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1. Introduction. Many of the remainders R(x) = Rz in the theory of ap-
proximations related to a function z = z(s), 0 < s < 1, are functionals which are
linear on C, or C,_, and zero whenever x is a polynomial in s of degree n—1. (Defi-
nitions are given in sections 2,3 below.) Accordingly the following known theorems

[5;2;7; 11] are of importance.

Mass theorem. Suppose that Rx is a functional linear on C, and zero for degree
n—1. Then there is a function B(s) € such that

Re — \'1xn(s)dﬂ(s) . zeC,.

o

Here x,(s) stands for the nth derivative of . A fuller statement is theorem
(4:3) below.

Kernel theorem. Suppose that Rx is a functional linear on C,_,, n = 1, and
zero for degree n—1. Then there is a function f(s) € "D such that

1
Rx = S x (8)f(s)ds, xel,.
0
A fuller statement is theorem (4:15).
The present paper extends the above theorems to functionals on spaces of
functions of several variables. Theorems (5:11), (6:11), (9:5), and (9:11) afford
direct access to integral forms of remainders in terms of partial derivatives of order

n, and, furthermore, completely characterize the cases in which the integral forms

1 The author gratefully acknowledges financial support received from the Office of Naval Research,
under contract with Queens College, Flushing, N. Y.
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are valid. The integral forms lead, among other things, to appraisals of remainders
and to criteria of best approximation (section 8).

The character of our results is indicated by the following theorem, which is a
consequence of theorem (6:11) and lemma (6:3). The space B, , of functions

x = x(s, t) is defined in section 6.

Kernel theorem. Let p, g be positive integers and a, b fixed numbers, 0 < a,
b =1 Pul n=ptq. Suppose that Rx is a functional linear on B, _, , , and zero
whenever x is a polynomial in (s,t) of degree n—1. Then there are functions: f'(t),
i< p; g(s,t); Bs), j<gq, all in L, such that

1 !

Rx = \ T i@, t)f(t)dt+3

ilp 0

1

S 2, o8, D (s, Hdsdt

[ ]

W1
+ ) S T, ; (s, D)W (s)ds, wxeB,,.
J<gq %0

The terms in this equation cannot be combined since there are functions
x € B, , for which one and only one of the n-1 terms will be different from zero.

An illustration is given in section 7.

Throughout we shall consider spaces of functions defined on the unit hyper-
square U™: the set of points in euclidean m-space with coordinates all between
0 and 1, end values included. Our theorems transform in the natural way to spaces
of functions defined on a hyper-rectangle with sides parallel to the axes. The fact
that our theorems refer to functions defined on U™ rather than on a general compact
metric space leads to the following advantage: the relations defining the kernels
and the masses are simpler than they otherwise would be [6; 10].

The functionals Ex to which our theorems apply need not involve all of the unit
square U™; for example, Rx might be defined on a space of functions x defined on
a subset of U™, for then Rx is defined, a fortiori, on a space of functions defined
on U™

The spaces B, and A4, are interesting in themselves, as the complete core
of a function in either space is a unique characterization of the function in terms of

independent elements.

2. Linear functionals. Riesz’s theorem. A functional Rx, defined on a space
X of elements z, is a correspondence from X to the real numbers. Suppose that X
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is a normed linear space. The functional Rz is said to be linear if it is additive:
R(x+y) = Rx+Ry, =z yeX,

and continuous at one point, say the origin:

Rx — 0 whenever ||z|| -0, zeX.

Observe that the additivity implies that R0 = 0. In each particular space X that
we consider, we define the norm ||x|| explicitly. A linear functional Rz is continous
at every point, and homogeneous:

R(cx) = cRzx , ¢ a real number, zeX.

The above usage of the word “linear’” is that of F.Riesz and Banach. [1,
pp. 23, 26-27, 36-37]. '

All spaces X that we consider are spaces of functions of real variables; addition
and scalar multiplication of elements of the space are to be understood as addition
and scalar multiplication of the functions.

The space O7 is the space of functions x = z(s,,. .., s,) continuous on the
unit square U™, with norm

ll2ll = [|2lop = max |a(sy,. . ., 8p)| -
®eum
A function y = ¥(s,. . ., $,,) is of bounded variation on U™ if it has the following

properties: i) For all subdivisions of U™ into a finite number of rectangles with sides
parallel to the axes, 3'|4,...4,,y| is bounded. ii) For one particular value s)
of each argument s,, y is a function of bounded variation in the remaining m—1
variables. Conditions i) and ii) imply that for any fixed value sSofs,v=1,...,m,
y is a function of bounded variation in its remaining m—1 variables. We use the
symbol 0 to denote the class of functions of bounded variation in their variables,
without regard to the number of variables.

(2:1) Riesz’s theorem. Suppose that Rx is a functional linear on C7'. Put

, ‘ , 0 if s...5,=0,
(2:2) P(Spe e s 8) = { o, ,
RO (s)...0.08,) of 8...8,>0,
where
(@:3) 0 0.(s) 1 if sZs,
N ;= 8’8 = .
. s { 0 if s>¢".

21 — 642138 Acta mathematica. 84
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Then ye U, and

ol 1
(2:4) Rx:\ S {81, v oy S)AP(Syy - - -5 8, xeCp.
0 0
Conversely, if y(s\,..., 8,) €, (2:4) defines a functional which is linear
on C7.

The definition (2:2) involves an extension of the definition of R, since the
argument of K is not a continuous function. Such an extension can be made in
many ways; one such way, which is direct and consistent with the extension of
(2:4) as a Lebesgue-Stieltjes integral, is the following. Let

(2:5) By 4(s), k=12,

be, for each s, a sequence of continuous functions which converge monotonely to
0,(s). Then the sequence RO, , (s;)...0; . (s,) converges as (k,,...,k,) —~
(00,..., 00); its limit is taken as the definition of y for s...s, > 0. With this
definition y will be continuous from above for positive arguments:

(2:6) (&6 +0,.. ., 8,40) = p(s8,. .., 8,), 8...8,>0.

The following conditions determine y in (2:4) uniquely: i) y € /) and vanishes when-
ever one of its arguments vanishes. ii) (2:4) and (2:6) hold. [8; 9; 4, pp. 262-271;
1, p. 61; 3].

3. Conventions and further notation. We say that functions «(s,,. .., s,)
and B(s;,...,s,,) are equal with countable exceptions, and we write this:

x=4, w.c.e.,

if x and # are equal except when s, is one of a countable set of values,» = 1, 2,. ..,
or m. (Thus « and B are equal except on a countable number of (m—1)-planes
perpendicular to the axes.) “Countable” is to be understood as “countably infinite,
finite, or zero”.

Equations marked *, such as (4:8), are to be understood as follows. The function
o« or f§ defined in the equation is zero whenever any one of its arguments is zero;
the function is as written whenever all its arguments are positive.

We say that a functional Rx is zero for degree n—1 if Rx = 0 whenever z is a
polynomial of degree n—1 in all its variables.

Exponents will ir licate, not powers, but powers divided by the factorial of
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the exponent:
L=18=s¢88=¢582,...,=8""1gm,....

Indices are non-negative integers, except where otherwise indicated.

4. Functions of one variable. Let C, be the space of functions z = z(s).
with continuous nth derivative, s € U', the norm being
llz]] = ||zllg, = max |z(s)] .

se Ut

i=0,...,m

For consistency of notation with later sections, we define the spaces B, A, as

follows:
Bn = On; An = Bn—l = Cn—l > n

v

Let a be a fixed number 0 < a < 1.

(4:1) Taylor’s formula on B,. If x€B,, n = 1, then

s
2(s) = 3 (s—a)z;(a) +S (s—3)"w (3)di, seU.
<<n a

More generally (4:1) holds if 2 has an absolutely continuous (n—1)th derivative.

The core of a function z in B, is the nth derivative z,(s); the complete core is
the core together with the » numbers z,(a), ¢ < n. Taylor’s formula (4:1) may be
used to express all the derivatives of x of order less than n in terms of the complete
core of . Hence [|x||p and the maximum of the absolute values of the elements
in the complete core of x are equivalent norms in the sense that each is at most a
constant times the other. '

The complete core of x € B,, may be thought of as the independent part of z

and as .an independent variable.

n-~1»

(4:2) Lemma. B, « A =B n=1.
l1#]l5, = l#ll4, » xeB,.

A functional linear on A, is a fortiori linear on B,

(4:3) Mass theorem on B,,. Suppose that Rz is a functional linear on B, and
zero for degree n—1. Then there is a function B(s) € D such that

(4:4) Rx = Slxn(s)dﬂ(s) , zeB, .

21* — 642138 Acta mathematica. 84
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Conwersely, given a function e D, (4:4) defines a functional which is linear
on B, and zero for degree n—1.
The mass B may be defined as follows:

(4:5) B(s') = R\'S (s—8)"0,(5)ds, =n=1, *,

(4:6) B(s’) = RO(s), n

i
)
*

The asterisks * indicate that the formulas (4:5), (4:6) apply for s’ > 0 and
that f(0) = 0. We call § a mass even though # may be decreasing.

Proof. The theorem is a corollary to Riesz’s theorem (2:1) for functions of
one variable. For n = 0, the theorem is Riesz’s theorem itself. For n = 1, Taylor’s
formula (4:1) implies that

(4:7) R — RS (s—3)"'z,(3)ds, x€B,,

since Rz is zero for degree n—1. Now the second member of (4:7) is defined and
additive for z, € C:. Furthermore ||#,llgr —~ O implies that

-0
By

| e300

and hence that Rx — 0. Hence the second member of (4:7) is a linear functional
on C} for z, € C}. Hence by Riesz’s theorem (4:4) and (4:5) hold.

As in Riesz’s theorem the relations (4:5), (4:6) involve an extension of Rx
onto a space that includes the argument of R in (4:5), (4:6). The extension may be
made in many ways; for preciseness we understand (4:5) as a definition by mono-
tone limits:

(4:8) B(s') = lim RSS (s—8)"0, (F)d5,  *,

ke — o0 a
where 0, ,(s) is a sequence (2:5). The limit (4:8) exists and g(s'40) = f(s'), ' > 0.
The relation (4:6) is understood similarly. This completes the proof, as the converse
part is immediate.

If the functional Rz is linear on B,_;, n = 1, (hence on B,,), the relation (4:5)
may be used without (4:8), since the argument of R in (4:5) is an element of B, _,.
The relations (4:5) and (4:8) will then be consistent, since

Ss (5—38)"0,,(5)d5 — S (s—8)",, (5)ds

a

(4:9) lim

k—>o00

=0,
By




S]]
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Furthermore (4:5) implies that
(4:10) B(s’) = R(s—s&")"0,.(s) .
For, an asterisk is not needed after (4:10), since the argument of R in (4:10),
when s’ = 0, is §"9,(s) = 0 for all s = 0. Also,
s

(#:11) | (5=876,(6)5 = (s—8)"0,(6) +Ls—a)"—(s—5)"Wpla),  m =1,

a

as may be seen by writing S = S + S . Since the last term of (4:11) is a poly-
a L4

a

nomial in s of degree n—1, (4:5) does indeed imply (4:10).

(4:12) An extension of R. Once the function § has been defined, we may extend
the R of theorem (4:3) as follows. Put

(4:13) Rtz — S z,(s)dB(s), xeB,
U1

where B} is the space of functions x with nth derivative Lebesgue-Stieltjes inte-
grable relative to 8 and, if » = 1, with absolute by continuous (r—1)th derivative.
Then B, < B} and Rx = R+x for x € B,. Furthermore

(4:14) B(s') — R+ g (=30, (3)d5, =1, w.oee, *.

For, the argument of R+ in (4:14) has the nth derivative 0,,(s) for s 34 s" and there-

fore is an element of B} except when s = s’ is a discontinuity of g(s). Hence by

(4:13), the second member of (4:14) equals S 6..(8)dB(s) = B(s") whenever s’ is a
U1l

continuity of g, that is, with only countable exceptions. By (4:11), (4:14) may be

written
B(s’) = R (s—s')"0,.(s), w. ¢. €., *

(Here the case m = 0 is valid also).

(4:15) Kernel theorem. Suppose that Rx is a functional linear on A4, = B, ,,
n =1, and zero for degree n—1. Then there is a function f(s) €l such that

(4:16) Rz — S v ()f)ds, wxe B,
Ui

where Bl is the space of functions x with absolutely continuous (n—1)th derivative.
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Conversely, given a function f(s) € D, (4:16) defines a functional which can be
extended so as to be linear on A, and zero for degree n—1.
The kernel f(s) may be defined as follows:

(4:17) f8) = R+(s—§)"‘1wa,8(§) R w. C. €., *
where
1 if a<s<s,

(4:18) Yo s(8) = O3(a)—05(s) = { —1 if s=s<a,
0 otherwise;

65 is defined in (2:3), and R+ is the extension (4:12) with n replaced by n—1.
Observe that B, < Bt < A,; so that, in particular, (4:16) holds for x € B,,.
Actually B}* is now the same space as B, defined in (4:12), but this fact is not used
in the proof or the application of the present theorem.
The relation (4:17) may be written in the following alternative forms, often

useful for calculation:
(4:19)  f(8) = —R*H(s—8)"0:(s) = R+(s—8)" [1—04s)], w.c.e, *,

since R+x is zero for degree n—1.
If Rxis linear on 4, _,, n = 2, the relations (4:17 and 19) hold with R+ replaced
by R and with w. c. e. deleted.

Proof: One proof is to apply the mass theorem (4:3) on B, and thereafter
integrate by parts [7; 11]. Here we follow Peano’s original suggestion [5] as this
leads to the simplest proof in the case of several variables.

By (4:18) Taylor’s formula (4:1) may be written

20) = T —an@+ | 9y G5, we B

Hence e

(4:20) Re = RS di(s—5)* Yy, (D, (), weBLt.
Now v

(4:21) Rx = S:dﬂ(s)xn_l(s) ) zxeB, ,,

where &), by the mass theorem (4:3) with n replaced by n—1. Apply (4:21)
to (4:20). Then

Bo =\ apo) | _ddy,, @) = diw,@{ .., weBi,

UL Yl
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by Fubini’s theorem since x,(3)y, ,(8) is integrable dsdf(s). Hence

Rz — S sz, (3)f(3), weBH
U1
where

#:22) J@ = o, @) =\ 10s0—0somipie) = —\ 001dBe) = —6+0),

1
sinceS dB(s) = 0 by (4:21) with z equal to the polynomial s*!. Since g€ L, fe
0

also. This proves the first part of the theorem.
Let R+ be the extension (4:12) of R with » replaced by n—1:

Rz = S X, 1(8)dB(s) , xe B} .
g}

Now v, .(s) as a function of s is constant except when s =35, by (4:18). Hence

(s—8)"'y, ,(8) € Bf_; except when § is a discontinuity of B. Hence

Rs—87 Ty, 0 = v, @60 = 1@, wee.c.,

by (4:22). This establishes (4:17).
To prove the converse, suppose that f(s) € 7). Define the functional R as

1
B =\ (o) a(6) = J0)ra a1 =), ,(0)+ | zs(s)if(e).

Ut
This functional is linear on A4,, reduces to (4:16) for x € B}, and vanishes for
degree n—1.

- This completes the proof of the theorem.

(4:23) Remark. Suppose that a functional R*x is linear on B, or 4, but not
necessarily zero for degree n—1. One can construct a related functional Rx which
will be zero for degree n—1 as follows:

Rx = R*x— D czy(a),
i<n
where ¢; = R*(s—a)‘, i < n. That Rx is zero for degree n—1 follows from the fact

that z(s) = ' (s—a)'x;(a) whenever x is a polynomial of degree n—1. Now Rz is
i<<n
linear on B, or A, whenever R*z is. Thus the mass or kernel theorems may be



328 Arthur Sard.

applied to Bz to give a form for R*z:

R*x = Rx+ Y cx(a) .

<N

5. Functions of two variables. The space B, ,. Let a, b be fixed numbers,
0=ga,b=1; and let p, ¢ be fixed non-negative integers. Put

n=ptq.

We define the space B, , as the space of functions » = (s, f) whose derivatives

x; i@, t), t<p,
(6:1) Ty, o8, 8)
xn__j,j(s’ b) 5 j < q >

exist and are continuous in ¢, (s, t), s, respectively, (s, t)e U?. Here z; ; stands for
the partial derivative 0°+/z/0s'0t/ according to the following convention as to the
order of differentiation:

8i‘pxp’ ]./asi—r if ¢>p,7j=¢q,
(5:2) T ;= 8j‘qxi,q/8tj‘q if i1=<p,j>q,
ovti- z, q/asi“”atj"q if i>p, ji>q,

the order of differentiation being otherwise unrestricted. Thus in the last case of (5:2),
the differentiations in z, , may be in any order, and the last i+j—n differentiations
may be in any order. Also, the order in x; ; is unrestricted if s < p, j < ¢. We shall
describe (5:2) as the convention of B, ,.

The core of a function z in B, , is the set of derivatives (5:1); the complete core
of z is the core together with the numbers z; ;(a, b), +j < n. Thus the complete
core consists of 1 function of two variables; n functions of one variable, and n(n-1)/2
constants. In order for the core of z € B, , to exist certain derivatives of z of lower
order must exist and be continuous; we say that the latter derivatives are covered

by the core.
Thus for Bp’ " the derivatives in the core or covered by the core are the fol-
lowing:
rst), +=p , J=¢;
(5:3) x; @, t), i+ <=n, Ji>q;

xi,j(s,b), i+j=n, t>p.
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The norm of « in B, ,, denoted by ||z||p, , is defined as the maximum of the

e
absolute values of the derivatives (5:3), (s, ) € U2

(5:4) Taylor’s formula on B, .. If x€ B, ,,

¢

2o, ) = 3 (=) i—bYz; a, )+ X (s—a)' | (", (0, i

Hj<n t<<p b
+2 (t—b)fS (s—&)" " ,_; (8, b)ds+T, (s,t) e U2,
Jj<q a
where

8 17
Sa(s——é)?"ldé Sb(t—i)q_lxp’q(fe, hil, p=1, ¢=1;

T = Sa(s—é‘)p_lxp,o(é, t)ds , p=1 g¢g=0;
¢
Sb(t——t)q“lxqu(s, idi, p=0, ¢=1;
xo,o(sat), p=4qg=0.

Proof. Suppose that p =2 1,9 = 1; xeB . By Taylor’s formula (4:1),

(5:5) w(s,8) = X (t—bYx, (s, b)—{—g (t—HT 2, (5, DdE ,
i<gq

(5:6) 205,0) = X (s—aVi fa, )+ (63740, 6. 0005, G <,
i <n—j a

(5:7) o6 1) = X (5=, fa, D+ (-3, (6, D5
<P a

We will substitute (5:6), (5:7) in (5:5). This will lead among other things to terms
involving

1
S (t—h e, fa, BdE,  i<p.
b

Now this quantity vanishes at t = b, together with its derivatives as to ¢ of order
less than ¢. Its derivative of order j, j = g, is z; ,(a, ). Accordingly, by Taylor’s
formula (4:1),

t
(5:8) S (t—D)T; fa, il = 3 (t—bY; j(a, b)+5 (=), e, Ddl, i< p.

b g=j<n—i
We now obtain (5:4) by substituting (5:6), (5:7) in (5:5) and using (5:8).

The other cases of (5:4) are established similarly and more simply.
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Taylor’s formula (5:4) expresses z in terms of its complete core. Applied to the
derivatives covered by the core, (5:4) and (4:1) express these derivatives also in
terms of the complete core. Hence ||z||p, , and the maximum of the absolute values
of the elements in the complete core of x are equivalent norms in the sense that
each is at most a constant times the other.

For each x € B,, , there is a complete core. Conversely, given n(n+-1)/2 constants:
¢, 145 < m; p continuous functions of t: 2" "(t), i < p; q continuous functions of s:
2"I(s), § < q; and 1 continuous function of (s, t): 27 U(s, t); there is a unique function

xze B, , having these elements as its complete core:

xi,j(a’ b) = ci’j ’ Z+.7 <n,
@, ila,t) =2, i<p,
z, q(s, ) = z2PYs,t),

T, (8, b) = sy, j<q.

This may be established as follows. Put the given elements into the second member
of (5:4), using (5:9). The second member of (5:4) then defines the function x. The
convention as to the order of differentiation enters here. To illustrate the point,

consider a typical term:

lt - -
Y=yl 0 = (s—ap™\ (=D @dl,  p=2,q=0.
b

Then y, ,,:(s, t) = (s—a)?'2P"127(t). Since 277" "' is merely continuous no further
differentiations as to ¢ are mnecessarily possible here. However y, , ,..(a,t), for

example, exists. For
f

0* 0? _—
o) = 20y 0 s = | (s—a) | | = 0.

b s=a
The reader may verify that y € B, , and that the complete core of y vanishes, except
for y, , 4ii(@, t) which equals 2P~ 24(y).

An essential point here is that each integral in (5:4) is differentiable at least p
times as to s and ¢ times as to ¢.

Thus the complete core of xe B, , may be thought of as the independent

part of x and as an independent variable.

(5:10) Lemma. B,, < B, 1,q>

12118, = l12ll5, s,  *€B
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A functional linear on B, ;:, is a fortiori linear on B, .

Likewise for B qg=1.

P, 91>

The conventions as to differentiation in Bp’q and B are consistent with

p-l.q
one another; both are to be followed at the same time where necessary.

(5:11) Mass theorem on B, . Suppose that Rx is a functional linear on B, ,
and zero for degree m—1. Then there are functions B’ € ~|/ such that

1 o 1,1
(5:12) Re=Y S %5 i, DABH )+ S g Z,, (8, PP U(s, 1)
+<p Y0 0 *0
1 -
+ ES %, (s, b)Afi(s),  weB, .
i<gqvu ’
Conversely, given masses 9 € 1), (5:12) defines a functional which is linear on

B, . and zero for degree n—1.

The masses B9 may be defined as follows:
t
B (1) — R(s——a)iS G—Dr0,0dE,  i<p,  *,
b

g d(sy — R(t_by‘Ss(sﬁg)"—f—les,(g)dg, i<g, *,

. £ t
(5:13) RS (s—é)”“(is,(é)dég t—Dr0,@Bdi, p=1,q=1, *,
a b
gy — | T 970,805, p=1lg=0, *
i
R6,(s) Qb(t—z)ﬂot,(adi : p=0,g=1, *,
RO, (s)0,(2) , p=q=0, *.

The asterisks indicate that the relations (5:13) hold for positive arguments only,
and that each mass 87 is zero if one of its arguments is zero. A theorem of C. A.
Fischers’s [2] is related to the present theorem for p = ¢ = 1 and Remark (6:18)
below.

Proof. The proof is similar to that of the mass theorem on B,. Consider the
case p = 1,q = 1. By Taylor’s formula (5:4),

- t - . - - 's t - - -
Be =Y R(s—ays t—H ", a, t)dt+RS (s—)rds | (=D, (5, Dl
i<p b a vh
5:14 5 8 . . _
( ) + 2 R(t—b)’S (s—38)" 7'z, ; (8, b)ds, xeB,,.
J<q a
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Since the core of z € B, , may be any continuous functions, the terms of (5:14) are
defined and additive on the spaces of continuous functions of ¢, (s, ), and s, respec-
tively, the independent variables being the core of x. Furthermore each term of
(5:14) is continuous on Cj or (¢, since Rz is continuous on B, ,. Hence Riesz’s
theorem applies to each term, and (5:12), (5:13) are established.

The other cases are treated similarly.

As in (4:5 and 6), we understand the definitions (5:13) as definitions by mono-

tone limits. For example,

s ¢ _
(5:15) BP s, 1) = lim RS (s—5)710,, k(é)d&S (t—1)19, [(Bdi,
k,1—> (00, 0) Ya b ’

r=1l ¢=21, *,
where 0, ,(s) is a sequence (2:5).

If the functional Rz is linear on B, ; ., p = 1, (hence on B, ), those relations
(5:13) in which the argument of R is an element of B, , , (that is, the first two
relations of (5:13)) may be used directly, consistently with their interpretation as
definitions by monotone limits. This is proved as was the similar fact for B, ,
and B, (cf. (4:9)). Likewise for B, , ,,
g =1, all the relations (5:13) may, equivalently, be used directly. In these cases

q = 1. If Rz is linear on B, , ., p = 1,

the relations (5:13) may be transformed by the use of (4:11). In particular, the
masses f“/ that are functions of a single variable take on the simpler form:

BEmHE) = R(s—a)'(t—t)"0,(8), i<p,

(5:16) - j ]
'3”_7’7(8') - R(s—s')"_](t——b)]esf(s) s .7 <q.

(5:17) An extension of R. Once the masses §“’ have been defined we may
extend the R of theorem (5:11) as follows. Put

(5:18) Rz =2 wa"’ (@, O i)+ SSUJ”P’ (8 O™ 9(s, )

t<<p

+ 2§ w6006, weB,,,

j<gq YUl
where BJ _ is the space of functions x for which Taylor’s formula (5:4) holds with
integrable nth derivatives and whose derivatives in (5:18) are Lebesgue-Stieltjes
integrable relative to their corresponding masses /. Then B, ,<B, ,and Rx=R*x
for x € B, ,. Furthermore the relations (5:13), with R replaced by R+, are valid with
countable exceptions [13]; the relations (5:13) thus modified may be transformed
by the use of (4:11).
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6. Functions of two variables. The space Ap’ P = 1, g =1.

In order to obtain a kernel theorem with converse, we introduce the space
4, o P=1, ¢ 21, defined as follows: Ap,q is the space of functions x = a(s, )
whose derivatives

xi, n—i—-l(a” t) ’ it < p—l ’

(6: 1) xp—l,q-—l(sa t) ’ n = p+q ’
xn—j—l,j(‘% b) 3 j < q_l )

exist and are continuous in ¢, (s, t), s, respectively, (s, t) € U2 The order of differen-
tiation in z; ; shall be restricted according to the convention of B, ; g1

The core of a function z in 4, ,is the set of derivatives (6:1); the complete core
of 2 is the core together with the numbers z; (@, b),i+j<n—1,(,75) + (p—1,q—1).
In order for the core of x 4, ¢ Yo exist, certain derivatives of z of lower order must
exist and be continuous; we say that the latter derivatives are covered by the core.
Thus in 4, , the derivatives covered by the core are precisely the following: All the
derivatives in the core of B

p-1,¢-1 €XCePt x,_; o (s, ?), and all the derivatives

covered by the core of B, ; , ;.
The norm of x in 4, ,, denoted by ||| Ap g is defined as the maximum of the

absolute values of the derivatives of x in the core or covered by the core, (s, t) € U2.

(6:2) Taylor’s formula on 4, .. If x4, ,

¢
2(s, 1) = ' (s—a) (t—bYz; ;(a, b)+ 2 (s—a)ig (=" (@, D
i <n—1 i<p-1 b
@)+ @1, ¢-1)

+ 3 -0 =i e 60T, e T,

J<g-1
where
8 12
S (8__5)1"‘2d§ Sb(t_z)q—zxp—l, q—l(‘;, i)dt ) p g 2’ q g 2 ’
a
8
. S (s— 8%, 4 o, )3, p=2 g=1,
= a
¢ , o
(b(t—i)q_sz, (s, dt p=1 ¢=2,
x0,0(s’t)’ pzq::I.

This formula is established in the same way as Taylor’s formula (5:4) on B,

‘Taylor’s formula (6:2) expresses  in terms of its complete core in 4, .. Applied
22 — 642138 Acta mathematica. 84
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to the derivatives covered by the core, (6:2) and (4:1) express these derivatives
also in terms of the complete core. Hence ||z||,, A and the maximum of the absolute
values of the elements in the complete core of « are equivalent norms in the sense
that each is at most a constant times the other.

For each x e 4, , there is a complete core. Conversely, given constants: ¢,
i+j<n—1, (5,5) = (p—1,q—1); continuous functions of t: z""Yt), i < p—1;
continuous functions of s: 2" ™VI(s), j < g—1; and a continuous function of (s, t):
2P 145, 1); there is a unique function x € 4, , having these elements as its complete
core. This is understood and established precisely as was the similar fact (5:9)
for B, ..

Thus the complete core of x € 4, , may be thought of as the independent part
of z and as an independent variable.

(6:3) Lemma. B,,c4,,<B, 41

liellz, , = ll2lla, , = liellz, 4y -

A functional linear on A, ,is a fortiori linear on B, o; a functional linear on B

. P—1, g1

is a fortiory linear on A, .

(6:4) Lemma. A, <A

P q P19 p=2.

124y, 2 1124y -

A functional linear on A, s a fortiori linear on 4, .

_1’ q

Likewise for A g =2

P, g1

(6:5) Mass theorem on A4, .. Suppose that Rx is a functional linear on 4, ,
and zero whenever x is a polynomial in (s, t) of degree n—2 that is free of the term
§P 4971, Then there are functions «™’ € <D such that

1

1 1
(6:6) Rr—) Sxi,n_,i_l(a, t)dai’”+1(t)+s Sxp_l,q_l(s, f)daP— T (s, 1)
0 0

i< p—~1 0
1
+ 2 S X, iy, (8, D)™ 1I(s) xed, .
Jj<g-1%0
Conwersely, given masses &7 € ), (6:6) defines a functional which is linear on

A, , ond zero whenever x(s, t) is a polynomial of degree n—2 that is free of the term

sP1a L,

The masses x*7 may be defined as follows:
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i

&) = Rla—a)'\ (=7, (dE,  i<p-1, %,
b

a1 i) R(t—b)fg (s—3" 0 55,  j<q—1, *,

a

6: 8 _ ot - -
(6:7) RS (s—s)”'QOS,(s)dsg t—0)T%0,0dt, p=2,9=2, *,
a (1]
S P20 (33 > - *
ey ) — | B0 Sa(s §7°20,(3)d5 , p=2g=1, *,
1
Ro,(5) | D0, 0t p=1lg=2, *,
b
RO,(s) 0,(¢) , p—g=1, *.

The proof is similar to that of the mass theorem (5:11) on B, ,

The definitions (6:7) are understood as definitions by monotone limits (cf.
(5: 15)).

If the functional Rz is linear on Ap_l, ¢ P = 2, (hence on 4, ), the first two
relations (6:7) may be used directly, consistently with their interpretation as
pevd =2 If Rx is linear on AT)_L 1>
p = 2,9 = 2, all the relations (6:7) may, equivalently, be used directly. In these
cases, the relations (6:7) may be transformed by (4:11). In particular,

definitions by monotone limits. Likewise for 4

o YY) = R(s—a)i(t—t)"0,(t) 1< p—1;

(6:8) - ; ]
" IhIs) = R(s—s' )" t—b)0,(s) . j<g—1.

(6:9) An extension of R. Once the masses «; ; have been defined, we may
extend the R of theorem (6:5) as follows. Put

(6:10) Rz= 3 S %, (@, t)doc"’"“i‘l(t)vLSS 1, g (8, AP (s, 1)
U1

i< p-1 Uz

T 2 g I, ey,
J<g-1

where 47 is the space of functions x for which Taylor’s formula (6:2) holds with
integrable derivatives and whose derivatives in (6:10) are Lebesgue-Stieltjes inte-
grable relative to their corresponding masses x%/. Then A4,,<4,,and Bx = Rz
for z € 4, ,. Furthermore, the relations (6:7), with R replaced by R+, are valid
with countable exceptions; the relations (6:7) thus modified may be transformed
by the use of (4:11).
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(6:11) Kernel theorem. Suppose that Rx is a functional linear on A, , and
zero for degree n—1. Then there are functions f*7 such that

(6:12) Re=Y\ 2, t)fi’"‘i(t)dH—gS x, (s, Of U(s, t)dsdt
J1 (% 2

i<p U

7 n—j, § y
+ %q Slen_j,]-(s, byf" 7 (s)ds , xe B;;fq ,

where BT, is the space of functions x whose B, , core derivatives are integrable and for
which Taylor’s formula (5:4) holds. The kernels f*7 € ). The two particular kernels
PR Ne) and fPT0 9N (s) vanish at O and 1 and are integrals of functions in D).
Conversely, given a set of kernels f*7 with the properties listed in the preceding
paragraph, (6:12) defines a functional Rx which can be extended so as to be linear on
AP 2 and zero for degree n—1.
The kernels may be defined as follows:

fimid) = RH(s—a)'(t—t)""yp, (f), i<p w.ce.,
(6:13) [rP9(8) = RH(s—38)" I (t—b)Py, (), j<gq, w.c.e.,
[P, 1) = RH(s—8P " (t—0)T "y, (B, (D),  w.c.e.,

where R* is the extension (6:9) of R, and v 1s defined in (4:18).

Observe that B, , < B;;,*q < 4,,; so that, in particular, (6:12) holds for
z € B, ,. Actually B/ is now the same as B; , defined in (5:18), but this fact is
not used in the proof or the application of the present theorem.

The relations (6:13) may be written in alternative forms, by the use of (4:18).
In particular,
(6:14) Fomil) = —Ri(s—a)it—Ii6,0) —

RH(s—a)it—t" " [1—0;t)], i<p, w.c.e,

with the dual relation for f"79(5), j<g.

If Rz is linear on 4, ; . ,, p = 2, ¢ = 2, the relations (6:13 and 14) hold with
the + and w. c. e. deleted.

Observe that Rz is surely linear on 4, . if it is linear on B
(6:3).

o1, g-10 by lemma

Proof of theorem. Since Rz is linear on 4, . wemay write Bz in the form (6:6).

Suppose that x € B,*,. Taylor’s formula (5:4), (4:18), and the fact that Rz is

zero for degree n—1 imply that
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(6:15) Rx = 2 R(s~a)iSU1(t—i)”‘i‘ltpb’ D)z, i, dt

i<<p

+R S Sm(s—é)pfl(t—i)q—l%’ (S, t(i)xp, q(g’ Hdsdi

+ X R0 (58, (G G0V, we B,
i<q Ut
The derivation of (6:12) from (6:15) amounts to the interchange of R and the integral

operator in each term of (6:15). Consider one of the terms, for example:

W— R\ dadis—3- =0y, (G, )2, 05 D
U2

The argument of R in W is an element of 4, whose core in 4, is zero except
for its derivative of index p—1, ¢g—1. Hence, by (6:6) and Fubini’s theorem,

W = Sl g:d(xp_l’q_l(s’ t) S S 2d§dizpa, S(é)wb,t(z)xp, 51 =

0 U

U\ dsdie, o5, 9 {§ dar 5, 0y, 9w, 0
JU2 vz ’ '

S S w, o, DfG, Hdsdi,
e
where

(6:16) 16 =\ a0y, D20,

It follows from (6:16) that f(s,t)e ), since «?~ 2" €. (One may actually evaluate
the integral (6:16), by using (4:18)).
Furthermore, f*? defined in (6:13) equals f with countable exceptions. For, put

y = y(s, 1) = (s—8P =0Ty, (3w, (D) -

As a function of s, y, (S) is continuous and constant except at s = §, by (4:18).
Also 9, o(5) = 0. Hence the derivative y,_; . (s, t) exists and equals p, (5, D)
when s s, t & ¢t; and the other Ap’ ¢ core derivatives of y exist and vanish. Now
Vo (). (1), s &= 5, t 1, is integrable daP~?7'(s, t) except when § or ?is a disconti-
nuity of o« %%, Also Taylor’s formula (6:2) applies to y, since (s—3)P"'y, ,(5)
is an element of B/",. As a?7»%"Y(s, 1) has discontinuities at only countably many
s and ¢ [13), it follows that y € A;’q with countable exceptions. Hence, by (6:10),
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f795,1) = Rty = SS Vo o), (DA TN s, 1) = f3, 1), w.c.e..
U2

A similar treatment of the other terms of (6:15) establishes (6:12), (6:13).
We now show that f7~"2"!(¢) vanishes at 0 and 1 and is an integral of a function
in 0. The kernel fP*"%7(s) is treated similarly. Thus,

(6:17) FR) = Ris—a) ™ (t—H,, D)

we write R instead of B+ as in (6:13) because the argument of K in (6:17) is an

element of A_ _; we have suppressed the w. c. e., as we may. Note that

P, q’

JrRE0) = R(s—a)Pt90y(b) —0,(t)] = 0—-0 =0,

since t0,(t) is zero for all ¢ = 0. Also (4:18), (6:6), and Fubini’s theorem imply that

al

Jr e = —Rs—ay (= — — S (t—D0(t)doP™ s, 1) =
0

0

1,1 7 o~ t o~ o~
S S AP~ (s, 1) St di0;(t) = St din(d)
0 Y0 0 0
where

Wi = ortar ok ) = w20 (1, Fk0)

Thus h € Y, since « € “J). Finally, fP2(1) = 0 by (6:17) since Py, (1) = 0.
It remains to prove the converse. We consider the terms of (6:12) separately

and integrate by parts. For example, given that f7 7€ ), consider the term

W= SSsz”’ (8, Of P Us, tydsdt = SSszp’ 9(s, t)dxp—l,q—l(s) f) =

fp, q( L l)xp—l, q—l( L 1) ”"fp’ q( 1 O)xpﬁl, q——1(1> 0) _fp’ q(O’ l)xp—l, q—l(Of 1)
1 1

1790, 01, q2(0, 0) =\ 1,y a1, 0751, 0+ { 2,0y 4400, 01770, 1
Jo 0

1

1
. Soxphl,q_l(s, 1)dfr s, 1)+ SO%‘L 11(5, 0)df? (s, 0)
1 al
+ So Soxp—l, q—l(sa t)dfn 9(85 t) ’ FUASS B;Tq N

The last member of this equation is a linear functional on 4 _, which reduces to W

P
for z € B, and vanishes for degree n—1.



Remainders: Functions of Several Variables. 339
The other terms of (6:12) are treated similarly but more simply, except for the

t ~ ~
two neighbors of W. Consider one of these. Given that fP~%7(¢) =§ h(t)dt and
vanishes at 1, where & € “}). Then 0

v 1
SleP——l,q+l(a'a OfE TNt = — Slep—l, @ HAE)dt = — Soh(t)dxp—l,q—l(“, t) =

1
(D, ga(@ DR, 4 y(a, 0)+ Sox”‘l’ (e DR, we B,
But the last expression defines a functional linear on 4, , and zero for degree n—1.

(6:18) Remark. Suppose that a functional E*z is linear on B, , or 4, , but
not necessarily zero for degree n—1. As in (4:23), one may construct a related

functional Rx which will be zero for degree n—1:
Rx = R*x—-Z ci,jxi,j(a’ b) s
Hj<n
where ¢; ; = R*(s—a)‘(t—bY, i+j < n. The functional Rx is linear on B, ,if R*x is.
Note, however, that given R*z linear on 4
= 0.

»,q» Bz will be linear on 4, , if and only

if Cp-1,q = Cp,q-1

7. Ilustration. A simple illustration of the kernel theorem (6:11) is the
following. The fundamental rectangle is —1 s, 1 < 1;

Bz = (1, 1)—x(—1, 1)+=x(1, —1)—z(—1, —1)—4z, 4(0, 0) .

Thus Rz/4 is, among other things, the remainder in the approximation of the deri-
vative x, (0, 0) by the indicated combination of the corner values of x.

The functional Rx vanishes for degree 2; Rz is linear on B, ,, hence on 4, |,
for all (a, b); Rz is linear on B, ,, hence on 4, ,, if and only if b = 0.

The form of Rx on BjY is .
@:1) Bz =\ a0, 0 0d+ | 2, o0, 08204 (§ 166, 07260, D5
[-1,1] [-1,1] ~1=s,t=1

+ S ;. o(s, b)Y (s)ds , xe By,
[-1,1]

where, for all a, b,

f72) = 0, f23E) = 2(1—1t)), f>°s) = 2(1~[s])?,

and
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(1—|s|) signum (st) f e=b6=0,

s, 1) =
f> s {1—3—41 if a=b=—1,

A equaling one if s < 0, t < 0 and zero otherwise.
The form of RBx on B{%, (a,b) = (0,0), is

(7:2) Re — S o, 5(0, 1)g ()t +- SS 2y 48, gt (s, Ddsdt

[-1,1] 18,851

+ S 2, +(s, 0)g>(s)ds -+ S z, o5, 09> S)ds,  we B,

1,13 -1,11
where

g ) = g N s) = 05 gs, b) = 1—Jt|; ¢>°s) = 2(1—|s))?.

The coefficients in f*° and ¢>° are 2 instead of 1 because of our convention about
exponents.

8. Appraisals and best approximations. If Rz is a remainder, we may be
interested in its appraisal. We may appraise the separate terms in (5:12) or in
(6:12) in the customary ways. Such separate appraisals are efficient, since the
elements of the core of z in B, , are independent.

Alternatively we may appraise (6:12) as follows by a generalization of Holder’s
inequality. Let K%/ be the set on which the kernel f*/ is not zero; let |K®7| be the

measure of K"/ in the ¢, (s, t), or s space, as is appropriate; and let K = ' |K"J),
+j=n

Exclude the case K = 0, for then Rz = 0 and no appraisal is needed. Then

1
(8:1) B = | 5 S %4 il t>|edt+gs (s, 1) *dsd
v<p . .
Kin—i Kp.q
1je
+2j S 2, (s, b)|eds} M,, xe By,
'y

where

= e 3\ lff’"-i(t>|e’dt+S§ 795, 0¥ dsde

i<p
Ky i Kpq
* .. , . e 1 1
_,_27 S |f™79(s)]® d&“] s ~+==1, e>1,
j<q € €

Kn—j,§
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and exponents are understood as powers in the ordinary sense. Now M, is indepen-
dent of z, and the multiplier of M, in (8:1) is an average of the absolute value of
the core derivatives of z in B, .. Fix ¢ and n. Suppose that one has the choice of
several formulas (6:12) (which may be different formulas for the same remainder
Rx or formulas for different remainders, all in terms of nth derivatives.) Suppose
that one intends to appraise by (8:1) and that one has no reason to prefer the
average of the absolute value of the nth derivatives on one class of sets K%/ to the
average on another class of sets K™/, Then it is reasonable to say that that formula
(6:12) is best which minimizes M, [12].

In the usual way we may admit the values e = 1 and e¢ = oo in (8:1). The
appraisal (8:1) may be adjusted to assign different weights to the core derivatives.

In practice, the calculation of M, is often decisively simpler than that of M,
e = 2.

For the illustrations of section 7, M, has the following values: (176/5)'* for
(7:1) with a = b = 0; (496/5)'” for (7:1) with a = b = —1; (52/5)'” for (7:2).

In a similar fashion, we may appraise (5:12) by a generalization of the theorem
of the mean:
(8:2) |R,| = max ess sup [|x; , @, 0, |x, 8.0, |2, (s M, =xeB],,

i<p,j<g 5 HEU?
where the essential supremum of each derivative is taken relative to its corresponding
mass "/, and
u = 3\ japrian+\ aprus o 2\ japri)
i<<p UL U2 j<<q YUl

If the appraisal (8:2) is to be used on a class of formulas (5:12), it is reasonable to
say that that formula is best for which M is least.

The appraisals (8:1 and 2) are efficient in the sense that any reduction of their
second members would make the inequalities false. This is true of (8:2) because,
by construction, the masses g/ are continuous on the right for positive arguments.

9. Functions of m variables. The results of the previous section extend to
functions of several variables. For the most part the proofs are direct generalizations
of the earlier proofs. Here we state the principle facts. For m = 1 or 2 the concepts
and theorems of the present section are those of the preceding sections.

Let (a) = (ay,...,qa,,) be a fixed point in U™; and let (p) = (p,,..., p,) be

fixed non-negative integers. Put

n= Pyt t Py
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We define the space B, = B, ., as the space of functions x = x(s) = (s, . ., 8,,)
whose derivatives

(9:1) Zis i Ol e Oy b, =1,

all exist and are continuous in their variables on U™, where ¢,, v = 1,...,m, is

either the constant a, or the variable s, according to the following inductive rule,

which we call the rule of B, . -

Form=1, 0,=3s.
(9:2) For m > 1, (0y,...,0,4) = (@y,..., @, ) and o, = s, if i, > p,;

if ¢, < p,, and

l (04,...0,_;) is determined by the rule of Bpl,..., Py

o, =38, iti, =9, 0,=4¢,if i, <p,.

We shall use the rule (9:2) to determine (o) = (o4,. . ., 0,,), given 4,,. . ., 7, in cases

in which ¢,+--- 44, = p,+---+p,,. The order of differentiation in Ty i

is restricted as follows. Put ¢, = min (p,, j,),

when

«is considered as an element of B, ., ,

v=1,...,m. Thenw; . istobeunderstood as a derivative of z,

of differentiations in 2
q1s++->9m

tions necessary to carry x,

... qn> 8l orders

are allowed and all orders of the remaining differentia-

,om nto x; . are allowed.

The core of a function x in'B(p) is the set of derivatives (9:1); the complete core
of z is the core together with the numbers x; . (ay,...,@a,), ji+ - +j, <=
(Cf. Illustration (9:8) below.) In order for the core of z & B, to exist, certain deri-
vatives of x of lower order must exist and be continuous; we say that the latter
derivatives are covered by the core.

The norm of x in B,
absolute values of the derivatives of z in the core or covered by the core, (s) € U™,

denoted by 1] By is defined as the maximum of the

A barycentric diagram of the derivatives of order n is useful in considering the
core of z-in B,.

(9:3) Taylor’s formula on B,. If x e B,

a(s) = (8;—a,)™. . .(sm—am)"'”xih.wim(a) + ILi,. . Iz, . (1), (seU™,

it Hm<n B1de e Him=n

where (1) = (1,. .., 7,,) is defined in terms of (o), determined by (9:2), as follows:

. s, iof o,=s, and i,=1,
v o, otherwise;

and the operators I, are defined as follows:
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(sv—av)iv if Ty = Gy,
sy .
1, = S (5,—8)"d5, if v, =5, v=1L...,m.
ay
[ 1 if T,=s,.
(9:4) Lemma. Suppose that p, =1, v =1,..., or m. Then
Bpl,...,py ..... Pm < Bpl,...,pyAl, ...,pm;

the morm on the larger space is at most the norm on the smaller; a functional linear
on the larger space is a fortiori linear on the smaller.

(9:5) Mass theorem on B, Suppose that Rx is a functional linear on B, and
zero for degree n—1. Then there are functions fv-'m e <) such that

1 1
(96) Rz = 2 SO.” S xil,...,im(al"-')O'm)dﬂ““”,zm(o‘l’---7Gm) ’ xEB(p),

Byt =1 0
where each integral is relative to the independent variables in (o) and (o) is determined
by (9:2).
Conwersely, given functions B "(¢) € I, (9:6) defines a functional which ts
linear on B, and zero for degree n—1.

The masses f =™ may be defined as follows:

(9:7) prroome’) = Boygy. o @y, F,
where
(s,—a,)™ if o,=aq,,
Sp
@, = (sv—év)i”“les;(év)dév if ¢,=s, and 3,=1,
day
63;(81,) if o,=s, and ¢, =0,

y=1,...,m; (o) is determined by (9:2), and (¢') = (o) with each s, replaced by s,.
The relation (9:7) is to be understood as a definition by monotone limits. If R
is linear on B, , ., .. p, =1, »=1,...,m, the relations (9:7) may, equiva-
lently, be understood directly.
We define the space 4, =4, . ,.p =1, v=1,...,m, as follows. The
tentative core of x in A, is the set of derivatives LTI () F where, for each 7,,...,¢
such that i,+-.-+4,, = n, (o) is determined by (9:2) and

A if o,=a,,
Iy =

t,—1 if o,=s,.

m
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Certain derivatives in the tentative core can be derived from derivatives of lower
order in the tentative core by differentiations and substitutions of the type a, for s,
We exclude such derivatives. The core of x in A, consists of the tentative core less
the excluded derivatives. Derivatives are understood according to the convention of

Bﬁl—l, sy Pm
x = x(sy,. .., S,,) whose core in 4, exists and is continuous in U™.

_1 a8 to the order of differentiation. The space A, consists of all functions

(9:8) Hlustration. For m = 3, we use the alphabetical notation: (s, {, u) =
(817 Sg, 83)> ((Z, b’ C) - (ab Oy, a/3): (pr q, 7') = (pb Pas pS) The core of x in Bl,1,2 con-
sists of the derivatives:

%0, 4@, b, u), %y 1,3(@, b, u), %y o 3@, b, w),

x0,2,2(“ u), xl,l,z(s; t, u), Zy g, o(8, b, u),

%y, 51(a, 8, ¢), xy 512, 8, ¢), 7y 1,108, 4, C) Ty0,1(8, b, €),
%y 4 0(@ 1, €), z; 50, ¢, €), Zy 5 0(a, ¢, €), %y 1 (8, 8, €), Ty 0,008, b, €) -

The core of x in 4, , consists of the derivatives:

%y 018, b, u), Zy o 0($s ¢, €), Ty, 3,0(a, t, C), Zy50(a, 8, C) .

(9:9) Lemma. B, < A < B

< Pm Plr---» Pm 11, .., pm—1

The norms on these three spaces are non-increasing, from left to right. A functional

linear on X, one of the above spaces, is a fortiori linear on the above subspaces of X.

(9:10) Lemma. Suppose that p, =2, v = 1,..., or m. Then
4, c A4

Lo PV s P Pl Py=1 s Pm?

the norm on the larger space is at most the norm on the smaller; a functional linear on

the larger space is a fortiori linear on the smaller.

(9:11) Kernel theorem. Suppose that Rx is a functional linear on A4, and
zero for degree n—1. Then there are functions f:--m such that

(9:12) Re= \ . g PN (4 fir gy, . . .da,, xe By,
iyt im=n ¢ Jyw ’

where (o) 18 determined by (9:2), do, = 1 if ¢, = a,, w is the number of variables in

(0); and the space B is the space of functions x whose By, core derivatives are inte-

grable and for which Taylor’s formula (9:3) holds. The kernels f& - "™ are in |/ and
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have certain other properties not described here. (But see (9:14) for a complete description
in the case m = 3.)

Conversely, given a set of kernels with these properties, (9:12) defines a functional
Rx which can be extended so as to be linear on A, and zero for degree n—1.

The kernels may be defined as follows:

(9:13) fireoims) = Rto,. ..o, , w.c. e,
where . .
o — { (svwav)w 7’f Oy = @y, y— 1 m:
¥y N - . . - Yyt >
(81,—8,,)“" 1'/"(11;, 81}(81’) Zf Gy = Sy

and (6) = (o) with s, replaced by s,. Here R* is the extension of R on A(,, analagous
to (6:9).
If Rx is linear on 4, ; ., ., P, =2, v=1,...,m; the relations (9:13)
hold with the -- and w. c. e. deleted.
(9:14) Description of the kernels f%#* in theorem (9:11) in the case
m = 3. Throughout i +j+k = n; f*»*e“P. If k = r4-1, f*/- () vanishes at 0 and 1
and is the integral of a function in 7). Likewise for f*7 %) if k =r—1,j = q+1 or if
j=gq+1, k<r—1. Likewise for f*/*3) if k=r—1, j <q—1 or if j = q—1,
k < r—1. Furthermore fP~417%(33) vanishes, together with its first derivative,
at 0 and 1 and is the two-fold integral of a function in 7). Likewise for f7~1-4+% 71
() and fP>2°71(3). Lastly, put
Rt = B3, ) = e, a) oy, oA
hH — kH(E, ,ﬁ) — fp+1,q—1,r(§’ d)+wa,0(§)fg’q_l’r+l(d) ,
B — GG, B) = [Pt S, By, (@)
Then AY(1, %) = 0, K10, %) = —f21 %™ (%), and AY(f, @) is the integral with respect
to ¢ of a function in <)) as regards (Z, %). Likewise for 2! and A™.
(9:15) Remark. For m = 3, there are spaces similar to B(p), A(p), but different
from them, for which mass and kernel theorems are valid. In fact, if m = 3, there
are (p+1)! (g+1)! (r-+1)! different spaces, all analagous to B
The core in these spaces consists of

»,q,» With origin (a,b,c¢).

p,q,r(S: 1, %) and other derivatives as follows.
Throughout ¢+j+k = n. For each k < r there is a pair of indices 7, j, such that
1t 2 P, Ji = ¢- The core includes x; ;. (5,1, ¢} &, ; w1, ¢) if j> i 2, ;4(s, b, ¢) if
t > ;. Likewise for each j < ¢ and for each ¢ < p. These specifications are consistent
and lead to (p-+1)! (g+1)! (r+1)! spaces, of which B

two are symmetrical in their relations (which B

»,q,r 18 one. Of these spaces

p.q,r 15 mOt). For m = 4 there is no

space symmetrical in its relations.
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