ON A CLASS OF PERFECT SETS.
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1. By an M-set, or a set of multiplicity, we mean a set E in (o, 2s) such
that there exists a trigonometric series

©

2 an cos nx + by sin nzx

n=1

whose coefficients tend to zero but are not all zero, and which converges to o
in CE. This paper is concerned with perfect M-sets.

A perfect set P may be supposed to be constructed by subtracting its
contiguous intervals d,, d,, ..., in this order from (0,2s). When d,,...dx
have been subtracted, there remain certain closed intervals g¢,, ... ¢n, and from

one of these, ¢; say, dus1 is to be subtracted. If
lim dusr _ ,
n-o Qi

then P is an M-set. This is the theorem we prove.

Some years ago, Nina Bary' constructed a class of perfect M-sets. This
class was subjected to two conditions. Bary enunciated the hypothesis that the
second condition was superflous. The clags of perfect sets subject to the first
condition alone, is apparently wider than the class mentioned above. But we
show that they are identical, and thus verify Bary’s hypothesis.

! N. Bary, Fund. Math. IX 1927 (62—1135) 62, 3.
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2. In what follows, when we speak of subtracting open intervals (a;, )
¢=1,...», from a closed interval (4, b), it is to be understood that

a<o <f <ag<<- <, <b.

Consider the following process of forming a perfect set P in the closed
interval (0, 27) = @°.

(i) Subtract from ¢° the ! open intervals di, ... dp, where !’ is any as-
signed integer. There remain %, = 1 + I° closed intervals of, ... oi,.

(i) Subtract from each closed interval ¢; (=1, ... k) the I; open inter-

vals dji,...dj;}, where I; is any assigned positive integer. There remain
&y
ky = 2, (1 + 1) closed intervals ¢} ... gf,.

re=1

(iii) Generally, let o™, . .. QZT:n—_ll denote the closed intervals which remain
at the (m — 1) stage. From each interval ¢! ({=1, ... kn—;) subtract the
I*—' open intervals df}, ...d}"l;n—l, where I~ is any assigned positive integer.

|

There remain k, = 2 (1 4+ I™1) closed intervals ¢, ... o
i=1

Let D denote the sum of the open intervals dJ,... d‘;"lfin—l. Let
kg —1 ®

Dy = 2 D, Then ZD,,, is complementary to a perfect set . Let max o7,
i=1 m=1

min ¢ denote the greatest and least lengths of the intervals which remain in
"' when D" is subtracted. It has been proved by N. Bary (loc. cit.), that P
is an M-set if these two conditions are satisfied.

Condition I. There is a sequence &, of positive numbers such that

n
D 7

lim &y =0; = Sen 0=1,2,.. . kn—a; m=1,2,...).
I3

Condition II. There is an absolute constant C such that
o m=1,2,... )
= l: I, e km—l :

It was conjectured by Bary that the Condition II is superflous. ‘We shall

max g}

c . 3
min g;

prove that this conjecture is valid. The proof of Bary consists in constructing



On a Class of Perfect Sets. 285

a periodic function F(x) which is constant in each contiguous interval of P,
but not constant on CP, such that

2 27
lim an(a') cos nx dx = lim an(x) sin nxde=o0.
0 0

Then the series obtained by formal differentiation of the Fourier series of F'(x)
converges to zero in CP. Thus P is an M-set.

The exposition of Bary was devised so as to avoid, wherever possible, an
appeal to Condition II; and this condition is used only at one point of the
proof. In order to dispense with this condition, what is necessary is a more
detailed examination of the structure of P. This however is hardly possible 50
long as we imagine the perfect set to be constructed as above. If, however,
all the numbers ! which enter into the above construection equal 1, the problem
becomes manageable. The reader will suppose that this involves a restrietion
on the class of perfect sets. By no means. An essential part of our proof
consists in showing that if P satisfies ‘Condition I, then the contiguous intervals
can be subtracted from (o, 27) in such a fashion, that, with a suitable notation
all the numbers ! equal 1, and Condition I is satisfied for the new method of
construction. This result naturally enables us to simplify the rest of Bary's
proof, and we have thought it best to give a complete demonstration of the

theorem.

3. In the closed interval d = (e, §), let di=(e:,8) ¢ =1,...n be n open
intervals such that
<o << <an< <.
Let

ani< 0d (I)

=1

where 0 <6 < 1. The set d — 3d; may be regarded as obtained from (e, 8) by
subtracting the intervals d; successively. This subtraction can be effected in n!
ways according to the order in which we subtract the d;. Let Aryy - .. dyr, be a
permutation of d,,...d,, and let them be subtracted in that order from d.
We define »the index of d,» (Ind. d,) for that order of subtraction, to be
dr/d. Suppose that the indices of dy,; ... d, (¢ < n) have been defined. When
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dr,, ... dr, have been subtracted from d, there remain 7 + 1 intervals, and from
one of these, d say, the interval d._, is to be subtracted. We define the index
of dy,, for the given order of subtraction to be d,,, /4.

The following lemma is of fundamental importance.

Lemma I If (1) ¢s satisfied, then there is a permutation d,,, ... d.,, such
that ¢f the intervals d; are subtracted in this order, then the index of each s < 0.

The proof is by induction. The lemma is true for » = 1. Assume it for
n -— 1. There are two cases.

(i) If

d, = 0(e, — ),
then
dy+ - +dy<0(f—0a)—0(¢,—0)

< 08— a). (2)

Subtract d, first. Its index is less than 6 by (1). The intervals dy, ... d, must
now be subtracted in some order from (8,,8). By (2),

dy + - +dy < 0(B—8).

By the lemma for #» — 1, there is a permutation dr,, ... ds, of dy, ... ds such
that the index of dr; (j=2,...n) is less than @, when the intervals are sub-
tracted from (8,,8) in that order. Then d,, d,, ... d,, is a permutation with
the required properties.

(i) If
dy < 0(ay —a), (3)
then since
dy + - + dy < 6(8—a),
there is by the lemma for » — 1, a permutation d,, ... d,,_, of dy, ... dn such

that on subtracting the (»— 1) intervals in that order, the index of each is <4,
We finally subtract d;, from (e, a,). Then its index is less than 6 by (3). Hence
drs ... dr,_,, dy is a permutation with the required properties.

4. Consider now the construction of P in 2. Suppose that the Condition I
is satisfied.. Take m = 1. Then

di+ - +db<e.2m.
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By lemma 1, these intervals di can be subtracted in a certain order so that the
index of each is < g. Let us denote the intervals in the new order by

dy, dy, . .. dp. (4)
Write
N = &;. n=1,...,19 (5)

Then if the d; for 1 <7 =1° are subtracted in the order (4), the index of each
is < 1.

We now consider Condition I for m = 2. The set complementary to (4)
consists of the intervals ¢f,... 0. From g we subtract the I} open intervals
Y, <. .dit.  The Condition I gives

o+ o+ dil} < 529}-

By lemma 1, these intervals can be subtracted in a certain order, so that the
index of each is < &,. Let us denote the intervals in the new order by

dryr, dpya, ... dpygl. (6)
‘Write
"]n,':é‘z (n:l0+l,...lo+n). (7)
From ¢; we subtract the I; open intervals di,, ... d3s. The Condition I gives

ay + -+ di < 503

By lemma 1, these intervals can be subtracted in a certain order so that the
index of each ig < g. Denote the intervals in the new order by

dotiia, . oo, dogilead. (8)
Write
Tn = & =04+0+1,...°+5+1).

We repeat this process till we have considered ¢i,. Then we have defined the
sequences
di, ni ('"——I,...lo+li+"'+lia). (9)

It is clear how the process is continued. We have lim 9, =0. We have
thus proved
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Lemma 2. [f P be a perfect set constructed as tn 2 and which satisfies Condi-
tion I, then the contiguous intervals of P can be written as dy, dy, ... dn, ... s0
that if they are subtracted from (0, 27) in this order, then lim Ind d, = 0.

In order to prove that a perfect set P which satisfies the Condition I, is
an M-set, it is sufficient to prove

Theorem I. Let P be a perfect set in (0, 27), obtained by sublracting the
contiguous intervals dy, d,, ... tn this order. If lim Ind d,=o0, then P is an M-set.

5. Before we can prove Theorem I, we must consider another method of
constructing P. From the interval (o, 27), subtract the closed interval d,. There
remain two closed intervals, which we denote from left to right by ¢,, 03 From
¢, we subtract the open interval J, and from g, we subtract the open interval
d;. There remain four closed intervals which we denote from left to right by
011, 012, 021> Os- From g,; we subtract the open interval d,;, from ¢,; we subtract
0,2, from g, we subtract d,, and from g¢,; we subtract dy,. There remain eight
closed intervals g (7,7, £=1,2). Tt is clear how the process is continned. The
intervals d with the same number of suffixes are subtracted in lexicographical
order; and the intervals with » 4 1 suffixes after the intervals with » suffixes:

0o, 04y s, 01y, O1o, O31, Oop, Oipys Opres Opars Opne, - - (10)

The set complementary to the sum of the intervals d is a perfect set P. We

wish to prove,

Lemma 3. ZLet P be a perfect set formed by subtracting its contiguous inter-
vals dy, dy, ... in this order, such that lim Ind dy = 0. Then there 7s a way of
writing the intervals d; in the jform (10), such that if the intervals 8 are subtracted
in the order (10), then Ind 6p,p,...p, (p: =1, 2) tends to zero as n— oo,

We write

do=d,. (r1)
Let the members of
dy, dg, dg, ... (12)

which are contained in ¢, be written as

da,y digy -+ (13)
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where the suffixes form an increasing sequence. Let the members of (12) which
are contained in g, be written as

duyy sy - - {(14)

where the suffixes form an increasing sequence. Then d; is the first d; which
is subtracted from g, in the order (12), and d,, is the first d; which is subtracted
from g, in the order (12). Write

0, =dy, dy=1d,.

Then as far as the first three terms of (10) are concerned, Ind d,, Ind §,, Ind 6,
for (10) are equal respectively to Ind d,, Ind d;,, Ind d,, for (12).

We now consider the four intervals g,,, 049, 04y, 020. Let the members of
(12) which occur in them be written respectively

Aoy, day, ... (15)
dy,y dy, ... (16)
d:yy dey, ... (17)
Ao,y Oogyy - . (18)

where the suffixes in each sequence are in ascending order. Then d., is the
first d; which is subtracted from ¢, in the order (12);... dy, is the first d;
which is subtracted from g.,, in the order (12). Write

Oy =du,, 0,3 =4dy,, 0y =ds,, 0y =1dy,.

Then Ind d,,... Ind d,, for (10) are equal respectively to Ind d,, ... Ind d,
for (12).

It is clear how this process is continued. Further, this process exhausts
the d;. Now given ¢ > 0, we have

Ind d; <&, 7=mnls

the index referring to the order (12). Let d;, ... dn(y occur respectively in the

7, .. Tae' place in (10). Then in (10), any J which occurs after the N place,

where N = Max (r;, ... 1) is a d whose suffix exceeds n(¢). But by construc-

tion, the index of this ¢ in the order (10) equals the index of the identical d
3734686, Acta mathematics, 66. Imprimé le 7 mars 1935,
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in the order (12). Hence dp,...p, < ¢ provided that dy,...p, oceurs in (10) after
the Nt place; i.e. provided that » is sufficiently large. This proves the lemma.

We can now enunciate Theorem I in the form mentioned in 2, with all
the numbers [ equal to 1. For by lemma 3, we can enumerate the intervals
dy,dg,... as in (10), and if &, denote the greatest of the indices of the 27!
intervals d with m — 1 suffixes, then ¢, — 0. W¢e have then to prove

Theorem II. Irom ¢} = (0, 27) sublract the open interval di. There remain
2 closed intervals o1, 0. From cach closed interval ¢; (2 =1, 2) subtract the open
interval di. There remain 2*° closed intervals @i, ... ¢i. Generally, let o™, . ..
9;"1,:1 denote the closed intervals which remain at the (m — 1) stage. From each
e/t subtract the open interval di. There remawn 2" closed intervals of, ... %, .

gm—1

Let D, = 2 ar. Then ZI)m ts complementary to a perfect set P. If
i=1 1
there is a sequence &y of positive numbers such that

lim e¢n =0, d'/e" ' <en, ((=1,...2" L,m=1,2,...)

then P 13 an M-set.

6. We define a sequence I'n(x) of continuous periodic functions by indue-
tion, Let

(i) F,(0)= F,(27)=o0; (ii) Filx)=1 in di; (ili) Fi(x) is linear in o}, o}.

Suppose that F(z), ... Fu(x) have been defined, so that Fy(x) is constant in

m

each interval of S, = ZD,-, and is linear in each interval of R, the comple-
=1

ment of S,,.

We define
I‘.‘m+1 (x) = Fy (ac) on Sp.

Let ¢ be an interval of -BE,. From it, the interval d*! is subtracted, leaving
the intervals omt*l, o™*. We denote by o™*! the larger of these intervals if
they are unequal, and the first (the left hand one), if they are equal. We denote
by #**! the other of these intervals.

We complete the definition of F),41(x) uniquely, by the condition of con-
tinuity, and by
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Foiilx) = Fulx) in o"t1,
= const. in drtt,

= a linear function in <**1.

Let 4" denote the variation of Fu(x) on ¢, and let 47, denote the
variation of Fp4i(x) on 21 Then

m+ 1
A7

m+1 m+1
Ay | ot + d]
m
Jz‘

T?H—l + d;n-l—l + O';'L'H

I(’[+G)+ d

(]

=

t+e
But
A" < gpii(z+d+0),
so that
g <l tol
I — &m41
Hence
471:;; SE 4 Sm+1
i

2 I — &m+1

$3

4
)

for em+1<g, ie form=M.

For an assigned m, any point x belongs either to Sp or to R,. If
x < Sp, then

Fuvilz) — Fulx)=o0 (=m,m+1,...).

If 2 < Ry, then x < ¢, where ¢ =i(x). If x < ¢!, then
Fm+1(x) - I’Ym(%’) = 0.

If © <%, or @ < dM'*!, then

m+1
lﬁvmﬁ-l(x) — Fm(x)l = _Zg'r_n '4;11'

2

= 8m+1‘>4;n|' (20)
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Every point x < P belongs to an infinite sequence ¢} > g/ > ¢i >

> g, > ..., where ¢,, ¢, ... is determined by x. Every point z < CP belongs
to a finite sequence ¢} > -+ > gf > d""“.

+1 +1 m+1 . . T
If x <gi, ., then, either ¢;, =i, , in which case Iyi1(x)= Fn(x), or
m+1

else ¢/ " =i ', in which case we can apply (20).

m+1
Consider the remainder

2

rm () = ; (Fypi1(2) — Fyl@) (m=DM) (21
of the series
Fl(’”) + [Fz(x) - 1'11(3’;)] + - (22)

Then

| rm () |<Z|1’q+1 — Iy Zl | Fyra{x) — Fola)], (23)

q=m

where if x < P, the accent denotes that the sum is taken for such ¢ for which

97,:1 ¢of’;1, while for z << U P, the accented sum denotes o if m > u, and the

non-zero terms of
it

2| Frale) — Folw)]
q=m
if m= [L Here u has the meaning given above; i.e. x < di-‘:l. To evaluate
| Fuvi(@) — Fu(2)], we can apply (20).
Let

Nn = Ma:x (en-}-l, En+2,y .- .).

Then lim 7, = 0. By (23) and (20), we have

l’m l = Nm 2 l 1,1 (24)

q=m

If for a particular value of ¢, |J§~1q| is a term and is not the last term in (24),

+
then the next term | ,8=1, arises from an interval ¢/ ‘. Now the oc-

q+s|

tgt+s”
currence of |Jl-q | in the accented sum means that Fyii(x) # F,(x). Also, the
fact that Id{{zl is not the last term means that x is not contained in d;-’:l
g+1 q+1.

q+
Hence x < i, 1 and ¢, = 7,
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. g+1 g+s
Also, since @i\, > €i,,,, We have

g+s | g+1 |
|d‘q-!-8| - ld’q+1 ’

By (19),

q+1 3 U]
#1123,

so that

| =2 ).

Hence for all x and m = M,

lral)l = o] 22| 3 (2)'

=0

S3nm|4;{fn|.

Hence the series (22) is uniformly convergent; F(x) is continuous, and is constant
in each interval of CP, and

| F(@) — Ful@)| < 39.| 27(. @<el)  (25)

7. Let A be a number which satisfies 1 <1 < 2. Choose M so large that

2% _ 4,
g < 0 e
Let x < P. Then « is the limit of the sequence ¢! >¢;>¢;,> -~ Consider the
sequence
a, o, o, ... (26)

The numbers o have the meaning previously assigned, so that a?f ' = Max (92;*,‘_1, e’i}il).

The numbers (26) form a diminishing sequence which tends to zero.'! Hence given
m = M, there is a unique % = k(x, m) such that

. 27 . 27
Ty = w0 AN < m
Clearly,
E(z, m) < k(zx, m + 1). (27)

‘We have x < gfk, where k= k(x, m). By the Heine-Borel theorem, P is contained

! Supposing, as we may, that P is non-dense.
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in the sum of a finite number of such intervals 95,\ On the other hand, the
number % = k(x, m) is the same for every x of ngk. The intervals gf,c, k= k(x,m),
are therefore non-overlapping, and there is a finite number of them. These
intervals contain P and constitute a set which we denote by R;. The intervals
of R, are separated by contiguous intervals of P,

Let wn denote the least & for which an interval of the form ¢} belongs to
R;.. Then k(x, m)= un for all x< P.

By (27),
P = Wms1. (28)
, 2 . .
If gi™ <R, then gm'', oin™ < lzr Given a natural number N, every g,

for £ = N, is greater than i;,r, for all sufficiently large m. Hence pyr1 > N

for m = m(N); i e.
lim gty = oo. (29)
m->
By (28) and (29) every positive integer % determines uniquely an m = m(n)
such that
)"m-——-l lm

mommn = < ) (30)

Vay, Vi

m—1
We define a sequence {gn(z)} by

(1) @n(x) = I'(x) for x < CR,,; (ii) if x <! < R, then gu(c) = Fi(z).
We define a sequence {fn(x)} by

(i) fu(2) = Flx) for x < ORy; (ii) if x < o' < Rn, then fu(x) = Fiy:1().

Then each of @u(z), fu(x) is continuous in (0, 27), increases from o at x = o
to 1 at the left end of di, and diminishes from 1 at the right end of di to o
at x =27,

8. To prove that P is an M-set, it is sufficient to show that
27

lim % | Fle)cosn(e—x)de==0
n— w
1]

for all z.
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We have

I=171 -—an Yeosnle —x)de

= f( F—fn)cosn(e—z)de +wffmcosn(a—-x)d
=1L + I,

where m = m(n) is defined above.
Since f = Fin CRy,

2
|Illénf|F——ﬁn|(la
0

= nfllf'——f},,l(la.

g
X
),

Now R, consists of a number of separated intervals ¢f with k= un.

interval ¢*, f. = Fry1. Hence
| F—ful=|F — Finl.

Now of = gttt + df+1 + gk+1 and I'= Fiy1 on dft'. Thus

2i—1

Jirsi= [+ [1r=ral

E+1 E+1

¢ @3i—1  Ogg
< k+1 k+1 k+1l 1.+1
= 3y lz,zz—llgm-—l + 4’2: @y;

y (25). Since ¢f < R, we have

B4l ght1 = 270

922—1’ Q‘ZT/ A
Further,
| 752 | + | 455t | = absolute variation of Fi+1(x) on of

= absolute variation of fn on gr.

On an



296 8. Verblunsky.

Hence
27 . .
| L= n. 39, T [total variation of f» in (o0, 2m)]
SV
by (30),
g X V’l?,,; . (31)
Next

2n 27
Ig=nffmcosn(o:--x)da=—fﬂnsinn(a——x)da
0 0

2n

2a
= — [(fm—~(p§n)sinn(a—x)da—fq);nsinn(a—-—x)da
‘0

0

=1, + 1.

Since fu. = @m on CRy,, we have

27
1= [ 17 gl
0

= flf"m~¢inl-
2,

On ¢* <R, we have fm = Fiy1, o= Fi. But Fiip is constant on dé+1. Hence

f|ﬂ,,-_¢;,,,|=f|z«';.|+ f + flﬂ+1~ﬂ-l- (32)
of a

k41 E+1 E+1
i €24—1 Cuy

We have,

| Fi| = absolute variation of I on df+l.

k41
di

Also on that one of the intervals ¢!, ¢ff' which is o/*!, we have I'yi1= Fy;

so that the last two integrals in (32) equal
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f | Fior — F. (33)

iy
%

Now Fii1, Fi are of the same sign, and

varn. of Fy in ¢f+! 4 df+!
Flpy= oo — L
1
%

Hence (33) equals [abs. varn. of F; on df*!. Thus
f|fm——(p§n|= 2. [abs. varn. of I} on dft]
ko
{5

= 21, - [abs. varn. of @n. on ¢].
Hence
| I,| = 21, . [Total varn. of ¢n on (0, 27)

< 4ny,,. (34)

9. We must now evaluate I,, and this is the critical part of the proof.
Since gm=2F in CRy, and F is constant in each of the intervals of which
CR,, consists, (they are contiguous intervals of P), we have

L:—f(p'msinn(a—-w)da. (35)

7

R

We shall use the abbreviation AV (f, d) for »the absolute variation of f on d»,

i.e. if §=1(a,B), for | f(8) — f(c)].
We have

=AYV (@ma Qif), (36)

If(pin sinn{e—x)de
i
¢

since @y is monotone on ¢f. Also, if ¢ < Ry,

== lgvhfsinn(a-—x)da

'fg)é,,sinn(a—x)da
k

0; &
38—34686. Acta mathematica. 65. Imprimé le 7 mars 1935,
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since @n =TI in ¢! and I} is linear in the interval. The last expression does

not exceed

2 ’ —
I¢;"I : ,7; S |99m l : 2V77/¢m‘1/)«m—] .

But ¢, = I, and this equals

[varn. of I’ on ¢!/ = [varn. of gn on ¢¥]/g%.

Hence

|f¢§n sinn(e—x)de| < g,ﬁ:? AV (pw, 08, (eF < By)- (37)
3 e
[

We now require the following lemma.

Lemma 4. Let ¢f, | be an interval of R, which lies to the left of di. Let

, 2
&y < g (A1), (38)

Then oy; can be expressed as the sum of

T

(i) an interval ¢} < Rn of length = im;

(ii) the sum of pairs of abutting intervals @', dt,, such that

S+ dly<{k— 1)g. (¢! < Ry}

Further, AV (@u, ¢, + d))= AV of @u on an interval of length ¢, + d in ¢.
The pairs of intervals in (i) may be absent.

A similar lemma holds for the case in which 9’2"). is an interval of R, to
the left of d;i and

. 2m
o5 < a (A —1).

Then ¢}, , can be expressed in the way stated in the lemma. In the enuncia-
tion of the lemma, it is not implied that d! is necessarily on the right of ¢'.
It may be on the left. Finally, similar lemmas are true when we consider
intervals @’g’j__l, ¢5; on the right of di.
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As we are considering intervals on the left of di, all functions F, F;, @y
are non-diminishing, and we can replace »absolute variation» (AV) by »simple

variation» (V).
10. We now proceed with the proot of the lemma. By the definition of
2, we have 1<i<z. By (38), ggj_1<i—,f. But ¢, , < Rj. The definition

27 27
4 . k= =7 o> 277,
of R, requires of = R Hence ¢, = o

It of, < Ry, we take o; for ¢ of the lemma, and the intervals in (i) are

27t
Lo . ’ : ko 27
absent. Suppose, now, that ¢, is not an interval of R,. Then since of = T
we must have
27
"kl B+l > 77
Ma;X 94]’*1’ 94J = am >

since otherwise, ggj would belong to R,. But we cannot have

2w
I, | E+1 =
Min ()4j-1’ 94.7' - Am ’

for then, since g’;j contains both these intervals, we would have
R L
@y > e T jm—1
27 27T 27 . . . 5 ’
: e 27 1 k e
ie o > =t and o5 < ey < i < i which implieg that ¢ < Ry 1a

contradiction. Thus,

o+l = 27 kg o 270
2; lm’ 25 Am

Then '5’;;.‘1 < Ry,; also

1§jr1 + d’g}“l <(A— I)a’;_;fl.
For if not, then

r’;fl + d,’;;l =A—1)5

and

= —ZLI
25 ;Lm
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By addition,
27
qm—1’

ko=
0} =

which, as before, implies that g’,jj_l < Ry—1, a contradiction.
If now ¢§f' < Ry, we take oift for ¢f; 751! for ¢ and dif' for di,. Then
(i) and (ii) of the lemma are satistied. Also, @w= I+ in ¥}, @n=F in

2j
k1. § _ s gkl
d2j ; i.e. om= Fpy1 in d2j . Hence

Vgm, 631+ ) =V (Fy, k51 + dif).

— K : k+1. 3 — 3 1 AN 3 3 ko k1
But ¢n = Fir+1 in oz;f ; l.e. @u=1DF) in 0’;;“ , and F} is linear in ggj——a,_);r +
+ 7ft + dif'. Hence

V (@m, 755! + diF') = Varn. of gn in an equal interval in ¢;. (40)

Suppose, however, that of}' is not an interval of R,. The interval ojf' was
the larger of gfj_ll, gf;r‘. It will be convenient to introduce a new suffix ¢,

and to write
b+1 — k41
oyt = gf*t.

If ¢k*! is not interval of Ry, then

Mo off%, oi* = 300
. ST 27 . . : 27, .
For if not, we would have ¢f*2 < T which together with oﬁjl = i implies

that off' < R, a contradiction. But we cannot have

2T
s kb2 gkt = 27T
Min ¢33, ;= Jm

For then, since ¢f*' contains both these intervals, we would have

27
1 gkl = 2T
ot =et > '

l'm—l

and, a fortiori, ggj > which, as proved above, is false. Hence

Am—17

27 27
F’ T§+2 & e o

+2
ot = T
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Then 2 < Rj,. Also

zgj*'l + d’;;rl + 2kt 4 dE < (A—1) gb T2, (41)
For if not, then #if! + dit! + 74+2 + d@k+2 = (A— I)an
and
o=l
By addition,
eé‘j = l,?"z

which we know to be false.

If now ai&'“ < R, we take of*? for ¢!; we have two pairs of abutting
intervals {1t di¥' and %%, di*?. Then (i) and (i) of the lemma are satisfied.
Further, @un=Fii2=Fp1=F} in 0¥*?, so that (40) is true. Now gn=F = Fj,

in d*?, @ = Fiy in 72, Hence
V(%n, ,rzg+2 + df“) = V(Fk+1, T§+2 + d;ﬂ—‘z)
=V (Fk, zf“ + df+3)
since Fii1=Fi in off' <" + df*>. Hence
Vgm, 7it? + d¥*?) = Varn. of gu in an equal interval in of+2.

If, however, of** is not an interval of Ry, then writing
2 —. ph+2
o = ¢it?,

we apply the above argument again. It is clear that since R, contains only a
finite number of intervals ¢/, we arrive at the decomposition of the lemma after
a finite number of steps.

It should be noticed that in ¢, gu =IFi—y. For o}, =0}, of™' =},
obt? = ¢¥*2 . .; and by comstruction, given F, in o}, we have Fyi, = F, in ¢/ *!,

11. We can now evaluate I,. The intervals which constitute R can be
divided into two classes. Those which lie to the left of di form the set L,
and those which lie to the right of di form the set E. Then (35) becomes
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I4.=——-fq);nsinn(a-—-x)da—f(p'm sinn(e—x)da
7.

R
= IL+1I.

The intervals ¢f which constitute L are of two kinds. Either ¢ =2j—1 is
odd, or 2=2j is even. The intervals of the first kind form a set L,, the in-
tervals of the second kind form a set L.. Thus

[,,—-=—fqoinsinn(oz—x)da——f(pinsinn(a—x)da
Ly

I,

= Iy + I.
Let the intervals Qg'j_l which constitute L, be denoted from left to right by

SR N

Then

III\Z I /‘q),,,sm)z (e —a)da

p=1

= 2 Iy.

p=1

We have d,=¢f,_, say, for some j and for some %k =pn. (a) If

27T

8, = 5 (L—1), then by (37)

P“ =y ", ' 1/
J, n(k_l)’/ﬁ m—1 (¢ 761) (42)

() If ¢, < i—zt-(l— 1), then '¢§, can be decomposed as in lemma 4. If any of
m

the intervals ¢, ¢/ in that lemma belong to L,, they are the intervals

8y, .. O (43)

say. If ¢° is one of these intervals, say d;, then by (36),

Syt -t Jatdint o+ = Vign, 0+ Gy + djyr + o0 4 ).
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By lemma 4, the last expression does not exceed the variation of ¢, on an
interval of length < (A — 1)¢’, contained in ¢, so that

072 + + (7]‘—1 + e]j+1 ++ Jrg(l“"‘l)V(¢rm,gfb)

Further §; = ¢} = 2z by (i) of lemma 4, so that by (37),

o
W
5ty g, ),
and
r 2 P )
Z Jp < (}., - I) -+ ’n] n"m—l A2 (¢m7 Qu) (44)
2

If ¢¢ is not one of the intervals {43), we have by the above argument,

ZJP < (l—‘ I)Vr(q)m, Q:):
2

so that (44) is true in any case.
Also, by (36),
Jy = V(¢my 61)

=V (Fk—1 s 9’;,7'—'1 + d}“)

Now I}—; is linear in gf ! and @n=IFi— in ¢},. Hence

< gig.»":? 1 iﬁ

£ ¢ Vigme).
Since ¢f = EZ,.Q’Q‘j_I < i;r (A— 1), we have
dk
Jp = [(1— 1) + b_;] V(@m, 05).

But
di < exlof, , + df + o}j]

= gy [ng-—1 + d;‘c + 9’.;7]
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1
For relevant » we have m = m, say and 7,,_, < . Thus

djl-ﬁ = 2% [95’;‘»1 + 5}

Now we have just seen that

o, <@A—1)ef,
and

o, <e +{A—1)¢

by lemma 4. Hence

([f = 4'2‘77$Lm—1 o,
and

Jy=[A—1)+ 4177#7,,_1} V(Wm, 92)

Hence, and by (44),

r

Dby < [2(—1) 4 52V 7y ) V(gm, @2). (45)
1
The intervals dri1, 0rya,...d, all lie to the right of ¢f; and ¢f, > ¢} .
Hence
2y =< 20— 1) + 52V 5, 1 V(pm, 8. (46)
1

We now consider the interval d,+1=¢}, ; say. If 0,41 = %(l—l), then

we have as for (42),

2 —
Jrp1 = ;FT) V'n,,.m_l V (pm, 0r41).

If 6,41 < %—g(l-— 1), we have a relation of the form

r+¢

2 < 200—1) + 52V, Vign, él),

r+1

and so on. All the intervals

& i
511 99‘7‘7 67’+1a Q.}iy ce



On a Class of Perfect Sets. 305

are separated and lie in ¢;. After a finite number of steps, we shall have
considered every J,,p=1,...v. Hence

2 .
| I < [%(Z:T) Vs + 2(—1) + SM/Tum_l] Vipn, 6)),
and V(gm, )= 1. Similarly for I,. A similar evaluation applies to I3, and so
<o A v Vi
Hod =4 oV en—s + 20— 1) + 54V iy |- (47)

By (31), (34), and (47),

lim | I(n)| = lim lim | I, + I, + I,]

n—>® A=l nsw
e o 2 . I
< lim lim [127rl/'17,u + 41, +*i'—-~V17M_ T 8(1—1)+201V17# N
PR m “m ﬂ()ﬁ*l) 0 m—1
= 0.
- ,7__*__,« ———

39—34686. Acta mathematica. 65. lmprimé le 1 avril 1935.



