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1. In t roduc t ion .  Let X be a complex Banach space, and Y a closed distributive 

operator with domain a n d  range both in X. Let [X] denote the set of all continuous 

distributive (bounded linear) operators which map X into itself. This set IX] is a 

ring, and in fact an algebra. Next suppose that  we have an algebra, related in some 

way to T, whose elements are complexvalued functions of the complex variable ),, 

and that  we are able to define a mapping of the algebra of functions into the algebra 

[X] in such a way that  we have a homomorphism. If f(2) is the complex function, 

we shall denote the corresponding member of IX] by f (Y) .  The fact that  we have a 

homomorphism is then expressed by the equations 

(af ~-bg) (T) = af(T) +bu(T) , 

(fg) (T) =- f ( T ) g ( T ) .  

When such a homomorphism has been established we shall speak of the application 

of formulas (1.1)and other related results flowing out of the homomorphism as an 

operational calculus for T. 

Some years ago (Dunford, [1 and 2]; Taylor [2]) 1 an operational calculus was 

developed for bounded operators T by choosing as the algebra of functions the set 

of functions f(),), each singlevalued and analytic in some open set containing the 

spectrum ~(T) of T.  The homomorphism was established by defining 

f 1 ( X I - - T ) - l d X ,  (1.2) f (T )  = 

the integral being extended over the boundary of a suitable bounded domain con- 

taining ~(T). Dunford [1] used the resulting operational calculus to develop syste- 

1 Al l  r e f e r e n c e s  a r e  to  t h e  b i b l i o g r a p h y  a t  t h e  e n d  of t h e  p a p e r .  
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matically the spectral theory of a bounded linear operator; he obtained generalizations 

of the principal features of the corresponding theory for finite matrices. 

In the present paper we show how to develop an operational calculus which is 

effective for any closed distributive operator whose spectrum does not cover the 

entire plane. Furthermore, this development is made in such a way that  the operational 

calculus based on (1.2) for a bounded operator is obtained as part of the general 

theory for a closed operator. Likewise we develop the spectral theory of the closed 

operator. We have thus a uniform theory which includes that  developed by Dunford, 

and one in which the role of houndedness at particular places is made clear. 

The difficulty with (1.2) in the case when T is not bounded lies principally in .the 

fact that  a(T) need not be a bounded point set in the complex plane. We get around 

this difficulty by considering functions f(2) which are regular at ~ -- oo as well as 

being analytic in some open set containing a(T). For such functions we have 

1 (f(~) d~ f(~) ~-- f(oo) § ~ - -  , 

the integration being over the boundary of a suitable domain which contains ~ --~ ~, 

a(T), and a neighborhood of ~ ~-- oo. The homomorphism is then established by the 

formula 

(1.3) f ( T )  ~- f ( ~ ) ! §  Y~i f(~)('~I--Y)-ld;" " 

Historical references to the use of formula (1.2) in the study of finite matrices 

may be found in the addresses delivered by Dunford [2] and the author (Taylor [2]). 

During the preparation of the present paper, while the author was in England, his 

attention was called by H. Hamburger to what are perhaps the earliest anticipations 

of the formula. Frobenius [1], considering a matrix A, refers to f(A) (though not 

explicitly in the form (1.2)) as the residue of (,~I--A)-lf()~) with respect to the roots 

of the characteristic equation. Frobenius ascribes an important share of credit for 

this idea to Stickelberger, whose dissertation, "Zur Theorie der linearen Differential- 

gleichungen", appeared in Leipzig in 1881. The same idea forf(A) occurs in Bromwich 

[1]. Frobenius and Bromwich both refer to related work by Sylvester and Bucheim. 

We shall mention briefly some features of the paper. 

In w 3 we introduce the idea of a Cau'chy domain, and prove a theorem (Theorem 

3.3) about the existence of Cauchy domains meeting certain specifications. This 

theorem enables us to avoid an awkward construction based on the Heine-Borel 

theorem. Its use in w 4 makes our development of the operational calculus much 
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simpler than Dunford's original exposition of the corresponding material in the case 

of a bounded operator. 

In w 5 we consider the resolvent of the resolvent of T, for a fixed value of the 

parameter in the latter resolvent. This device permits us to transform the s tudy of a 

closed distributive operator into the study of a bounded linear operator, in somewhat 

the same way tha t  certain types of differential equations are transformed into inte- 

gral equations. By means of this device we could obtain the operational calculus 

and spectral theory for closed operators from the already known theory for bounded 

operators. We prefer not to do this, however, since it is better, methodologically, 

to develop the theory as generally and comprehensively as possible from the begin- 

ning. The device of studying the resolvent of the resolvent is accompanied by 

inversion in the complex plane. On this account the device is useful in studying the 

resolvent of T in the neighborhood of the point ~ z ~ .  

In w 6 we study polynomials in T, and fit the results into the operational calculus. 

The theorems in this section make it possible to carry through many of the arguments 

used by Dunford for bounded operators, although with different justification. Inverses 

of polynomial operators are also considered, in w 7. All of this is entirely new, since 

the problems of w 6, 7 do not arise as distinct problems when T e [X] .  

In w 8 we introduce the notion of the extended spectrum of T; it coincides with 

a(T) if T is bounded over all of X, and otherwise consists of ~(T) together with the 

point 2 = oo. With the aid of this notion we extend the concept of spectral set and 

discuss the corresponding projections. The recently published Colloquium Lectures 

of E. Hille appeared during the final stages of preparation of the present paper. 

Hille's book contains theorems about bounded spectral sets and their associated 

projections for closed operators; these theorems (Hille [1], pp. 110-112.) overlap to 

some extent with our Theorems 8.2 and t0.1. 

The appropriate formulations of Theorems 9.1, 11.1, 12.1 (the spectral mapping 

theorem, the 'Sylvester' theorem, and the minimal equation theorem) all require 

proper recognition of the spectral character of the point ~ ~ 0o. 

Some of our theorems furnish new criteria for T to belong to IX]: Theorems 

8.5, 9.2, and 11.4. Finally we mention tha t  if T is not in [X] there can be no minimal 

polynomial: we can never have P(T) = 0 (Theorem 12.2). 

2. Defini t ions  and  nota t ion .  Let X be a complex Banach space having at 

least two elements. We deal with operators which map a specified subset of X into 

all or part  of X. The set ~)(T) on which an operator T is defined is called the domain 
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of T; the set ~(T) onto which ~(T) is mapped by T is called the range of T. The 

operator is called distributive when ~(T) is a linear subspace of X and T(ax-~-by) = 

a T x ~ - b T y  for every linear combination a x e - b y  in ~(T). The operator T is called 

closed if, whenever {x~} is a sequence such that  x n ~ ~ ( T ) ,  x n ---> x , T x  n -+ y, then it 

is true that  x e ~(T) and T x  = y. Throughout the paper the symbol T will denote a 

closed a n d  distributive operator; this will be understood without explicit mention 

of these properties at each occurrence of T. 

When ~(T) ~-- X the operator T is continuous, or bounded (Banach [1], p. 41). 

The class of such operators becomes a Banach space if we define the norm of T as 

JrTl[- sup lITxJf. 
][xll=l 

We shall denote this Banach space of operators by IX]. 

For a general T we classify all complex numbers 2 into two sets: (1) the resolvent 

set ~(T), consisting of all 2 such that  2 I - - T  sets up a 1--1 correspondence between 

~(T) and X (in which case the inverse ( 2 I - - T )  -1 belongs to [X]), and (2) the spectrum 

a(T) ,  consisting of all 2 not in Q(T). If 2 e ~(T) we denote (~I--T) -1 by R~(T)  and 

call it the resolvent of T. The spectrum is divided into three parts: (1) the point 

spectrum p(T) ,  consisting of those 2 for which ( ,~ I - -T)  -~ does not exist, (2) the 

continuous spectrum c(T), consisting of those 2 not in Q(T) or p ( T )  for which ~ ( ~ I - - T )  

is dense in X; and (3) the residual spectrum r(T) ,  consisting of those 2 not in ~(T), 

p ( T )  o r  c(T) .  

I t  is known that  ~(T) is open and hence that  a(T) is closed. When T ~ IX] it is 

known that  a(T) is bounded and nonempty (Taylor [1], p. 74). In the general case 

it is possible for a(T) to be empty, or unbounded, or even for it to cover the entire 

plane. 

When ~(T) is not empty it is known that  R~(T)  is analytic in ~(T) as a function 

with values in IX]. I t  satisfies the functional equation 

(2.1). R~--R/~ = (#--) , )R~RI~.  

When T ~  IX] and 121 > IITI[ we have 2 ~ ( T )  and 

o o  

(2.2) R~(T)  ~- ~ ).-nTn-1 . 
n - - 1  

3. Topologica l  cons ide ra t i ons  in the plane.  We shall have  to deal with 

Cauchy's integral theorem for analytic functions of a complex variable, the function 

values lying in a complex Banach space. The functions with which we shall be 
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concerned will be singlevalued, but the domains on which they are defined may 

(and often will) consist of more than one component (a component of an open set 

is a maximal connected subset). 

Definit ion.  A set D in the complex plane is called a Cauchy domain if  the following 

conditions are satisfied: (a) D is open; (b) D has a finite number of components, the 

closures of any two of which are disjoint; (c) the boundary of D is composed of a finite 

positive number of closed rectifiable Jordan curves, no two of which intersect. 

A component of a Cauchy domain is a Cauchy domain. If the Cauchy domain D 

is unbounded, it has just one unbounded component; this component contains a 

neighborhood of the point at infinity (i. e. all points outside a sufficiently large 

circle), and has as its boundary a finite number of closed rectifiable Jordan curves, 

nonintersecting and no one inside any other. The nature of a bounded Cauchy 

domain with a single component will be clear to the reader after a moment's thought. 

If D is a Cauchy domain and C is one of the curves composing its boundary, we 

follow the usual practice in defining the positive orientation of C as part of the 

boundary B(D) of D. We denote the positively oriented boundary of D by +B(D);  

when it is given the reverse orientation we denote it by --B(D).  

We denote the closure of D by D and the complement of D by C(D). The two 

following theorems will be used later. 

T h e o r e m  3.1 . .Let  D 1 and D 2 be Cauchy domains, and suppose that D1 c D 2. 

Let D ~ D~--DI. Then D is a Cauchy domain, and ~ B ( D )  consists of ~-B(D2) and 

--B(DI).  The domain D is bounded i f  both D1 and D~ are unbounded, or i f  D 2 is bounded. 

T h e o r e m  3.2. .Let  D 1 be a Cauchy domain, and let D2 ~- C(D~). Then D~ is a 

Cauchy domain, and -~B(D2) z --B(D1). 

We omit the proofs. 

We often need to know of the existence of Cauchy domains lying in prescribed 

sets and containing other prescribed sets. The following theorem is designed to meet 

such needs. 

T h e o r e m  3.3. Let F and zJ be point sets in the plane. Let F be closed, A open, and 

2' c ~J. Suppose that B(L1) is nonempty and bounded. Then there exists a Cauchy domain 

D such that: (!) F c D, (2) D c A, (3) the curves forming B(D) are polygons, (4) D is 

unbounded if  ~J is unbounded. 

Proof: Since F is closed and B(A) is compact, there exists a positive ~ such tha t  

the distance from a point of F to a point of B(A) is never less than 8. Let us cover 

13 - -  6 4 2 1 3 8  Acta mathematlca. 8 4  
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the  plane by a honeycomb ne twork  of nonover lapping congruent  hexagons of side 5/4. 

The bounda ry  plus the interior  of one of the  hexagons will be called a cell. A cell 

cannot  contain a point  of F and also a point  of C(ZI). For  such a cell would contain a 

point  of B(ZI), and there  would then  be a point  of F and a point  of B(ZI) a t  a distance 

at  most  6/2 apar t .  

Le t  S be the  sum of all the  cells which meet  C(ZI). Then  F c C(S), for FS = 0 

(the emp ty  set). Also, C(ZI) c S, and therefore  C(S) c zi. The set S is closed and 

nonempty .  Since B(ZI) is bounded,  S is  bounded  if zi is unbounded ;  also S is un- 

bounded  if zi is bounded.  In  ei ther  case B(S) is bounded.  Finally,  B(S) c zi. For,  if a 

point  is in B(S), it  is on the boundary  of at  least one cell which  does not  meet  C(ZI), 

so t ha t  the point  in quest ion must  be in zi. 

Le t  us now define D = C(S). Then D is open, and D z D-[-B(D) = D+B(S)  c zi. 

Tha t  D has propert ies  (1), (2) and (4) is now clear. I t  remains to prove t h a t  D is a 

Cauchy domain  with p rope r ty  (3). 

Le t  V be a corner point  of a cell. Suppose tha t  V c B(D). Since B(D) =- B(S), 

V is a corner point  of a cell belonging to  S. Now just  three  cells meet  at  V, and at  

least one of these cells is not  in S. Hence ei ther  one or two of the  three  cells meeting 

a t  V belong to S. In  e i ther  case exact ly  two of the three  cell edges meeting at  V 

belong to B(S). Since B(S) is bounded  and composed of cell edges, it  follows tha t  

B(S) consists of a finite numb er  of disjoint  simple closed polygons.  

The set D can have only a finite number  of components .  For,  it can have at  most  

one unbounded  component ;  the  sum of all the  bounded  components  is bounded;  

and each component  mus t  contain the inter ior  of at  least one cell. If  a point  P is on 

the  bounda ry  of a component  of D, it  is a b o u n d a ry  point  of a cell belonging to  S. 

I t  is also a boundary  point  of ei ther  one or two cells whose interiors do not  belong to S. 

Bu t  if two such cells are ad jacent  all the  non-end points of thei r  common edge are 

in D. Hence the point  P lies on the boundary  of just  one component  of D. 

The proof of Theorem 3.3 is now complete.  For  the idea of using a ne twork  of 

hexagons,  which makes the  proof m u c h  simpler t h an  by  using a ne twork  of squares, 

I am indebted  to  Mr. Will iam Gustin.  

4. T h e  O p e r a t i o n a l  C a l c u l u s .  If  f(2) is a complex funct ion of the complex 

variable 2, we denote  by  zi(f) the  set on which f is defined. We shall always assume 

tha t  zi (f) is a n o n e m p t y  open set, not  necessarily connected,  and t h a t  f is singlevalued 

and analyt ic  on zig). 

Def in i t i on .  By the class ~(T)  we mean the family of all analytic functions f which 
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are such that: (1) ~(T) c A(f), (2) d(f) contains a neighborhood of ,~ = ~ and f is 

regular at ~ ~ ~ .  

When f e ~(T)  we denote the limiting value of f(~) as ~-~ ~ by f ( ~ ) .  

When T is such that  a(T) covers the entire plane we are unable to carry out 

the developments of the paper. Hence we assume once and for all that ~(T) is not empty 

in all subsequent parts of the paper. 

T h e o r e m  4.1. Suppose that f E O(T). There exists an unbounded Cauchy domain 

D such that (~(T) c D and D c A(f). The integral 

1 * 
(4.1) 7-. I f(~)R,(T)d~ 

"~7~ ') +B(D)  

defines an element of IX] which is the saute for any choice of D satisfying the above 

conditions. 

Proof: The existence of D follows from Theorem 3.3 by taking F = a(T) and 

choosing A to be the intersection of A(f) and the exterior of a sufficiently small 

circle with center in if(T) (this last precaution being necessary only in case z~(f) 

is the entire p lane) .  

To prove that  the integral (4.1) is independent of D, suppose that  D1 and D 2 

are two Cauchy domains of the type specified. Then their intersection D~D 2 is open 

and unbounded, with a bounded, nonempty boundary;  also, a(T) ~ D~D 2. Hence, 

by Theorem 3.3, there exists an unbounded Cauchy domain Da such that a(T) c Da 

and Da ~ DiD2 ~ A(f). Let D -~ DI-~D ~. The domain D is bounded, and 

2~il i 2~il f Bi( ~ ~-.1 ~ I(2)R~(T)d~ = )R~(T)d~-- f f(2)R~(T)d~, 
' % B ( D )  "+ " ~ ' / '  'J+B(D a) 

by Theorem 3.1. But  D c q(T); hence f(~)Rz(T) is regular in D, and the integral 

on the left of the equality is zero, by Cauchy's theorem. I t  follows that  the integral 

over ~B(D1) is equal to the integral over ~-B(Da). The same argument applies 

with D~ in place of D1, so that  the proof is complete. 

Defini t ion.  When f ~ ~(T) we define 

(4.2) f (T) = f ( ~ ) I - ~  7-. f().)R~(T)d~., 
2~2~ ,, +B(D)  

the integral here being the same as in (4.1) and I being the identity operator. 

Defini t ion.  The class ~o(T) is defined as the subset of all f ~ ~(T)  such that 

f ( ~ )  = O. 
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T h e o r e m  4.2. I f  f e ~ (T )  and f(~) ~ c (a constant) on z](f), we have f (T)  = cI. 

Proof: The integral in (4.2) vanishes, for it is equal to 

c f 
2~i ~ +B(D) 2~i '~ +B(D~) 

where D 1 ~-- C(D) is a bounded Cauchy domain (by Theorem 3.2). Since D1 
the integral vanishes. 

When f and g belong to ~(T) we define the functions f + g  and fg in the obvious 

way, taking A(f)A (g) as their domain of definition. I t  is clear that  f4-g  and fg belong 

to ~(T). The basic rules of the operational calculus are obtained in the next theorem. 

T h e o r e m  4.3. Suppose that f ,  g E ~(T) .  Then 

(a) (f  +g)(T) = f ( T ) + g ( T )  , 

(b) (fg)(T) ~-- f ( T ) g ( T ) .  

Proof: The assertion (a) is obvious. To prove (b) we observe by Theorem 3.3 

that  there exist unbounded Cauchy domains D1, D2 such that  a(T) c D1, D1 c D2, 

D2 c A(f)A(g). Then 

1 f f (~)R~(T)d~,  f ( T ) - - f ( ~ ) I  = 2~i ~+B(D1) 

1 f g(#)Rt*(T)dtt" 
g(T)--g(cx~)I = 2hi .J+B(D2) 

By using the functional equation (2.1) we readily find that  the product 

( f (T ) - - f ( c~ ) I ) (g (T ) - -g (~ ) I )  is given by the expression 

~J +B(D1) 27d "J +B(D2~ # - -  ~ 

1 1 I f(~) d~ I 
~7lZ ')+B(D2) +B(DD 

Now let C be a circle of large radius so chosen that  B(D~) and B(D:) lie inside C. 

Let D be the part of D 2 that  lies inside C. Then D is a bounded Cauchy domain, 

and +B(D)  consists of +B(D2) and the circle C oriented counterclockwise. Since 

B(D1) ~ D we have, if X is on B(D1), 

1 ( e (# )  
2~i J+B(D~ t t -  ~ ~ +B(D2) t t -  ~ 
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Upon let t ing the radius of C become infinite, the  last integral  is seen to have the  

value g(c~). A similar analysis yields the result  

__1 f i'--;f(Z) dA --f(~) 
27d +Ben D 

when # is on B(D2). Thus we have  

(f( T ) - - f  ( ~ ) I)  (g( T ) - -g (  cx~ ) I)  = 

2zd O~+B(D D 2zd + B(D2)g(/~)f(cx~) R+,(T) d# = 

(fg)( T ) - -  f (  cx) )g( ~ ) I - - g (  cx) ) ( f (  T) - - f  ( cx~ ) I ) - - f (  ~ ) (g( T ) - -g (  cx) )I) . 

Formula  (b) of the theorem now follows at  once. 

We shall now discuss the connect ion between the operat ional  calculus based on 

the foregoing definitions and theorems and the operat ional  calculus for  bounded 

operators  which was in t roduced  by  Dunford  and the au tho r  several year  s ago. 

D e f i n i t i o n .  Suppose that T ~ [X], so that a(T) is bounded and nonempty. By  ~ ( T )  

we mean the class of analytic functions f such that a(T) c d(f). 
We observe t ha t  if f ,  g ~ 5r(T), A(f)A(g) is nonempty ,  so t h a t  f +g,  fg ~ ~ ( T ) .  

The class Q(T)  is a proper  subset of J ( T ) ,  for  any  integral  funct ion f ,  with A(f) 

the whole plane, belongs to ~ (T ) .  

De f in i t i on .  When T ~ [X] and f ~ J ( T ) ,  we write 

1 . 

(4.37 f * (T )  = 2=.f  f (2 )Rz(T)d2  , 
~Y~ d+B(D ) 

where D is a bounded  Cauchy domain  such t h a t  a(T) c D and D c d( f ) .  

T h e o r e m  4.4. Suppose that T ~ [X] and f ~ J ( T ) .  Then f* (T) ,  as defined in 

(4.3), is an element of IX] which is independent of D. Suppose that g E ~ ( T )  and that 

f(2) ~ g(2) on some open set containing (~(T). Then f* (T)  --  g(T).  

Proof :  We prove t ha t  f * (T )  is independent  of D by an a rgument  like tha t  used 

in proving Theorem 4.1. Le t  G be a bounded  open set such t h a t  (~(T) c G ~ A(f)A(g) 

and f(2) = g(~) when 2 ~ G. By  Theorem 3.3 we m ay  assume t h a t / )  c G, so t h a t  

the  integral  (4.2) is unchanged in value when we replace f(2) by  g(2). Le t  C be a 

circle of radius r, so chosen t h a t  G lies inside C and t h a t  C and the  region exter ior  

to it lie in A (g). Le t  D 1 be the  domain  consisting of D and the exter ior  of C. Then  D~ 

is an unbounded  Cauchy domain  with ~(T) c D~, D~ c A(g); fur ther ,  @B(D1) 

consists of @B(D) and C taken  clockwise. 
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Hence 
1 ? 

g ( T ) - - g ( ~ ) I  ~- f*(T)  ~- 2~i lc  g(~)R~(T) d~ . 

The proof will be complete when we have shown tha t  the integral on the right is 

equal to --g(c~)I.  I t  is equal to 

1 
i' ( )  1 i g(oc)R~(T)d,t. g (~) - -g(~)  R ~ ( T ) d ~ -  27~--~i c (4.4) 2~  c 

Now it follows from (2.2) t ha t  

JlRz(T)ll 
I~I--IITlt 

when J~] > IlT[I. I t  is therefore easily seen tha t  the first integral in (4.4) tends to 

zero as r -~ ~ ,  and must  therefore vanish, since it is independent  of r. The second 

integral is found to have the value --g(oo)I, by integrat ing the series (2.2) termwise 

(recall t ha t  C is oriented clockwise). Thus the proof is complete. 

A funct ion g(~) of the  type  described in Theorem 4.4 will be called a ~(T)  exten- 

sion of f(~). If  g(c~) ~-- 0 we call the funct ion a ~0(T) extension off(A). I t  is evident 

upon a moment ' s  consideration tha t  any  f in if(T) has an infinite number  of ~(T)  

extensions, among them an infinite number  of ~0(T) extensions. 

T h e o r e m  4.5. Suppose that T ~ [X] and that f ,  g ~ :~(T). Then 

(a) (f~-g)*(T) : f*(T)~-g*(T) ; 

(b) (fg)*(T) -~ f*(T)g*(T) ; 
(c) i f  f(,t) = Zoa~(,t--2o)" is a complex power series whose circle of convergence 

contains a(T) in its interior, we have f*(T)  z E o~a~(T- ~o I)'~. 

Proof: Assertion (a) is obvious, We may  prove (b) by an argument  like t ha t  

used in proving Theorem 4.3(b). Alternatively,  (b) follows from Theorem 4.3(b) and 

Theorem 4.4, since there exist ~0(T) extensions of f and g. Assertion (c) is a slight 

extension of a theorem given by Dunford ([1], Theorem 2.8, p. 195). If  f()~) is a 

polynomial  the result (c) follows from Dunford 's  result ; the proof depends essentially 

on the expansion (2.2). For  the general case let D be the interior of a circle C lying 

inside the circle of convergence of f(~), and such tha t  a(T) is inside C. Then 

f*(T)  = f(X)R~ d2 = "~ " nR~ . j . ,  an (),-- 20) (T)d2 
C n = 0  C 
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But  the  integral  under  the summat ion  sign is equal  to ( T - - 2 o I )  '~, by the result  for 

polynomials.  This completes the proof. 

This theorem furnished the  basis for  the operat ional  calculus used by  Dunford.  

The opera tor  f * ( T )  was denoted  by  f ( T )  in Dunford ' s  work. We see f rom Theorem 4.4 

and the  remarks which follow it t ha t  when T c [X] the  class of all operators  f * ( T ) ,  

f e  57(T), is the same as the  class of all operators  g(T) ,  g e Q ( T )  (or merely g ~ Q0(T)). 

5. T h e  r e s o l v e n t  of a r e s o l v e n t .  Le t  T be fixed, and let ~ be a f ixed point  

of Q(T). Define 

(5.1) A = ( T - - o ~ I ) - ~ =  - - R ~ ( T )  , 

so t ha t  A e [X]. The opera tor  A defines a 1-- 1 mapping of X o n t o  ~ (T ) .  We are 

going to s tudy  the relat ions between the resolvents  of T and A, ~nd between thei r  

spectra.  

We readily ver i fy  t ha t  

(5.2) T A x  = ~ x A x + x  , x e X , 

(5.3) A T x  = a A x + x  , x e 7~(T) . 

L e m m a  1. Suppose  # 4= 0, x e X, y = t t x - - A x .  Def ine  2 by (2--~)ft  --  1. T h e n  

( T - - 2 I ) ( ~ x - - y )  = # - i y .  

Proof:  A x  = # x - - y ;  therefore  # x - - y  ~ ~)(T) .  By (5.2), T ( u x - - y ) -  a A x + x .  

Hence  T ( t t x - - y ) - - 2 ( # x - - y  ) ~ a A x + x - - ( a t t + l ) x + ) , y  , as we see by  not ing t h a t  

).# = o~# + 1. Thus 

( T - - 2 I ) ( # x - - y )  = ~ ( A x - - t ~ x ) + ) , y  =_ (2 - - a )y  = # - ~ y .  

L e m m a  2. Suppose  2 # ~, x c ~ ( T ) ,  y = T x - - 2 x .  Def ine  tt by (2--~)/~ = 1. 

T h e n  ( t t I - - A ) x  = trAy.  

Proof :  By  (5.3), o~Ax+x  = A T x  = A ( y + 2 x ) .  Hence (2 - -o~ )Ax - - x  = - - A y .  

Multipl icat ion by  # gives A x - - / z x  = - - t r A y ,  which is equivalent  to  the result  

asserted in the  temma.  

L e m m a  3. Suppose  2 @ a, (2- -~)#  = 1, and that ( T - - 2 I )  -1 exists. T h e n  ( t d - - A )  -1 

exists. The  two inverses have the same domain  of  def ini t ion,  and in  this domain  

# 2 ( # I - - A ) - 1  = t d + ( T - - 2 I ) - L  

Proof :  Suppose x ~ X  and ( z I - - A ) x  = 0. Now # :# 0, and /zx 6 ~ ( T ) ,  since 

A x  = #x .  Hence x e ~)(T). By  L e m m a  1 we have  ( T - - 2 I ) t t x  = 0 the y of the !emma 
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being 0 in this instance. Hence ( T - - 2 I ) x  ~ 0 a n d x - - 0  since ( T - - A I )  -~ exists. 

Thus ( # I - - A )  -~ exists also. 

Now the domains of ( t t I - -A )  -~ and (T-- ,~I)  -~ are, respectively, the ranges of 

# I - - A  and T--;~I .  By lemma 1 we see that  if y ~ ~ ( t t I - - A ) ,  then # - ' y  and y are 

in ~(T--41).  The Lemma also suggests that  if y e }R(T--~I), then also y ~ ~R(#I--A),  

the solution of the equation y ~ - ( / , I - - A ) x  being, conjecturally, x ~ #-lye_ 

# - 2 ( T - - 2 I ) - l y .  If we justify this conjecture we shall have completed the proof of 

the theorem. 

Suppose then that  y ~ ( T - - ~ I ) x  D for some x 1 in ~(T).  Define x - - # - l y _ ~  

t t -2 (T- -~ I ) - l y ,  that  is, x----#-ly~/~-2Xl, or #2x--/~y--x~. Now, by Lemma 2, 

( t t I - - A ) x l  = trAy. Hence t t~ ( t t I - -A)x - - t t ( /~ I - -A)y  ----- trAy, or t t2 ( t t I - -A)x  --  tt"y. 

Thus ( t t I - - A ) x - ~  y, and the proof is complete. 

L e m m a  4. Suppose # :# O, (~--~)# = 1, and that ( # I - - A )  -1 exists. Then 

( T - - 2 I )  -~ exists, and in the common domain of the inverses we have (T--,~I)  -1 

# ( # I - - A ) - ~ A  = # A ( # I - - A ) - L  

Proof: Suppose x e ~(T) and ( T - - 2 I ) x  = 0. Then ( # I - - A ) x  ~-- 0 by Lemma 2; 

therefore x -- 0, since ( # I - - A )  -1 exists. Hence ( T - - Z I )  -1 exists also. We know by 

Lemma 3 that  the two inverses have the same domain. If y is in this domain the 

unique solution x of ( T - - 2 I ) x  ~ y satisfies the equation ( / d - - A ) x -  trAy, by 

Lemma 2. Hence x ~ t t ( t t I - -A)=iy .  I t  is readily proved that  A permutes with 

( t t I - - A )  -~ in the domain of the latter operator, and with that  the proof is complete. 

T h e o r e m  5.1. Let ~ and tt satisfy ( k - -a )#  = 1. Then ~ belongs to one of the sets 

~(T), p(T),  c(T), r(T), i f  and only i f  tt belongs to the corresponding one of the sets 

~(A), p(A),  c(A), r(A). When ~ E ~(T) we have 

(5.4) Rt~(A ) ~ # - I I - - # - 2 R ~ ( T )  , 

(5.5) R~( T)  ~ --I~Rt,(A )A ~ - - # A R ~ (  A ) . 

The theorem is an immediate consequence of the four preceding lemmas. 

T h e o r e m  5.2. The point # --~ 0 is not in p(A) .  I t  is in o~(A), c(A) or r(A) 

according as ~)(T) is all of X ,  a proper subset of X dense in X ,  or not dense in X .  

The theorem follows from the definitions of the resolvent set and the various 

parts of the spectrum. 

Next we examine the operator f (T ) ,  where f c ~(T), in relation to the operator 
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A. Unde r  the  t r a n s f o r m a t i o n  # = (2 - - a )  -1 let ~v(/~) = f ( 2 ) .  We t ake  A(~) as the  

m a p  in the  /*-plane of A(f) in the  2-plane. Since A(f) contains a ne ighborhood  of 

2 = 0% A(~v) contains  a ne ighborhood  of # = 0; we define ~v(0) = f(cx~), so t h a t  ~v 

is regular  a t  the origin. Now,  b y  Theo rem 5.1 and  5.2 a(A) consists of the  image  

of a(T) and  possibly the  point  # = 0. Hence  a(A) c A(~v), so t h a t  ~ e ~ ( A ) .  

T h e o r e m  5.3. When f ~ Q(T),  cr E o(T), and when A and ~v are defined as in 

the preceding work, we have q~ ~ g ( A )  and q~*(A) = f (T) .  

Proof :  B y  Theorem 3.3 there  exists  an u n b o u n d e d  Cauchy domain  D such t h a t  

(r(T) c D, D c A(f), ~ ~ C(D). Le t  D1 be the  image  of D in the  #-plane,  wi th  the  

point  # = 0 added.  Then  D 1 is a bounded  Cauchy domain ,  and  a(A) c D 1, D1 c A(~). 

Using fo rmula  (5.4) we have  

1 f f(,~)R~(T)d2 f ( T ) - - f ( ~ ) I  = 2~i ~+B(v) 

1 f - -# -II+R:  ~ = - -  q~(:~)[ (A)]d# 
2~i v+B(Dx) 

= - - ~ ( 0 ) I + ~ * ( A ) ,  

which is equiva len t  to the  requi red  result .  

We shall f requent ly  have  need to refer to this  theorem.  I t  is convenient  to have  

a shor t  way  of referr ing to A and  ~(/~) when  T and  f(2) are given. We  shall call A 

the a-associa te  of T, and  ~ the co-associate of f,  it being unders tood  t h a t  er ~ 0(T) and  

6. P o l y n o m i a l s  in  T.  Owing to the  fac t  t h a t  ~ ( T )  need not  be the  whole of X 

we m u s t  exercise care in dealing with powers  of T. 

D e f i n i t i o n .  By  ~ ( T )  (n > 1) we mean the set of all x ~ X such that x, Tx  . . . . .  

T~-lx ~ ~ ( T ) .  We write 7~o(T ) = X .  

Of course T O denotes  the  iden t i ty  ope ra to r  I .  We  see t h a t  ~)I(T) = ~ ( T )  and  

t h a t  ~, ,+i(T) ~ ~)~(T), n = 0, 1, 2 . . . . .  Ev iden t ly  ~ ( T )  is a l inear subspace  of X. 

D e f i n i t i o n .  Let P(2) ~ Z~ak2~(n ~ 0, a~ :4: 0) be a polynomial in 2. We define 

an operator P(T)  with domain ~n(T)  by the formula P ( T ) x  --- -~a~T~x, x ~ ~)n(T). 

R e m a r k .  I f  n = O, P(T)  = aoI. Hence  the  no ta t ion  in this case is in ag reemen t  

wi th  the  mean ing  of P(T)  when we consider P(2) as a m e m b e r  of Q(T). When  

n > 0, P(2) is not  in Q(T),  so we are on fresh ground in defining P (T) .  I n  case 

T ~ [X] we see by  Theo rem 4.5 t h a t  P ( T )  ~ P*(T).  
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T h e o r e m  6.1. The  operator P ( T )  is  closed. 

Proof :  We assume n > 0, since the  asser t ion is obviously  t rue  for  n = 0. Choose 

a c(T), and  let  A be the  a-associa te  of T. Then  it is easily p roved  t h a t  A"  has the  

range  ~)n(T) and  t h a t  its inverse is ( T - - ~ I )  ~. Hence  ( T - - ~ I )  n is closed, for  A *~ is 

closed and  the  inverse of a closed opera to r  is closed. Now let us write P(~) in the  fo rm 

n 

(6.1) P(A) = _,~bk(2--~)  "-~ . 
~ = 0  

The a-associa te  of P(A) is # - ' p ( # ) ,  where 

(6.2)  p (~ )  ~ k - -  ~ bk# . 
k = 0  

I f  x c ~)n(T) we have  p * ( A ) x  c ~ n ( T )  and  

(6.3) P ( T ) x  ~- ( T - - ~ I ) n p * ( A ) x  ~ p * ( A ) ( T - - a I ) ' ~ x .  

Suppose  now t h a t  x~ ~ ~)~(T) and  t h a t  x v + x, P(T)x~ -~ y. We  have  to show t h a t  

x ~ ~)~(T) and  t h a t  P ( T ) x  ~- y.  Since ( T - - ~ I ) "  is closed, the  fac t  t h a t  p * ( A ) x  v "- 

p * ( A ) x  and ( T - - ~ I ) n p * ( A ) x v  ~ P(T)x~, ~ y implies t h a t  p * ( A ) x  e f ~ , ( T )  and  

( T - - a I ) ' ~ p * ( A ) x  ~ y.  I t  remains  to p rove  t h a t  x e ~)~(T). The desired conclusion 

will t hen  follow f rom (6.3). Now 

p * ( A  )x ~-- box ~ - b l A x  ~- . �9 �9 ~-bnA'~x , 

and  b0 ~ an :~ 0. Each  t e r m  af te r  the  first  on the  r ight  is in ~)(T), since ~ ( A )  

~)(T). Also p * ( A ) x  ~ f~,~(T), as we saw above.  Hence  x ~ ~)(T). Suppose we know 

t h a t  x ~ ~,~(T), where  1 ~ m < n. Then  

(6.4) ( T - - ~ I ) m p * ( A ) x  ~ b o ( T - - ~ I ) m x - ~ b ~ ( T - - ~ I ) m - ~ x  ~ - �9 �9 �9 ~-b~A~"~X ; 

here the  left m e m b e r  and  each t e r m  af ter  the  first  on the  r ight  are in ~)(T). I t  

follows t h a t  ( T - - ~ I ) m x  c ~)(T)  and  t h a t  x c ~)~+I(T). Hence,  by  induct ion,  x e ~)n(T). 

This completes  the  proof  of the  theorem.  

D e f i n i t i o n .  Suppose  f ~ ~ ( T )  and  ~ ~ ~(T) .  Le t  ~v be the ~-associate o f f .  W e  say  

that f has a zero o f  order m at ,~ ~ o0 i f  ~v has a zero o f  order m at # = O. W e  take 

m -~ 0 to mean  f (oo )  =~ 0, and m ~ oo to mean  that f (~)  vanishes  ident ical ly  i n  a 

neighborhood o f  ~ ~ cx~. 

D e f i n i t i o n ,  B y  ~?~(T) we mean  the set o f  elements common  to all the sets ~)~(T), 

k - - l , 2  . . . . .  
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T h e o r e m  6.2. (a) Suppose x ~ ~n(T)  (n f ini te) ,  f ~ ~(T) ,  and that P()~) is a 

polynomial of degree n. Then f ( T ) x  ~ ~ , ( T )  and f ( T ) P ( T ) x  = P ( T ) f ( T ) x .  

(b) Suppose x ~ ~ ( T ) ,  0 ~ n ~ ~ ,  and suppose that f c ~ ( T ) ,  f having a zero 

of order m (0 ~ m ~ oo) at ~ ~ cx~. Then f ( T ) x  ~ ~,,+~,(T) (where m - ~ n  --  cx~ i f  

~ ~ ~ o r  n ~ -  ( : ~ ) .  

Proof :  S incef(T)  ~ T*(A), where A and ~ are a-associates of T and f,  respectively,  

it  is clear t ha t  f ( T )  permutes  with any  h*(A) where h ~ ~-(A). We see f rom (6.3) t h a t  

P ( T ) A ~ y  ~ p*(A)y ,  for any  y. Under  the hypotheses  of (a) we have x -~ A ' y ,  where 

y = (T - -~ I )~x .  Then  f ( T ) x  = f ( T ) A ' y  - -  A~f(T)y ,  whence f ( T ) x  ~ ~,~(T). Also, 

P ( T ) f ( T ) x  = P(T)A~ ' f (T)y  = p* (A) f (T )y  = f ( T ) p * ( A ) y  = f ( T ) p * ( A ) ( T - - ~ I ) ' x  

f ( T ) P ( T ) x .  This completes the  proof of (a). 

In  proving (b), let q denote  m if m is f ini te;  if m ~ ~x) let q denote  any posit ive 

integer.  In  ~(~) define y~(~)~/Fq~(#)  when /~ # 0, ~p(0)~ lim ~-q~(#). Then  
I t  ~ t) 

z ~ (A)  and, by Theorems 4.5 and  5.3, Aq~v*(A) = q~*(A) -= f (T ) .  Thus ~{f(T)} c 

~ ( A  q) = 5Dq(T). I t  follows t h a t  ~{f(T)} ~ ~ , , (T) .  Now suppose t h a t  x z ~ . ( T )  

(k finite). Wri te  y = (T - -a I )~x ,  x = A~y. Then  f ( T ) x  = Aqy~*(A)A~'y = Aq+~,~*(A)y 

z ~)~+~(T). The conclusion of (b) now follows. 

T h e o r e m  6.3. Suppose f ~ ~ ( T ) ,  with a zero of order m(O <= m <= ~z) at ~ ~ ~ .  

Let P(X) be a polynomial of degree n, 0 <~ n <= m. Define g(),) ~ P(~).f(),) with Ll(g) --  

A(f). Then g e ~ ( T )  and P ( T ) f ( T ) =  g(T). [Note that !}l{f(T)} ~ ~)~(T) c ~),~(T), 

by Theorem 6.2, and that g ( ~ )  ~ 0 i f  n < m.] 

Proof:  Le t  y(/~) be the a-associate of g(~) and let p(#) be defined by  (6.2). Then  

y(/~)--~ tt-np(tt)7(u). Clearly y(#) has a removable  s ingulari ty at  tt = 0, and so 

g ~ ~ (T) ,  since it is regular  a t  2 ~ ~ .  Ev iden t ly  g ( ~ )  = 0 if n < m. Now A'~y*(A) = 

p*(A)q~*(A), whence A'*g(T) = p*(A) f (T) .  Operat ing on bo th  sides with ( T - - a I )  ~ 

and using (6.3) we obta in  P ( T ) f ( T )  ~ g(T), as asserted. 

T h e o r e m  6.4. Suppose that f ~ ~ ( T )  and that P(i~) is a polynomial of degree 

n(n > 1). Suppose that a ~ ~(T), and let D be any unbounded Cauehy domain such that 

a(T) c D, D c ~(f), a c C(D). Then, i f  x ~ ~n (T )  we have 

(6.5) {f(T) ~- P ( T ) } x  = 2n~ J +,(D> (~--~)~+-- 

Proof :  We s ta r t  f rom the formula  
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n 

(T--aI)n+1Rz(T)x ~- (2--~)"+IR~(T)x-- _,~ (2--~)n-k(T--~I)kx  , 
k = 0  

which is valid if x ~ ~ ( T ) .  I t  is easily established by induction,  the case n ~ 0 being 

an immedia te  consequence of the fact  tha t  ( T - - h i )  -1 --  --R~(T).  The  integral  in 

(6.5) is now seen to be equal to 

1 f f! n 1 i f ( 2 )+P(2 ) (T__~I )~xd  2 2zd [ 2)+P(2)]R~(T)xd2--  ),~ ~ (2_oc)~+ 1 
" + B (  ) k = 0  +B(D) 

The first of these integrals is equal to f (T)x- - f (oc)x;  the  t e rm involving P(2) yields 

zero when integrated,  because it  is equal  to 

1 f P(2)Rz(T)xd2 '  
2~i "+B(D1) 

where D~ = C(D) (the in tegrand is regular  in D1, and D~ is a bounded  Cauchy 

domain).  Now 

1 (, f(2) d 2 = t - f ( ~ 1 7 6  k = 0  
2~i ,I+B(D ) ( 2 -  ~)k+l 0 , k = 1 . . . . .  n , ! 

by an a rgument  like tha t  used at  one stage of the  proof of Theorem 4.3. Finally,  

+B(D)(2__a)k+l d2 --  :__ 2.n* ' +B(D~> (2--~) +~ d2 P~)(o,)k! 

Thus the  r ight  member  of (6.5) is equal  to 

f . . . .  ~. p(k)(~) (l )x-~k~2o % ~  (T- -~I )kx  = { f ( T ) + P ( T ) } x  . 

Theorems 6.2-6.4, and par t icular ly  Theorem 6.3, are useful supplements  to the 

operat ional  calculus based on Theorem 4.3. I t  will be seen later  in the  paper  t h a t  

m a n y  of Dunford ' s  a rguments  which seem to depend upon Theorem 4.5 (c) (mainly 

for the case in which f(2) is a polynomial  of degree 0 or 1) m a y  be re t r ieved  for 

general  5perators  T with the help of Theorem 6.3. 

7. I n v e r s e  o p e r a t o r s .  Our first  theorem is implicit  in Dunford ' s  paper.  I t  

follows at  once f rom Theorem 4.5. 

T h e o r e m  7.1. Suppose that T ~ (X), that f ~ J ( T ) ,  and that f has no zeros in 

a(T). Let Z be the set of points in zl(f) at which f(2) vanishes. Let A(g) -~ A(f)-Z and 

define g(2) ~- 1/f(,~) in A(g). Then g c ~ ( T )  and g*(T)f*(T) = f*(T)g*(T) -:  I ,  so 

that f*(T)  defines a 1-- 1 mapping of X onto itself. 
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T h e o r e m  7.2. Suppose that f + ~(T), that f()~) has no zeros in (~(T), and that 

f(oc) ~ O. Then f (T)  defines a 1-- 1 mapping of X onto itself. The inverse is given by 

( f ( T ) ) - ~ =  g(T), where g ( ~ ) =  1/~f(~). 

Proof:  A proof m a y  be based on Theorems 5.3 and 7.1. We give, instead, a 

proof independent  of considerations about  bounded operators. I t  is clear t ha t  

g ~ ~(T)  and f (~ )g (~ )=  1. Hence, by Theorems 4.2 and 4.3 (b), f ( T ) g ( T ) =  I.  

The conclusion now follows. 

T h e o r e m  7.3. Suppose that f E Qo(T), that f(2) has no zeros in a(T), and that f 

has a zero of f inite order n at ~ = ~ .  Then .~(f(T)} ~-- ~ ( T )  and (f(T)} -1 exists. There 

exists an unbounded Cauehy domain D such that a(T) ~ D, D c A(f), and f(2) does 

not vanish in D. I f  D is such a domain and ~ is a point of ~(T) not in D, we have 

1 
f {f(~) (2--~)~+l}-l(T--~I)n+iRz(T)xd2 (7.1) { f (T)}- lx  : 27~i ~+n(,) 

for each x in ~ ( T ) .  

Proof:  The existence of D follows readily from Theorem 3.3. Wi th  ~ and D 

as indicated let ~ and A be the ~-associates of f and T, respectively. The function 

has a zero of order n at  # ~ 0. Hence the funct ion F(#) ---- # -~ (# ) ,  when properly 

defined at /~ ~- 0, belongs to J ( A )  and is never zero in a(A). Now f (T)  ~ q~*(A) 

A'~y~*(A), by Theorems 5.3 and 4.5. By Theorem 7.1 we know tha t  y~*(A) defines 

a 1- - I  mapping of X onto itself. We also know tha t  A n defines a 1--1 mapping 

of X onto ~)n(T). Hence f (T)  is seen to define a 1--1 mapping of X onto 

~)~(T). The inverse operator {f(T)} -~, with domain ~ ( T ) ,  is given by (f(T)}-I ~- 

{F*(A)}-~(T--~I)  n. Let  D1 be the domain in the/~-plane corresponding to D in the 

k-plane (with # ~ 0 added to D~). Then F is regular and never zero in D~, so t h a t  

(~*(A)}-~ -- 2~i +B(D,) ~(/~) R~(A)d# . 

Since /~F(/~) = (~--~)~-~f(~) and t tR , (A)  ~- - - ( T - - a I ) R~ ( T )  (by formula (5.5)), we 

have, on changing the variable of integrat ion from ~ to #, 

] 1 n {~*(A)}-~(T--~I)  ~x = ~ . I {(~--~)~+~f(2)}- ( T - - ~ I ) R ~ ( T ) ( T - - a I )  xd~ . 
Z7~'t J+B(D) 

The result (7.1) now follows by an application of Theorem 6.2. 

T h e o r e m  7.4. Let P(2) be a polynomial of degree n (n ~ 1) all of whose zeros lie 
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in ~(T). Then P(T)  defines 1 -- 1 mapping of ~,,(T) onto X.  The inverse operator belongs 

to [X] and is given by 
1 '. 1 

(7.2) {P(T)}-~ - 2~i i P ~ )  (T-- '~I)-~d2 ' 

the integration being extended counterclockwise over a set of nonoverlapping circles, one 

around each zero of P(2), each circle and its interior lying in ~(T). 

Proof :  Define f(2) - l /P(2) ,  taking A(f) to be the  ent ire  plane with the except ion 

of the zeros of P()O. Then f ~  ~0(T), and f has a zero of order  n at  2 = cx~; also 

f(~) has no zeros in a(T).  Hence f (T)  defines a 1 - 1  mapping  of X onto  ~,~(T), with 

inverse given by  (7.1). Upon  comparing (7.1) wi th  (6.5) we see t h a t  {f(T)} ~x = 

P(T)x  when x ~ ~n(T) .  Thus (P(T)} -~ exists and is equal  to  f (T) .  To express f (T)  

as an integral  we may  take  an unbounded  Cauchy domain  D consisting of the region 

exter ior  to a set of circles as described in the  theorem.  These circles are or iented 

clockwise in + B ( D ) ,  and since ( T - - ) j )  -1 -- --R~(T), the  formula  (7.2) now follows 

f rom the integral  formula  for f (T) .  

8. S p e c t r a l  s e t s  a n d  p r o j e c t i o n s .  In  our  definit ions of the sets a(T),  r 

we were classifying the finite points of the complex plane. The quest ion arises: if we 

consider the ex tended  complex plane, how are we to classify the  point  ~ ---- oQ ? Our 

answer is as follows. 

De f in i t i on .  We define the extended spectrum a~(T) of T to be the set (~(T) when 

T e IX], and otherwise the set a(T) together with the point ~ =- o0. The extended resolvent 

set ~(T)  is defined as the complement of (~(T) in the extended plane. 

Eviden t ly  a~(T) is closed and ~ (T)  is open in the ex tended  plane. Also, a~(T) 

is never  empty .  

The expansion (2.2) shows tha t  R~(T) is regular  a t  ~ = ~ when T c [X]. If 

T ~ [X], R~(T) is not  regular  at  2 = c~. This is clear if a(T) is unbounded ;  the assert ion 

will be justified la ter  in the case when a(T) is bounded  (see Theorem 10.5). Hence  

~ (T)  is the set of points in the ex tended  plane at  which R~(T) is regular.  

De f in i t i on .  A set (~ in the extended complex plane is called a spectral set of T if  (~ 

is a subset of a~(T) which is both open and closed in (~(T) in the topology of the extended 

plane. We use the notation (~' = %(T)--(~. 

If  a is unbounded  it mus t  contain the point  ~ = cx~. The set a' is also a spectral  

set of T. One of the sets a, a' must  be bounded;  
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De f in i t i on .  Let o be a bounded spectral set of T.  Let D be a bounded Cauchy 

domain such that o c D, o' c C(D). Define 

(8.1) Eo.[T] = ~1 . I  R~(T)d~.  
-~2"~ ')+(B)D 

I f  0 is an unbounded spectral set of T we define E~[T] by the formula 

(8.2) Ea[T] = I + -  R~(T)d~ , 
2~i , + B( D) 

where in (8.2) we take D as an unbounded Cauchy domain such that o ~ D, a' c C(D). 

If  o is a spectral  set, there  exist  nonnul l  open sets U, V in the ex tended  plane 

such t ha t  o ~ U, o' c V, the  closures of U and V are disjoint,  and  one of the  sets 

U, V contains a ne ighborhood of ~ ~ ~ (the o ther  set therefore  being bounded).  

We define f~(X) = 1 on U, fa().) = 0 on V, fa,(,~) = 1--fa(2) on U +  V. I t  is then  

easily seen t ha t  Ea[T ] ~ fa(T),  Ea,[T ] ~ fa,(T).  I t  follows f rom the  operat ional  

calculus t ha t  (Es[T]) 2 ~ Ea[T ], so t h a t  Es[T] is a project ion.  We say tha t  it is the  

project ion associated with o. Project ions defined by (8.1) have  been considered by  

Lorch ([2], pp. 241-42). We observe the fu r the r  propert ies  

(8.3) E~[T]+E~,[T]  = I ,  

E~[T]E~,[T] = O, 

of the project ions associated with complementa ry  spectral  sets. 

De f in i t i on .  We write Xa[T] : ~(Ea[T]) .  When there can be n o ambiguity we 

drop the T and write s imply Ea, Xa,  etc. 

To clear the  ground for the  discussion of spectral  sets and their  associated 

project ions we first  consider two lemmas and a general  theorem.  

If  A and B are l inear subspaces of X with zero as thei r  only common element,  

A (~ B denotes the  set of all elements of the  form a+b ,  a e A ,  b e B.  The repre- 

senta t ion of an e lement  of A (~ B in this fashion is unique.  If  A and B are linear 

subspaces of X, our  use of the  expression A O B will carry the implicit  assumption 

tha t  A and B have  0 as thei r  only common element.  

L e m m a  1. Suppose that A ,  B,  M,  and N are linear subspaces of X such that 

A ~ M,  B c N ,  and A ~ B =  M @ N .  Then A = M and B~-- N.  

We omit  the proof, which is exceedingly simple. 

L e m m a  2. Suppose that A ,  B,  M,  N are linear subspaces of X ,  that A ~ M,  

B ~ N ,  and that M,  N ,  and M ~) N are closed. Then A @ B is dense in M (~ N i f  

and only i f  A and B are dense in M. and IY, respectively. 
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The proof, which we omit, is a simple consequence of well known properties of 

projection operators (see, for example, Lorch [1], p. 220, Theorem 2.2). 

T h e o r e m  8.1. Let E1 and E 2 be projections such that E I + E  2 = I (and hence 

E1E s = EsE I ~- 0). Let Mi be the range of E i (i = 1, 2). For convenience write ~3 = 

~(T) .  Suppose that E i (~  ) c ~ and that T ( ~ M i )  c M i. When T is considered as an 

operator in the space Mi, with domain ~Mi ,  denote its resolvent set, spectrum, point 

spectrum, etc. by ~(T, Mi), a(T, Mi), etc. Also, denote by ~ ( ~ I - - T ,  Mi) the transform 

of 55M i by ~ I - -T .  Then 

(a) E i T x ~ T E i x  if x ~ ;  

(b) ~(2I - -T)  = ~ ( 2 I - - T ,  Mi) ~) ~)~(~I--T, Ms); 

(c) p(T) = p(T, M~)+p(T ,  Ms) ; 

(d) a(T) : a(T, MI)-~-a(T , M2) . 

I f  we assume further that r M1) and a(T, M2) have no points in common, then 

(e) c(T) = c(T, MI)~-c(T, Ms); 

(f) r(T) = r(T, M~)-~r(T, Ms) . 

Proof: The subspaces M1 and M s are closed, and M 1 O Ms ~-- X. We observe 

that  ~ ( ~ I - - T ,  Mi) ~ M i. The assertions (a) and (b) are quite obvious. Evidently 

p(T,  Mi) c p(T). Suppose ~ ~ p(T), so that  we have (~ I - -T )x  ~ 0 for some x e ~ ,  

x 4= 0. Then (~ I - -T )E lx  ~ - - (~I - -T)Esx .  The left member of the equation belongs 

to M 1, the right member to M 2. Hence both members are zero. But E~x and Esx are 

not both zero, since x =~ 0. Hence ~ belongs either to p(T,  M~) or to p(T, Ms). Thus 

(c) is proved. Now suppose that  ~ e ~(T), so that  ~ ( ~ I - - T )  ~- X .  By (b) and Lemma 1 

we conclude that  ~ ( ~ I - - T ,  Mi) ~-- M i. Now ~ cannot be in p(T, Mi), by (c). Hence 

we conclude tha t  2 e e(T, Mi), i ~ 1, 2. Suppose conversely that  2 ~ ~(T, Mi) for 

i --~ 1 and 2. Then ~ ( ~ I - - T ,  Mi) ~ Mi, and hence ~R(iU--T) -~ X ,  by (b). This 

means that  2 is either in ~(T) or p(T). But it cannot be in p(T), by (c). We have thus 

proved that  ~(T) is the intersection of ~(T, M~) an4 ~(T, Ms), which is equivalent 

to (d). 

We now assume that  a(T, M 1 )  and a(T, Ms) are disjoint. Suppose 2 ~ c(T) ~-r(T); 

then 2 belongs to a(T, M1) or a(T, M~), by (d). Suppose it belongs to a(T, M~), 

and hence to 9(T, M~). We see by (b) and the two lemmas tha t  ~ ~ c(T) implies 

~ c(T, M~) and that  ~ ~ r(T) implies ~ ~ r(T, M~). If on the other hand we assume 

tha t  2 ~ c(T, M~) (and hence that  2 e o(T, Ms) ), we have ~ ( ~ I - - T ,  M~) = M~; from 



Spectral Theory of Closed Distributive Operators. 209 

(b) and the two lemmas we conclude t h a t  ~ e c(T) .  The same a rgument  shows t h a t  

r (T ,  M~) ~ r(T) .  The proofs of (e) and  (f) are now complete.  

T h e o r e m  8.2. Let  a be a spectral set o f  T .  T h e n  

(a) EG(~3(T)) c ~ ( T ) ;  

(b) T ( ~ 3 ( T ) X a )  c X(r ; 

(c) ~ = ~ ( T ,  X ~ ) ;  

(d) a -  p ( T )  = p ( T ,  Xa) ;  

(e) ~ . c(T)  : c (T,  Xa) ;  

(f) a . r (T)  = r (T ,  X a) . 

I f  the spectral set (r is bounded we have the fur ther  conclusions 

(g) Xa c ~o~(T),  

(h) as an operator on X o, T is bounded. 

Proof  : Assert ion (a) follows f rom Theorem 6.2 (a) and  the  fact  t h a t  E a ~ f a ( T )  

for a suitable fa  e Q(T).  If  x ~ 5 3 ( T ) X  a we have  x -~ Eax .  Hence E a , T x  = T E a , x  ~- 

T E a , E a x  ~ 0, by  Theorem 6.2 (a) and  (8.3). I t  follows t h a t  T x  ~ Xa ;  thus  assertion 

(b) is t rue.  If  a is bounded  we can arrange the definitions of fa  and fa '  so t h a t  fa  

has a zero of infinite order  a t  2 ~ cx~. In  view of this, assert ion (g) follows f rom 

Theorem 6.2 (b). Since T is defined th roughou t  Xa and closed on Xa,  it  is bounded  

there  (Banach, [1], p. 41, Theorem 7); thus  (h) is established. 

To prove  (c) we first p ro v e  t h a t  2 e ~(T, Xa) if 2 is a finite point  not  in a. For,  

if 2 is such a point  we m a y  suppose tha t  the  sets U, V ment ioned  above are so chosen 

t ha t  2 ~ V. We then  define g(~) ~-- (2--~) -1 o n  U ,  g(~)  : 0 on V. Thus (~--$) g($) 

fa(~) and  fa(~)g(~) = g(~), whence ( A I - - T ) g ( T )  : E~ and Eag(T)  -~ g(T) .  Then g(T)  

and 2 I - - T  are inverse to each other  in the  space Xa. Therefore  A e @(T, X~). Now 

let ~1 and a~ be the  sets of f ini te points of ~ and a', respectively.  We have ~(T) = 

al-~a2, and,  by  Theorem 8.1 (d), ~ ( T ) ~  a(T, Xa)~-~(T,  Xa,). We conclude t h a t  

~ ~ ~(T,  Xa) .  This conclusion is equ iva l en t  to  assert ion (c) when ~ is bounded,  in 

view of (h). When  a is not  bounded,  it  necessarily contains 2 ~ 0% and T ~ [X]. 

Bu t  in th~s case T i s  bounded on X~, and hence cannot  be defined th roughou t  Xa 

and bounded  there.  Thus  a~(T, Xa) also contains A : -  oo. The proof of (c) is thus  

complete.  

Assert ion (d) now follows f rom Theorem 8.1 (c), since we know th a t  a(T ,  Xa)  

1 4  - -  6 4 2 1 3 8  Acta mathematica. 8 4  
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and a(T, Xa,  ) are disjoint. Assertions (e) and (f) follow in similar fashion, using 

Theorem 8.1 (e) and (f). 

T h e o r e m  8.3. The spectral set a is empty i f  and only i f  E a ~ O. 

ONe half of this follows f rom Theorem 8.2 (c); the other  half follows f rom the 

definit ion of E~, by Cauchy's  theorem.  

T h e o r e m  8.4. (a) I f  a is a bounded spectral set of T and i r e  a = I ,  then a = a(T) 

and T + IX]. (b) I f  T e [X] and a = a(T), then E a : I .  

Proof :  Assertion (a) follows f rom Theorem 8.2 (c) and (h). Assertion (b) follows 

f rom Theorem 4.5 (c). 

T h e o r e m  8.5. Let a(T) be bounded. We define the operator 

1 i R~(T)d2 (8.4) E[T]  ~-- ~ c 

where C is a circle, oriented counterclockwise, containing a(T) in its interior. Then 

E[T] is a projection, and E[T]  ~- I i f  and only i f  T ~ IX]. 

Proof :  We observe t ha t  E[T] is the  special case of an Ea[T] with a = a(T). 

Hence  E[T]  is a project ion.  The rest  of the theorem follows f rom Theorem 8.4. 

We can now state  a theorem which completes the considerations begun in 

Theorems 7.2 and 7.3. 

T h e o r e m  8.6. Let a(T) be bounded. Suppose that f e G0(T), that f does not vanish 

on a(T), and that f has a zero of infinite order at 2 = ~ (see one of the definitions pre- 

ceding Theorem 6.2). Then f ( T )  has the same range and null manifold as the operator 

E[T] defined in (8.4). 

Proof  : The  null manifold  of an opera tor  S e IX] is the set of elements x ~ X such 

t ha t  S x  = O. The theorem is tr ivial  when a(T) is empty ,  since f (T )  ~ E = 0 in t h a t  

ease. Hence we suppose a(T) not  empty .  Then d(f )  consists of two par ts :  a neigh- 

borhood of 2 = ~ in which f(2) ~ 0, and the remainder  of d(f)  in which f(2) is not  

identical ly zero. Define g(~) = 1 in the first ment ioned  par t  of A(f), and g(2) = 0 

in the second par t .  Define h(2) = f(2)~-g(,~). Then  g, h e ~(T) ,  h(cx~) ~- 1, and  h(~) 

has no zeros in a(T). We observe tha t  f(2)g(2) ~ O, and hence f (T )g (T)  =- O. Also 

g(T) = I - - E .  Hence 

(8.5) f i T )  = f ( T ) E  - E l ( T ) .  

Next ,  h(T) = f ( T ) ~ - g ( T )  --  f ( T ) ~ - I - - E .  Hence  h ( T ) E  = f ( T ) E ~ - E - - E  2 ~- f (T ) .  We 
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know by Theorem 7.2 t ha t  {h(f)} -1 exists and belongs to [X]. Hence  

(8.6) E = {h(T)}-lf(T) = f(T){h(T)} -1 . 

The assertions of the  theorem follow f rom (8.5) and (8.6). 

9. The spectral  mapp i ng  theorem.  C o m p o s i t e  functions.  If G is a point  

set in the  ex tended  plane, and if G c A (f) where f e r  we use f(G) to denote  

the  set of values assumed by  f a t  points of G. 

T h e o r e m  9.1. I f  f ~ ~(Z) we have f(ae(T)) = a(f(T)). 
The theorem asserts (a) f(%(T)) c a•T))  and (b) a•T))  c f(a,(T)). 

Proof  of (a): Here  and of ten later  we use ~ as a complex var iable  when 2 is 

used as a f ixed number .  Suppose 2 ~a (T) .  Take  A(g)= A(f) and  define g ( ~ ) =  

(f(~) _f (~))  ( 2 _ ~) -1 if ~ ~= 2, g(2) ~ f ' (2) .  Observe tha t  ( ,~ - -  $)g(~) = f(2) --f(~). To obta in  

f rom this an equat ion  involving operators  we apply  Theorems 6.3, 4.2, and 4.3 (a). The  

result  is ().I--T)g(T) ---- f(,~)I--f(T). Now, if 2 e p(T) there  is an x ~ ~ ( T ) ,  x Jr 0, such 

tha t  (2I--T)x = O. Then  (f().)I--f(T))x = 0, as we see by  an applicat ion of Theorem 

6.2 (a). Thus f(2) c p(f(T)). Also, if )~ ~ c(T)+r(T) we see tha t  ~{f(;t)I--f(T)} is a 

proper  subset  of X,  so tha t  f ( 2 ) ~  a • T ) ) .  I t  remains to prove f ( o c ) ~  a(f(T)) if 

T r IX]. If  f(2) = f(ac)  a t  some point  2 e a(T), the  s i tuat ion is covered by  what  we 

have  proved.  Otherwise, f (ec) - - f ($)  belongs to G0(T) and does no t  vanish on a(T). 
The range of f (oc)I-- f (T)  is therefore  not  all of X, e i ther  by  Theorem 7.3 or by  

Theorems 8.5 and 8.6. Thus f ( o c ) e  a(f(T)). 
Proof  of (b): Consider first a point  f ie  a(f(T)) such t h a t  fi 4= f(o~). Suppose, 

cont ra ry  to what  is to be proved,  t h a t  f (~)-- f l  has no zeros in a(T). Let  B be the  set 

of points in A(f) a t  which f(~) = ft. Then  define h(~) = (fl--f(~))-~ with A(h) = 
A(f)--B. I t  is clear t h a t  h e ~(T)  and h(oc) ~= 0. I t  follows f rom Theorem 7.2 t h a t  

h(T) defines a 1--1 mapping of X onto itself, the  inverse opera tor  being fiI--f(T). 
This contradicts  the fact  t ha t  fl ~ a(f(T)). I f  fi f(oo) and T ~ [X], we have fl ~f(a~(T)), 
since 2 = oc belongs to ar I t  remains only to consider the  case fl --f(cx~) ~ a(f(T)), 
T ~ IX]. In  this case there  exists a g c ~(T)  such tha t  f and g coincide on an open 

set containing a(T), f(T) = g(T), and g(oo) :~/~ (see Theorem 4.4). ~re then  conclude 

by  the earlier a rgument  t ha t  fl ~f(a(T)). Titus the  proof is complete.  

Remark:  We cannot  replace ae(T) by  a(T) in the  (b) assertion of Theorem 9.1 

unless T e [X]. For,  if ~)(T) is a proper  subset of X and f e r with a zero of 

the first order  at  ,~ = o~ and no zeros in a(T),  then  we see by  Theorem 7.3 tha t  the  

point  fl = 0 belongs to a(f(T)). 
From Theorem 9.1 we obta in  a cri terion for T to belong to [X]. 
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T h e o r e m  9.2. Suppose that f �9 ~(T) and that a(f(T)) does not contain the point 

;[ ~_ f(cx~). Then T e [X]. 

This follows f rom Theorem 9.1 and the definit ion of a~(T). 

Theorem 9.1 is a general izat ion of the spectral  mapping  theorem for bounded  

operators  T, which was p roved  by  Dunford  ([1], p. 195, Theorem 2.9). Dunford ' s  

theorem is a corollary of Theorem 9.1 and 4.4. 

T h e o r e m  9.3. Let P(2) be a polynomial. Then P(a(T)) = a(P(T)). 

Proof :  We may  assume th a t  P(2) is of at  least the  first degree, for  the assert ion 

if evident ly  t rue  for  a polynomial  of degree zero. In  the  special case tha t  T �9 IX] 

this theorem is included in Dunford ' s  spectral  mapping  theorem.  To prove  t h a t  

P(a(T)) ~ a(P(T)) we assume 2 �9 a(T) and  define a polynomial  Q($) such tha t  

P(2)--P(~) = (2-~)Q(~). The a rgument  is then  similar to  t h a t  used in proving 

Theorem 9.1 (a). The  proof t h a t  a(P(T)) c P(a(T)) is similar to tha t  of Theorem 

9.1 (b). If  2 is not  in P(a(T)) let h(~) : (2--P($))-~.  Then  Theorem 7.4 shows t h a t  

2I- -P(T)  defines a 1--1 mapping  of ~ ( T )  (where n is the  degree of P(2)) onto X,  

with inverse h(T), so t ha t  2 �9 ~(P(T)). This completes the proof. 

We now come to  the  theorem on composite functions.  

T h e o r e m  9.4.  Suppose f + Q(T), S -- f(T),  g e g(S) ,  and suppose further that 

J (g) contains the point fCx~). Let d (F) be the set of those point s 2 in J (f) such that 

f(2) e A(g), and define F(2) = g(f(A)). Then F �9 ~(T) and F(T) = g*(S). 

Proof:  I t  is readily seen tha t  A (F) is an open set which contains a ne ighborhood 

of the point  2 ~ ~ .  We have  ~(T) c A(F), by  Theorem 9.1. Thus F e  Q(T) ;  we 

see tha t  F ( c x ~ ) :  g ( f (~) ) .  Now let D be a bounded  Cauchy domain  such t h a t  

~(S) c D, D c A (g), and fu r the r  such tha t  the  point  f(cxD) lies in D. N ex t  let D 1 

be an unbounded  Cauchy domain  such t h a t  a(T) c D1, D 1 c J ( f ) ,  and f(D1) c D. 

Tile existence of D 1 follows with the help of Theorem 3.3. Now 

F(T)- -F(c~) I  = g(f(~l)R$(T)d$ ; 
2~,., +B(D1) 

since f($) �9 D when $ �9 B(D1) we have  

= f 
g(2) 

Therefore,  set t ing h ( ~ ) :  (2--f($))=~, we have  
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1 t' 1 
F ( T ) - - F ( ~ ) I  = 2~i ,l._~Bg( (D)~)d2---- ' +B(D)h(~)R~(T)d~" 

T h e  inner  i n t eg ra l  he re  is equa l  t o  h ( T ) - - h ( o c ) I .  B y  T h e o r e m  7.2 we  see t h a t  

h(T)  = ( 2 I - - f ( T ) )  -~ = Ra(S  ). H e n c e  

~ f g(~){" z t F ( T ) - - F ( o c ) I  = ~(S) d~ 
2~i ,+ , (D)  A--f(--~)t  

= g*(s)-v(f(~)) / ,  
whence  F ( T ) =  g*(S),  as a s se r t ed .  

10. I s o l a t e d  p o i n t s  o f  t h e  s p e c t r u m .  I f  a is an  i so la ted  p o i n t  of a(T) ,  t he  

se t  a cons i s t ing  of ~ a lone  (which  we d e n o t e  b y  a = (,~)) is a b o u n d e d  s p e c t r a l  se t  of T.  

W e  shal l  wr i t e  E a for  E~ a n d  X a for  X a  in such  a s i t ua t ion .  As in t he  classical  

t h e o r y  of a n a l y t i c  func t ions ,  R~(T)  possesses  a L a u r e n t  e x p a n s i o n  in t h e  ne ighbor -  

h o o d  of ~ = ~. A n u m b e r  of r e l a t ions  ex is t  b e t w e e n  t h e  o p e r a t o r  coeff ic ients  in t h e  

e x p a n s i o n ,  as we shal l  see in t h e  fo l lowing  t h e o r e m .  S o m e  of these  r e l a t ions  h a v e  

been  s t a t e d  be fo re  ( D u n f o r d  [1], p. 198; T a y l o r  [2], pp .  659 - -660 ) .  

T h e o r e m  10.1.  Let  ,~ be an  isolated point  of  ~(T),  and let the Lauren t  expans ion  

of  R~(T)  in  the neighborhood of  ~ = ~ be 

Then 

(a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 
(h) 
(i) 

t he  

oo oo 

n - . O  n = l  

B 1 = E a ; 

AreA n ~ - - A m + ~  > m, n = 0, 1, 2 . . . .  ; 

B m B  n = Bm+n_l, m, n = l ,  2 . . . .  ; 

A ~ B n ~ - -  0 , m = 0 ,  l . . . .  , n =  1 , 2  . . . .  ; 
l ~ n A n + l  A ~ =  ( - - ~ j . ~ 0  , n =  0, 1 , 2 , . . .  ; 

~R(An) c ~n+l (T) ,  n -~ 0, 1 , . . . ,  a n d  ~(Bn)  c ~ ( T ) ,  n = 1, 2 . . . .  ; 

( T - - ~ I ) A  o = B ~ - - I  ; 

( T - -  ~I)A,~+I = A n, n = O, 1 . . . .  ; 

Bn+ ~ = ( T - -  ~ I ) B  n = ( T - -  ).I)nEa . 

P r o o f  : L e t  r be  chosen  pos i t i ve  a n d  such  t h a t  all  of a (T)  e x c e p t  $ = ~ lies ou t s ide  

circle of r ad ius  2r a b o u t  ~ = ~. W e  def ine  f u n c t i o n s  fn(~) as fo l lows:  

0 / f ' ( ~ )  = 0, / 4 - 2 1  < r ,  
n 
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0 ! f~(~) = (8__2)-(nv:), I~--)'r < r ,  
n ( fr~(~) = 0 ,  ]~--21 > 2 r .  

Observe  t h a t  f,~ ~ ~0(T) for  every  n. A]so observe  t h a t  fm(~)f,~(~) -=-- 0 if m < 0 and  

n > 0, while f,~(~).fn(~) = fm,~+:(~) if m and n are e i ther  bo th  nonnegat ive ,  Or bo th  

negat ive .  As in the  s t anda rd  deve lopmen t  of the  L a u r e n t  series we know t h a t  

1 f A n -~ - -  (~--) .)-( '~:)R~(T)d~,  n ->- 0 ,  
27~i , c 

B,, = (~--,~) (T)d~, n >= 1 , 
c 

where C is any  circle wi th  center  a t  ~ --~ ~ such t h a t  all of a(T)  except  the  poin t  

is Outside C, the  in tegra t ion  being in the  counterclockwise sense. A brief considerat ion 

of the  defini t ions shows t h a t  Bn = f_~(T) ,  A n = --f ,~(T) for the  app rop r i a t e  ranges  

of the  subscripts ,  and  fu r the r  t h a t  B~ = Ea. Assert ions (b)-(d) follow at  once by  the  

opera t ional  calculus;  (e) follows f rom (b) by  induct ion.  Assert ions (f)-(i) follow f rom 

Theorems  6.2 and  6.3 (the last  p a r t  of (i) coming f rom the first  pa r t  b y  induction).  

As in classical funct ion  theory  we say t h a t  ,~ is a pole of R~(T)  if the  coefficients 

B n are all zero f rom a cer ta in  n onward.  Otherwise we say t h a t  ~ is an  essential  

s ingular i ty .  We observe  t h a t  B:  -~ Ez 4- 0, by  Theorem 8.3. 

T h e o r e m  10.2. I f  B,~ = 0 for  some n, then 2 is  a pole of  R~(T)  of  order less 

than n. I n  this ease 2 belongs to p (T ) .  

The first  s t a t e m e n t  is a consequence of Theo rem 10.1 (i). I f  m is the  order  

of the  pole we have  B,~ =~ O, Bin+: = 0. Then  B,~x 4 : 0  for some x, and  we have  

( T - - 2 I ) B , , x  = Bm+:X = 0. Hence  2 e p(T) .  

The nex t  t heo rem supp lemen t s  Theo rem 8.2. 

T h e o r e m  10.3. Let  a be a spectral set o f  T ,  and  let ,~ be an  isolated f i n i t e  point  

o f  a. T h e n  2 is a pole of  order m of  R~(T)  i f  and  only i.f it is a pole of  order m of  the 

resolvent o f  T when T is considered as an operator on the space Xa[T] .  

Proof :  When  /$ -2 J  is posi t ive  and  sufficiently small,  the  ope ra to r  R~(T) ,  

considered as  an opera to r  on Xa,  is the  resolvent  of T when  T is considered as a n  

opera to r  on Xa.  I t  follows t h a t  the  opera to r  coefficients in the  Lau ren t  expans ion  

of the  last  men t ioned  resolvent  are the  opera tors  A~, B~, considered as opera to r s  

on X a. N o w  B ~ E  a = B~, as we see by  the  opera t ional  calculus. Hence  B n x  = 0 

for  all x c X a if and  only if B n = 0. The  theo rem now follows a t  once. 
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We now consider the  relat ion between isolated singularities of the resolvents 

of T and A, where a ~ o(T) and A is the a-associate of T, as defined in w 5. 

T h e o r e m  10.4. Nuppose that 2 is an isolated point of a(T),  and let ,u ~ (l~--c~) -1 

Then ,u is an isolated point of a(A). We have 

(10.1) ( t tI--A)nE~[A] = #~An(T--  2I)~E~[T], n ~ O . 

Thus 2 is a pole or an essential singularity of R~(T) i f  and only i f  ft is a singularity of 

the corresponding type of Rv(A ). 

Proof:  Define gn(~)  = (~--~)-~, n ~ 1. Then  ($__~)ng,~(~) __~ 1, and so 

(T--ocI)"g,(T) ~ I ,  by  Theorem 6.3. Therefore  g~(T) ~ A'L Define h0(~ ) ~-f_j(~), 

h~(~) ~ f=(~+l)(~)g~(~) if n ~ 1, using the funct ions defined in the proof of Theorem 

10.1. Then  h~(T) ~- B~+I A~, n ~ O. Let  ~ (v )  be the ~-associate of hn(~ ), u = (~_~)-1.  

The F ~ ( r ) =  Et-~(#--u) ~ in the neighborhood of v = /~ ,  while ~p~(~)----0 in the  

neighborhood of ~ = 0 and the  rest  of a(A). Hence,  by  Theorems 10.1 (i) (applied 

to A and the  point /~)  and 4.4, we have * ~fn (A) ~ #=~(aI--A)nEI~[A ] On the o ther  

hand,  ~,*(A) = h,~(T) ~ B~+~A '~ ~ A"(T--2I)~E~[TJ.  Thus (10.1) is established. 

The final assert ion of the  theorem is an immedia te  consequence. 

Nex t  let us consider the  behavior  of R~(T) at  ~ = o0. If  T c IX] we know 

from (2.2) t ha t  R~(T) is regular  in the  neighborhood of 2 z o0 and t h a t  R~(T) -> 0 

as 2 ~ o~. The nex t  theorem shows tha t ,  for operators  with bounded  spectrum,  

the  point  a t  infini ty can never  be a pole  of the  resolvent.  

T h e o r e m  10.5. Suppose that a(T) is bounded and that T does not belong to IX]. 

Then the point 2 ~ oo is an essential singularity of the resolvent. 

Proof  : We again use the  c~-associate of T. By  (5.4) we have  R~(T) ~/~I--#2RI~(A). 

The point/~ ---- 0 is an isolated point  of a(A) bu t  does not  belong to p(A), by Theorems 

5.1 and 5.2. Hence,  by  Theorem 10.2, the  poin t  tt --~ 0 is not  a pole of RI~(A ). Thus 

the  Lauren t  expansion of R~(T) about  the  point /~  z 0 has nonzero coefficients for  

all the  negat ive powers of #. 

We nex t  give a useful charac ter iza t ion  of the subspace X~., where 2 is an isolated 

poin t  of a(T). The corresponding character izat ion,  for the  case T ~ [X], was g iven  

by  Dunford  ([1], p. 199, Theorem 2.18). 

T h e o r e m  10.6. Let 2 be an isolated point of a(T), and let 6 be the distance from 

)~ to the rest of a(T) (let (~ = ~ i f  a(T) is the single point 2). (a) Then, i f  x c X~ and 
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e > O, we assert that lira (T--2I)%- '~x = O. (b) Also, i f  for some f ixed s, 0 < e < d, 
n - - ~  o o  

we have x ~ ~)oo(T) and lira (T- -2I )ne-nx  = O, then x ~ X~. 
?l - - -NO0 

Proof :  Observe  t h a t  X~ c ~)oo(T), by  Theorem 10.1 (a) and  (f). We see f rom 

the  proof  of Theo rem  10.1 t h a t  

( T - -  2I)nE~ = 2~i.  c ( ~ -  2)nR~(Y)d~ ' 

where C is any  sufficiently small  circle wi th  center  2. I f  s > 0 is given, we can 

choose the  radius  r of C so t h a t  r < e. Then,  if x ~ Xa we have  

( T - -  2I)%-nx = ( T - -  2I)nE~e-'~x = 2~i ,  c ( ~ -  2)nR~(T)e-nxd~ ' 

and  this expression ev ident ly  tends  to zero as n -~ oc. 

To p rove  (b), choose circles C1, C2, of radii  rl, r2, with centers a t  2, such t h a t  

O < r ~ <  s < r  2 < d .  Le t  
h n ( f f )  = [ 1 - - ( f f - - 2 ) n e - " ]  -1  . 

Then  h n ~ Qo(T). By Theo re m 7.4 we see t h a t  h, (T)  defines a 1- -1  m a p p i n g  of X 

onto ~ ( T ) ,  the  inverse opera to r  being I - - e - ' ~ ( T - - 2 I )  n. We have  

1 + 1 

hn(T ) --E~ = 2~i ~!c~ (hn(~) --  1)R~(T)d~ --  ~ i  .,~- c, hn(~)R~(T)d~ 

and  hence h , ( T ) . ~ E a  as n ~ o o .  I f  now x is g iven as in (b) we have  x 

h,~(T)[ I - -e - ' (T- -2I )~]x;  x - - E z x  ~-- [h ,~(T) - -Ea]x- -h , (T) (T- -2I )%-~x  + O. Thus  

x e E~x. 

This a rgum en t  is ent i re ly  similar  to t h a t  of Dunford ,  bu t  we mus t  use Theorem 

7.4 where Dunford  could use Theo rem 7.1. 

Before coming to the  last  theorems  of this section we give some definitions. 

D e f i n i t i o n .  For any 2, and n >~ 1, let ?)J~'~(2) be the set of all elements x ~ ~,~(T) 

such that ( 2 I - -T )nx  ~ O. Let ~n(2) be the range of the operator ( 2 I - - T )  ~ (with the 

domain ~n(T)) .  

T h e o r e m  11).7. I n  the notation of the foregoing definition we have 

(a)  !1t~+~(2) c 9 tn(2) ,  n -  1, 2 . . . .  ; 

(b) i f  9tk+~(2) ---- ~k(2) then ~'~(2) - -  ~k(2) when n ~ lc; 

(C) ~iJ~n(2) C !~Off~n+l(2), n = 1 , 2  . . . .  ; 

(d) i f  ~ + ~ ( 2 )  = TiCk(2) then Tit"(2) = TJtk(2) when n >= Ic. 
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The assertions of this theorem are well known, at  least for operators defined 

throughout  X ,  and we omit  the proofs, which are easy. 

The next  theorem was given by Dunford ([1], p. 198, Theorem 2.177. 

T h e o r e m  10.8. Let ~ be a pole of R~(T) of order m, and let (r ~ ()~). Then 

(a) J:~ - ~m(~) ,  X~,  = ~'~(~) (and X = ~ ' ~ ( ; o ) G ~ ( ; ~ ) ) .  

(b) ~3~(~) is a proper subset of 79~+~(~) i f  1 <= n < m, but f~'~(,~) : ~ '~(~) i f  

n ~ Trt. 

(c) ~+1(~) is a proper subset of ~ ( ~ )  i f  1 ~ n < m, but ~ ( ~ )  : ~"~(~) i f  n ~ m. 

Proof: Dunford,  in t reat ing the ease T c [X], uses an argument  t ha t  depends 

upon the expansion (2.2). This par t  of Dunford 's  a rgument  is not  available in the 

general case; we use Theorem 10.1 (g) and (h) instead. 

We have X~ ~ ~ ( ~ )  if n ~ m, for X~ ~ 2b~(T), and if x e  X~ then  ( T - - ~ I ) ~ x  = 

(T- -~I )nE~x  = Bn+lx -~ O, by Theorem 10.1 (i). Next,  we have 9~(~) ~ X~ if 

n ~ 1. For  it follows by induct ion from Theorem 10.1 (f) and (h) t ha t  (T--~I)nAn_~ =- 

( T - - ~ I ) A  o if n ~ 1. Also, if x e ~ ( T ) ,  (T--~I)nA,~_lx ~ A~_I (T- -~I )~x ,  by Theorem 

6.2 (a). Hence, if x e ~n(~) ,  0 = A , _ I ( T - -  ~I)'~x ~ ( T - -  ~I) Aox = E~x- -x ,  by Theorem 

10.1 (g). Therefore ~ ( ~ )  ~ X~. I t  now follows tha t  X~ = ~ ( ~ )  if n ~ m. Since 

Bin+ 1 ~ 0 and B~ ~: 0 we easily see from Theorem 10.1 (i) tha t  ~ - ~ ( ~ )  is a proper 

subset of ~ ( ~ ) .  Using Theorem 10.7 (d) we obtain the proof of (b) in the present 

theorem. 

We next  observe tha t  Xa, ~ ~ ( ~ )  if n ~ 1. This follows by an induct ion 

argument ,  s tar t ing from the fact  tha t  2. e p(T, Xs,) (by Theorem 8.2 (c)). Now, if 

n ~ m, the only element common to 9~'(X) and ~'(},) is 0; this follows from (b). 

Since X ~ X ~ X ~ ,  it follows by Lemma 1 of w 8 t ha t  ~n(x) ~- Xs, if n ~ m. I t  

remains to prove the first par t  of (c). Suppose x ~ ~m(X)_~, , -~(X)  and let y 

(;~I--T)m-~x. Then y =~ 0 and y 6 ~jj~m(X), whence y ~ ~Rm-~(~)--~R~(~). Appealing to 

Theorem 10.7 (b) we complete the proof of Theorem 10.8. 

11. T h e  S y l v e s t e r  t h e o r e m .  Our first theorem is the general izat ion,  for a 

general T, of what  Dunford calls the Sylvester theorem (Dunford [1], p. 204, Theorem 

2.24; [2], pp. 645-646). As usual we write f-~(r) for the set of points 2 a ~l(f) such 

tha t  f ( ~ ) e  v, z being a given set. 

T h e o r e m  I I . I .  Suppose that f ~ ~ ( T ) ,  and that v is a spectral set off(T). Let 

a = % @ ) .  f-~(~). Then a is a spectral set of T,  and E~[f(T)] ~ Ea[T]. 

Proof: I t  is readily seen tha t  ~ is closed, for ~ and a~(T) are closed and f is 
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cont inuous on ae(T). The set  a is bounded  if f ( ~ )  is no t  in 3 or if T e [X]. The poin t  

= o0 is in a if and  only if f (oz)  e r and  T is not  in [X]. F r o m  Theorem 9.1 and  the  

fac t  t h a t  3 and  3' are disjoint  we see t h a t  a~ (T) - -a  = a~(T) �9 f - s (v ' ) .  I f  follows t h a t  

and  a e ( T ) - - a  are dis joint  closed sets;  hence a is a spect ra l  set  of T.  We see by  (8.3) 

and  r emarks  made  earlier in this proof  t h a t  i t  suffices to  p rove  the  last  asser t ion 

of the  t heo rem on the  a s sumpt ion  t h a t  a is bounded  and  t h a t  f ( ~ )  is not  in r. Le t  

Us and  U~ be open sets wi th  the  following proper t ies :  Us is bounded,  U 2 contains  

a ne ighborhood of ,~ = o0, U 2 c C(U1), 3 c U1, 3' and  f(oo) are in U~. Le t  Us and  

U4 be open sets with the  following proper t ies :  U~ is bounded,  U4 contains  a neigh- 

borhood  of ~. = ~ ,  U 4 c C(U3) , ~ ~ Ua, ~' c U4, U~ and  Ua are in A(f) , f (U3) c U1, 

f ( ~ )  c U~. Such open sets exist.  N o w  define the  funct ion f~ to have  the  va lue  1 

on Us and  0 on U 2, and  define f a  to have  the  va lue  1 on U a and  0 on U4. Then  

fr( f(2))  = fa(2) on the  union of U3 and U4, whi le . f r ( f (T))  ----- E t [ f (T) ] ,  fa(T) - Ea[T]. 

The proof  is now comple ted  by  appeal ing  to Theo rems  9.4 and  4.4. 

T h e o r e m  11.2. Suppose that f ~ r  that f l e  ~(f(T)) ,  and that f(,~)--fl is not 

identically zero on any component of A(f). Then f (2)- - f l  has at most a f inite number 

of zeros in a(T) and at least one zero in ae(T). There is at least one such zero in a(T) i f  

fl :4= f((x~) or i f  T ~ [X], but not necessarily so otherwise. I f  there are such zeros, say 

~ . . . . .  ~ ,  of multiplicities m s . . . . .  m~, and i f  fl is a pole of R~(f(T))  of order m, then 

'~i (i = 1 , . . . ,  k) is a pole of R~(T) of order not exceeding mm i. 

Proof :  The  zeros of f ( 2 ) - - f l  cannot  have  a l imit  poin t  in a(T),  nor  can they  fo rm 

an unbounded  set, for  e i ther  of these a l te rna t ives  would imply  t h a t  f (2 ) - - f i  vanishes  

ident ical ly in some componen t  of A(f). Hence  the  set of zeros o f f ( 2 ) - - f i  in a(T) is not  

infinite. I f  fl 4= f(cx)) or if T ~ [X], there  is a t  least  one such zero, by  Theorem 9.1 (b), 

bu t  not  necessari ly otherwise,  as we r e m a r k e d  in connect ion with  the  l a t t e r  theorem.  

Now define P(2)  = (2--2s)  m~ . . .  (2--2~)~ ' ,  and  define h(2) ~ ~~ wi th  A(h) = 

A(f), in such a way  t h a t  P(2)h(2) = f (2 ) - - f l ;  t hen  h(2) has  a zero of finite order  a t  

= oo, and  no zeros in a(T).  By  Theo rem 6.3 we have  P(T)h(T)  = f (T ) - - f l I .  

Thus  far  we have  not  a s sumed  t h a t  fl is a pole of R~(f(T)).  Making  this a ssump-  

tion, we can choose 3 = (fl) as the  spec t ra l  set of f (T )  in Theorem l l .1 .  The  cor- 

responding  a is the  finite set  (~s,. �9  )@, toge ther  wi th  2 = oo in case f(oo) = fi and  

T ~ [X]; then  E~[f(T)] - Ea[T] = Ea~[T]+. . .  +Ea~.[T]. Now ( f(T)--f lI)mE~[f(T)] 

= 0, by  Theorem 10.1 (i). Thus  a f t e r  mul t ip ly ing  by  E~.i[T ], we ob ta in  

(11.1) {P(T)h(T)}mEa~[T] = O . 

We can p e r m u t e  the  fac tors  here to ob ta in  
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h r,4 T m m,,~ , { (T)} tQi( )} ( T - X J )  Exi[T ] = 0 

where Q,:(T) is the  p roduc t  of all factors  composing P(T)  with the except ion of 

(T--)~iI) mi. Now h(T)x = 0 implies x ~ 0, by  Theorem 7.3; also, Qi(T)x = 0 and 

x ~ Xzl imply x = 0, by  Theorem 8.2 (c). Hence (T--PiI)mmiE~i[T] = 0; this means 

tha t  21 is a pole of order  not  exceeding mm i of Ra(T), for  21 is isolated in a(T). 

T h e o r e m  11.3. Suppose that f ~ ~(T) ,  that fl e (f(T)),  that f (2)-- f i  has zeros of 

multiplicities ml . . . .  , m k at the points ~1 . . . . .  ~k in a(T) and at no other points in a(T). 

I f  fi = f(c~) we make the further assumption that T ~ [X]. Suppose f inally that the 

points 21 . . . . .  2k are poles of orders v~ . . . . .  v k of R;.(T). Then fl is a pole of Rz( f (T))  of 

order not exceeding the least integer n such that rain ~ v i, i = 1 , . . . ,  k. 

Proof :  We first prove  t ha t  fl is isolated in a(f(T)) .  For  suppose it  is not.  Then  

there  must  exist  a sequence {fl,~} of numbers ,  dist inct  f rom each other,  f rom f ( ~ )  

and fl, such tha t  fl~ ~ a(f(T)) and fl~ -> ft. By Theorem 9.1 (b) there  exist  numbers  

~ c a(T) such t ha t  f(~n) = fl," The sequence {~}  is bounded,  for if not  we conclude 

fl = f(ec) .  Bu t  in t ha t  case we are assuming as well t ha t  T c [X], and this implies 

t ha t  a(T) is bounded.  Hence {~}  contains a subsequence converging to a limit 

e a(T), so tha t  f(~) = ft. Therefore  ~ is one of the points 2 i. Bu t  since the sequence 

{%~} and the  set (21,. �9  2k.) have  no points in common,  we are led to the  conclusion 

t ha t  2i is not  isolated in a(T),  con t ra ry  to the  hypothesis .  

Now let n be an integer  such t h a t  rain >= r~, i = 1 , . . . ,  k. We have 

(T--PiI)V~Eai[T] : O. Hence,  if a = (~1,. - . ,  21~), we have {P(T)}nEa[T] = O, where 

P(2) is defined as in the  proof of Theorem 11.2. As in t h a t  proof, ( f (T) - -  flI)'~E[~[f(T)]-- 

{P(T)h(T)}~E(~[T] = 0 ,  so t h a t  fi is ~ pole of Ra(f(T)) of order not  exceeding n. 

The except ional  case fi = f ( ~ )  is covered in the  following theorem.  

T h e o r e m  11.4. Suppose that f ~ ~ (T) ,  that f ( 2 ) - - f ( ~ )  is not identically zero on 

any component of A (f), and that the point ~ = f ( ~ )  is a pole of R~(f(T)). Then T ~ [X]. 

Proof :  Consider the ~-associates of T and f ,  respectively.  We h a v e f ( T )  = ?*(A), 

by  Theorem 5.3. Le t  ~(/~) be a ~(A) extension of ~v(#) (see the  definit ion following 

the proof of Theorem 4.4) such t h a t  ~( /~) - - f (~)  does not  vanish identical ly on any  

component  of A(~). Then  y)(A) = ~*(A), and the  point  f(oc)  is a pole of R~,@(A)). 

Now y)(0) = f(o~). If  the point  # = 0 is in a(A) we conclude by  Theorem 11.2 t h a t  

this point  is a pole of Rt,(A ), and hence, by  Theorem 10.2, t h a t  the  point  # = 0 

is in p(A).  But  this contradicts  Theorem 5.2. Hence the  point  # = 0 is not  in a(A), 

and  this implies T e IX], again by  Theorem 5.2. 
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T h e o r e m  11.5. Suppose that f c Go(T), and let f(T) be completely continuous. 

Suppose that A ~ (~(T) and f(,~) 4= O. Then ~ is isolated in a(T), X~(T) is finite dimen- 

sional, and ,~ is a pole of R~(T) of order not exceeding the dimension of Xa[T]. 

This is a direct  general izat ion of a theorem given by  Dunford  ([1], p. 207, 

Theorem 2.32). Dunford 's  proof applies wi thout  formal  modification,  since we have  

established, in Theorems 9.1, 11.1, and 8.2 (c), the  val id i ty  of his a rguments  for the  

case of a T no t  necessarily in [X]. Hence  we omi t  a detai led proof.  

12. T h e  m i n i m a l  e q u a t i o n  t h e o r e m .  ~Ve are going to examine  the condit ions 

under  which it  m a y  happen  t h a t  f(T) = 0, where f c ~ ( T ) .  

T h e o r e m  12.1. Suppose that f ~ ~(  T). Then f(T) = 0 i f  and only i f  the following 

three conditions are fulfilled: 

(a) f($) vanishes identically in any component of zJ (f) which contains an infinite number 

of points of a(T);  

b) f($) vanishes identically in any component of A (f) which contains an isolated essential 

singularity of Re(T ) . (In accordance with Theorem 10.5 this condition is to be inter- 

preted as meaning that f(~) vanishes identically in a neighborhood of ~ = ~ i f  

a(T) is bounded and T does not belong to [X].) 

(c) I f  ,~ is a pole of Re(T ) of order m, then f(J)(A) = 0, j - 0 . . . . .  m - -  1 (i. e. f has a 

zero of at least m th order at ~ = ~). 

Proof :  This theorem generalizes one of Dunford ' s  ([1], p. 200, Theorem 2.19). 

Observe t ha t  we must  have  f($) ~ 0 in a ne ighborhood of $ - oc if T does no t  

belong to [X] (by (a) if a(T) is unbounded,  otherwise by  (b)). 

Our arguments  do not  differ much  f rom those used by  D u n f o r d ,  bu t  it seems 

best  to give the proof in full. Le t  us first  consider an isolated point  ,~ ~ ~r(T). Suppose 

t ha t  f ~ ~ (T) ,  t ha t  f(~) is not  identical ly zero in the ne ighborhood of $ = ,~, and 

t ha t  ]c is the smallest integer such tha t  f(~)(A) 4= 0. We do not  ye t  assume t h a t f ( T )  = 0. 

Le t  r be a posit ive number  such tha t  all of a(T) except  2 lies outside the circle 

I~--AI = 2r, and such t ha t  f is regular  and f($) 4- 0 when 0 < 1~:--21 < r. Le t  us 

define gl~(~) so t ha t  it is regular  at  ~ = 2 and 

gk(~) = ($_,~)-kf($), 0 < I~--A[ < r ,  

g~(~) : (~__)~)-(k+l) I~--AI > 2 r .  

Then  gk does not  vanish in a(T) and it has a zero of order  k @ l  at  ~ ~ cx~. Hence,  

by  Theorem 7.3, g~(T) defines a 1--1 mapping  of X onto ~k+~(T). Following the 
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nota t ion  used in Theorem 10.1 and its proof, we have ($-- 2)kgk(~)f_i(~) = f(~)f-i(~)" 

Consequently,  by  the  ope ra t iona l  calculus, (T--2I)~gk(T)E~[T] ~ f(T)E~[T]. The 

order of the  factors  m a y  be rearranged,  giving 

(12.1) gk(T)(T-- 2I)kE~[T] = f(T)Ea [ T ] .  

If  we now assume f(T) = 0, we can conclude t h a t  (T--2I)kEa[T] = 0, since 

gk(T)x = 0 implies x --~ 0. I t  follows tha t  2 is a pole of R~(T) of order  not  exceeding/c. 

The necessity of condit ion (c) is now evident .  The necessity of condit ion (b), .insofar 

as it per ta ins  to essential singularities in the finite plane, is likewise clear f rom the  

above argument .  

Nex t  we prove  t ha t  f(T) = 0 implies t h a t  condit ion (a) is satlsfied. For,  when 

f(T) = O, (~(J'(T)) consists of the  single point  ~ = 0 and so f(~) vanishes identical ly 

on ~(T), by  Theorem 9. 1. Condi t ion  (a) now follows. For  an unbounded  component  

of d(f)  it should be observed t h a t  f(~) is e i ther  identical ly zero in the component  

or has an isolated zero at  $ = ~ ,  and the  la t te r  possibili ty is ruled out  if there  are 

an infinite number  of points of a(T) in the component .  

Now suppose t ha t  f(T) ---- 0, t h a t  a(T) is bounded,  and tha t  T is not  in [X]. 

We consider the  c~-associates of T and f .  We have seen in the proof of Theorem 10.5 

t ha t  # = 0 is an essen t ia l s ingu la r i ty  of R~(A). Now f(T) = q~*(A) = ~0(A), where 

~p(#) is a ~0(A) extension of ~(/z). Hence,  by  par t  (a), ~v (and also ~) vanishes identic- 

ally in the neighborhood of # = 0. This means tha t  f vanishes identical ly in the 

neighborhood of ~ ---- oc. We have now proved  the  necessi ty of all the  conditions 

(a)-(c). 
We now consider the  converse proof. We m a y  suppose t h a t  f(~) is not  identical ly 

zero in a t  least one component  of A(f), for otherwise f(T) ~-- 0 by definition. There  

are a t  most  a finite number  of points 21, . . . .  2p of a(T),  all of t hem poles of R~(T), 
in the  components  of A (f) where f does not  vanish identically.  I t  is easy to see t h a t  

the  integral  formula  defining f(T) can, under  these conditions, be given the  form 

f(T) = f(~x))I+ ~,=~ --2zd ,,v~ (~)R~(T)d~--~i  (~)R~(T)d~ 

where Ca, . . . ,  C~, are small nonover lapping circles about  the  points 21 . . . .  ,2p, and C 

is a ve ry  large circle. All the circles are sensed counterclockwise.  The t e r m  f(~x))I 
and the  integral  over  the  large circle actual ly  occur only in case T c-[X] (s ince 

otherwise f vanishes identical ly in the unbounded  component  of A(f)). These te rms 

cancel each other  when T 6 [X], however,  as is easily seen f rom formula  (2.2). Now 
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'f / (~lR~(Yldr = f(TIE~.~[T] 
2~i c 

by the operat ional  calculus. Hence 
P 

(12.2) f (T)  = ),~ f (T )E~ ,[T] .  
1 

Now let m~, be the order  of ~ as a pole of R~(T), and/~ ,  its order  as a zero of f(~). 

Then  ]% ~ m~, by  condit ion (c). Hence  (T--,~I)7"~E~.~,[T] = 0. I t  now follows by  

(12.1) and  (12.2) t ha t  f (T )  ~- O. 

The foregoing theorem is applicable to P(T)  when T e [X], by  taking f(~) as 

some ~ (T)  extension of the  polynomial  P(~). The s i tuat ion when T is not  in [X] 

is covered in the  following theorem.  

T h e o r e m  12.2. Suppose that T is not in [X]. Then there exists no polynomial 

P(s of degree n (n ~ 1), not identically zero, such that P ( T ) x  ~- 0 for every x in ~n(T) .  

Proof:  Suppose such a polynomial  does exist.  Take ~ ~ ~(T), g(~) ---- (~--~)-++'>, 

f(~) = P()~)g(~). T h e n f ( T )  ~ P(T)g(T)  = O, by Theorem 6.3. Therefore,  by  Theorem 

12.1, f must  vanish identical ly in a ne ighborhood of ~ = cx~. Since f does not  in fact  

so vanish, the  proof is complete.  

We conclude with a theorem converse to Theorem 10.8. 

T h e o r e m  12.3. Suppose, for f ixed values ,~ and m(m ~ 1), that ~m(,~) is closed 

and that X ~-- ~ J ~ ( ) . ) Q ~ ( ~ ) .  Then, ~f ~m(~) contains nonzero elements, we conclude 

that ~ is a pole of R~(T) of order not greater than m. Otherwise ~ c ~(T). 

Proof:  For  the case T ~ [X] this theorem is included in a theorem given by  

Dunford  ([l], p. 201, Theorem 2.23). For  convenience let us write M 1 ~ 9J~m(~), 

M 2 = ~ ( ;~ ) .  I t  is readily p roved  by  induct ion t h a t  M 1 ~ o'S)co(T). We have  

T(M1) c M~, since T and (~ I - -T)  "~ permute  on the domain  ~m+~(T). Also 

T ( M ~ ) ( T ) )  c M~, for if x = ().[-- T)my, where y ~ ~,~(T) and  x ~ M ~ ) ( T ) ,  it  follows 

t ha t  y 6 ~m+~(T) and Tx  ~ (XI--T)mTy.  In  the nota t ions  of Theorem 8.1 it  is clear 

t ha t  E i ( ~ ( T ) )  ~ ~ (T ) ,  since E~[X] ~ M~ ~ ~ ( T ) .  Hence we m ay  apply  Theorem 

8.1 to  the  present  si tuation.  

We prove  first t ha t  ~ is a pole of the resolvent  of T when T is considered as 

an opera tor  on M, ,  provided t h a t  M~ contains nonzero elements.  Consider the 

funct ion f(~) ~- (,~--~)mgm+~(~), where g~+~ is defined as in the  proof of Theorem 

10.4. Then  f ( T ) ~  ()~I--T)'~A m+~, by Theorem 6.3. If  x e M ~  we have f (T )x  

A'~+~(~I--T)~x ~ O. We may  apply  Theorem 12. l, with M~ as the whole space ins tead 
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of X (this change in po in t  of v iew does not  affect  the  defini t ion of f (T)  as appl ied  to 

e lements  of M1). The  conclusion is t h a t  r  M1) is a finite set composed  ent i rely 

of poles Of the  resolvent .  Since T is bounded  on M1, the  set (~(T, M1) is not  e m p t y .  

Now f($) has jus t  one zero (at  ~ = 4), and  t h a t  of order  m. We  conclude fur ther ,  by  

T h e o r e m  12.1, t h a t  r M1) consists of the  single poin t  4, which is a pole of order  

ml, m~ =< m, of the  resolvent  of T as an ope ra to r  on Mx. 

We  nex t  p rove  t h a t  2 is an  isolated po in t  of r By  Theo rem 8.1 (d) it  is 

enough to  p rove  t h a t  2 c ~(T, M2). Fo r  convenience let us write P(~) = (2--~) m. 

We  p rove  t h a t  P(T)  defines a 1--  1 m a p p i n g  of M2~),~(T ) onto  M 2. I f  x �9 M2~m(T)  

and  P(T)x  = 0 we have  x �9 M1Ms, and  hence x = 0. I f  y �9 M s there  exists  an  

x �9 ~)m(T) such t h a t  P(T)x  = y, by  the  defini t ion of M 2. Then  E2x �9 M2~m(T ) and 

P(T)Esx  = P ( T ) ( x - - E l x  ) = y, since ElX �9 M1. I t  follows t h a t  the  origin belongs to  

~(P(T),  Ms). Bu t  P((~(T, Ms) ) = c~(P(T), M2) b y  Theo rem 9.3, and  hence P(~) does 

not  vanish  on a(T,  M~). Thus  2 ~ ~(T, M2), and  2 is isolated in a(T).  

The nex t  s tage in the  a r g u m e n t  is the  proof  t h a t  M1 = Xx. Theorem 10.6 shows 

t h a t  M~ ~ X~, since M~ c ~ ( T ) .  On the  o ther  hand,  Xx ~ D~(T)  by  Theorem 

t0.1 (a) and  (f). Le t  H be the  opera to r  def ined on the  space M e as the  inverse of 

]~I--T; H exists  and  is bounded,  since 2 �9 ~(T, M2). Le t  e be chosen posi t ive  and  

such t h a t  eIIHII < 1. Now suppose t h a t  x �9 Xx. Then  ().I--T)'~Exx = 0. By  Theorem 

10.6 we know t h a t  l im (2I - -T)%-nx  = 0. Hence  l im ( )J--T)%-~E2x = 0. Le t  
n ~ o o  n - - - ~  oo 

y~ = (2I--T)%-~E~x. By induct ion we m a y  p rove  read i ly  t h a t  y~ �9 M 2 and  H~y,~ = 

s-~E2x. Hence  I[E~xl[ = [[s~'H~ynl [ <= (e l[H[I)'~l[Y~ll <= IIY,~!}. We conclude t h a t  

E2x = O, whence x �9 M~. The  proof  t h a t  M I  = Xa is now complete .  

I t  now follows by  Theo rem 10.3 t h a t  ~ is a pole of order  m~ of R~(T). The proof  of 

our  theorem is now comple te  excep t  for  the  considerat ion of the  case in which ~[)~(,~) 

contains the  zero e lement  alone. I n  t h a t  case M s = X and  P ( T ) =  (,~I--T) m 

defines a 1--  1 m a p p i n g  of ~?m(T) onto  all of X,  so t h a t  the  origin belongs to ~(P(T)). 

By Theo rem  9.3, P(~) cannot  vanish  on 2(T). Therefore  ~ ~ e(T). 
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