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1. In troduct ion .  

Let  K be any  algebraic number  field. If, for each number  2 of the field K, there  

is an algebraic integer  ~ of K such t h a t  

IN($--2)1 < ] ,  

where N denotes the norm, then  Euclid 's  a lgori thm is said to be valid in K. For  

complex quadrat ic  fields, the quest ion is a lmost  trivial.  Fo r  real quadrat ic  fields, 

it  has been known for some years  t h a t  there  are only a finite number  of cases in 

which Euclid 's  a lgori thm is valid. I have  recent ly  given 1 a proof of this result  based 

on new principles, and this proof has led to the  complete enumera t ion  2 of all such 

ea se s .  

Now let K be a cubic field of negat ive discriminant ,  t h a t  is, a field genera ted  

by  a real cubic i r ra t ional i ty  whose conjugates  are complex. The main result  of the 

present  paper  is t ha t  Euclid's algorithm is valid only in a finite number of such fields. 

As in the quadrat ic  case, the result  is closely connected with one which relates 

to a more general si tuation.  Le t  

<l) t 
/ ~"=: o, u+~  v +y  'w 

1 "Indefinite binary quadratic forms, and Euclid's algorithm in real quadratic fields", Proc. 
London Math.  Soe. (in course of publication). 

2 See H. Chatland and H. Davenport, "Euclid's algorithm in real quadratic fields", Canadian d.  of 
Math .  (in course of publication). 
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be any  three linear forms in which ~, 8, 7 are real numbers,  ~', fl', y'  are complex 

numbers, and ~", fl", y"  are the complex conjugates of a ' ,  fl', y' .  Let  the determ- 

inant  of the forms be i/I ~: 0, so tha t  wi thout  loss of general i ty we can suppose 

A > 0. Write 

(2) f(u, v, w) ~ -  ~ ~ ' ~ "  . 

Our basic result is: 

T h e o r e m  1. Suppose none of the adjoint linear forms ~, ~', ~",  defined by (7), 

represents zero for integral values, not all zero, of the variables. Then there exist real 

numbers u*, v*, w* such that 

(3) If(u-~u*, v-~v*, w~-w*)[ ~ cA 

for all integers 1 u, v, w, where c is a certain positive absolute constant. 

This result, though of interest  in connection with some problems of Diophantine 

approximation,  has in itself no application to the question of Euclid 's  algorithm. 

For  tha t  we need the following vital  addition.  

T h e o r e m  2. Suppose that the ternary cubic form f(u, v, w) has integral coef- 

ficients and that f(u,  v, w) :~ 0 for all integers u, v, w except O, O, O. Then the numbers 

u*, v*, w*, whose existence is asserted in Theorem 1, can be so chosen as to be rational. 

Now let K be a cubic field of discriminant  - -d  < 0, and  let a, fi, y be a basis 

for the algebraic integers of K.  Let  ~', fl', y' and ~r fi", y"  be the  algebraic con- 

jugates of a, fl, y in some fixed order. Then ~, the linear form in (1), with integral 

variables u, v, w, represents the general algebraic integer of K,  and $', ~" are its 

algebraic conjugates. The de terminant  of these three linear forms is ~=i]/d, and 

we can suppose wi thout  loss of generali ty tha t  the de terminant  is i Vd. The te rnary  

cubic form f (u,  v, w) is the norm of a general algebraic integer of K,  and  so it has 

integral coefficients a n d  is not  zero unless u, v, w are all zero. The hypotheses of 

Theorem 2 are satisfied. I f  we write 

(4) ~ = ~u*+flv*+yw*,  

then  ~ is a number  of K,  since u*, v*, w* are rational.  We have, then, a number  

,~ of K such tha t  

(5) IN(~+~)r --> cVd 

for all algebraic integers $ of K. Thus Theorem 2 implies the following: 

1 The word integer, without  the qualification algebraic, will always be used to mean  rat ional  integer. 
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Theorem 3. Euclid's algorithm cannot hold in a cubic field of discrimiuant 

- -d  i f  d > c -2. 

Since, by  a classical result 1, the number  of cubic fields with bounded discrim- 

inants  is finite, this justifies the assertion made earlier, t ha t  Euclid 's  algorithm 

is valid only in a finite number  of cubic fields of negative discriminant.  

The plan of the paper is as follows. After a number  of lemmas, we prove 

Theorem l, relating to general linear forms, in w 4. In w 5 and w 6 the proof is recon- 

sidered, in the light of the addit ional  hypothesis  of Theorem 2, and tha t  theorem 

is then  established in w 7. 

Throughout  the paper, small La t in  letters, other than  c, f ,  i, x, y, z, denote 

integers. 

2. Pre l iminary  L e m m a s .  

Definitions. Let  the cofactors of the elements of the matr ix  

c~' fl' y'  , 

~x" fl" )/ '  

after dividing each of them by iA, be denoted by the corresponding capital letter, 

so t ha t  iAA  = f l 'y"- - f i"y ' ,  etc. I t  is plain t ha t  A, B, F are real, and tha t  A " ,  B" ,  F "  

are the complex conjugates of A' ,  B' ,  1"'. Also 

(6) 

A B F 

A'  B' / "  

A "  B "  / " '  

= (id) -1 . 

Let  E, ~ ' ,  ~ "  be the linear forms 

(7) 
Z - - - - A U + B V + F W ,  

~'  = A ' U + B ' V + F ' W ,  

~" A " U + B " V + F " W  , 

of de terminant  (iA) -1. We have the obvious ident i ty  

(s) 
We write 

(9) 

~ 3 + ~ ' - ~ ' + ~ " - ~ " =  u U + v V + w W .  

x = r + i z -  r - i z  = 

1 See, for example, Minkowski, Diophantische Approximationen, Kap. 4, w 5. 

11 642138 Acta mathematica. 84 
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Then X, Y, Z are real linear forms in U, V, W, and their determinant is A-1. By 

the hypothesis of Theorem l, we know that  X ( Y 2 + Z 2 )  # 0 for any integers U, V, W 

other than 0, 0, 0. 

L e m m a  1. Let Q(U, V, W) be a positive definite ternary quadratic form of 

determinant D. Then Q can be transformed, by an integral linear substitution of de- 

terminant •  into a form ~7U2-~ - ~ V 2 +  C W 2 + .  �9 whose m in im u m  is ~[ and for 

which 

(10) ~ <  ~ ~ C, ~ 7 7 ~ O ~ 2 D .  

This was first proved by Gauss in 1831; for his proof, and also a proof by 

Dirichlet, see Bachmann, Die Ari thmetik  der quadratischen Formen II, Kap. 6, w 9. 

L e m m a  2. There exists a chain I of values xn, y~, z,~ of the linear forms X ,  Y,  Z, 

each set arising from integral values of U, V, W, not all zero, with the following pro- 

perties. First,  for every integer n there is a positive number R such that 

( 1 1 )  ~ 2 1 ~ R x n + 2 R -  (yn+zn) <= R 2 X 2 + 2 R - I ( Y ' ~ + Z  2) 

for all integral U, V, W, not all zero. Secondly, for every integer n, 

9 2 2 2 (12) x n > O, xn+ 1 < x~, y;~+t-f-z,~+l > y,~+zn, 

(13) x~(Yn+l+z,~+,) ~ 

(14) x,~-+ O and y~+z~ ~ cx~ as n ~ +cx~ , 

(15) x n-~ ~ and 2 2 Yn+Zn ~" 0 as n ~ ~ . 

Proof. 2 For every R > 0 we consider the quadratic form 

QR(U, V, W) ~-- R 2 X 2 + 2 R - l ( Y 2 §  

This is a positive definite ternary quadratic form, whose determinant is D~-4A -~, 

since the determinant of the real linear forms X, Y, Z is A -1. 

For every R, the minimum of QR(U, V, W) is attained for certain integral 

values of U, V, W, not all zero, and to these there correspond certain values 

x, y, z of the Linear forms X, Y, Z. We can restrict ourselves, without loss of gener- 

ality, to positive values of x, since X :# 0 by hypothesis. 

1 The word c h a i n  is used to denote a set of objects which is in one-to-one correspondence with 

the set of all integers (positive, negative and zero). 

The a rgumen t  is essentially t ha t  of Hermi te ;  for an exposit ion of the general theory,  see Bach- 
mann ,  l o c . c i t . ,  Kap.  12. 
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I f  x, y, z correspond to the  m i n i m u m  of the  fo rm bo th  when R = R I  and  R=R2,  

t h e y  do so also for all values  of R sat isfying R~ ~ R ~ R 2. Fo r  we can de te rmine  

posi t ive  number s  /~,/~z such t h a t  

R 2 = 2 2 R-1 ttlR~§ ~ /~lRIl+/~2R.~ 1 , 

and  then  it  is clear t h a t  the  inequali t ies 

R~x2 § 2Rl~(y2 § z 2) <= R~X2 + 2R{~( Y2 § Z2) , 

R~x~ § 2R~(y2 § z~) <= R::X: + 2R~I( Y2 § Z2) 
imp ly  

R~x:+ 2R-l(y:+z:) <= R : X : +  2R-I( y : §  2) . 

I t  is now plain t h a t  all posi t ive  number s  R fall into an enumerab lc  set of closed 

intervals ,  in each of which the  m i n i n m m  of QR(U, V, W) occurs for the  same 

U, V, W, and  so for the  same values  x, y, z of X,  Y, Z. These in tervals  have  no 

point  of accumula t ion  (other  t h a n  a t  0 and  ~ ) .  For,  b y  L e m m a  1, the  m i n i m u m  

of QR(U, V, W) satisfies 

(16) R2x2§247 2) ~ (2D)~ ~-- 2A-~; 

and  so, if R and  R -1 are bounded  below, t hen  x, y, z are bounded  above,  and  there  

are only  a finite n u m b e r  of possible choices of integers U, V, W a m o n g  which m u s t  

occur  all the  m i n i m a  for the  range  of R in question. 

I t  follows t h a t  the  above  in tervals  for R, and  the  corresponding values of 

x, y, z can be e n u m e r a t e d  according to increasing values of R. We ignore a n y  

in te rva l  for R which consists of a single point ,  and  e n u m e r a t e  the  x, y, z as x~, y~, z~. 

Here  n takes  all in tegral  values,  since it  is impossible  for the  same x, y, z to p rov ide  

the  m i n i m u m  of QR(U, V, W) for a rb i t r a r i ly  large R, or for a rb i t r a r i ly  small  R. 

This  follows f rom (16); if this  inequa l i ty  were t rue  for a rb i t ra r i ly  large R we would 

have  x = 0, and  if i t  were t rue  for a rb i t r a r i ly  small  R we would have  y --~ z --~ 0, 

e i ther  of which is con t r a ry  to the  hypothes is  t h a t  X ( Y 2 §  2) 4= 0 for in tegra l  

U, V, W not  all zero. 

Now consider a n y  two consecut ive  sets, x~, Yn, z~ and  x,+j, y,,+~, z,~+a in the  

above  enumera t ion .  B y  definition, there  exis t  number s  R~ and  R~+~ such t h a t  

R n < Rn+ 1 and  
2 2 --1 2 2 2 2 --1 2 2 RnXn§ ~ (y~§ ~ R,~X,+l § 2R~ (yn+l § 
2 2 - 1  2 2 2 2 --1 2 2 Rn+lx,~+1§ 2R~+I(y,~+I § <= R,~+ 1 xn § 2R~+1 (Yn § zn) 

I t  follows t h a t  
3 2 2 2 2 2 2 3 2 2 Rn(xn--Xn+l) < 2(Yn+l§ Zn) ~ R,~+~(xn--x~+~) 
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Hence  Xn+ 1 ~ X n. Since the  l inear fo rm X does not  represent  zero, we have  Xn+ 1 < Xn, 

and  it  now follows t h a t  2 2 2 2 yn+l~-Zn+l > yn+Zn. This proves  (12). 

I t  is plain t h a t  our  defini t ion ensures the  t r u t h  of the  first  asser t ion in the  

enuncia t ion  ; indeed, it is fu r the r  t rue  t ha t  for  eve ry  R there  is an n with the  min imal  

p r o p e r t y  (11). 
2 2 I t  follows f rom (16) t h a t  yn@Zn-*-0 as R ~ O, t h a t  is, as n - ~ - - o z .  Also 

2: 2 ') 2 yn~-Zn ~- oo aS R -+ cx~, t h a t  is, as n ~ q-cx~; for if y~q-z~ were bounded  under  this 

operat ion,  then,  as x n is necessari ly bounded  we would get some one set  x~, y~, z~ 

provid ing  the  m i n i m u m  for a rb i t r a r i ly  large R, which we have  seen to be impossible.  

Similar ly  for the  o ther  assert ions in (14) and  (15). 

To p rove  (13) we observe  t h a t  for a n y  n there  is a value of R such t h a t  the  

fo rm QR(U, V, W) assumes its m i n i m u m  twice, name ly  with  x~, y,~, z,~ and  with  

x~+~, Y~+I, Zn+l; this  value of R being the  point  where two ad jacen t  in tervals  abut .  

F r o m  the two corresponding cases of (16), we ob ta in  

2 2 2 - - I  2 2 R x n ~ 2A-~ ,  2R (yn+l-~Zn+l) < 2A-~ 

This gives (13), and  the  proof  is complete.  

(17) 

(is) 

(19) 

L e m m a  3. Let T(n)  be defined for every integer n, and have the properties 

T ( n - ~ l )  > T ( n ) ,  

T(n) -+ O as n-+ - - ~  , 

T ( n ) - + o z  as n - 9 - ~ o o .  

Let C > 1 be given. Then there exist integers nk, defined for every integer k, such that 

(20) nk+ 1 > nk ,  

(21) CT(nk) <= T(nk~l ) < C 2 T ( n k + l )  . 

Proof. Case 1. Suppose t h a t  

(22) T(nq-1)  < CT(n) 

for  every  integer  n. Define n 0 arbi t rar i ly ,  and  define nl~ n 2 . . . .  b y  recurrence,  

t h rough  the  condit ion 

(23) T(n~:~j 1) < CT(nk) <~ T(nt. I1 ) (k _--> 0 ) .  

This  is possible, in a unique manner ,  b y  (17) and  (19). Then  (20) is satisfied for 

k > 0, as also is the  left  hand  half of (21). To p rove  the r ight  hand  half  of (21) 
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for k ~ 0, we observe  tha t ,  b y  (22), (23) and  (17), 

T(nk+~) < CT(n~.+,--1) < C2T(nt.) < C2T(nk-~ l ) .  

Next ,  define n 1, n > . . .  b y  recurrence,  t h rough  the  condit ion 

(24) T(n~.) ~ C-1T(nt.+~) < T(nk~- I  ) (k ~ - - 1 ) .  

This is possible, in a unique manner ,  by  (17) and  (18). Now (20) is satisfied for 

k ~ - -1 ,  as also is (21), wi th  C in place of C 2 on the  right.  

Case 2. Suppose t h a t  there  are number s  n which viola te  (22), and  t h a t  such 

number s  are bounded  above.  Take  n o to be larger  t h a n  the  largest  of them,  so t h a t  

(22) is val id for n ~ n o. The preceding proof  applies,  since (22) was used only wi th  

n = nt.+l--I ~ nt. , where  k ~ 0. 

Case 3. I f  the  hypotheses  of Case 1 and  Case 2 are not  satisfied, then  there  

exists  an increasing sequence gl, g2, - . .  of integers  such t h a t  

(25) T(gr~- l )  ~ CT(gr) .  

We define integers  ~(r) n(,~, ~(r) by  tak ing  n(0 r) �9 =o . . . . .  e, - - .  = g,., and  defining n(k ~ for eve ry  

k ~ - -1  b y  (24), wi th  the  superscr ip t  r. We denote  b y  ~(r) the  set of number s  

n~) ~/r) Then  (21) is val id ~or a n y  two consecut ive number s  of ~J~(~>. 0 ' ' ~ - 1 '  . . . .  

We now observe  t h a t  the set ~.R (r+~) contains  the  set ~)l(r). To p rove  this, define 

k b y  

(26) n k = g,. 

Then  k < - -1 ,  since ,(r+l) - -  "~0 ~ ~/r+l  > g r :  Thus,  b y  (24), 

C-~T(n~+: )) < T(n~+l)~-l)  . 
B u t  

TI~(,+')x > T(g~-~l) > CT(g,.) 
b y  (26) and  (25). Hence  

T(~]r) < T(~t~r+i)-~l) , 

whence g, < n~(~+ L), and  so ~]r = ~C~+l),~k , b y  (26). This proves  t h a t  the  set O~ ( r+ l )  c o n -  

t a i n s  gr, and by  the  uniqueness  of the  cons t ruc t ion  the  number s  in the  set less 

t h a n  ~r are the same as those in ~("). 

Take  the  integers n~ to consist  of the  number s  in all sets ~0'). Then  a n y  two 

consecut ive t e rms  n~, n~+~ are also consecut ive t e rms  in ~('), for all suff iciently 

large r, and  we have  a l ready  p roved  t h a t  (21) is val id  for them.  
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L e m m a  4. There exists a chain of values ~9~j, ~lj, ~ j  of the linear forms X,  Y, Z, 

each set arising from integral values of U, V, W, not all zero, with the following pro- 

perties. First, for every integer j there is a positive number R such that 

(27) R2~9~ + 2R-1( ~]~-~ ~5) <= R~'X2 + 2R-I( Y~ q- Z2) 

for all integral U, V, W, not all zero. Secondly, for all j we have 

(2s) ~ > o ,  ~+~<~,  

( 2 9 )  ~ : : , 

(30) 2 ~ 1/~-~c~ ~ ; ( W ; + ~ + , s L )  < 

(31)  ~ ;  --> 0 as j -.,- + o o ,  ~ .  ---> oo as j -.-- - - o o .  

Proof. With  the notat ion o f  L e m m a  2, define 

T(n) ~ 2 = yn-~-Zn. 

The hypotheses of L e m m a  3 are satisfied; hence, by  tha t  lemma with C 2 in place 

of C, there exists an increasing chain of integers nj such tha t  

(32) C2T(nj) <= T(nj+l) < C4T(nj+ I) 

for all j .  We define 

~,C~j = x~, ~/j = Ynp ~ j  = Zn]" 

The first result s ta ted is immediate,  and so are (28), (29) and (31). Also (30) follows 

from (13) and the second inequal i ty in (32). 

L e m m a  5. There exists a chain of values X~, Y~, Z~ of the linear forms X,  Y, Z, 

each set arising from integral values of U, V, W, not all zero, with the following pro- 

perties. First, for every integer k there is a positive number R such that 

(33) ~ 2 -I 2 R X k + 2 R  (Yk+Zk)  ~ R~X~+2R-~(Y2-f-Z~) 

for all integral U, V, W, not all zero. Secondly, for all k we have 

(34) X k > O , X k > C X ~ + ~  , 

2 2 2 2 Y~+Zk) (35) Yk+~+Zk+~ > C2( , 

(36) x~( YL, + z L ~ )  < ~-'c".  

Proof. With the nota t ion  of L e m m a  4, define 

T(n) = 2E'_n = ~~ 
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say, to avoid  complicated suffixes later.  The  hypotheses  of L e m m a  3 are satisfied, 

hence there  exists an increasing chain of integers  n k such t h a t  (21)ho lds .  We  

write n_ir --ml~; then  m k is an increasing chain of integers.  Le t  

X/~ : ~q~(mk) , Yk = c(J(m~), Zk = ~ ( m ~ ) .  
We have  

X~ : ~(ma.)  : T(nl~ ) ~ C-~T(n ~+~) - -  C-tc,~(ma,_~) : C 1X]~_I, 

which proves  (34). Also 

X~ = T(n ~) < C~T(n ~__~+1) = C~CC(m~+l--1) . 
Hence  

X]v( y]c+l_~_Zic+l 2 < C~ (~(m~+1_l){C~je(mt.+1)+ ~e(m~+,) } < ]/~d-,C~,, 

by (30). The remaining assertions are obvious. 

3. F u r t h e r  L e m m a s .  

Definitions. B y  L e m m a  5 there  exists, for every  in teger  k, a n u m b e r  R = R k 

such t h a t  the  fo rm 
Q~(U, V, W) = R~X2+2R-I(Y~+Z 2) 

has for its m i n i m u m  value 
2 2 9 1 2 2 RX~+~R (Yk+Zk). 

B y  L e m m a  1 there  exists  an in tegral  un imodula r  subs t i tu t ion  (depending on k) 

f rom the  var iables  U, V, W to new var iables  Uk, Vk, W k which t r ans fo rms  the  fo rm 

QR(U, V, W) into one whose leading coefficients, say  ~7/~, ~k, 0k, sat isfy 

(37) ~ k  : 2 ~- R XI~+2R-I(Y~+Z~), 

(38) ~7l~ ~ ~k  ~ Ok, 

(39) ~/Tk~kCk ~ 2 0  : 8A -2 . 

Le t  the  forms ~,  ~ ' ,  ~ " ,  when expressed in t e rms  of the  new variables ,  become  

{ ~ = AkUk+B~Vk+FkWk, 
A t  ~ v (40) ~ ' :  kU~+BkVk+F~Wk, 

~ t t  r !  , !  t !  - --A k Uk+B ~ Vk+Fl~ Wk. 

- -  t - -  r t  ~2A1~ ~ Y~+iZ~, ~2A~ = Yk--iZk, 

QR(U, V, W) = R 2 ~ ' + 4 R - 1 I E ' I 2  ; 

B y  (9), we have  

(41) A k = XIr , 

(42) 
hence 
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(43) 

(44) 

(45) 
where R ~--R k throughout. 

H. Davenport. 

~k 2 2 = R A~+4R-~IA'k] ~, 

C~Ic  2 2 , o =- R Bk+4R llBk]', 

e~ = R~F~ q -4R-~]F'kl ~, 

We next define ~ ,  . . .  so that  they have the same relation to Ak, . . .  us was 

originally true for the symbols without suffixes. To be precise, we define ~k as the 

cofactor of A~ in the determinant of the coefficients on the right of (40), multiplied 

by iA, and so on for all the elements. The linear forms ~, $', ~" are then trans- 

formable into akU~+fikVkq-TkW~, etc. by an integral unimodular substitution 

(namely, that  which is contragredient to the substitution from U, V, W to U k, V~, Wk). 

Note that  none of A~ . . . .  , F~' can be zero, by the hypothesis of Theorem 1. 

L e m m a  6. We have, for all k, 

(46) A k> O, A k > CAk+ 1, 
t t 

(47) IA~_~ll > CIA~I, 

(48) IAkA'k+IA'~'+II < ~ A-1C 6 . 

Proof. This is simply a restatement of (34), (35), (36), which is immediate 

by (41). 

L e m m a  7. We have, for all k, 

1 1 
(49) IAkflkj < V~ rAkyki < V 2  

3 3 p I 

(50) IA'kfl'kl < 2V2 iAkT~l < 2~2 

Proof. By definition, 
! f f  f f  f 

flk = iA(FkA~ --Fk A~) , 
hence 

IAkfld g 2A1AkF'~A'hJ. 

By (43) and the inequality of the arithmetic and geometric means, 

1 / 2R'~]AkA~I G �89 
Also, by (45), 

2R-~lr'~l < (G)~. 
Hence 



Euclid's Algorithm in Cubic Fields of Negative Discriminant. 169 

1 
97kCk): < 1A( 8~ 2)~ --  

by  (38) and (39). The  same me thod  proves the second inequal i ty  of (49); in the 

final step 97~Ck is replaced by  ~7/~.~. 

Again, by  definition, 
' " " A "  

hence 
t t ! t t 

IA~fl~l < A[A~A~F'~[-[-AIA~I IF~I. 

1 
The first t e rm on the r ight  has a l ready been es t imated  above as not  exceeding ,/x" 

2 [ z  
For  the second term,  we have 

4R-~IA;[ ~ ~ ~k ,  k[Fk[ ~ (G~,)8, 

by  (43) and (45), whence 

2 1 AIA~I"IF~I < iA(~kGk)~ < - -  

I t  follows tha t  
3 

1A;s < 

1 

and the same me thod  proves the second inequal i ty  of (50). 

t t  

Defini t ion.  We observe tha t ,  by  the  definitions of ~1~, . - - ,  Tl~ we have 

(51) A,.flk + A;fl[~+ A'k' fi'k' = O, 

(52) Akrk+A;r ' k+A 'k ' r ' k '  = O. 

Hence we can write 

A'kfl' k = - -1Ak f lk+i (~k  , 
(53) , , 

A ~ y  k ~ - - �89  , 

where ak and r k are real. Note  t h a t  

(54) ak~k--r~flk -- iA'k flkVk--Px, V~) = --AA'kA'k'  + O. 

L e m m a  8. There exist, for  every integer k, integers PI~, ql~, such that 

9 
, , +  ') (56) IAk(P~ qh.~k[ < = - - "  

1 l 
(55) 
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Proof. For  brevi ty  of writing, we omit  the suffix k in the proof. Firs t  we observe 

tha t ,  by  (49), we can satisfy (55) with q = 0 and p = ~ l  or ~ 2  or ~ 3  unless 

1 
Alfll < ~ 6 ~ "  If  we can do this, then (56) is satisfied, since 

9 
31A'fl' I < . . . .  = 

1 
by (50). Similarly if AJ7, I >6-1/2" Hence we m a y  suppose tha t  

1 1 

(57) AJfll < 6 t / ~ ,  AITI < 6 V ~  

Suppose, wi thout  loss of generality,  tha t  Ir > pv I. Note tha t  ~r # 0, by (54). 

For  any  integer q we can determine an integer p so tha t  

I f  we can choose q so tha t  

r 1 

(58) 2 V 2 + ~  AIflJ < A -- flq+Tff < /2 -+2  ' 

then (55) will be satisfied. Also (56) will be satisfied, since 

1 
IA' fl' p+  A'),'ql <~ -2A lflp+ yql + )~p+ rq[ 

1 1 

1 1 1 
<= 2V~ +~  Arflr+~ IA'fl'l, 

1 1 3 
' 

by (53), (55). 

I t  remains to choose q to satisfy (58). This is possible if 

(59) 
1 1 

AF I >- A . 

Now, in fact, since IrJ < JaJ, 
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and 

A ~ ~ AIC~I§ 

1 1 

by  (57). Hence  (59) is true, and this proves the result. 

171 

4. P r o o f  of  T h e o r e m  1. 

Theorem 1 asserts, in effect, tha t  there exist a real number  4 and a complex 

number  2' such tha t  
[ (~+2) (~ '+4 ' ) (~"+2" ) I  > cA 

for all integers u, v, w, where ~, ~', ~" are the  linear forms (1), of de terminant  iA ,  

and 4" is the  complex conjugate  of 2'. B y  an integral unimodular  subst i tu t ion on 

the variables, we can t ransform ~, ~', ~" into ~ o U § 2 4 7  etc. Hence  it suffices 
? ?! 

to determine 20, 40, 4 o so tha t  

(6o) ](~oU+fi.V+roW+2o) (~'oU+/oV§247247 _-> d 

for all integers u, v, w. 

We shall achieve this by  the definitions 

0 

(61) 2o = _,~ (v&+q~7~), 
r----CQ 

v ~ v p 
( 62 )  - -20 ~- ~_~ (Pr f l r§  

p! ~ v! p! 
(63) --20 = . .  (P+'flr §  ) , 

r = l  

where p~, q~ are the integers determined in L e m m a  8, provided tha t  C is t aken  to be 

sufficiently large. These series are absolute ly  convergent,  since 

1 
0 <~ Pr~r§ ~ V ~ i r  , 

9 
! r . . . . . .  

lP~flr§ < 2V2[Ar ] 

and A~, A~ satisfy (46) and (47). Also 40 is real and 2' 0' is the complex conjugate  
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of 2~. We" define 2k, 2'k, 2'~' for all integers k by similar series: 

k 

( 6 4 )  ~k = 2 "  (Pr~r-~-qr~Yr) '  
T 

t ~ ,  t t 
(65) --~k = __ (Prflr~t-qrZr), 

r ~ k + l  

f! ~-~ vr tt 
(66) --2~ = (P,Dr +qrYr ) .  

r = k §  
By (55), (46) we have 

1 1 ~-~ 

2 V 2  V z  T =--OO 

k 1 1 Jl+ )'Akl 
g l/ l - : : - - -+Z t 

<__ 1 +  ~ C r-k 

i .e .  
1 C 

(67) 21/~ < A,g~ __< . 
l / ~ ( c - ~ )  

Also, from (56) and (47), 

+ A'  9 
, ,  9 2~  ~!<__ 

(6S)  1Ak~]c[ ~ 2 ~ 2 r : k + l  2 V ~ ( C - - 1  ) 

Suppose there exist integers u, v, w which violate (60). Write 

(69) ~o = aou+f ioV+7ow , e tc . ,  

so t h a t  our hypothesis  is t h a t  

(70) I(~o+~,,) (~'o+/o)(~'o'+/o')l < d .  
p 

Define Sk, Sk, ~" for all integers k by the recurrence relations 

(71) ~-1  ~-- P~flk+qt:~k-i-~k, e t c . . .  

Then, in virtue of (64), (65), (66) and (71), we have 

(72) ~o+2o ~k+),~, ~' ' = ~k+~k,  ~k +~'k = ~ , , + z 0  ' ' ~ ' o ' + Z i ( =  ~ . . . .  

! 
for all k. I t  is impor tan t  to observe tha t  ~ ,  ~k, ~" k are values of the linear forms 

~, ~', ~" which arise from integral values of the variables. 

We now define a part icular  integer k by  the condition 
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C2c~ C'~ c~ 
- - - - <  I$o§ < - - ,  (73) A k - 1  __ Ak 

which is uniquely  soluble for lc unless $o+2o = 0 (a case which we re turn  to in 

a moment) .  By  (70) we have  

[4~)-}-2~,[ 2 < cAAI~_~C-2c-~ 

(; ) < cA A aC6[A'kl ~ C-2c-~ 

< C4dlA'tl -~, 
using (48). Thus 

C~- c.~ 
(74) ]$;+2'o[ < IAk-- ~ �9 

In  the case when ~o+20 = 0, we simply choose k so large tha t  (74) holds. 
! 

Since $0+20 = ~k+2k, etc., and since ~k, ~t, ~" k are values of the  linear forms 

~, ~', ~", this gives us the existence of integers u, v, w such t h a t  

C2c~ 
[~h. u+t~ t  v §  w+)~ .  [ < - -  

A t  ' 

"~2 1 (5 c'~ ,* t t 

IA;[  ' 

C"c~ 
l~,'k'u+y~'v+ ~,;'w+ g'l  < - -  

IA;'I" 
! t !  

If  we mul t ip ly  the homogeneous  linear expressions on the left by  AL, A t, A L, and 

add, we obta in  s imply u. Hence  

(75) [u+A~2t,+A'k2'k+A'k'2~( I < 3C"-c~. 

But ,  by  (67) and (68), 

1 9 C 9 

~V--~ 1/~(c-1) < Ak~+A'S~+A;%: _< V~(C--1) t V ~ ( c - 1 )  

This contradicts  (75) if c is chosen to sat isfy both  

3 C-ca < (76)  " ' 

and 

(77) 3C2c~ < 1- -  

1 9 

21/2 V } ( c - 1 )  

C 9 

( 2 ( C - -  1) /~(c-1)" 
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I t  is plain t h a t  if C is sui tably  chosen as a large posit ive constant ,  these can 

be satisfied by  a posit ive value of c. Thus the hypothes is  (70) has led to a contra-  

diction, and this proves Theorem 1. 

The second of (76), (77) is always more s t r ingent  than  the first. If  we choose 

C : 37 .5 ,  we find t ha t  8 • l013 is a legi t imate value for c -1. 

5. Pre l iminary  L e m m a s  for the Proof of Theorem 2. 

The  hypothesis  of Theorem 2 is t h a t  the t e rn a ry  cubic form 

(78) f(u,  v, w) = ( ~ u + f l v + y w ) ( a ' u § 2 4 7 2 4 7 2 4 7  

has integral  coefficients, and is not  zero for integral  values of u, v, w o ther  t h an  

0, 0, 0. We proceed to  develop some consequences of this hypothesis .  In  the  course 

of this we shall see (in L e m m a  l l) t h a t  the above hypothesis  implies t h a t  the 

adjoin t  forms E, ~ ' ,  ~ "  also do not  represent  zero; a hypothesis  which was made  

explici t ly in Theorem 1. 

L e m m a  9. There exists a cubic field K of negative discriminant, and there exist 

algebraic integers ~*, fl*, y* in K, such that 

mf(u, v, w) = N(o,*u§ 

identically in u, v, w, where N denotes the norm of a number of K, and m is a non-zero 

integer. 

This is a classical result ;  for a proof see Bachmann,  loc. cit., Kap.  12, w167 l, 2, 3. 

Remark. I f  we prove Theorem 2 for the t e rn a ry  cubic form mr(u, v, w), its 

conclusion will also hold for f(u,  v, w), by  considerat ions of homogenei ty .  To avoid 

the in t roduc t ion  of new symbols,  we shall therefore  assume henceforward  t h a t  in 

(78), ~, t3, ~ are algebraic integers of K ,  and a ' ,  . . .  are their  algebraic conjugates  

in some f ixed order.  Since the de te rminan t  of the l inear forms in (78) is then  an 

integral  mult iple of the  square root  of the discr iminant  of K, we have  

(79) = i h V d ,  

where h is a positive integer and - -d  is the  discr iminant  of K. 

L e m m a  10. The numbers A, B, F are linearly independent numbers of K, and 

their algebraic conjugates are A' ,  B', F'  and A" ,  B",  P".  

Proof, Let  v~ be a cubic i r ra t ional i ty  which generates K. Then  
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0/' /~t = ] 0 t ~)~t2 X / ~921 ~)22 ~023| , 

a"  fl" ' 1 ~" O"2J ~P31 I)32 ff33J 

where the p,,.~ are rat ional  numbers,  whose de terminant  is obviously not, zero. Hence, 

by  the definition of A, . . . ,  F "  in w 3, 

I A A B ! , t ]  r-1 1 1 1 -I ~qll q12q13~ 

~ A "  B "  ' < 02 ~9'2 0"2J  (~qal q32 q33j 

with rat ional  numbers  qrs. The reciprocal matr ix  on the right has for its first row 

v~'t~ '' ~'-t- v a'' 1 

( ~ - 0 ' ) O - ~ " )  ' (~ -~ ' )  O - ~ " )  ( ~ - ~ ' ) ( 0 - ~ " )  

and its other rows are obtained by cyclic permuta t ion  of ~, 0% O". I t  is plain t h a t  

these three numbers  are l inearly independent  numbers of K,  and tha t  the cyclic 

permuta t ion  produces their  algebraic conjugates in the same order as it  produces 

those of ~, fl, y. Hence the same is true of A, B, F, which are linear combinations 

of the above three numbers  with rat ional  coefficients whose de terminant  is not  zero. 

L e m m a  11. I f  ~, ~ , ~ are the linear forms defined by (7), then A 4 ~ ' ~  '' is 

a ternary cubic form in U, V, W with integral coefficients, and is not zero for integral 

U, V, W, not all zero. 

Proof. By L e m m a  10, A is an element of K and  A',  A "  are its conjugates in 

some fixed order. Similarly for B and F. Hence the coefficients in the product  

S ~ ' ~ "  = (A U + B V + F W )  (A' U + B '  V + F '  W) (A" U + B "  V + F "  W) 

are rational. Also, since A, B, F are l inearly independent ,  the product  is not  zero 

if U, V, W are integers, not  all zero. Note also t ha t  A 4 is rational, by  (79). 

Moreover, since iAA = fl 'y"--fi"y' ,  etc., and  ~, fi, ~ are algebraic integers, i t  

follows tha t  AA,  AB, AI" are algebraic integers. As A is also an algebraic integer, 

by  (79), i t  follows tha t  the coefficients in the product  A(AZ)(A~')(AZ")  are both  

rational,  and algebraic integers, and so are integers. 

6. Fur ther  L e m m a s .  

We know, by  the work of w 3, tha t  it  is possible to find a set of integral uni- 

modular  substi tutions,  one for every integer k, which t ransform the linear forms 
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~" ~' ~" into those given in (40), such tha t  the coefficients A k, F '  k' satisfy 

(43), (44), (45) [with (38), (39)] and (46), (47), (48). The assertion of L e m m a  10 will 

obviously be valid for A k, B k, I~. Our next  lemma asserts t ha t  it is possible to do 

this in such a way tha t  At,, . . . ,  F' k' have an impor tan t  addit ional  property.  

L e m m a  12. There exists a set of integral unimodular substitutions, one for every 

integer k, transforming the linear forms ,.~, E', ~ "  into those given in (40), with the 

following properties. First, (43), (44), (45), [with (38), (39)] and (46), (47), (48) are 

valid for all k. Secondly, there exists a positive integer j such that 

(80) A k = o~A~,~4, B k = ooBk§ , F t, = o~Fk§ 

for all t ~, where o) is a number of K satisfying 

( 8 1 )  r > 1 ,  o r  : 1 .  

Proof. 1 We begin by  considering the si tuat ion of w 3, and use the notat ion of 

tha t  section. Le t  

(82) Ft.(U, V, W) . . . . .  T , ,  : (AkU+B~.V+T'kW) (AkU+BI~V+F'~W) (A k ~ + B  k V + F '  k' W ) .  

By L e m m a  11, A4Ft.(U, V, W) is a te rnary  cubic form with  integral coefficients 

whose value for integral U, V, W is not  zero unless U, V, W are all zero. We shall 

prove tha t  all the coefficients in this te rnary  cubic form are bounded by a number  

independent  of k. 

Since 
~ J F k ( U ,  V ,  W ) I  >= 

for all integers U, V, W not  all zero, we have, in particular,  

AklA'kl 2 >= Z 1 - 4  . 

Hence, by  (43) and the inequal i ty  of the ar i thmetic  and geometric means, 

97k = R~Ai+4R-~IA ' J  >= 3(4A~.IAkI*) ~ _--> 3(4A-s) '~ �9 

I t  follows now from (38) and (39) t ha t  ~k, ~k, Ck are bounded by a number  in- 

dependent  of /c. By  (43), (44), (45), 

RA~ R B  k R F  k R - 1 A '  2 R -1B'  ~ 1 ,o , , , k ,  k ,  R I r ; I  ~ 

are bounded. I t  is now clear from (82) tha t  all the coefficients in Fk(U , V, W) are 

bounded. 

1 The a rgument  here is again essentially due to Hermite.  
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As there are only a finite number of possibilities for the form Fk(U, V, W), 

there must exist integers g, j ,  with j > 0, such that  

Fg(U, V, W) = Fg+5(U, V, W) 

identically in U, V, W. This implies that  the linear factors in Fg(U, V, W) are 

proportional to those in Fg+j(U, V, W), in some order, with constants of pro- 

portionality whose product is l. Now Ag, Bg, Fg arc linearly independent elements 

of K, and so are Ag+j, Bg+j, l"g+j. I t  is impossible that  the ratios Ag:Bg:Fg should 
! t t 

be the same as the ratios Ag+j:Bg+j:F'g+j; for this would imply that  Ag/Bg would 

be in both K and K', and so would be rational, contrary to the fact that  Ag and 

Bg are linearly independent elements of K. The only possibility is that  

! t ! AgU +BgV +FgW ---- co (Ag+jU+Bg+jV+F'g+jW), 
t ! ! A'gU +B'gV +I ' ;W = co' (Ag+/U+Bg+/V+I"~+/W) , 

Ag U+Bg V+F'g W . . . . . . . .  . . . . . .  ---- co (Ag+jU+Bg+jV+F'g+jW) , 

identically in U, V, W, where co, co', w" are numbers with coco'co" ~ 1. Plainly 

co = Aq/Aq+j is a number of K, and o~', co" are its algebraic conjugates. Also co > 1, 

by  (46). 

We adopt the existing definition of A~, Bk, F k for g ~= k ~ g+j ,  but  proceed to 

modify it for k < g and k > g+j ,  which we do by adopting (80) as defining Az~, Bk, F k 

for such values of k. Then (46), (47), (48) are valid for g ~ k < g + j  by the original 

definition, and follow by recurrence, using (80), for k < g and k ~ g+j .  

We modify the definition of R k by defining R~ for k < g and k ~ g + j  by 

the recurrence relation 
Rk+ j = coR k . 

This definition still preserves the minimal property (33) when k = g+j .  Also we 

define ~/k, ~k, Ck for k < g and k ~ g + j  by the recurrence relations 

Again, this is legitimate for k = g+j ,  and (43), (44), (45) [with (38), (39)] are now 

valid for all k. This completes the proof of Lemma 12. 

L e m m a  13. I f  0%, ilk, Y~ are defined in terms of the A k, B k, F k of Lemma 12 

by the same method as in w 3, then 

(83) O~k~j = (~alc, fik+j ~ coflk, Yk+j = CO~k, 

and similarly for their conjugates, for all k. Also (49) and (50) are valid for all k. 

12 -- 642138 Acta mathematica. 84 
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Proof.  As (49) and (50) depend only on (43), (44), (45) [with (38), (39)] and 

(46), (47), (48), their validity is assured, by Lemma 12. As regards (83), we have, 

for example, 
P t t  P !  P = (BkI'i --Bk Fi) 

= iA (Bk+iP'k+ j --Bk+jF'k+j)co eo 

by (80) and (81). 

1 

O) 

also 

(84) 

L e m m a  14. Integers Pk, qk can be chosen for  all k to satisfy (55) and (56), and 

P~ =- Pk+j, qk ~ qk+j. 

Proof.  By (80) and (83), 

Ak+jflk+ j = Akflk ,  Ak+jTk+j = A k 7  k , 

and similarly for the conjugates. Thus the inequalities (55), (56) are unaltered in 

meaning if ]c is replaced by k + j ,  and the result is trivial. 

7. Proof  of T h e o r e m  2. 

I t  suffices to prove tha t  the numbers ~0, ~0, ~'0', defined by (61), (62), (63), 

using the definitions of A k . . . . .  ~k, - . . ,  Pk, qk given in w 6, are such tha t  ~0 is a 
/ t  

number  of K and ~'0, ~0 are its algebraic conjugates. By Lemmas 13 and 14, and 

(61), we have 

~'0 

0 

(Prfir+qrrr) 

] oo 

= 2`" 2," (P~r--~+qrrr--~) 
r = l  8=1  

J 
= 2 .  7 2`" 

r=-I  8=1 

Again, by Lemmas 13 and 14, and (62), 
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o o  

j ~ 

p !  

Simi lar ly  for  2 0 . F r o m  these  express ions  i t  is clear  t h a t  2 0 is a n u m b e r  of K a n d  
! p t  

t h a t  20, 20 are  its a lgebra ic  con juga tes .  


