason at the symbolic level in the spirit of [GD1],
the j*™" derivative &’u being replaced by the symbol £; and P(u.du. ..., 0™u) by the
true polynomial P(&)=P(&p,&1.....Em ).

We shall be primarily interested in the “conserved quantities” of the evolu-
tion equation (1.3), by which we mean most often other polynomials Q(&. ....&n)
endowed with the following property:

(1) there is a polynomial ®(&. ....E,) (called a fluz) such that

(1.5) 0+ (Q[u]) = O(®[u])

for every solution ueC*(R: A) of (1.3).
The effect of (1.5) is that, when A=C>*(S!) or A=S(R!'). then

t— / Qlu(t.z)]dx

is a constant (“of motion”: the integration is carried out over S' or R1).

The evolution equations (1.3) under consideration in this article have infinitely
many (independent) conserved polynomials. The most famous of these equations is
the Korteweg—de Vries (abbreviated KdV) equation. The MKdV and SG equations
also admit infinite sequences of conserved polynomials and so do a number of other
equations. Much attention. on the part of analysts. geometers and algebraists, has
focused on those relatively few that have soliton solutions. On this vast subject we
refer to the texts [AC], [D] and [FT]. There are equations. such as the Airy equation
du=382u, which admit infinitely many conserved polynomials [for Airy these are
the solution u and the “energies” 2(8%u)?. k€Z.] but do not have soliton solutions.

Two differences between (1.1) and (1.3) jump to the eye: the right-hand side
is a transcendental series, not a polynomial. and J;u is replaced by 9;0,u. In the
present work the first of those differences is dealt with by the routine extension
from the algebra P=Clp. 1. ...] of polynomials in the (countable) infinity of inde-
terminates &, to its natural completion ‘JA3, the algebra of formal power series in the
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indeterminates &,. The latter difference is handled by a subtler extension of ‘i} to
include the symbol £_1 of an antiderivative ~'u. This allows us to reinterpret the
SG equation (1.1) as the integrodifferential equation

(1.6) dru=sind; ' u.

Once this is correctly done one notices that the conserved polynomials of equation
(1.8) or rather, more accurately, of the sine-hyperbolic-Gordon (SHG) equation

(1.7) Oyu = % sinh 20, 'u

are the same as those of the MKdV equation (passage from (1.6) to (1.7) 1s through
the substitution u— 2iu; for us the scalar field is C and (1.6) and (1.7) are equiv-
alent). Conversely 1(cosh2¢_4 -1)=3 054
MKdV equation; it gives rise to what is called a nonlocal constant of motion.

The equations under consideration are all Hamiltonian. essentially in the sense
of Lax ([L2] and [L3]). The Hamiltonian formalism associates to each conserved
polynomial (or series) a differential polynomial (or an integrodifferential series). For
instance to the conserved series 1(cosh2£_; —1) it associates the integrodifferential
series 3 sinh 20~ 'u (see below). Thus “on top of” our initial equation, be it KdV,
MKdV, SHG, etc., stands a tower of (evolution) differential equations of increasing
order called a hierarchy. What was said earlier is that the SHG hierarchy is an
extension (to a suitably augmented algebra akin to B[[£_1]]) of the MKdV hierarchy.

The following result was proved in [T2].

sinh 27 d7 is a conserved series of the

Theorem 1. For Q&P to be a conserved polynomial of the MKdV equation it
s necessary and sufficient that

[ " - ik
(1.8) ResQ{;+;§nm} +ResQ{—;+;q,,Z—!] -0

for all £=(&1, &2, ...) and n=(n1,m2....).

It is checked immediately (see end of Section 3) that (1.8) remains valid when
we replace the polynomial ) by the series cosh2£._;. We see thus that the SHG
hierarchy is characterized by the same vanishing residue property as the MKdV
hierarchy but in an enlarged algebra. At the outset one could have thought that
the transcendental nature of the right-hand side in (1.1) did not lend itself to an
algebraic characterization of the kind of Theorem 1: but it does. At the end of
this article we indicate why a similar characterization is likely to be valid for a
hierarchy discovered by Ablowitz, Kaup. Newell and Segur {AKNS]. In a separate



176 Frangois Treves

article we prove (by very different methods but also relying on Theorem 1) that
the nonlinear Schrédinger hierarchy admits a similar characterization. All these
examples suggest that vanishing residue theorems might be common for soliton
equations. An explanation for their recurrence remains to be found.

2. The algebraic framework
2.1. Basics of differential algebra

As we have said the starting framework is the algebra P=Cl&o. &1, ...] of poly-
nomials in the (countable) infinity of indeterminates &, (cf. [K]); we shall reason
most often within the subalgebra By of polynomials without constant term, i.e.,
vanishing at £=0.

In the algebra 9P we define the weight of a monomial £P=¢f°...EE» to be
w(p)zZ;ZO(j—H)pj; the integer v will be referred to as the order of &P (in view
of the differential connotation). We define the weight w(P) of a polynomial P€B
as the minimum weight of its (nonzero) monomials. A polynomial is said to be
weight-homogeneous of weight k if all its monomials have weight k (k€Z.; the zero
polynomial is assigned any weight).

We denote by ‘]A3 the completion of B for a metric associated to the weight:
a fundamental system of neighborhoods of zero consists of the ideals Pr={FPER;
w(P)>k+1}, k€Z,. A generic element of ‘33 is a formal series

FE =Y cpe”
P

with coeflicients c¢,€C. The series f converges in O since to each positive integer
N there are only finitely many multiindices p such that w(p)<N. The weight w(f)
of the series f is the minimum of the weights w(p) for p such that ¢, 70. The
subalgebra &]30 of the series without a constant term is the maximal ideal of ‘,B (‘.]30
is the closure of By in ‘}3).

The most important operator in the algebra Z]A3 is the chain rule derivation

> 15]
0= Z Er15-
= 0

The justification for its name is that d(Plu])=(aP)[u] for every P€P and every
element u of the commutative algebra A equipped with the derivation 8. Note that
P C Py, the subalgebra of formal power series without constant term. Restricted
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to ‘i?o the chain rule derivation 0 is injective (but not surjective, see below). The
following evident property is important:

w(of) =w(f)+1 for all feP.

As the sequel will show it is advantageous to quotient out D‘ﬁ, i.e., to deal
with ‘i&o /b‘ﬁ rather than with ‘ﬁo itself. Actually, it is preferable to deal with true
series rather than with cosets in 2]30 / 0‘23. We make use of the reduced polynomials
(originally introduced and called irreducible in [KMGZ]) as per Definition 1.

Definition 1. A reduced polynomial (resp., series) is a polynomial (resp., series)
in which each monomial is a constant multiple of one of the following monomials:

(2.1) & and P =€ . €8 with p=(po....,p,) €Z5T, p, >2.

The reduced series makes up a subring ‘ﬁo of ‘f?o. The next statement is easy
to prove.

Proposition 1. ([KMGZ]) The quotient map B —>‘f30/0‘,’1\3 induces a bijection
PBo—Bo/0P.

In other words, each coset in ‘ﬁg/b‘i} contains a unique reduced series. A
restatement of Proposition 1 is the direct sum decomposition

(2.2) Po = Po & 0P.
A fact frequently used is that 9 is skew-symmetric mod O‘f?:

(2.3) forg—(—1)"go"fcoP for all f.geP.

The range P of 0 can be characterized by means of the following linear dif-
ferential operator (of infinite order) on B,

(2.4 o—ve-Y -1 (52).
3=0 J

The operator V will play a crucial role in what follows; it is the same as the varia-

tronal derivative of Gelfand and Dickey (see for instance [GD1], (GD2] and {GD3]).

These authors denote it by §/4u; we are not using the natural notation /34 in order

to avoid confusion with the partial derivatives 9/9¢;. Since V lowers the weight by

one unit it extends straightforwardly to the completion ‘ﬁ
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Proposition 2. We have D‘ﬁz‘ﬁgﬂkerv.

To characterize the range of V we introduce the following differential operators

in B (or in P)
(2.5) vU)F:i(—nk(l‘f)ak“i(%). j=0.1....

with the understanding that V(9 =V.

Proposition 3. For a series f€P to belong to VP it is necessary and suffi-
ctent that

(2.6) g—g =VYf foralljeZ..

We are also going to need the following proposition.

Proposition 4. We have, for all f. ge‘ﬁ.

(2.7) V{fg) =Y [ )VIg+('g) VY f]:
=0
(2.8) Vipf=-vU-Dg j=1.2...

The proofs of Propositions 2. 3 and 4 are straightforward and will be omitted
here.
We associate to any series fePq the formal vector field

< )
(2.9) Ir=S (0" f) e
f 772-—-0 85”

Such formal vector fields are characterized by the fact that they commute with
0="¢,. The evolution equation

(2.10) Oru = flu]
has the symbolic equivalent
% _y
ae ¢
which is simply short-hand for the sequence of equations
d&n
(2.11) 3 =0"f(£). n=0.1....

dt
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whose formal solution is (exptd)(€). All this can be rigorously interpreted in
terms of the infinite-dimensional Lie group of Backlund transformations and its Lie
algebra. The latter is isomorphic to ‘}30 equipped with a Lie algebra structure by
means of the Poisson bracket

(2.12) {fi-fo} =05 fo—Vp fr.

The center of the Lie algebra o is spanned (over C) by the monomial &;.
Observe that, given any g&Bo and any solution u of (2.10).
. 0 = 0
Oulolul) =D (Dh0pu) 5 [u) = S (0 flul) 5[] = (09) .
= g = 3
It is therefore natural to define the conserved series of the equation (2.10) as those
series g such that ¢ fgeb‘ﬁ. Thanks to the “integration by parts” formula (2.3)
we see that this is equivalent to sayving that ngED‘i?. Since gea‘ﬁ entails Vg=0
we can state: every series belonging to D‘ﬁ is conserved for (2.10) whatever fe‘fB,
which is one reason for modding out O‘f}.
Translating within this formalism the notion introduced in [L2] we say that
the evolution equation (or, equivalently, the series f) is Hamiltonian if there is a
series ge‘ﬁ such that f=0Vg. Then g is automatically conserved for (2.10) since
(Vg)pVg=0(3(Vyg)®).
If f;=0Vg;, i=1,2, are two Hamiltonian series then

(2.13) {f1. f2} =0V ((Vg2)oVgy).

This shows that the Hamiltonian series form a Lie subalgebra 9 of the Lie algebra
Po. We also see that the commutation relation {f;.f2}=0 is equivalent to the
property

(2.14) fi07 f2 = (Vg2)oVg; €0P.

If (2.14) holds then g; and g, are conserved series for both f1 and fs.

2.2. Evolution equations of the sine-Gordon type

Henceforth we focus our attention on evolution equations quite different from
(2.10), equations of the kind

(2.15) uze = f(u)
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in which f is a formal power series in a single indeterminate without constant term
but with a nonzero term of order 1, i.e., such that f(0)=0 and f'(0)#O0.

The classical example of an equation (2.15) is the SG equation (1.1) or the
SHG equation

(2.16) 80 u = 5 sinh 2u.

We shall be interested in the conserved series Efu] (with symbol E ePy) of
(2.15). They are defined by the property that

(2.17) Zag] u] ¥y = 9, ®[u]

for some “flux” <I>€‘j\3 and all solutions u of (2.15). The equation (2.17) is equivalent
to

ou(Elu]) = 25’5 057 (F(u))
=0
8E = OF
=t G o) 3179 ) +0:90

7=0

for some WeP. In order to ensure that (2.17) be valid we require. first of all,

OF
1
(2.18) ag, =MW
for some constant A€ C; by (2.15) this entails
OE
ut——[u] = )\ut(azut) = 8z (%/\(Ut)z) .
9o

Note that (2.18) entails
(2.19) Elu]= )\/ f(r)dT+F(0,u. 02u. ...)
0

with F(&1, &, .A.)e‘ﬁo. We are therefore left with the requirement that

(2.20) w3 (-1 Jaf( oF []>:8x@[u]

=0 a€3+1

for some @e‘:f?.
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Fzample 1. Tt is a simple exercise in the application of (2.19) and (2.20) to
show that the following differential series and polynomials are conserved for the
SHG equation:

Ey = 3(cosh 2u—1), Ei=3 .
Ey=—3((02u)*+(8,w)*), E3=3(03u)>+5(0,u)?(92u)* +(0,w)®. O

2.3. The integrodifferential algebra 0,

Returning to equation (2.15) we note that f(u)=3,(d;u). In order to make
sense of this at the symbolic level we shall introduce a new indeterminate 79 to
represent dyu. This is akin to re-interpreting equation (2.15) as the pair of equations

(2.21) Au=v, dyv=f(u).

For a rigorous treatment we are going to quotient out a particular ideal in
the differential algebra 53(()2) of formal power series, without constant term. in two
sequences of indeterminates &;.7;, ¢.j€Z.. The chain rule derivation in ‘13(2)
given by 0=0,+19,, where

°§=Z§j+1—*- 0:;ZZ’7j+1—~
= 9¢; = Iy

As before feC[l&y]] is a formal power series such that f(0)=0 and f'(0)#0.

Definition 2. We shall denote by ﬁf the smallest closed ideal in ‘382) stable
under the chain rule derivation ¥ and containing 17, — f(&;). and by Q¢ the quotient
algebra 513(()2) /3 i

A generic element of J; is a series

(2.22) 9&m) =" a; (e~ (f(&)). @ €BY.

=0

We denote by ¢ the quotient map ‘i;((f)—){ﬁ((f)/ﬁf:ﬁf. Since aﬁf Cﬁf, the chain
rule derivation in ‘}3 () induces a derivation in 9 ¢ which we shall also call the chain
rule derivation and denote by 9. If we continue to call ‘)30 the ring of formal power
series without constant term in the indeterminates &;. j€Z,. then ‘Doﬂjf {0}
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and therefore ¢ induces an isomoxphism of 530 onto a subalgebra of O 1 henceforth
(‘BO) will be identified with ‘}30 itself and we shall talk of the natural m]ectzon of
‘Iig nto Qf With this identification we can write 2(RS)=Rp(S) if R(§ )6‘)30 and
S(e,mePy.
Let ‘530[[770]] denote the ring of formal series in the (nonnecratne) powers of ng
with coefficients in Py (where the indeterminates are the &;): Pol[no]] can be viewed

as a subalgebra of ‘13(()2), not stable. however. under the chain rule derivation in ‘,}382) .
The map

(2.23) BE 3 5(€0, 10, - &2+ 1) — S(E0. 70 €1 F(E0)-E2.0(f(£0))- ) € Bo[[mo]]

induces a commutative algebra isomorphism of 9 f onto ‘f?g[[no]] to which we shall
refer as the canonical isomorphism of Qf onto Pollno)]. It transforms the chain
rule derivation 9 of Qs into the following derivation of Po|[no]):

0
af:°£+f(§0)%-

So long as we take f to be the basic series. when we speak of the differential algebra
‘,]A30[[170]] we assume that its canonical derivation is d;. In a sense Bol[no]] is the
concrete realization of O 7. We can say that in ‘ﬁo[[no]] there are the antiderivatives
&=07"¢;11 and no=05" f(&)-

Composition of the natural injection of Py into Q s with the canonical isomor-
phism (2.23) identifies PBo with the subalgebra of PBol[no]] consisting of the series
that are independent of nq.

2.4. The operator V; and the range of 0y

Next we propose to characterize the subspaces 007 and 0 f‘ﬁ[[no]]. For this we
need the sequence of formal differential operators acting on ‘.Béz) [cf. (2.5)]

VR _Y ~1k<k> k“f(a—F) 4 YWF-S (-1 k’<k)ak—f<0—F>.
1 ;()jD dg,) g()j I

Lemma 1. We have

l:O

for all pairs of polynomials P. QE‘IB(()Q), i=1.2. We also have

(2.25) VWo=—vi Y =12 .
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The proof of formulas (2.24) and (2.25) is straightforward and we leave it to
the reader.

We shall now exploit the property that f/(0)5£0: this means that the series
f'(&) is invertible in the commutative algebra C[[£]]: we denote its reciprocal

by f'(&)~"
Lemma 2. The differential operator in ‘f?((f),
g Dsg=0(f"(0) "' V1g)—Vag.
maps the ideal ﬁf into itself.

Proof. According to formulas (2.24) and (2.25) we see that, for each j€Z, and
T (2)
a(éa 77) 6330 El

e

Vl((ﬂjﬂ—aj(f(ﬁo)))a):(—1)j+1f/(50)(0ja)+I§%(°[(Tb‘+1—Oj(f(fo))))v(1l)a-
vz(mm—oj(f(go»)a):<—1>J‘+1<of+1a>+§;<af(w_aj(f(go))))vgwa,
Therefore, if g is the series (2.22) then A
sO(Vlg)=f'(§o)i0(—1)j+10jaj and #(Vag):i)(—l)j“bj“aj,

whence
(f (&) e(V1g)) = (Vag) =0.

The claim then follows from the commutation relations £0=0y and f'(&) ‘y=

ef'(&)~" O

Lemma 2 tells us that D induces. via . an operator Dy of Q 7 into itself.
The canonical isomorphism 9 f =P l[no]] transforms D ¢ into an operator V; on
‘i?o[[no]]. To find out the expression for V; we make use of the surjection (2.23).
We regard a given series S e‘ﬁo{[no]] also as an element of ‘ﬁg); we form the series
(f"(£9)71V1S) = V1S which we send to ‘ﬁo[[no]] by the map (2.23). Keeping in
mind that S is independent of n;, j>1. we see that

- ds dS
(2.26) vfs=af<f’(§o)—1 Z(‘”%?(agn)) .

m=0

We see directly that Dy f=0; since f(&)=—0;n; this is consistent with the next
statement, which generalizes part of Proposition 2.
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Proposition 5. We have 0Q;Cker D and 04 PBo[[no]] Cker D}.

Proof. Since
0 d aS as
2075 = o (05 + 16 5 ) =0 (2 )+ 60

0 a8 as .
af DfS 0f<(9§7>+—a§m-1 ifm>1.

_a_a S_D <0_S>
ano ! oo )
we get

D=y (st (25 +25)
arlrier (Zevmor (32)« S (a))

m=1 m=1
0 (5770)

Then the claim about ¢ and Dy follows from the canonical differential isomor-
phism Qfgmo[[no]] O

The following consequence of Proposition 5 will be of use below.

Proposition 6. If a series SeP, belongs to Df((ﬁo[[no]]) then there is a series
®cPy and a constant X such that S(E)=Af(&)+oP(€).

Proof. By Proposition 3, Seof‘ﬁo[[no]] implies that D%S=0. If 5/019=0 this
means that 9(f/ (&)™ Yoo _o(—=1)™0™(9S/8Em))=0 and therefore that there is a
constant A€ C such that

5 Comon(25) <

m=0

i.e., V(S(€)=Af(£))=0 where V has the meaning (2.4). It suffices then to apply
Proposition 2. O

2.5. Index shift

Actually it is convenient to make the change of variables £;11—&;. J€Z,; &o
becomes a new indeterminate £ ;, standing for an “antiderivative”™. This means
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that the symbolic equivalent of equation (2.15) is now

déo
2.27 — = f(&_1).
(2.27) it f(&-1)
Henceforth we deal with the ring ‘B[[g_l]] of formal power series in £_; with coef-
ficients in the ring 93 in which the indeterminates are &, £;1..... A generic element
of PB([€-1]] is a series of the form

(2.28) SE) =D eyt e

p k=0

where £7=¢€f° .. . The role played by the algebra 530 in the preceding subsections
will now be played by the ideal PB[[€_1]Jo in P[[€_1]] consisting of the series without
constant terms (to be distinguished from the strictly smaller ideal PBo[[¢_1]] of the
formal power series in £_; with coefficients in ‘}A30). The chain rule derivation in

‘f?[[éq]] is given by

(2.29) 05 = Z 2

J=—1

361 '

The derivation d: B[[€_1]Jo—=B([~1]]o is injective; its restriction to 9 (the subalge-
bra of series independent of £_;) is equal to the usual derivation ®. The range of 9
is equal to the kernel of the formal differential operator

(2.30) Sr—s ;1( 1)707 %! (gg)

The restriction of the operator (2.30) to P is equal to 8V, where V is given by (2.4).

The shift of indices leads us to identify the integrodifferential algebra Qg with
the differential algebra (JB[[€_1]]0)[[10]] of formal power series in 7y with coefficients
in ‘ﬁ[[ﬁ_l]]o. The derivation in (‘3[[5_1]]0)[[7]0]] is given by

7,
(2.31) DfZD—i—f(f-l)a—nO

We get the following expression for the operator D’

(2.32) D?S:0f<f’(§4)_l i (-1)%]’“(%))—%.

j=—1
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2.6. Hamiltonian series in P[[£_1]]

We now describe the Hamiltonian approach to the conserved series of the equa-
tion (2.27). Let ®=0VV¥ be a Hamiltonian series in ‘fi We propose to give a
meaning to the product ®VS for an arbitrary series SEPB[[E_1]). For this, we first
extend the operator V defined in § to the linear subspace of i}[[g,l]] consisting of
the series S such that 35/9¢_1€0;((B([E_1]]o)[[m0]]) by setting

oS - [0S
2.33 VS =-071 22— 1yl 22
238 5= (‘0&-1)+§)( v (0@)

Then VS 6(‘%[[&1]]0)[[770]]. The condition on S is very restrictive as shown by the
following lemma.

Lemma 3. If a series SEPo[[¢_1]] is such that 3S/0E_1 €0 ((BIE_1)lo)[mol])
then

€1
(2.34) SE) =X ; FT)dr+W(&. & . ..)+0®(E)

with W By, eP([¢_1]] and AeC.

Proof. If SePo[[€_1]] then dS /91 €B[(¢-1))o- By Proposition 6. if 95/9¢_, €
Df((m[[f_lug)[[no]]) then 85/(9{71 :)\f(g_l)“FO‘I/(f) for some \IJE‘ZB[[§_1]]0. It fol-

lows that

(Y -1
S(§)—A/ f(T)dT—D/ V(1. €g.& .. ) dr
0 0
is independent of £ . O

The operator 94V, however, is defined in the whole of P([¢_1]) and maps it
into itself; as a matter of fact it coincides with the operator (2.30).

Definition 3. We shall say that a series ®€R[[¢_,]] is f-Hamiltonian if there
is a series U= ;7" f(r) dr+W () with WePo and AeC, such that =0;VT.

The series f itself is f-Hamiltonian since f(§_1)=—0;V ;7" f(7)dr. In pass-
ing, note that V/( 05“1 f(T)dr)=—no and therefore does not belong to B[€_,]].
Generally, if S(£) is given as in (2.34) then
(2.35) VS = = Af(E_1)+DVW.

To any f-Hamiltonian series ® we associate the formal vector field

x ) a
(2.36) 194,:(0;1@)85 1 +Z(D]¢>)—0-§—7—_.
-5 _
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When @6‘;3 this definition coincides with (2.9). In general. if ®=0;VV with (&)=
A7 f(r)dr+W(E), WeBg, AeC, then

) .
2.37 Y = —(VT TP) —-.
(2.37) o=—( )a§_1+;(0 )35]

Since V¥ =—Xno+VW e(P[[_1]])[[no]]. (2.37) implies that Jg is a derivation from

PlIg1]] into (PBlig-1])){no])-
If =f(¢_;) we get

(2.38) 9y =071 (F(6-1)

T +J§o® (Fe- g

(keep in mind that d7'(f(6-1))=mo). If ®=0,V(A [ f(r)dr+W (€)) we get.
by (2.35),

(2.39) Yo =—Adr+Paww.

Note that

(2.40) Jovw = i (DjHVW)i
= &

This means that the change of variables &_1—¢;. ]EZ . transforms the vector
field Yovw in ‘43[[5 1]l into the vector field dcyy- in B. It follows right away that
PYovw =00 vw. This property extends routinely.

Proposition 7. If @6@[[5_1]] is f-Hamiltonian and Séiﬁ[[f,l]] then 9405=
ﬁf’iS'@S.

Next we define the Poisson bracket between two f-Hamiltonian series ¢;=
0,VU; and ¢o=0,VT,. If ¥; and ¥, belong to ‘ﬁo the Poisson bracket {®;, ®,}
has been defined in (2.12). We shall adopt the same definition here but we must keep
in mind that when an f-Hamiltonian series ® depends effectively on £_; the associ-
ated vector field ¢ depends on the choice of f. as is made clear by formula (2.39).
Thus we set

(2.41) {@1,@2}=ﬁ¢1®2—1)¢2®1.

The bracket (2.41) induces the bracket (2.12) on PBo. There is no claim here that
{®1,®2} is also f-Hamiltonian (see the proof of Proposition 8 below). We can only

claim that {®;, ‘?2}6(‘3[[5—1“)[[’70“-
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We need to prove the analogue of formula (2.13). This would suggest that we

prove the formula
{B1. P} =0V (P10} ' @)

with the meaning (2.33) for V. The trouble is that D;1<I>2:V\If2 might well de-
pend on 7y and V does not act on such a series. But we may avail ourselves of
formula (2.32) which shows that 0;V= f’(g_l)ang} when acting on series that

belong to ‘ﬁ[[ﬁwl]]o. In view of this we can extend formula (2.13) as follows.

Proposition 8. If @ie‘q}[[g;l]], i=1.2, are two f-Hamiltonian series then

(2.42) D} (9107 102) =0, (f/(€-1) " {@1. %2}).
If moreover ®o=0VW, with W- 6‘130 then

(2.43) {D1. @2} =0,V (91051 ®y).

Proof. Let us write ¥;(£)=); f0€‘1 f(r)dr+W5(8). W’ie‘ﬁo, MEC, ie.,

~ A f(E-1)+0VW,;. Making use of (2.39) shows that

{‘I)l, ‘I’Q} =—) 19f (DVIV2)+/\Ql9f (DV"V )+/\2193vw'1f(§_1)
—/\1'(90vu2f( )+{0VH/ DV‘VQ}

Since the series 9VW; is independent of £_; we have, according to (2.13).
{dVW 1,0V, } =0V ((dVIF;)VIV,).
where VW; has its usual meaning. Going back to (2.37) we get

Vovw, f(E-1) =—f'(E-1) VW,

as well as
D (VW) =005 (VWi) =0 (@7(f(¢ )))g(vw )
j=0 J
Concerning this last expression we apply Proposition 3,
oC a xk
_ (4)
> @ a—vu )= (@ (f(E-) VI (VWL).

j=0 j=0

o=
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Comparing the right-hand side with formula (2.7) and taking into account the fact
that VO (f(£_1))=0 for all j€Z. we can write

D@V =30 (G i) TH T )T
j= i=0 I
(16 VIV).
At this stage we have gotten

{@1, @2} =0V((@VW:)VIV2)

+/\2( Fe l)vaj 1)Jaj+1(

j=0
—A1< VW, +Z 1)Joﬂ+1<

Returning to {2.33) we see that

renTw))

4@ Rle

(e )

.7

D

0/ V(F(E )VW) =~ f vw+z 17041 (- (e ),

whence
{®1, 2} =0V(@VW1)VW3) + 2205 V(f(£-1)VIW1) = M0 V(F(E21)VIVY).

It is here that we use the fact that DfV:'f'(éll)O;lD} when acting on series

belonging to ‘}A3[[§,1]]0. It enables us to derive from the preceding equation
0 (f1(€-1) @1, D2}) :D}((—)\lf+DVW1)(—A20;1f+VI/V2))—z\lAzD}(fD;If)~
But Proposition 5 entails D% (fo; ' f)=D%(0;(3(07'f)?))=0. O

Corollary 1. If @, efﬁ[[g_l]], 1=1,2. are two f-Hamiltonian series then the
property Qlaflégebf((%[{ E_i)lo)limo))) entails {®1.P2}=0.

Proof. This follows immediately from (2.42) and Proposition 5. 0

2.7. Conserved series in PB[[£_1]]

In accordance with the discussion in Subsection 1.1 we are interested SAolely in
the conserved series E of equation (2.27) such that OE/0ny=0. i.e., E€R[E_1]o.
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We shall also take E to be reduced, which simply means that the image of E under
the map &;—&;41 is reduced (see Definition 1). To say that E is conserved for f is
to say that

(2.44) 97 E €05 ((Bl&-1TIo) [nl))-

Note that 9r&o=f(£_1)=—0smp. i.e., & is conserved for every f.
To ensure (2.44) we require first that (2.18) be satisfied. that is to say. after
the index shift,

OF _
(2.45) 08¢ _4 =Af(€ 1) =205 (05 f(E-1)).
hence OE )
fle o5t <5§—I> = ‘A°f<§773)1
and (cf. Lemma 3)
E-1
(2.46) E(§)=2A ; Frydr+F(&.&1....).

The series F€Po must satisfy (cf. (2.19))

9 = Zof )G €05 (B olml)

or equivalently by (2.3),

x<

Z ]°J< F) €0 (Bl 1o Inol))-

j=

By Proposition 6 this last property amounts to the fact that f(€_1)(VF—p)€
o(P[[€-1]]) with V given by (2.4) and ueC. But since pf(€_1)=—pdsno we con-
clude that

(2.47) fEC)VF = —pdsmo+ovw

with WEeR{[e_1].

We can rephrase all this in the Hamiltonian terminology of the preceding sub-
section: by (2.46) and Definition 3 the series 9V E is f-Hamiltonian. Combining
(2.45) and (2.47) shows that

FEDVE=~(A=p) f(€-1)07 (F(E- 1))+ F (€1 /(VE—p)
= 3O =25 () + £ (- )(VE =) €0, ((Blig-1o) [1mo]))
Corollary 1 allows us to conclude that {f.02;VE}=0.
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The following result will be used in the next section.

Proposition 9. Let FePy be a reduced polynomial verifying (2.47). If F —pu&o
is homogeneous of weight »>2 then s must be even.

Proof. We may as well assume p=0. Let m; be the order of F and let us write
F=Py(&)er +P (€)™ 14 terms of degree less than r; —1 with respect to &, .

where £'=(o,....&m,—1), 71 >2 and the polynomial Py does not vanish identically
unless F=0. Then

iy 8P0

+<r1poa”<f(51)>+_z 85 7(f(€ 1)>> o

+ terms of degree less than r{—1 with respect to &,

Since r1>2 and the order of 27 (f(£-1)) does not exceed m; —2 if j<my —1 the series

myp—1 ; OPU .
(Z 0 (f(g—l))a_§;> my

j=—1
is reduced. If ﬁfFGO(qAB‘[[{_l]]) then necessarily

(2.49) > vrie- G =0

j=—1

Suppose the order my of Py is >1 and let us write
Py(€') =Py 1(€")€2,+ terms of degree less than ri with respect to &m, .

where £ =(&, ..., &m,~1): 72 >1 and the polynomial Py ; does not vanish identically
unless P=0. We see that

3 oe )22 —gz 3 wipen 22

J=-1 j=—1
+ terms of degree less than ry with respect to §,,.
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Therefore (2.48) implies

ma—1
: IPy1(£)
> V() =g =0.
j=-1 &
We see that
F =Py 1(£")&2,6 + terms of degree less than 7| with respect to &,

+terms of degree less than r, with respect to &,,.
Repeating this argument we come to the conclusion that
F{&)=c&y, - 62,60, T R(E).

where
Ty <..<ro<T1, (my+D)ri+(ma+D)ro+(m,+1)r, =5

and the polynomial R(£) is a sum of polyvnomials

(249) Q(§07"'7£m,\——1)§rrﬁ\,\ :Vf‘z ;111?
where 1<A<v, 1 <ry, 75 <ro,.... ri_; <ra_y and ) <r,. Since
(2.50) 97F = or, 0™ (Fe))En 1 2,60, + R (€)

with R;(€) being a sum of polynomials (2.49) where 1<A<w, r{<ry, 75<72,...,
r\_1<ra-1 and ri <r, with the proviso, now, that if A=v then 7/, <r, —2. It follows

from {2.50) that ¥;Fea(B{[¢_1]]) implies that r,=0 for all a<v and r, =2: or else.
that ¢=0 in which case F=0. If F20 the weight of F is equal to 2(m,+1). O

3. The sinh-Gordon hierarchy as an extension of the MKdV hierarchy

Henceforth we use the notation introduced in the preceding subsection. We
refer the reader to Example 1. The SHG equation corresponds to the formal dif-
ferential equation (2.27) in which f(£-1)=3% sinh 26_;. The conserved series for the
SHG equation in Example 1 have now the expressions

Ho=13(cosh2¢ 1 -1), Hy=31. Ho=-L(+8). Hz=3+586+£5

Inspection of the standard lists of low weight conserved polynomials of the MKdV
equation (e.g. in [T2]) shows that H;. H, and Hj3 are the (normalized, weight-
homogeneous of weight 2, 4 and 6, respectively) conserved polynomials of the MKdV
equation. This observation suggests the following statement.
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Theorem 2. Every conserved series of the sinh-Gordon equation, i.e., of the
series 5sinh2€_q, has the form

(3.1) E(€)=2A(cosh2¢_ ;1 —1)+F(&.&1....).

where F is a conserved series of the MKdV equation and AeC.

Proof. We begin by proving that every conserved series of the MKdV equation
is conserved for the sinh-Gordon equation. We know that the conserved polynomials
of the MKdV equation of weight 2, 4 and 6 are conserved for the sinh-Gordon
equation. We shall apply the recursion formula for the NMKdV polynomials M, =
(—1)™0VHpy1:

M1 =To7 AL,

ie.,
(3.2) —oVH,,,1=TVH,,.

where

TVQ=0’VQ-40(£VQ)+456 VQ+460 (& VQ).

[We are availing ourselves of the fact that

(3.3) §VR—0Q edp.

a direct consequence of (2.3) and (2.4) ]
Using the notation = to mean congruent modulo d¢9y[[no]] and keeping in
mind that 9;=0 on Po we have

JE-1)VHypi1 = =07 f(E-1)OVHp g
= (07 f(§ 1) (@°VH,, —40(§VH,p)
+460& VH, +4607 (6 VH,y))
& —f(E-1)0*VH,+4& f(E-1)VH
+46081 (07 (1)) VHm — 4600 £((05 1 f(6-1))07 M€V H )

=& f (E_1)OVH, +4& f(E-1)(EVHm—0 (€1 VHR))
§-1

= gﬂfl(é—l)DVHm‘}"l(gOVHm _DAI (§IVHm))D < f(T) dT)

0
-1
= (f/(g_l) —4 (1) dr)foWHm.
0
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When f(g,l):%sinh%;l we have f'(§_1)~4 [;7' f(7)dr=1. whence
1 sinh(26_1)VH,41 = -6 VH,,.

1t suffices to apply (3.3) to conclude that 3 sinh(26_1)VH,, 11 €.

Next we show that if a reduced series Fe‘ﬁo satisfies (2.47) with f(£_,)=
% sinh 261, then F is a conserved series for the MKdV equation. It suffices to deal

with a weight-homogeneous polynomial F &Py of weight »>2. & being obviously
conserved. According to Proposition 9 we need only consider the case of an even
weight. We begin by proving the following claim.

Claim. Let F be a reduced series belonging to Bo. For a series Geiﬁ[[f,l]]o
to exist such that

(3.4) sinh(26..1)VF =0G
it 15 necessary and sufficient that there be two series A. BG‘.]A30 such that

(3.5) VF=0A4A+42§B and 0B+2§A=0.

Proof of Claim. Suppose (3.4) holds. Letting 8?/9¢2, act on both sides of the
equation (3.4) leads to
1_9°G

sinh(26_,)VF = 10@:

whence 92(G//9¢? | =4G by comparing the last equation to (3.4). This means that
G(£-1.80,&1....) =A(&)sinh 26 + B(&) cosh 26,
with AeP and BePy. Putting this into (3.4) yields
sinh(26_1)VF = (0A+2£ B) sinh 261 + (0B 42§y A) cosh 2§_4

and (3.5) follows. The implication (3.5) = (3.14) is proved by tracing back the
preceding argument. O

From (3.5) we derive, for all v€Z ..

OF A B _ &-'B OB A ovla
3.6)V =0 +2 +2v and D +2 +2v — =0.
B0 Vo =g o T g ogy B T ag
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The second equation requires the degree of A with respect to & to be less than
m=deg, B (if =0 this will mean A=0). Indeed. for any v>m we have

0 (§ (9”A 0” 1A>:0
9 0050 (9§”1 B

which in turn implies 8” A/0&§ =0. Now suppose m>pug=deg., F. Taking v=m+1
in the first equation of (3.6) yields ™ B/9&5*=0 which Contradicts the definition
of m. We must therefore have m< . Note that if o=0 this implies B=A=0 and
therefore VF'=0, i.e., F'=0 since F is reduced.

Suppose 19>0. Then taking v=pq in the first equation of (3.6) and v=p¢—1
in the second one implies

VFy=2u3By and 0B0+2(/lo—l)AOEO.

where we have used the notation

ot oo~ B o2 A

FO:FSO, 0 = W and Ap= 05}1042

These series are independent of &;; this means that 0 can be equated to the operator

> o
O1=) &1
2. 5ag

and

We can repeat the same argument with Fy, Ay and By in the place of F. A and B.
respectively, and with £; in the place of &.

0" Fy 0¥ By 0" By 0" Ag

=2 d 0o—+2 —1
ogy Hopgy mmd Vg Pl e

=0.

But if we put v>p;=deg; Fp we get 8" By/0y =0 and therefore the degree of By
with respect to £; must be <y;. Likewise the degree of A, with respect to &; cannot
exceed that of By by the second equation. Repeating this argument iteratively for

a#ka 1 B al‘kBA a““AL 1

Fk'_ aé.pk B Bk_“a{“—k k= T A ag;u

k=23, ..,
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we obtain equations

@Mka_l_ (‘)ukBk_l and 00’“‘Bk-1
o M agr oef

OHk Ak—l

o

+2(px —1)

(Il

This can be pursued until k reaches its maximum value, which we call w, such that
oM Fr_1 /OEL* #0; we have 94« F,,_ /0€"~ =C and therefore

al"wAXF o C
Fo= “éguw—flg = —,{i‘.*‘ + terms of degree less than
w—1 M-

with respect to w. But since F,,_ is weight-homogeneous and only depends on &,

we must have _
a#w‘—le—Q — _ngw
el !

Recalling that F is reduced we must have p.>2. Then, if w>1 the left-hand side

in the equation
OMw—1 FQ_Q B 8#@—13“;72

\V "
ag= M Tagy

has the form

C )
——,fffv‘ﬁzfzg—k terms of order less than 2w.
(pes—2)!
But the right-hand side is of order <.:. We conclude that Fj is a constant ¢#£0.
Thus, considering what are the reduced monomials of the kind £P&Y _’, 1<I<8
and of weight » we must have

F(&)=ctl+ terms of degree < -4 with respect to &.

Take sr=2n; it follows easily from the recurrence formula (3.2) that

2m-—-3)! .
H,(&) = rr(L_!E%T))!§‘2’H+ terms of degree <s—4

with respect to &. We conclude that the polynomial

~ml(m-2)!

=F
h (2m—3)!

cH,

also satisfies (2.47) with f(£-;)=12sinh2¢_; and therefore the same argument as
above can be applied to it. Since F) cannot have any monomial of the form c£F it
must vanish identically. The proof of Theorem 2 is complete. [
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We can apply Corollary 1 to make the following observation.

When f(¢_1)=5sinh2¢_y, for an f-Hamiltonian series DVEG‘%[K*I]]O to
satisfy the commutation relation {f, 0VE}=0 it is necessary and sufficient that E
be of the form (3.1) with F being a conserved series of the MKdV equation and
A€C; and therefore that M(£)=0VE(£)— 3 Asinh2§_, belong to the closure in TBo
of the span of the MKdV polynomsials.

The set of all the f-Hamiltonian series DV E above is a kind of maximal abelian
Lie algebra, since the MKdV series M commute among themselves. But the f-
Hamiltonian series do not form a Lie algebra for the bracket (2.41). At any rate the
inclusion among them of the series %)\ sinh 2£_; determines that abelian Lie algebra
uniquely, precisely by Theorem 2.

The commutation relation

{5sinh2¢_,,6;-66}=0

means that sinh2£_; is a conserved series of the MKdV equation. Viewed as a
functional u+ssinh 2 f “u it is what is called a nonlocal functional. On the other
hand, any conserved polynomial P(&g, &7, ...} of the MKdV equation defines a local
functional of the SHG equation, namely

U P(O;u.0%u, ...)

(cf. Example 1).

As announced in the introduction, the characterization of the conserved series of
the MKdV equation provided by Theorem 1 extends to sinh 2£_;. Indeed, consider
a meromorphic series

1 < s
::t— n—7-
u(z) $+;§ n!

We can define

n

z o
-1, _ r
0 u—/ u(x) d:c—ilog:r—}—g&n_l e
The residues of the formal meromorphic series
T > "
exp(:tZ/ u(r) d;z:) =252 exp <2 Z En-1 F)
n=2 ’

are equal to zero.
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4. Other equations of sine-Gordon type
4.1. Pairs of series and polynomials of sine-Gordon type

In this section we discuss briefly the existence of pairs consisting of a series f
and of a reduced polynomial E e satisfying (2.44). which here means

(4.1) FE)VE €d(P[l1D-

where V has its usual meaning. We assume that f(0)=0, f’(0)#0 and that F is
weight-homogeneous for a given weight. Thus £ will be a conserved polynomial
of equation (2.27) and OE/J 1 =0FE/dnp=0 (cf. (2.46): we limit ourselves to low
weights).

As before, = will stand for congruent mod d(B[[€_1]]). We shall not distinguish
between pairs (f, F) that can be transformed into one another by a transformation

(4.2) (f(€)- E(€)) r (1 f(08). caE(0£))

with ¢y, ¢2, 0€C and ¢1¢207#0.

4.1.1. Weight 4. Every polynomials homogeneous of weight 4 is a constant
multiple of E5(§)=3£7+3A&}. For E=E; condition (4.1) reads

AF(EC)E ~ F(E1)& = (Af(E-1)— 3 f"(€1))& =0.

and requires f”=2Af. Assuming A#0 and f(0)=0. f'(0)#0 leads to

1
F(€-1) =5y sinh 2485

All these pairs are equivalent to the SG hierarchy.

4.1.2. Weight 6. Reduced polynomials that are weight-homogeneous of weight 6
are constant multiples of E3(€)=3&3+ A+ BT+ CE].
A brief calculation shows that condition (4.1). in which E=Ej3, reads

(6Cf(e1) =3B (€-0)+1F"(6-1))&
+(2Bf(E-1)+3AF (E21)~ 2 £ (€-1))&0EE =0.

This requires

JO 2B 424Cf =0 and 3f’'—3Af -2Bf=0.
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We seek solutions of the kind f(z)=3(exp Az—exp pz) with Ay, #€C, Au##0. and
A#p. This demands that both A and i be solutions of the pair of equations

r*—2Br?+24C =0 and %7‘2~3Ar—23 =0.

Note that Au7#0 implies B#£0, and A\#p implies 942 +20B+#0.

The case A=0 is essentially that of the SG equation: A=—pu=2,/B/5.

The cases A#£0 are very different. For the sake of simplicity we carry out a
transformation (4.2) allowing us to take B=2. The previous equations become

<

r*—5r2424C =0 and 7‘2—%447“—2 =0.

These two equations have two common roots if and only if C' —l and A::t%. If
A:—— we get the pair of roots (1. —2): if A=2 we get the pair ofloots (—1.2): the
corresponding pairs are obviously equivalent. \Ve shall take

(43)  f(é-1)=expboi—exp(—2£_1) and Ej(€)= 363263+ 36367+ 1¢.

With the choice (4.3) of f, the equation (2.15) becomes the Ablowitz—Kaup-Newell-
Segur (abbreviated AKNS) equation (see [AKNS]).

4.1.3. Weight 8. It suffices to look at the reduced polynomials homogeneous of
degree 8,
Ey = 385+ (a85+0'61)€5 + b6} +c&0€7 +dEGET + e
As before we take f(z)=
calculation yields

n(exp Az—exp pz) with Au#0 and A#pu. A straightforward

eIV E, & (2a+a r~~r )§0§ '"5—1—(-20+2r(a—2b)+1§ ! 2—77"3)5 et
+(4d+3cr—9ar® —a'r* +7r)&ede™s 2 + L art —dr? 4+ 3e— 3r0)Efe’
0.

(1

We equate the coefficients to zero:

2a+a’'r— ’57‘220.
—2c+2r(a—2b)+Ea'r? =713 =0.
(4.4) ( )_ .
Ad+3cr —9ar’ —a'r*+7rt =0
3e~dr?‘+ar4—%r6:0

Note that Au7#0 implies a#0, and A%y implies 28a+ (a’)%#0.
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The case a’=0 gives the roots £2,/a/7 corresponding to cases equivalent to the
SG equation. In this case we may take r==2, i.e.. a=7; the remaining coefficients
are then determined,

Ey=1e+763¢3 - 161 +356061+ 366

This is the fourth (normalized) conserved quantity of the MKdV equation, Hy in
the notation of the preceding subsection.

When a’ #0 we get pairs of roots g. —2p. with g depending on the choice of the
coefficient e. In other words we get pairs equivalent to those of the AKNS equation.
We may as well select p=1; then necessarily

(4.5) By=1e+ (- 6)8 - 1e - 188 +T6 6+ 46

4.1.4. Weight 10. The generic weight-homogeneous polynomial of weight 10 is
a constant multiple of the polynomial

Es = 1624 (016340261 ) €2 +-bEo€S + (163 + 28561+ 367 €3

T E] + 2Bt e a0 + 15 €88

Direct computation shows that

oc
. OF
PRARE! Z [ (675*1)——8; = %(4(11 +2agr—9r2)§0§§ + (b—a2r+5r2)§§’
7=0 J
+ terms of order <2.

Since we want Ej5 to be a conserved polynomial of e*¢-1 —e™#¢-1 with A#p and
Au#£0 it follows that the two quadratic equations

9r? —2aor —day =5r2—ayr+b=0

must have the same roots. This demands as =0 and therefore A=—gu. It means that
through a transformation (4.2) brings us back to the SG situation.

4.2. The AKNS hierarchy

The polynomials E3 and E, given by (4.3) and (4.5) provide us with the con-
served polynomials of lowest weight (6 and 8, respectively) of the AKNS equation

(4.6) 8 0,u=e"—e .
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Keep in mind that the variable &; corresponds to the derivative &7 1y; to u itself
there corresponds the variable £_;. We have just seen that there is no conserved
polynomial of (4.6) that is weight-homogeneous of weight 10.

The Hamiltonian polynomials

Py = §0V Ey = & ~5(65 — €1)63+563 —2060€1£2 — 567 + 5661
Py =—10VE,
=& = T(E§ — £1)65 — 21(26061 — §2)64+ 1465 — T060Eas — 14(467 — &5 +6:160)E5
— T E08 +84E3E] — €1 +5660(26 ~ €1)6162— T(265 +11£1)¢3.
constitute the start of the AKNS hierarchy, after the series ef-1 —e=26-1. They
commute: {P;, P»}=0, which is to say that VE;(0VE;)€dP. This can be proved
by a straightforward (although lengthy) calculation. The AKNS hierarchy spans an

abelian subalgebra of the Lie algebra B[[¢_1])-
The congruences mod 03,

By = §(65+61)° +3(2606 +62)°.
By 2 3(846)* + 56 +61) (26061 + &) + 3 (26 +26062+63)°
point to an interesting feature of the polynomials F3 and Ey: after division by 4
they are the pullbacks under the Miura transformation 770:%(534'51) (see [M]) of
the two polynomials
Qs(m)=3m+3ni and  Q4(m)=3ng+3noni+57.
The polynomials Q% and @ can be compared to the normalized conserved polyno-
mials of the KdV equation of the same order. Q3 and Qy:
35 @3(6m) =205+ 3nf = Qs.
35Q4(67) = 24n* + 18007 + 303 # Qu = 1005+ 10m0nT + 3773
After the change of variables n—6n and multiplication by a constant, 9V Q3 becomes
the KAV polynomial Ry =n3—12ny1,. However, the same change of variables does
not transform dV(Q) into a constant multiple of the second KdV polynomial Ra=
&5 —20€0€3 —40&1 €2 +120£3¢,. 1t follows that dVQ4 and dVQ) do not commute,
otherwise the change of variables n—6n would bring 9V (@ into the centralizer of
R, which it does not. And indeed,
—VQi(VQ4) = (315 —3nF —6moma+14) (ns—nom) =i + E M-

Another interesting feature of the AKNS hierarchy is the following residue
vanishing result, which is proved by direct calculation.
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f§—1
0

(4.7)
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Proposition 10. Let Fy and E; be given by (1.3) and (4.5), and let F(g-1)=
(67_8—27) dT:e§~1+%e—2§_1 ‘% [f

. _k - 1,, n
U(l)—;%‘Zm;nJ

n=1

with k=1 or k=—2 and arbitrary coefficients ~,€C. then

Res F(0'u) = Res Es[u] = Res E;[u] =0.

where

x
1
O 'u=klogz+ L
2 nz::l (n+1)! m

Moreover, any weight-homogeneous polynomial P of weight 2j such that Res Plu]=0
for the series (4.7) is a constant multiple of E;. j=3.4.

This leads naturally to the following conjecture.

Conjecture 1. For a series ge‘ﬁ[[é_l]] to be a conserved series of the AKNS

equation (4.6) it is necessary and sufficient that Resg[u]=0 for the formal series
(4.7) with k=1 or k=-2.

For further information on the AKNS hierarchy we refer to [AKNS].
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