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Introduection.

The present paper communicates a number of new properties of arbitrary
real functions, of which the most important is the theorem on the measurable
boundaries (§ 2). This theorem associates with every funection f(x) two measur-
able .functions — its »measurable boundaries» — between which the given
function lies almost everywhere, in the sense of measure; moreover, the clustering
of the points of y = fl(x) is maximal (exterior metric density 1) at almost every
point of these measurable functions. A general function, in a certain sense, is
essentially represented by its measurable boundaries, as is shown by the diverse
applications (§ 3) of the central theorem of the present paper. This central
result, it seems, is the most informative that has appeared concerning the essential
internal structure of an arbitrary function.

Section 1 gives a useful decomposition of a general set into two compo-
nents, the one measurable and the other »homogeneously non-measurable.» This
property, though easily derived, seems not to have been explicitly remarked.
Section 2 proves various theorems on general functions, including the theorem
on the measurable boundaries. Section 3 gives various applications of this
theorem, and section 4 briefly discusses several related questions.
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Section 1.
A Theorem on General Sets.

The following theorem, easily derived, does not seem to have been ex-
plicitly remarked:'

Theorem I. Fuvery non-measurable set S of FEuclidean n-space admits «
decomposition S = M + N into a measurable subset M and a non-measurable subset

N such that at every point of N the metric density® of both N and N, the comple-
ment of N, is 1; this decomposition is unique if sets of measure zero are regarded
as negligible.

Proof. We suppose, as we may, that S is bounded and lies in the sphere
P. Let m be the maximum measure of measurable subsets of S; m is attained
as the measure of some subset M of 8, for if M,,r=1, 2,... %, is a sequence

of measurable subsets of S of measure m, with lim m, = m, the set ZM,. is a
1
measurable subset of S of measure m. Let S= M + N; N therefore contains

no measurable subset of positive measure. We shall call a set »homeogeneously
non-measurable> if, like N, it contains no measurable subsets of positive measure.
By a »measurable envelope» of a set A we understand a measurable set containing
A and of measure equal to the exterior measure of A% Let 7' be a measurable
envelope of N. It follows that m,(NT)=m(T) where N=1I— N, for otherwise
NT=N would contain a measurable subset of positive measure. T is thus also
a measurable envelope of N7. Since the metric density of a measurable set is
1 at »almost» all of its points — 1i. e, with the possible exception of a set of
measure zero — and the metric density of a set is at every point equal to the
metric density of any of its measurable envelopes, it follows that the metric

! Cf.,, for example, the theorem of Kamke: FEine beschrinkte lineare Menge die fast in je-
dem ihrer Punkte eine positive innere Dichte hat ist messbar, Fund. Math. vol. X (1927) p. 433,
which is an immediate consequence of our Theorem I.

? The metric density of a set S (= exterior metric density — but for brevity we discard
the adjective »exterior») at a point x is the limit (if it exists) of the relative exterior measure of
S in a sphere P enclosing x and of infinitesimal radius — this relative exterior measure meaning
the ratio of m, (S P), the exterior measure of S P, to the volume of P. 1f the limit of this ratio
does not exist, we have, at any rate, its lim sup (lim inf) = upper (lower) metric density of S at x.

® Cf., for example, Carathéodory, Vorlesungen iiber reclle Funktionen, Teubner Verlag, 1927,
p- 260.
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density of both N and N7 is 1 at almost every point of 7; hence the metric
density of N and N is 1 at almost every point of N. This is tantamount to
the statement of the theorem, since, as far as the argument is concerned, N
may be replaced by the subset of its points where the metric density of both
N and N is 1.

To show the uniqueness of the decomposition, on the assumption that sets
of measure 0 may be neglected, it is sufficient to note that if §= M, + N, is
another decomposition of the type considered, M N, being equal to M — MM,
is measurable. According to hypothesis, the metric density of Nl is 1 at every
point of N,, hence N, cannot contain a measurable subset of positive measure.
Tt follows that m (M N)) =o0. Likewise m{(M,;N)= o0, so that M and M,, on the
one hand, and N and XN,, on the other, are identical if sets of zero measure
are negligible.

It may be remarked that if A and B are any two given sets, the metric
density of A is either o or 1 at almost every point of B. For if T is a measur-
able envelope of A, then at almost every point of BT, the metric density of 7'
and therefore of A is 1; and at almost every point of BY, the metric density
of T and therefore of 4 iso.

Section 2.

The Theorem on the Measurable Boundaries of an Arbitrary Function.

Let now y=f(x) be a given real function,' unconditioned except that to
every x there corresponds at least one value of y, the number of y's associated
with 2 permissibly varying with x. For convenience, we assume also that f(x)
is bounded; the case of f unbounded is not substantially different and can be

treated by such a transformation as f= We shall say that the point

[
1+ 1/
(5, ) of the xy-plane is »fully approached> by the curve y = f(x), if for every
& >0, the set F,.= E)j)—y|<:, which signifies the set of z’s for which there
is at least one value of f(x) such that |f(z) — 5] < ¢ is of metric density 1 at
§. If an ¢ exists such that E,. is of metric density o at § we shall say that
the point (§, ) is »vanishingly approached> by y = flx). 1f (§ 7) is not vanish-

! For greater simplicity of exposition, we deal with functions of one variable, though the
argument of this section applies equally well to functions of n variables.

34—34686. Acta mathematica. 65. Ilmprimé le 19 février 1935.
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ingly approached, we shall say that it is »posétively approached»; in this case,
if ¢ is a given positive number, the metric density of E,. either does not exist
or is positive, that is to say, in both cases, the upper metric density is positive at &.

In connection with the modes of approach just defined, we have the
following two theorems, the first of which is known but included for expository
completeness.

Theorem II.' If f(x) is an arbitrary, ome- or many-valued function, the
set of numbers § such that there is a point (§, f(E) not fully approached by
y = f(x) s of measure o.

Proof. If » and s are two real numbers and + <s, let Ery = Er < j(r) <
be the set of «'s such that there is at least one value of f(x) satisfying
r < flz) <s. According to the theorem on the decomposability of an arbitrary
set into a set of measure 0 and a set which has metric density 1 at each of its
points,® we may write E,, = Z,; — H,;, where Z,, is of measure o and H,, has
metric density 1 at each of its points. Let Z be the sum of all Z.,as » and s,
r<s, range independently over the set of rational numbers; Z is of measure o.
Let (&, f(§) be a point of y = f(x) such that £ does not belong to Z; £ there-
fore belongs to H,, for all rational 7, s satisfying » < f(§) <s. Since H,; has
metric dehsity 1 at £ and is a subset of F,; the metric density of E,, is 1 at
£ It follows that (§, f(§) is fully approached by y = f(x).

Theorem III. The set of points & for which an v exists such that (&, n) s
positively but not fully approached by the curve y = f(x) is of measure o.

Proof. We define the function f*(x) as the one which, for every z, is to
take on all the values f(x) and, in addition, all the values 7 such that (z, )
is positively approached by y =f(x). Now suppose (£, %) is a point of the
(z, y) plane not fully approached by y = f(x); then it cannot be fully approached
by ¥y =f*(x). For by the definition of full approach, there exists an ¢>o
such that the lower metric density of F,. equals a number % less than 1, hence
there exists a sequence of intervals I, of infinitesimal length /, such that
lim m,(Ey.I,)/l, =k, and since we may neglect a finite number of »'s we may
assume that m, (Eye L)/1, < ¥, a number between % and 1, for all ». Let M, be

! Cf. Blumberg, New . Properties of All Real Functions, Trans. Am. Math. Soc., vol. 24
(1922), Theorem IX in conjunction with the first sentence of Concluding Remarks.
2 Ct. for example, Blumberg, Bull. Am. Math. Soc., vol. 25 (1919), p. 352.
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a measurable envelope of £, =E,.I,, and M,=1,— M, The relative measure
of M, in 1, is greater than 1 —%. Let M, = M?% + Z, where Z, is of measure
o and M} is such that at each of its points the metric density of M, is 1.
The metric density of FE, is therefore o at every point of M?* and hence no
point (z, ¥) with z in M? and n—¢&<y<n+e¢ is positively approached by the
curve y = f(z); no such point is, therefore, on the curve y=j*). Con-
sequently, if Ey. has the same meaning for /* as E,. for f, we conclude that
me(EneL,)/ 1, <k and therefore (&, 7)) is not fully approached by y = f*(x).

Now let A be the set of &'s for which there is at least one point (£, 1)
positively but not fuliy approached by y =f(x). Then (& ) is on the curve
y=f*{(z), and as we have just seen, it is not fully approached by y = f*(x).
Therefore according to Theorem II, A is of measure o.

Definition. The »metrical upper boundary> wu(§) of a one- or many-valued
function f(x) at £ is the lower boundary (= greatest lower bound) of all
numbers % such that the set Fyi-: is of metric density o at £.' Likewise, the
metrical lower boundary I(§) of f(x) at £ is the upper boundary of all numbers
% such that the metric density of Eru<x is 0 at §& The »metrical saltus> of
flx) at § is defined by the equation s(&) = u(E) — I(%).

The points (& u(g)), (£ I(§)) are respectively the highest and lowest points
on x=2§ positively approached by y = f(z). For since E;>uz+. is, for every
positive &, of metric density o at &, the point (& £) is vanishingly approached
by y=f(x) for every k> u(f). On the other hand, (£, «(§)) is positively ap-
proached by y = f(x). For if this were not so, there would exist a positive d
such that FEuyg_s<s<u@+s 18 of metric density o at §; but this, together with
the fact that E;., is of metric density o at & for every & > w(£) would imply
that Fy- 4@ —o¢ is of metric density o at &, in contradiction with the definitional
property of w(f). Likewise, (/(£), §) is the lowest point on = = & positively ap-
proached by y = f(x).

Definition. The one-valued function f(x) is said to be »metrically upper-
semi-continuous» at the point &, if for every positive &, the set Fj.s+. has
metric density o at, &§; in other words, if u(§) = f(§). Similarly, f is metrically
lower-semi-continuous at § if I(§) = f(§). If f is both metrically upper»-semi-

! Cf. Kempisty, Sur les fonctions approximativement descontinues, Fund. Math., vol. VI
(1924), p. 6.
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continuous and lower-semi-continuous at & we have u(§) = f(&) = 1(§); we then
say that f is »metrically continuous at &> .}
We have the following

Theorem IV. wu(x) ¢s everywhere metrically upper-semi-continuous.

Proof. If & is a particular value of x and ¢ > o, there exists for every
positive 7 — on account of the definitional property of u(x) — a positive number
I such that me(IE;. w+e) <ln for every interval I enclosing & and of length
I<h. If E is the complement of I. .g+. with respect to the interval I, we
have m;(E) > (1 — 5)l, where m;(E) stands for the interior Lebesgue measure of
E. Let M be a measurable subset of J of measure > (1 —7)! and such that
the metric demsity of M is 1 at each of its points. It follows that for every
point x of M, we have wu(x) < u(§) + ¢. Therefore the relative exterior measure
in I of IE.>ug+e is <1, and this holds for all I's of length < k. Since 5
is arbitrarily small, the metric density of Ils.3+. 18 0 at & and therefore
u(x) is metrically upper-semi-continuous at §.

We shall now prove that (z) is metrically lower-semi-continuous almost
everywhere. Let & be a point where «(x) is not metrically lower-semi-continuous;
hence, for some positive ¢, the metric density of f0y(w)<u— i8 not zero, in other
words, there exists a positive number p and a sequence of intervals I, con-
taining £ and of infinitesimal length I, such that m. ([, Euw)<u@—:) > pla. Let y
be a point of I, such that w(y) < u(f) —e. According to Theorem III, u(z) is
metrically upper-semi-continuous at y, and we may therefore enclose y in an in-
terval I, lying in I, and of arbitrarily small length [,, such that me(L, B zug—d <
< nl, where 75 is infinitesimal with /,. Since the exterior measure of the set
of available y's is greater than pl,, we may, according to the Vitali Covering
Theorem, select a finite number of non-overlapping intervals of type I, such
that the sum of their lengths is grater than pl.. Hence mi (I Euw)<ug—) is at
least (1 — n) pln, and therefore the lower metric density at § of Hyw=zug— is ab
most 1 —p + np. It follows, since % is infinitesimal, that § is one of the ex-

! The notion of metrical continuity as here defined is identical with that of »approximate
continuity» according to Denjoy, Bull. de la soc. math. de France, vol. 43 (1915) p. 165. Since
many types of approximate continuity are possible, — see, for example, Blumberg, On the Charac-
terization of the Set of Points of A-Continuity, Annals of Mathematics, 24 ser. vol. 25 (1923),
p. 118 — the term »metrical continuity» designates the particular property in question more de-
finitely than »approximate continuity».
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ceptional points of the curve y=w(z) at which the approach is not full, the
totality of such &s constituting, according to Theorem II a set of measure o.
If & is not one of these exceptional points, u(x) is metrically lower-semi-contin-
uouns at £.

Having now proved that w(x) is metvically upper-semi-coptinuous every-
where and lower-semi-continuous almost everywhere, we conclude that w(x) is
metrically continuous almost everywhere.! Likewise [(z), the metrical lower
boundary function, and s(z), the metrical saltus, are almost everywhere metric-
ally continuous. Now a function which s almost everywhere metrically continuous
is measurable. For let g(x) be metrically continuous almost everywhere. For a
given number %, we may write Eyu>z=M + N, where M is measurable and
N, if not the null set, homogeneously non-measurable. If § belongs to N, the
metric density of both Ey.; and Ly= is 1 at &; therefore g(x) is not metrically
continuous at & and since g(x) is metrically continuous almost everywhere, N
is of measure 0. FEyu - is thus measurable for every %, and hence g(z) is

measurable. - We may therefore state

Theorem V. The metrical wupper boundary, lower boundary and saltus are
measurable functions.

It is known of a measurable function that it is metrically continunous
almost everywhere. But obviously not every measurable function can be a
metrical upper boundary, since a metrical upper boundary is metrically upper-
semi-continuous everywhere without exception; an arbitrary change of functional
values at the points of a set of measure 0 would preserve the measurability of
a measurable function, but by means of such a change we can eliminate the
property of metrical ui)per semi-continuity at various points. It is also evident
— at any rate, this follows from the next theorem — that not every function
which is metrically upper-semi-continuous at every point can be a metrical upper
boundary. One way of fully characterizing a metrical upper boundary is as

follows:

* In fact, every function which is metrically upper-semi continuous almost everywhere is
metrically lower-semi-continuous almost everywhere, because, if f(x) is metrically uppersemi-
continuous almost everywhere, it is necessarily measurable, as the following brief argument shows:
Let E = Ef(x)<k, where k is a given constant. By Theorem I, £ = M + N, M measurable, N
homogeneously non-measurable. If & belongs to E, f{) is metrically upper-semi-continuous at z;
and ¢ is positive, then Ef>f(%)+¢ is of metric density o at & If ¢ is chosen so that f(§) + & < k,
Er=r is of metric density o at & The metric clustering of the complement of E is thus in-
finitesimal at almost every point of N; therefore N is of measure o, and hence f is measurable.
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Theorem VI. A necessary and sufficient condition that a function f(x) be a
metrical upper boundary is that u(x), the metrical upper boundary of f(x), be iden-
tical with f(x).

All that requires proof is that the condition is necessary, namely that
the metrical upper boundary v(z) of a metrical upper boundary u(x) is identical
with u(x).  Since u(z) is metrically upper-semi-continuous, it follows that
v(z) = u(x). Suppose, contrary to our assertion, we have v(§) < (&) for some
point £ Then FE,z;, where % is a number between v (&) and «(£), is measurable,
according to Theorem V, and of zero metric density at & so that for a variable
interval I enclosing § and of infinitesimal length I;, we have

m (IEugk) = ¢erly,

where ¢; is infinitesimal with I;. If ¢ is a point of IF, <, the metric density
of FEr=r is o at f, so that we can enclose ¢ in an interval I; of length [ as
small as we please and lying in [/ such that m.(l; E;=:) < (i1, where {; is in-
finitesimal with I. According to the Vitali Covering Theorem, we may select a
set o of mnon-overlapping intervals I; containing all of IF,<: except a set of
measure 0. The set I E;qu =« is partly inside and partly outside the intervals
of o; the former part is of exterior measure < {;l;, and the latter part of
exterior measure =< ¢rl;, so that me(I Er=) < (er + {1) 1z, i. e., the relative meas-
ure of Es-; in I is infinitesimal with [;. Therefore u(§) =< &, which is a con-
tradiction, and hence v (&) = u (&).

If f(x) is a metrical upper boundary, we have just proved that u(x) = f(z);
and since (£, u(£)) is positively approached by y = f(x) for every &, it follows
that a metrical upper boundary function f(x) is positively approached at every
point of y = f(x). A metrical upper boundary function f(x) thus possesses the
properties of metrical upper semi-continuity and of positive approach for every
x. Conversely, if f(x) has these two properties for every x, it is a metrical
upper i)ounda,ry. For on account of the metrical upper semi-continuity of f(x)
at , we have u(x) =< f(x); and on account of the positive approach of (x, f(x))
by y=f(x), we have u(x)= f(x). Therefore u(x)=f(x) is metrical upper
boundary function. We thus have

Theorem VII. A necessary and sufficient condition that f(x) be a metrical
upper boundary is that [ be everywhere metrically uwpper-semi-continuous and that
y = f(x) approach all of its points positively. Likewise, a metrical lower boundary
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ts completely characterized by the properties of metrical lower-semi-continuity and
posttive approach.

Consider a point § such that (§, () is not fully approached by the curve
y =f{x). Therefore, for some positive &, the metric density at § of E=
= Eyg—e<fiy<u@+e 18 not 1, so that there is a positive number 4 and a sequence
of iutervals I, enclosing & and of infinitesimal length 7, such that me(E I,) <
< (r —h}l,. Hence there is a measurable subset M, of I,— EI, of measure
> hil, and of metric density 1 at each of its points. Since f(z) < u(§)— & or
= u(E) +¢ at every point of M,, u(x) must also be < u(f) —¢ or Z u(&) + ¢
at every point of M,. Therefore

Me (In E1L(E)—e<u(x)<u(5)+s) < (I - h) ln;

and hence Ly —c<um<u@+s i8 not of metrie density 1 at §; § is thus, according
to Theorem II, one of the exceptional points aggregating a set of measure o.
We conclude that for almost every x the point (x, u(x)) vs fully approached by the
curve y = f(x). Similarly for 7{x).

This shows, on the one hand, how rich, from the point of view of measure,
is the clustering of the points of y—f(z) at the points of y—u(x), y=1(z).
On the other hand, the set of z’s for which f(x) > u(x) or < I(x) is of measure
0. For let £ be a point at which «(x) is metrically continuous. According to
the definition of metrical upper boundary, we can enclose § in an interval I; of

length [: such that m. (Ig Er > wp+ ;l) < %l;—', where ¢ and 5 are arbitrary positive

numbers. We may furthermore, on account of the metric continuity of u(x)
at &, choose I: with the additional property that

&
Me (Ig By <) — ;7) < B ls.

Therefore, for every point x in a measurable subset M; of I; of measure
> (1 —e)l;, we have both flx)=<u() + /2 and wu(x)=u(E) —n/2, hence
Sflx) = ulx)+ 5. Since the &'s at which # is metrically continuous constitute a
set of measure b—a, — (a, b) being, as we suppose, the interval of definition of
JSlx) — we may, according to the Vitali Covering Theorem, select a set of non-over-
lapping Iy's with length sum equal to b — a, hence the sum of the measures of
the corresponding Mg's is > (1 — &)(b — a). Consequently the interior measure
of the set of points where f(x) < u(x) + 5 is > (1 — &) (b — a), and since this
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holds for all positive ¢ and 7, the set of points at which f(x) > u(x) is of
measure 0.

Summarizing, we may now state the following

Theorem VIII. With every given one- or wmany-valued function f(x), there
are uniquely associated two measurable functions u(x) and l(x), the respective metric
upper and lower boundaries of f(x) at z,; these functions are respectively metrically
upper-semi-continuons and lower-seme-contenuous. Moreover, for every wx, the points
(z, u (@), (x, L(x)) are positively approached by y = u(x), y = l(x) respectively,; and
Jor almost every x, these points are fully approached by y == f(x); on the other
hand, the set of points x for which f(x) > u(x) or flx) <l(x) is of measure o.
Conversely, if w(x), l(x), with u(zx) = l(x), are 2 given functions which are metric-
ally upper- and lower-semi-continuous respectively, and y = u(x), 1(x) respectively
approach every point (x, u(z)), (x, l(x)) positively, there exists a function f(x) having
u(z) and l{x) respectively as metrical upper and lower boundaries.

To prove the converse part of this theorem, suppose that the interval (a, b)
is decomposed into two sets M, and M, — necessarily non-measurable — such
that each has metric density 1 at every point of (a, b); let f(x)=u(x) or I(x)
according to whether x belongs to M, or M,. We shall show that the metrical
upper boundary of f(z), which we now denote by v(x) is identical with w(x).
For, since u(x) is, by hypothesis, metrically upper-semi-continuous at every point
&, the set FE,-ui+. has metric density o at & for every ¢>o0; therefore, since
Slx) =ulx) for all z, the set K;-u@+. has metric density o at §& Hence
#(€) = u(§). On the other hand, since every point on y = u(x) is positively ap-
proached by this curve, FE|= FEyuj>uz—. has positive upper metric density
at £ for every positve &; and since #(x) is metrically upper-semi-continuous, it
is, according to the last footnote, measurable, and F, is therefore measurable.
Since M, and M, are each of metric density 1 at every point of (a, b) it follows
that m.(E; M;)=m(E,), and we may conclude, because of the identity of f(x)
and u(z) on E, M,, that Eju-ug— has positive metric approach at & Therefore
v{f) = u(§), and hence v(§) = u(£). '

Theorem VIII shows with a certain explicitness the degree of arbitrariness
possessed by an arbitrary function. HExcept with the aid of recent developments
in the Theory' of Point Sets, one cannot see how mathematicians could have
surmised that every function f(x) is necessarily built, so to speak, on the scaffold-
ing of two functions w(z), I(x) of a relatively restricted nature — belonging
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to a certain subset of the set of measurable functions, — built in the sense
that on the one hand, y = f(x) has only a negligible set of points above y==u(x)
or below y =1(z), while on the other hand, almost every point of these curves
is as »richly» approached as possible — in a truly significant sense.

Since, according to a theorem of Borel!, every measurable function equals,
for every positve ¢, a polynomial function, with a. possible error < ¢, and ac-
cording to a theorem of Vitali®, every measurable function equals a function of
class = 2, according to the Baire classification, except in a set of measure o,
we have the following theorem as a consequence of Theorem VIII:

Theorem IX. a) With every function f(x) we may, for every &>o0, associate
two polynomials p (x) and p,(x) such that the set of points at which f(x)>p,(x)+s
or < pyl(x) — & 28 of exterior measure less than e, and the exterior measure of each
of the sets E|ji—p, > and E|fm—p, @< 25 at least b—a—e. b) With every func-
tion fl(x) we may associate two functions g.(x) and g,(x), each of Baire's second
class at most, such that g,(x) = g,(x) everywhere, g,(x)= flx) and g,(x) < f(x)
almost everywhere, and the two points (x, g,(x)), and (x, g,(x)) are, for almost
cvery x, fully approached by y = f(x).

These formulations serve to indicate the degree of smoothness an arbitrary
function necessarily possesses.

We prove additionally the following

Theorem X. For every function f(x), defined in the interval (a, b). there
exists, for every positive ¢, a measurable subset M of (a, b) of measure >b —a—e¢
such that, for every x of M, u(x) and 1(x) are equal respectively to u,(x), 1, (),
the ordinary wpper, lower boundary (= least upper bound, greatest lower bound) of
flx) at x on the understanding that these four numbers are computed with respect
to M, 4. e.. that the values of f(x) outside of M are neglected.

Proof. According to Theorem VII, f(x)=< u(x) almost everywhere. In
virtue of a theorem of Lusin®, «(x) being measurable, is continuous with respect
to some measurable subset M of (a, b) of measure > —a — ¢, ¢ being a preas-
signed positive number. We assume, as we may, that the metric density of M
is 1 at each of its points. Furthermore, according to Theorem VIII, the

! See, for example, Sierpinski, Fund. Math., vol. III (1922), p. 316.
* Rend. Lomb., vol. 38 (1905), p. 599.
® See, for example, Sierpifski, L. e. p. 320.

3534686, Acta mathematica. 65. Imprimé le 19 février 1935.
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approach of y=f(x) is full at almost every point of ¥y = u(x), and we may
therefore assume, there being nothing more involved than the discarding of a
set of measure o, that for every § of M the point (& (&) is fully approached
by y=f(x); and since the metric density of M is 1 at each of its points this
approach is also full via M. Therefore, for §in M, u(§) computed with reference
to M, equals «(£) computed with reference to the entire interval (a, b). More-
over, since we may assume for our present purposes that f(x) < u(x) in M, and
since u(x) is continuous at § with respect to M, it follows that the ordinary
upper boundary u,(z) of f(x) at &, computed with respect to M, is < u(f). But,
of course, u,(§) = u(§) with respect to M, so we conclude that u (&)= u,(§) with
respect to M. Similarly [(§) = [,(§) with respect to M.

Remark. If ¢ is allowed to be o, this theorem becomes false, as the fol-
lowing example shows: Let S be a nowhere dense, perfect subset of (a, b) of
positive measure. Define f(x) to be o in S and 1 in its complement S. Since
the metric density of S is 1 at almost all of its points, we have u(§) = o for
almost every & of §. If M is a set of measure & — a such that, for every x
of M, u(x) = u,(x) with respect to M, then at almost every point z of SM we
have w,(r)==0, hence a neighbourhood exists for such an x in which there are
no points of SM, whence m(M) < b~ a contrary to our supposition.

Seection 3.

Applications of the Theorem on the Measurable Boundaries.

If f(x) is an arbitrarily given, bounded, one-valued function, defined in the
interval (a, b) we difine the upper Lesbegue integral of f in I = (a, b) as follows:
Let I=M,+ M, -+ -+ M, be a decomposition () of I into a finite number*
of non-overlapping measurable sets M, ... M,; and pu,;, v=1,...n, the upper
boundary of f(x) in M,. Then the upper Lesbegue integral of f in I, in sym-

bols f /f, is the lower boundary of Zm(M,)u, for all possible decompositions of
Vs

type (d). Likewise f f (=lower Lesbegue integral of f in I) is the upper
T

! There is no advantage in using an infinite number.



The Measurable Boundaries of an Arbitrary Function. 275

boundary of Im(M.,)l, for all possible decompositions (d), where I, stands for the
lower boundafy of fin M,. Then we have

Theorem X. The Lebesgue upper (lower) integral of a bounded one-valued
Junction equals the Lebesgue integral of the metrical wpper (lower) boundary func-
tion associated with f(x).

For if ¢ > o is given, there exists, on account of the measurability of «(z),
the metrical uppér boundary of the given function f(x), a decomposition of
the interval I of definition of f into #» non-overlapping measurable sets
I=M,+ -+ M, such that the saltus of w in M,, v=1,2,...n is less than

e. Therefore the Lebesgue integral of u over I differs from Zm(Mw)ﬁv by less

y=1
than (b — a)e, where u, represents the upper boundary of » in M,. Let M; be
the set of points where f(x) > u(x); according to Theorem VIII, M; is of mea-

sure zero. Let [== ZM; be a new decomposition of I, where M, = M, — M,
="

v=1,2,...n. If u,, v=1,...n, represents the upper boundary of f in M,
we have u, < u, and therefore, since m (M) =0, we have

Zm (M), < Zm (M) p, = fu +(b—a)e.
0

I

It follows from the definition of jf that jfé fu On the other hand,
I 1

n
suppose I = » M, is a decomposition of [ into a finite number of non-overlappin
ppmng
1

measurable sets. Let Z, be the set of points of M, at which the metric density
of M, is not equal to 1, i. e., either does not exist or is less than 1; then Z,
is of measure o. Let M, =M,—Z,, v=1,2,...n, and I=Ms+ M; +--- + M,

a second decomposition of I, where Mo= >\ Z,. We have Zﬁ” m (M) = j u,

v=1 r=1 Vs
where u, is the upper boundary of « in M,. Since M,, »=1, 2, ...n, has
density 1 at each of its points, and the point (x, u(x)) is positively approached
by the curve y = f(z), it follows that w, = u., where u, is the upper boundary

of f in M,, v=1,2,...n. If g, is the upper boundary of f in M,, we have
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Ruem (M) = Dwum(Ms) = D\ m (M) = fu.
r=1

I

Therefore ffgfu, and hence ff=fu Similarly ff:fl(x)
1 I 1 I I

1

It is known that one method for deriving properties of continuous func-
tions is to approximate them by means of »step-functions», i. e. functions con-
stant except possibly at a finite number of points. Again, there are well known
general procedures for deriving properties of measurable functions from properties
of continuous funetions, or we may transform properties of step-functions or of
linear functions into properties of measurable functions without the mediation
of continuous functions. Now Thorem VIII gives us a means, as we shall see
more definitely in the illustrations to follow, of deriving properties of general
functions from known properties of measurable functions, and thus constitutes
a last link in a general procedure for converting theorems on functions y=con-
stant to theorems on general functions. This essentially amounts to saying that
this theorem, in conjunction with methods already known, may enable us to derive
properties of general functions from properties of intervals. We shall now give
illustrations of this passage, by means of Theorem VIII, from theorems on

meagurable functions to theorems on general functions.

Ex. 1. EKExtension of the theorem of Borel on the approximation of a mea-
surable funmetion by wmeans of a polynomial function. This extension has already
been mentioned above.

Ex. 2. KExtension of a theorem due to Vitali. The theorem in guestion
concerning measurable functions asserts that for every measurable function m ()
there exists a function ¢(x), of Baire’s second class at most, such that g (x)=m(x)
almost everywhere. Since u(x), the metrical upper boundary function of a given
function f(x) is measurable, there exists a function g(xz) of Baire's second or
lower class, such that g(x) = wu(x) almost everywhere. Suppose, for simplicity,
that f(x) is defined in the interval (o, 1), and let 7'= the set of points x such
that (z, (z)) is fully approached by both y = u(x) and y = f(x). According to
Theorems II and VIII, 7 is of measure 1. 1f ¢ is a given positive number,
and £ a point of 7, we may enclose £ in an interval I: such that the exterior

measure of the points « of I: for which the inequalities | f(x}——u(§)|<—:7,



The Measurable Boundaries of an Arbitrary Function. 277

| (x) — 2 (8)] <§ hold is greater than (1 — 5)l;, where I; is the length of I: and

7 is, independently of ¢, as small as we please. Let S. be the set of points z
such that |f(x) — u(z)| <e&; therefore m(S.7T:) > (1 —29)l:. Since a set of
non-overlapping intervals I: can be chosen with sum of lengths equal to 1, we
conclude that me(SE) >1— 27, and hence m.(S;) = 1; the set of points & where
| f(x) —g(x)] < & is therefore of exterior méasure 1. This conclusion amounts
to an extension of Vitali's theorem to an unconditioned function, and we may
state the theorem:

If f(x) vs a given function, there exists a function g(x) of Baire's second class
at most such that for every positive ¢ the set of points where g(x) differs from f(x)
by more than ¢ is of interior measure 0.

Ex. 3. FEuxntension of a theorem of Denjoy. Denjoy has shown?® that if f(z)
is a continuous function, the »directional angle» of the curve y = f(z) is, for
almost every x, either 0°, — when the derivative exists; or 180°, — when the
lower Dini devivative on one side equals the upper Dini derivative on the other,
and the other two Dini derivatives are * x respectively; or 360°, — when the
upper derivatives are both -+ o, and the lower derivatives, both —». G. C.
Young has shown® that if in the hypotheses of this theorem we substitute
for the condition of continuity of f that of measurability, the conclusion remains
valid. More recently, Saks and Banach have shown® that the same conclusion
holds for an entirely unrestricted f(z). Now for us the question comes up
whether, by means of Theorem VIII, we can prove the theorem of Denjoy for
an unrestricted function, assuming its truth for measurable functions. This turns
out to be really so, the necessary adjustments requiring no invention to speak
of, as the following argument shows:

Let f(x) be any function whatsoever, and u(x), [(x) its metric upper, lower
boundary functions. Since a set of measure o is negligible in our present con-
siderations, and the set of points x where f(x) > u(x) or < I(x) is, according to
Theorem VIII, of measure 0, we need to discuss the dirvectional angle only at
those points & for which u(§) = f(& = 1(§). If (&) > f(§) > 1(§) it follows, that

' A proof of some length of this theorem was published by Saks and Serpifnski, Fund. Math,
vol. XI {1928), p. 105.

? Jour. de Math. (7) vol. I (19135), p. 105.

# Proc. Loud. Math. Soec. (2) vol. 19 (1917), p. 360.

* Fund. Math. vel. IV (1923), p. 205, and vel. V (1924), p. ¢8.
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the directional angle at (&, f(§)) is 360° — at least for almost every & satisfying
these inequalities — because, according to Theorem VIII, for almost every §
both (&, «(§)) and (&, [(8)) are fully approached by y = f(x). We may thus restrict
the discussion to the case where f(£)=u (&) or f(§)=1(§); and since these two
cases are similar, we may assume that f(§) =w(f). Let the function u(x) be
defined as equal to u(x) if u(x) = f(z), and equal to f(x) if w(x) < f(z). Since
it{x) equals the measurable function u(xz) almost everywhere, it is itself mea-
surable, and since we are here assuming that the Denjoy theorem holds for
measurable functions, we can use the fact that the directional angle is 0° or 180°
or 360° at almost every point of y=i(x). We distingunish the two cases:
(a) w(8) >1(8), (b) u(k)==1(8), at the same time assuming in both cases, as we
may, that the directional angle of y == u(z) is 0° or 180° or 360° at (&, u(£)) and
that (&, « (&) and (& 1(§)) are fully approached by y = f(z).

Case (a) u(§) > 1(§). If the directional angle of v = ii(x) is 0° at (&, @ (),
we conclude, since f(x) = @(x) for every x and (x, «(r)) and (z, I(x)) are positively
approached for every =, that the directional angle at (§, f(§) = (&, u(£)) of the
curve y=f(x) is 180°. The conclusion is the same and the reasoning similar
if the directional angle of y = @ (x) is 180° at (§, () provided D~ and D, the
upper left and lower right Dini derivatives of y =: i (z) at § are equal to + «
respectively; if, however, the directional angle is 180° but ), D* = t o re-
spectively, it follows similarly that the directional angle of y = f(x) is 360° at
&. Finally, it follows in the same way that if the directional angle of y=1u(x)
is 360° at £, then the directional angle of y = f(z) is also 360° at £.

Case (b) w(§) =1(§). As before, we consider the measurable function @ (x),
and likewise the measurable function I(x) equal to I(x) if f(x) = I(x), and to
flz) if flx) <l(x). Since sets of measure o are negligible for our present
purpose, we may assume that the directional angles at &, both for y = @(x) and
for y==1(x) are 0° or 180° or 360°, and also that (§ @(£) is fully approached
by y =i (x), and (§ [(§)) fully approached by y =1I(z). If the directional angles
at & are 0° for both y = ii(x) and y = I (z), it follows, since @(x) = u(x) = I(z) = I(x)
for every x, that the curves y =i(x), y = l(x) have the same directions at &;
and furthermore, since @(x) = f(x) = I(x), that the curve y = f(x) has this same
direction at &§. It follows similarly, if y = % (x) has a direction at £, and the
directional angle at y =1(x) is 180° at &, that the sides of this 180° angle lie
along the direction of y = ii(x) at &; consequently, since (x, u(x)) and (z, I(x))
are, for every x, positively approached by y = f(x), and @ (x) > f(x) = I(x), the
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directional angle at (& u (§)) = (&, (&) is 180° for the curve y = f(x). Likewise,
we see that the directional angle for y = f(x) is 180° at &, if the directional
angle of y=1(x) is 0o° and the directional angle of y = @(x) is 180° at this
point. TIf the directional angles at (&, 4 (&) are 180° for both y= ii (x) and y==1(x),
then if the infinite derivative on one and the same side of § is of different
sign for these two curves, it follows that the directional angle for y = f(x) is
360°; but if the infinite derivative on the same side of & is of the same sign
for these two curves, it follows, because 4 (x) = I{(x) for every x, that the sides
of these two 180° angles lie along the same straight line, and therefore, since
(z, w(x)) and (xz, I{(z)) are, for every z, positively approached by y = f(x), the di-
rectional angle of y=f(x) is also 180° at &. Finally, it follows readily with
the aid of the considerations used above, that if for at least one of the curves
y=1id(x), y=1(x) the directional angle is 360° at &, then the directional angle
of y=f(x) is 360° at &.

Bx. 4. FEaxtenston of a theorem of Arzela. The theorem we have in mind
is the one that gives a necessary and sufficient condition for the compactness’
of an infinite set T of continuous functions, lying in a given interval, namely,

®  This theorem can be extended

that 7" be »equibounded» and »equicontinuous».
to measurable functions, as Fréchet has shown.® Now since, in one sense, the
essential nature of a function is determined by its metrical boundaries, we shall,
for our present purpose, regard two functions as identical if their metrical
boundaries are respectively identical. This convention amounts to replacing a
function by 2 measurable functions. We then define the distance d (f;, f;) (=écart)
between 2 functions f; and f; as the sum of the distances between their respec-
tive metric boundaries, understanding by the distance between two measurable
functions m, (x) and m,(x) the greatest lower bound of all numbers %4 such that
| my () — my ()| < & except in a set of measure < k. With this definition of

distance, it follows that the set of all functions is made a metric space. It then

! A set T lying in an abstract space S in which convergence of a sequence of elements has
meaning is »compact» if for every infinite sequence of elements of 7 there is a subsequence con-
verging to an element of S.

* T is »equibounded» if there is a constant M such that |f(x)| < M for all «'s of the
interval and all functions f(x) of 7. 7T is »equicontinuous» if for every & > o there is a d > o
such that |@, — o, | < & implies | f(x) — flay)| < & for all fs of T.

8 Fund. Math. vol. IX (1927) p. 25. In a note by E. H. Hansen, Bull. Am. Math. Soc.
vol. 39 (1933) p. 397, the result of Fréchet is deduced directly from a general criterion for com-
pactness in metric, complete spaces.
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follows — and the proof may be made as in Hansen's note — that a necessary and
sufficient condition that a sequence {f.} of functions be compact vs that they be »almost

9

equibounded»' and that the set of their metric boundaries be »almost equicontinuous» *

Section 4.

Additional Remarks.

Other boundary functions. For brevity we shall speak only of upper bound-
aries. Among those that immediately suggest themselves are:

a) The ordinary npper boundary function u{(z), defined as the upper boundary
(maximum) of f(x) at z. w(x) is an upper semi-continuous function, and con-
versely, every upper semi-continuous fuunction is an upper boundary function,
namely of itself.

b) The d-upper boundary wuq(z), defined as the upper boundary of f(z) at
x when denumerable sets are regarded as negligible.® wq(x) is again upper-
semi-continuous, and non-denumerably approached at each of its points. Con-
versely, if f is upper semi-continuous and non-denumerably approached et each
of its points, it is a d-upper boundary, namely of itself. Furthermore the number
of points of y = f(x) above its d-upper boundary is at most N,; for every such
point is enclosable in a »rational> rectangle — i. e., one bounded by z =1,
=1y, ¥ =1y, x=r, with the »'s rational — containing at most ¥, such points.
A similar result holds in the case of the fupper boundary, »f> denoting here
that finite sets are negligible.

The e-upper boundary, »e» denoting that exhaustible sets are regarded as
negligible. It is easily seen that the e-upper boundary is upper-semi-continuous,
and inexhaustibly approached at each of its points. Conversely, an upper-semi-
continuous function with the latter property is an e-upper boundary — of itself,
The set of abscissas corresponding to points of y = f(x) above its eupper

' {fn} is said to be »almost equibounded» if for every positive ¢ there exists a constant
k such that |fu(x)] <k for every x and every n except for the x’s belonging to a set En, de-
pendent on »n, and of exterior measure < g.

? A set {f} of measurable functions is almost equicontinuous if for every positive # there
exists a positive number J independent of the f's, and a set Ef varying with f and of measure
< g, such that for every f and every pair (x,, ;) of x’s not in Ery and such that {a, — x,| <4,
we have | f(x,) — f(x,)] < e.

* Cf.,, for example, Blumberg, Cerfain General Properfies of Functions, Annals of Math.,
24 ger,, vol. XVIII (1917) p. 147.
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Dboundary is exhaustible. Similar results hold in the case of neglect of sets of
measure zero.

We finally add a few remarks concerning the structure of a, general, real
function between its measurable boundaries. If such a bounded funection f, lying
in (a,b), is given, and y, = f < y,, we divide the interval (y,, y,) into 2 equal
parts, each of these 2 intervals into 2 equal parts, and so on, designating the
2 intervals of the first stage by Iy = (y,, #1), I, = (41, 4,); the four intervals of
the second stage by Ioo = (oo = %o: Yo1)» Lor = Wor> ?/1)’ Ly = (g0 = 415 ¥n)s
Iy = (’l/_n, e); and so on. Let FKy= Ey sy, Ei= Ey=s<y; o= Eyyzr<yns
Ey=Ey si<pe Fro= Eyyss<yy By = FEy, z5<y; and so on. With each of
these FEy o, ..., We associate Iy o, ...a,, one of its measurable envelopes;
I, a,... o may be taken to be a Gy, i.e., a product of a sequence of open sets.
Every I' is, except for a set of measure zero, the sum of the 2 I's of the next
stage whose subscripts, except for the last, are identical with those of the
given I' — (and in accordance with this property, we have (a, b) = I', + I'; except
for a set of measure 0). Thus the pattern of the metric clustering about the
curve points of an arbitrary function is completely given by a sequence of G,'s:
Lo, Ty Toos Loty Tigr Thay oo Two functions with the same system of associated
I''s are such that if a point (&, ) is fully approached by the one function it is
fully approached by the other. Since there arve in all ¢ G.'s, there are for the
totality of real functions, of cardinal 2¢, only ¢ possibilities for the pattern of
metric clustering. This reduction from 2° to ¢ in itself indicates a procedure
for associating with general functions properties relating to metric clustering.

Suppose, conversely, we have given an infinite system of I's, each a Ga:
I'=(a, b); Iy, I'y; Top, Tp1y Typs Iy - .., with the property that every I' is,
except for a set of measure o, the sum of the 2 I's of the next stage having
one additional subscript. We show that a one-valued function exists having the
given I's for its associated set of I's, — always, of course, with the .possible
neglect of sets of measure 0. For let E, and £, be two non-overlapping sets
sach that they lie respectively in I'y and I'; and E, + E; =TI (=({a, b)) except
for a set of measure o, both E, and FE, having respectively metric density 1 at
each of their points. Next let E,, E, be two non-overlapping sets lying re-
spectively in I'y, and Iy, such that E, + E, = E;, except for a set of measure
o, both FE, and E, having respectively metric density 1 at each of their points.
In the same way a pair of sets Ky, F,, is associated with I'jy, I'j;; and in the

same way we define K, . . for every sequence of subscripts consisting of o's
36—34686. Acta mathematica. 656. Imprimé le 6 mars 1935.
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or 1's. If x is a point of (a, b) and does not belong to an exceptional set of
measure 0, it lies, for a given #, in one and just one K with »n subscipts, say
1t is clear that this f has asso-
ciated with it, except for sets of measure o, precisely the original sequence
of I's.

Again, if f is given, let us associate with it, as above, the sets Eq,, .. .o, .

in Ko, .. . op.we then set f(#)=lim yo, . . .-

Ko, ...a, is the sum of 2 non-overlapping sets M,,.. o, and Ne,, .. 4,, the former
measurable and the latter completely non-measurable. If T’ is the set of points
common to an infinite number of M's, it can be shown without difficulty, that,
except for a set of measure o, 7' is precisely the set of points where the measur-
able boundaries of f coincide.



