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1. Introduction.

Let K be any algebraic number field. If, for each number A of the field K, there
is an algebraic integer £ of K such that

IVE=D <1,

where N denotes the norm, then Euclid’s algorithm is said to be valid in K. For
complex quadratic fields, the question is almost trivial. For real quadratic fields,
it has been known for some years that there are only a finite number of cases in
which Euclid’s algorithm is valid. I have recently given! a proof of this result based
on new prineiples, and this proof has led to the complete enumeration? of all such
cases.

Now let K be a cubic field of negative discriminant, that is, a field generated
by a real cubic irrationality whose conjugates are complex. The main result of the
present paper is that Euclid’s algorithm is valid only in a finite number of such fields.

As in the quadratic case, the result is closely connected with one which relates

to a more general situation. Let

[ & = ou-tPrtyw,
3 & = out+pfo+yw,
l EII:: “llu+ﬂ/l:l)+y//w

(1)

1 “Indefinite binary quadratic forms, and Euclid’s algorithm in real quadratic fields”, Proc.
London Math. Soc. (in course of publication).

2 Bee H. Chatland and H. Davenport, ‘“Euclid’s algorithm in real quadratic fields”, Canadian J. of
Math. (in course of publication).
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be any three linear forms in which «, 8, y are real numbers, «', §', ' are complex
numbers, and «'’, f”, ¢’ are the complex conjugates of &', §’, y’. Let the determ-
inant of the forms be 21 & 0, so that without loss of generality we can suppose
A > 0. Write

(2) S, v, w) = §§E7.

Our basic result is:

Theorem 1. Suppose none of the adjoint linear forms 5,2, 5, defined by (7),
represents zero for integral values, not all zero, of the variables. Then there exist real

numbers u*, v*, w* such that
(3) [fud-u*, v4o¥*, wtw*)| = e

for all integers' u, v, w, where ¢ is a certain positive absolute constant.
This result, though of interest in connection with some problems of Diophantine
approximation, has in itself no application to the question of Euclid’s algorithm.

For that we need the following vital addition.

Theorem 2. Suppose that the ternary cubic form f(u, v, w) has integral coef-
ficients and that f(u, v, w) == 0 for all integers u, v, w except 0, 0, 0. Then the numbers
u*, v¥, w*, whose existence 1s asserted in Theorem 1, can be so chosen as to be rational.

Now let K be a cubic field of discriminant —d < 0, and let «, 8, y be a basis
for the algebraic integers of K. Let o', ', 7" and &’', 8", »"* be the algebraic con-
jugates of «, f, y in some fixed order. Then £, the linear form in (1), with ‘integral
variables u, v, w, represents the general algebraic integer of K, and &, &” are its
algebraic conjugates. The determinant of these three linear forms is 43 Vd, and
we can suppose without loss of generality that the determinant is z[/ﬁ The ternary
cubic form f(u, v, w) is the norm of a general algebraic integer of K, and so it has
integral coefficients and is not zero unless u, v, w are all zero. The hypotheses of

Theorem 2 are satisfied. If we write
(4) A = au*+po*Fyw*

then 1 is a number of K, since u*, »*, w* are rational. We have, then, a number
A of K such that
(5) IN(E+2)] = el/d

for all algebraic integers & of K. Thus Theorem 2 implies the following:

1 The word integer, without the qualification algebraic, will always be used to mean rational integer.
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Theorem 3. Euclid’s algorithm cannot hold in a cubic field of discriminant
—d of d>c2

Since, by a classical result!, the number of cubic fields with bounded discrim-
inants is finite, this justifies the assertion made earlier, that Euclid’s algorithm
is valid only in a finite number of cubic fields of negative discriminant.

The plan of the paper is as follows. After a number of lemmas, we prove
Theorem 1, relating to general linear forms, in § 4. In § 5 and § 6 the proof is recon-
sidered, in the light of the additional hypothesis of Theorem 2, and that theorem
is then established in § 7.

Throughout the paper, small Latin letters, other than ¢, f, i, 2, y, 2, denote

integers.

2. Preliminary Lemmas.

Definitions. Let the cofactors of the elements of the matrix

(>« B ¥
L A P
N )
after dividing each of them by i, be denoted by the corresponding capital letter,
so that t44 = 'y —p"’y’, ete. It is plain that 4, B, I" are real, and that A", B, I'"”’
are the complex conjugates of A’, B’, I". Also

’ A B T
(6) A B IV = (4.
? AII B// F/I
Let =, Z’, 2" be the linear forms
= AU+BV+IT'W

"= A U+BV+I'W,
__ A”U—{“B”V—!_F”W ,

(M

Iy g Iy
l

of determinant (i4)-1. We have the obvious identity

(8) E4EEHEE = ulU+oV+wW .
We write
(9) X=5 Y+iZ=25)2, Y—iz=ZE")2.

1 See, for example, Minkowski, Diophaniische Approximationen, Kap. 4, § 5.

11 — 642138 Acta mathematica. 84
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Then X, Y, Z are real linear forms in U, V, W, and their determinant is A4-'. By
the hypothesis of Theorem 1, we know that X(Y?2-}-Z2) =+ 0 for any integers U, V, W
other than 0, 0, 0.

Lemma 1. Let Q(U, V, W) be a positive definite ternary quadratic form of
determinant D. Then @ can be transformed, by an integral linear substitution of de-
terminant —+1, into a form HAU4 RV2+ W2+ ... whose minimum is HA and for
which
(10) A=B=EC ABC=2D.

This was first proved by Gauss in 1831; for his proof, and also a proof by
Dirichlet, see Bachmann, Die Arithmetik der quadratischen Formen 11, Kap. 6, § 9.

Lemma 2. There exists a chain' of values x,, v,, 2, of the linear forms X, Y, Z,
each set arising from integral values of U, V, W, not all zero, with the following pro-

perties. First, for every integer n there is a positive number R such that
(11) Rzl 4+ 2Ryl +2)) < R°X*4+-2RY(Y*+2Z%)

for all integral U, V, W, not all zero. Secondly, for every integer n,

(12) xn > 0’ xn+1 < xn’ yfz+l+zi+1 > y;lz+zft >
(13) 2ot n) = V247,
(14) z, >0 and y.+z,>oc0 as n-> oo,

(15) z, >oo and y.+z, >0 as n—> —oo.
Proof? For every R > 0 we consider the quadratic form
Qu(U, V, W) = R2X?4 2RV (Y*+2?) |

This is a positive definite ternary quadratic form, whose determinant is D=44-2,
since the determinant of the real linear forms X, Y, Z is A1,

For every R, the minimum of Qn(U, V, W) is attained for certain integral
values of U, V, W, not all zero, and to these there correspond certain values
x, y, z of the linear forms X, ¥, Z. We can restrict ourselves, without loss of gener-
ality, to positive values of z, since X == 0 by hypothesis.

1 The word chain is used to denote a set of objects which is in one-to-one correspondence with
the set of all integers (positive, negative and zero).

2 The argument is essentially that of Hermite; for an exposition of the general theory, see Bach-
mann, loc.cit., Kap. 12.
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If z, y, 2z correspond to the minimum of the form both when R=R, and R=R,,
they do so also for all values of R satisfying B, < R < R,. For we can determine
positive numbers g, u, such that

R = R+ p, RS, R = R p,R,7
and then it is clear that the inequalities
RIe* 2R (y°+2°) = RIX* 2R (Y*+-2%) ,
Ri*+ 2R (y*+2°) < REXP 2R, (Y42
imply
Rex? |- 2R-Yy?42%) < R2X2L2R-YY2L72).
It is now plain that all positive numbers R fall into an enumerable set of closed
intervals, in each of which the minimum of Qx(U, V, W) occurs for the same
U, V, W, and so for the same values z,y,z of X, Y, Z. These intervals have no

point of accumulation (other than at 0 and oo). For, by Lemma 1, the minimum
of Qr(U, V, W) satisfies

(16) R+ 2Ry +22) < (2D)} = 24-%;

and so, if R and R-* are bounded below, then z, y, z are bounded above, and there
are only a finite number of possible choices of integers U, V, W among which must
occur all the minima for the range of R in question.

It follows that the above intervals for R, and the corresponding values of
z,y,2z can be enumerated according to increasing values of R. We ignore any
interval for B which consists of a single point, and enumerate the z, y, z as z,, ¥,, 2,
Here n takes all integral values, since it is impossible for the same z, y, z to provide
the minimum of @x(U, V, W) for arbitrarily large R, or for arbitrarily small R.
This follows from (16); if this inequality were true for arbitrarily large R we would
have x = 0, and if it were true for arbitrarily small B we would have y =z = 0,
either of which is contrary to the hypothesis that X(¥Y2+272) 4 0 for integral
U, V, W not all zero.

Now consider any two consecutive sets, z,, ¥, 2

, and 2z

n+is
above enumeration. By definition, there exist numbers R, and R, , such that

R, <R, and
Rixi+2R;l(yi+sz) = Rixi+1+2R;J (y2+1+z;+1) )
‘REH—leH»I_*'2R7:}-1<?/3;+1+z3l+1) = Ri+1xi+23211(yi+zi) .
It follows that

3 2 2 2 2
Rn(xi_xiﬁ) g Q(yn+1+zi+1_y;7'zi) § Riﬂ(xn_xnﬂ) .

yn+1’ zn+1 n the
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Hence «,,, < x,. Since the linear form X does not represent zero, we have x, , < x,,,
and it now follows that 42, +2.,, > y>+4=z,. This proves (12).

It is plain that our definition ensures the truth of the first assertion in the
enunciation; indeed, it is further true that for every R there is an n with the minimal
property (11).

It follows from (16) that y2-+z2 —~ 0 as R — 0, that is, as n -~ —oo. Also
Y2422 - oo as R — oo, that is, as n —~ +oo; for if y, +2. were bounded under this
operation, then, as x, is necessarily bounded we would get some one set x,, ¥, 2,
providing the minimum for arbitrarily large R, which we have seen to be impossible.
Similarly for the other assertions in (14) and (15).

To prove (13) we observe that for any » there is a value of R such that the
form Qp(U, V, W) assumes its minimum twice, namely with z,,y,, 2z, and with
Tpi1s Ynits Znyq; this value of R being the point where two adjacent intervals abut.
From the two corresponding cases of (16), we obtain

R22 < 24-%, 2R (i, +7.) = 24-5.

This gives (13), and the proof is complete.

Lemma 3. Let T'(n) be defined for every integer m, and have the properties

(a7 T(n+-1) > T(n),
(18) Tn)—-0 as n-» —oo,
(19) T(n)—>oco as n—> +oo.

Let C > 1 be given. Then there exist integers n,, defined for every integer k, such that
(20) nk+] > ny,

(21) CT(n) = T(ny,,) < C2T(n,+1) .

Proof. Case 1. Suppose that
(22) Tn+1) < CT(n)
for every integer mn. Define n, arbitrarily, and define n,, n,, ... by recurrence,
through the condition
(23) Ting,,—1) < CT(m) < T(ny,,) (k= 0).

This is possible, in a unique manner, by (17) and (19). Then (20) is satisfied for
k = 0, as also is the left hand half of (21). To prove the right hand half of (21)



Euclid’s Algorithm in Cubic Fields of Negative Discriminant. 165
for k = 0, we observe that, by (22), (23) and (17),
T(ng,,) < OT(ng,—1) < C?T(n,) < C*T(n+1).
Next, define n_;, n_,, ... by recurrence, through the condition
(24) T(ng) = O T(ny,,) < Tlngtl) (k< —1) .

This is possible, in a unique manner, by (17) and (18). Now (20) is satisfied for
k =< —1, as also is (21), with C in place of C? on the right.

Case 2. Suppose that there are numbers = which violate (22), and that such
numbers are bounded above. Take n, to be larger than the largest of them, so that
(22) is valid for » = n,y. The preceding proof applies, since (22) was used only with

n = n, —1 = n,, where £ = 0.

Case 3. 1f the hypotheses of Case 1 and Case 2 are not satisfied, then there

exists an increasing sequence ¢, ¢,, ... of integers such that
(25) T(9.+1) = CT(g,) .

We define integers 20, n?}, n"), ... by taking n{” = g¢,, and defining n{’ for every
k< —1 by (24), with the superscript r. We denote by R the set of numbers
n’, n?), ... . Then (21) is valid for any two consecutive numbers of N™.

We now observe that the set M contains the set N™. To prove this, define
k by

(26) Y < g, < nl D
Then k = —1, since nj*" = g,., > g,. Thus, by (24),

CT(ny D) < T P41) .
But
T(nifl) = T(9,+1) = CT(g,),
by (26) and (25). Hence
T(g,) < T(ng*+1),

whence g, < 20", and so g, = n{™, by (26). This proves that the set N"+Y con-
tains g,, and by the uniqueness of the construction the numbers in the set less
than g, are the same as those in N®.

Take the integers n;, to consist of the numbers in all sets N. Then any two
consecutive terms n;, n;,, are also consecutive terms in N®, for all sufficiently
large », and we have already proved that (21) is valid for them.
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Lemma 4. There exists a chain of values &’;-, ‘yj, 2; of the linear forms X, Y, Z,
each set arising from integral values of U, V, W, not all zero, with the following pro-
perties. First, for every integer j there is a positive number R such that

(27) BXA 2R Y+ Z) = BX - 2R7(Y'+ 27
Jor all integral U, V, W, not all zero. Secondly, for all j we have
(28) >0, X, <%,

(29) Ui+ B, = Y+ BY)

(30) F Y2+ B < V2470,

(31) X~ 0 as j— oo, F; >0 as j> —oco.

Proof. With the notation of Lemma 2, define
T(n) = yp+=, .
The hypotheses of Lemma 3 are satisfied; hence, by that lemma with 02 in place

of C, there exists an increasing chain of integers n; such that

(32) C*T(n;) = T(n;y,) < C*T(n;4-1)
for all j. We define
z%’. = Ty ‘yj = Ynj '%j =2, -

The first result stated is immediate, and so are (28), (29) and (31). Also (30) follows
from (13) and the second inequality in (32).

Lemma 5. There exists a chain of values X, Y, Z, of the linear forms X, Y, Z,
each set arising from integral values of U, V, W, not all zero, with the following pro-
perties. First, for every integer k there is a positive number R such that

(33) R*X}+2RN(Y}+7Z}) < R°X*+2R™Y*+2Z°)

for all integral U, V, W, not all zero. Secondly, for all k we have

(34) X,>0, X,=0X,,,
(35) YI%+1+Z12c+1 = 02( YI?Q"‘ZI%-) ’
(36) X (Y2, +22,,) < V247"

Proof. With the notation of Lemma 4, define
T(n) = X, = X(—n),
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say, to avoid complicated suffixes later. The hypotheses of Lemma 3 are satisfied,
hence there exists an increasing chain of integers =, such that (21) holds. We
write n_, = —my,; then m, is an increasing chain of integers. Let
X, = Xmy), Y,= ‘U(mk) , L= B(my) .
We have
Xpp= Xmy) = T y) = C7T(n_yy,) = O Hmy_y) = CX
which proves (34). Also

X, =Tm_;) < C*T(n__+1) = C*.F(my,—1) .
Hence

Xk( Y}zc+1+Z?c+1) < Cze%(mk+1_l){cy2(mk+1)+ zz(karl)} < l/éd‘loﬁ’

by (30). The remaining assertions are obvious.

3. Further Lemmas.

Definitions. By Lemma 5 there exists, for every integer k, a number B = K,

such that the form
QpU, V, W)= R2X?>2R 1YY 2?)
has for its minimum value
REXG+ 2R N (Yi+2y) .

By Lemma 1 there exists an integral unimodular substitution (depending on k)
from the variables U, V, W to new variables U, V,, W, which transforms the form
Qr(U, V, W) into one whose leading coefficients, say &, @,, G, satisfy

(37) A, = RX;+ 2R Y+ 73,

(38) Fp = B = Gy

(39) A PG =< 2D = 842,

Let the forms =, 5, 5", when expressed in terms of the new wvariables, become
E = AU +BV,+I' W,

(40) E =AU B+ Wy,

=AU AB VAT W,

I

By (9), we have
(41) A, =X, Vod, = Y, +iZ,, V24, = ¥V,—iZ,,
(42) Qr(U, V, W) = R2E2-4R1E'|*;

hence
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(43) A, = R*A}+4RA4,),
(44) B, = R’Bi+4R7|B,J%,
(45) @, = RT-H4RTTL),
where B = R, throughout.
We next define «,, ... so that they have the same relation to 4,, ... as was

originally true for the symbols without suffixes. To be precise, we define x; as the
cofactor of A, in the determinant of the coefficients on the right of (40), multiplied
by 4, and so on for all the elements. The linear forms &, &, & are then trans-
formable into ouu,+B o +ywy,, ete. by an integral unimodular substitution
(namely, that which is contragredient to the substitution from U,V,W to Uy, V;, W,).

Note that none of A, ..., I, can be zero, by the hypothesis of Theorem 1.

Lemma 6. We have, for all k,

(46) A,>0, A,=CA,.,,
(47) [Ajn| = Cl4;]

I 17 ]' —
(48) A A, AY | < —=A7C

V2

Proof. This is simply a restatement of (34), (35), (36), which is immediate
by (41).

Lemma 7. We have, for all k,

(49) (il =—=, 7l =

1
= Vé 3
t 5t 3 y 7 3
(50) l4fi]l = —= [Ayel = — -

2)/2’ 2)/2

B = (A T A

Eﬁl =

Proof. By definition,

hence
4By < 2414, T AL
By (43) and the inequality of the arithmetic and geometric means,
2RYALAL = 4T, .
Also, by (45),
2RI = (G-
Hence
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1/ 2 1 1A 1 1
4Byl = 1A TALGL)Y = 1A(BA2): = ﬁ,

by (38) and (39). The same method proves the second inequality of (49); in the
final step A @, is replaced by H; D,
Again, by definition,
Br = ML A—T AL
hence

Ayl = A A AT [+ AJALP (T -

The first term on the right has already been estimated above as not exceeding ——.

For the second term, we have 2z

ARNA) = A, R = (G,
by (43) and (45), whence
AAL ] < FA(FLG)E ==

[\ l

l/

It follows that
' 3
[Avﬂ i é DY
LME 2]/2

and the same method proves the second inequality of (50).

Definition. We observe that, by the definitions of a, ...,y, we have
(51) A+ A48 =0,
(52) Ayt A4y = 0.

Hence we can write

A = — 3 A Bytioy
(53) ? ! -
Ay = =3 Ay tity,

where ¢, and 7, are real. Note that

(54) ovr—TiBr = — 1A By Biv) = — A4 4 + 0.

Lemma 8. There exist, for every integer k, integers p,, q, such that
1
2’

1
(55) — < AipiBrt vy =
2)/2

I ’ I 9
(56) AL (PrPrt i) = —=.
2)/2
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Proof. For brevity of writing, we omit the suffix £ in the proof. First we observe
that, by (49), we can satisfy (55) with ¢ = 0 and p = +1 or +£2 or 43 unless

1
A|f| = ——=. If we can do this, then (56) is satisfied, since
2

6
3[A/p’)/| T 9
== 21/5 H
by (60). Similarly if Aly] > —— ]/7 Hence we may suppose that
(57) 4S =, A=
= —, = —.
6)/2 6)/2

Suppose, without loss of generality, that |o] = |7|. Note that ¢ 4 0, by (54).
For any integer ¢ we can determine an integer p so that

T <]

If we can choose ¢ so that

1 T 1 1
(58) A < A Dprtyn) = e Al

1
2)/2 V2
then (55) will be satisfied. Also (56) will be satisfied, since

1
[4'pp+Ay'ql = 5 Alfp+ygltloptl

fm+-IAﬁl

PR 3
::OVE 2 42’

by (53), (55).
It remains to choose ¢ to satisfy (58). This is possible if

p—yo

(59) Al = A’

1 1
VE_'QVz

Now, in fact, since |r| < o],



Euclid’s Algorithm in Cubic Fields of Negative Discriminant. 171

A(’ﬂ;y"[gmmﬂw,
and
1 1
Af+Aw =~ L _ap
V2 2)2

by (57). Hence (59) is true, and this proves the result.

4. Proof of Theorem 1.

Theorem 1 asserts, in effect, that there exist a real number 4 and a complex

number A’ such that

(EHD(E+2)(E" A7) = ed

for all integers u, v, w, where &, &'/ & are the linear forms (1), of determinant ¢4,
and A" is the complex conjugate of i'. By an integral unimodular substitution on
the variables, we can transform &, &', &’ into xgu-+fBw+y.w, etc. Hence it suffices
to determine A, A, 4, so that

(60)  (oxu-t-BowtyowtAo) (xgutBp+ygwt2o) (g wA-By w4y w5 )| = ed

for all integers u, v, w.
We shall achieve this by the definitions

bg-

(61) }'() = (p1ﬂr+qry'r) 4
r=1
(63) _}'(,)I = 2(pr/3;,+QTV;I) ’

i
[
e

where p,, g, are the integers determined in Lemma 8, provided that C is taken to be
sufficiently large. These series are absolutely convergent, since

1
0< prﬂr—l_QTyr é =
V24,

, ' 9
Pt ay] £ e
T T )24,

and A4,, A satisfy (46) and (47). Also 4, is real and 4" is the complex conjugate
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of 2, We define 2,, 4, 4; for all integers k& by similar series:

k
(64) }'k == 27 (p7ﬂ7'+QTy7‘) s
(65) —le = X (pB+e00)
re=kil
(66) —& = X w8 a4y,
rek+l
By (55), (46) we have
k-1
Ly, ;w b3 AwbAar)
2)/2 e

Vel s ’
i.e.
1 c
(67) e Ay S ——
2)/2 V2(0—1)

Also, from (56) and (47),

9 |4 9
(68) Al = —= X |5 = =

2)2. 250147 T 2)200— 1)

Suppose there exist integers u, v, w which violate (60). Write

(69) & = xoutfot+yow, ete.,
so that our hypothesis is that
(70) [(Got-20) (E5-t-2) (&6 4 ) < e

Define &,, &, &, for all integers & by the recurrence relations

(71) Sp1 = Pebrt+ @y +5&r, ete..

Then, in virtue of (64), (65), (66) and (71), we have

(72) Eytho = &t Ay, Ebhg = E+Ay, &+ =&/ A

for all k. It is important to observe that &, &, &, are values of the linear forms
£, &, 8" which arise from integral values of the variables.
We now define a particular integer &£ by the condition
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O2cs C2ci
= St Aol <

(73) )
Ay Ay

which is uniquely soluble for & unless &-+4, == 0 (a case which we return to in

a moment). By (70) we have

[E(/)‘{"M»\? < CAA]C~1O-20~é
1
< ed ([ AOU ) 0
2

< Ce3|Ay 72,
using (48). Thus

A c’
(74) 1&g+ Aol < —7.
In the case when &+, = 0, we simply choose k so large that (74) holds.

Since &,--1, = &,-+4;, ete., and since &, &, &, are values of the linear forms

£ &, &, this gives us the existence of integers u, v, w such that

C2ci
I(Xk u-{—ﬁk?) "}_‘yk w—i—)"k [ < 5
A,
7 ’ ’ ’ GZC%
logt +Bpv +yw A | <
(Al
1t rr r7 ts Ozc%
log utpfrvtyrwtip| < —.
|4y |

If we multiply the homogeneous linear expressions on the left by 4,, A;, 4, and
add, we obtain simply «. Hence

(75) [u-+ A A A+ A2 | < 302k .
But, by (67) and (68),
! i A+ A+ AL < ¢ - )
- = T = T < [ _ T = = T .
2)2 Ya2—1) < FFTTREITERE TS 0—1) V2o—1)
This contradicts (75) if ¢ is chosen to satisfy both
1 9
(76) 3024 < ——
212 Y2g0—1)
and
C 9
(77) 30%ch < 1—

Vze—1) Y20—1)
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It is plain that if €' is suitably chosen as a large positive constant, these can
be satisfied by a positive value of ¢. Thus the hypothesis (70) has led to a contra-
diction, and this proves Theorem 1.

The second of (76), (77) is always more stringent than the first. If we choose
C = 37-5, we find that 8 x 10'% is a legitimate value for ¢1.

5. Preliminary Lemmas for the Proof of Theorem 2.
The hypothesis of Theorem 2 is that the ternary cubic form
(78) Jlu, v, w) = (xuApr4yw) ('ut-Fo+y'w) (o " ut 04y "w)
has integral coefficients, and is not zero for integral values of u, v, w other than
0, 0, 0. We proceed to develop some consequences of this hypothesis. In the course
of this we shall see (in Lemma 11) that the above hypothesis implies that the

adjoint forms =, 5', 5" also do not represent zero; a hypothesis which was made

explicitly in Theorem 1.

Lemma 9. There exists a cubic field K of negative discriminant, and there exist

algebraic integers o*, f*, y* in K, such that
mf(u, v, w) = N(a*u+p*v+y*w)
tdentically in w, v, w, where N denotes the norm of a number of K, and m is a non-zero

integer.
This is a classical result; for a proof see Bachmann, loc. cit., Kap. 12, §§ 1, 2, 3.

Remark. If we prove Theorem 2 for the ternary cubic form mf(u, v, w), its
conclusion will also hold for f(u, v, w), by considerations of homogeneity. To avoid
the introduction of new symbols, we shall therefore assume henceforward that in
(78), &, B, v are algebraic integers of K, and «’, ... are their algebraic conjugates
in some fixed order. Since the determinant of the linear forms in (78} is then an

integral multiple of the square root of the discriminant of K, we have
(79) i = ib)d ,
where A is a positive integer and —d is the discriminant of K.

Lemma 10. The numbers 4, B, I' are linearly independent numbers of K, and
their algebraic conjugates are A’, B', I and A", B, I"".

Proof. Let & be a cubic irrationality which generates K. Then
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x By 4 9 P11 P12 P13
« By =11 ¥ A Lpzl Loz Pas | >
"Byt Lo 9 Ps1 P32 Pss

where the p,, are rational numbers, whose determinant is obviously not zero. Hence,
by the definition of 4, ..., " in §3,

A B T L L1 Y (qu g G
A" B I |=19 & 9 | X| ¢u Tas Qo3 |
A" B I 9 97 9 931 932 s
with rational numbers ¢,,. The reciprocal matrix on the right has for its first row
SO ﬁ/+ﬁ” 1

@—&)(3—0")" (=) (I—0")" (I—9)(B—9")

and its other rows are obtained by cyclic permutation of &, ¢, 9. It is plain that
these three numbers are linearly independent numbers of K, and that the cyeclic
permutation produces their algebraic conjugates in the same order as it produces
those of «, 3, . Hence the same is true of 4, B, I', which are linear combinations

of the above three numbers with rational coefficients whose determinant is not zero.

Lemma 11. If 5, 5, 5" are the linear forms defined by (7), then. A*5E'F" is
a ternary cubic form in U, V, W with integral coefficients, and s not zero for integral
U,V, W, not all zero.

Proof. By Lemma 10, 4 is an element of K and 4’, A’ are its conjugates in
some fixed order. Similarly for B and I'. Hence the coefficients in the product

EE'E' = (AU+BV+I'WYA' U+BVHI"WYA"U+B'V4+-T"W)
are rational. Also, since A, B, I" are linearly independent, the product is not zero
if U, V, W are integers, not all zero. Note also that A¢ is rational, by (79).
Moreover, since 144 = gy —f"y’, ete,, and «, §, y are algebraic integers, it
follows that A4, AB, AI' are algebraic integers. As A is also an algebraic integer,
by (79), it follows that the coefficients in the product A(AZF)(AE")(AE") are both

rational, and algebraic integers, and so are integers.

6. Further Lemmas.

We know, by the work of § 3, that it is possible to find a set of integral uni-
modular substitutions, one for every integer k, which transform the linear forms
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E, 5, E” into those given in (40), such that the coefficients 4, ..., I', satisfy
(43), (44), (45) [with (38), (39)] and (46), (47), (48). The assertion of Lemma 10 will
obviously be valid for 4,, B,, I',. Our next lemma asserts that it is possible to do
this in such a way that 4,, ..., I}’ have an important additional property.

Lemma 12. There exists a set of integral unimodular substitutions, one for every

g 5. =

integer k, transforming the linear forms =, 5E', Z into those given in (40), with the
following properties. First, (43), (44), (45), [with (38), (39)] and (46), (47), (48) are
valid for all k. Secondly, there exists a positive integer j such that

(80) Ay =wd,,;, B,=o0B,,;, [Ii=ol}

+J
for all k, where o is a number of K satisfying
(81) w>1, wo'eo’ =1.

Proofr We begin by considering the situation of § 3, and use the notation of
that section. Let
(82) FuU, V, W) = (AU+BV+ I W) (A U+BV+TW) (Ay U+ B VLT W),
By Lemma 11, A4F (U, V, W) is a ternary cubic form with integral coefficients
whose value for integral U, V, W is not zero unless U, V, W are all zero. We shall
prove that all the coefficients in this ternary cubic form are bounded by a number

independent of k.

Since AFLU, V, W) = 1
for all integers U, V, W not all zero, we have, in particular,
A A=A

Hence, by (43) and the inequality of the arithmetic and geometric means,

Ty = RAIHARA = 3(443 459 = 3(44-5)} .
It follows now from (38) and (39) that &, B,, @, are bounded by a number in-
dependent of k. By (43), (44), (45),

RA,, RB,, RIy, RYA,° RYBJ, RI?
are bounded. It is now clear from (82) that all the coefficients in F (U, V, W) are
bounded.

1 The argument here is again essentially due to Hermite.
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As there are only a finite number of possibilities for the form F (U, V, W),
there must exist integers g, j, with j > 0, such that

F (U, V,W)=F, (U, V, W)

Fyis
identically in U, V, W. This implies that the linear factors in F (U, V, W) are

proportional to those in F (U, V, W), in some order, with constants of pro-

g+
portionality whose product is 1. Now 4,, B/, I'; are linearly independent elements
of K, and so are 4,,;, B, ;, I',,;. It is 1mposs1ble that the ratios 4 :B : I, should
be the same as the ratios A Bg W Fg +j; for this would imply that A /B would

be in both K and K’, and so Would be rational, contrary to the fact that 4, and
B, are linearly independent elements of K. The only possibility is that

AU +BYV +I')W =o (4,,U+B, V+T, i W),
AU 4BV +IW = o' (A, ;U+B, ;V+I,,;W),

A"U—i—B”V—{—I’"W = w"(AgHU—{-B;;j +I,;W),
identically in U, V, W, where o, ', "’ are numbers with ww’ew’ = 1. Plainly
= 4,/4,.;is a number of K, and ', o' are its algebraic conjugates. Also v > 1,
by (46).

We adopt the existing definition of 4,, By, I', for ¢ < k < g-+j, but proceed to
modify it for k < g and k > g4-j, which we do by adopting (80) as defining A,, By, I',
for such values of k. Then (46), (47), (48) are valid for ¢ < k < g+4 by the original
definition, and follow by recurrence, using (80), for k < ¢ and k = g-j.

We modify the definition of R, by defining R, for k < g and k = g-+j by
the recurrence relation :
Ry, = oR,.

This definition still preserves the minimal property (33) when k& = g+j. Also we
define &, B, @ for k < g and k = g-+j by the recurrence relations

A= Hs By = B Crij = G -
Again, this is legitimate for k£ = g7, and (43), (44), (45) [with (38), (39)] are now
valid for all £. This completes the proof of Lemma 12.

Lemma 13. If x;, §,, v, are defined in terms of the A, B, I'y, of Lemma 12
by the same method as in § 3, then
(83) Opyj = O, Py = 0fp, Vi = 0y,
and similarly for their conjugates, for all k. Also (49) and (50) are valid for all k.

12 — 642138 Acta mathematica. 84
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Proof. As (49) and (50) depend only on (43), (44), (45) [with (38), (39)] and
(46), (47), (48), their validity is assured, by Lemma 12. As regards (83), we have,
for example,

o = id (BT — B/ Iy)
— A By Y~ BT

1
E T
k
w o

vy (80) and (81).

Lemma 14. Integers py, q, can be chosen for all k to satisfy (55) and (56), and
also
(84) Pr = Prrjs U = Dkej -

Proof. By (80) and (83),

Ak+j13k+j = 4By, Ak+j?’k+j = Ayyy,

and similarly for the conjugates. Thus the inequalities (55), (56) are unaltered in
meaning if k is replaced by k-+j, and the result is trivial.

7. Proof of Theorem 2.

It suffices to prove that the numbers 1, 4, 4,’, defined by (61), (62), (63),
using the definitions of A;, ..., &y, ..., Ps, ¢ given in § 6, are such that 1, is a
number of K and i), A, are its algebraic conjugates. By Lemmas 13 and 14, and

(61), we have
0

lo = 2 (prlgr+qryr)

r=—00

‘4%
78

I

(prﬂ'r—SJ + Y r—sj )

I
—
—

r §=

I
L.
i T

(prﬁr+err) 0)—8

1

cn
—

7

[

,_,b\

J
2 prﬂ +QTyr }(w_l)—l .

r=1

Again, by Lemmas 13 and 14, and (62),
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—lo =2 (2B +a.7))
1

Jj ® )
:é’ %’ PB4y (')
J
~ { 3 0 bitar) } (—w)-1.
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Similarly for 4,". From these expressions it is clear that 4, is a number of K and

that 1, A, are its algebraic conjugates.



