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1. Introduction. The object of this work is to study principal integrals and
kernels, extended over sufficiently smooth bounded surfaces S, possibly having
‘edges’, imbedded in the Euclidean 3-space; the edges are to be suitably ‘smooth’
(precise formulations are given in the sequel). On the basis of this study developments
are given, relating to boundary value problems of Hilbert-Riemann type,

(L.1) OH(t) = d~()A(t) +B({)  (t on S)

[4, B are of a Holder class on S; 4 & 0 on 81. Certain classes of solutions @(x) will
be sought, regular in a suitable sense for z in C(8) (complement of §), for which the
boundary values @+(¢), @-(¢) on designated positive and negative sides of § satisfy
(1.1). These boundary values will generally depend on the direction of approach.
Further, on the basis of our theory, we study singular integral equations

k(y, )

(L.2) altyu(t) + S Y
S

g g O+ Tl = £0

(r(y, t) = distance between y and t),
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2 W. J. Trjitzinsky.

the kernel being of a principal type (section 3), the operator 7" of a suitably regular
kind, a(¢), f(t) of a Holder class on 8§ (of a specified order of infinity near the edges).
We shall actually give a process of regularizing (1.2), so that the resulting equation
is a regular integral equation of the second kind.

There exist many developments along these directions in the complex plane £,
with § denoting a finite number of open or closed, suitably smooth curves in &, the
principal kernels being essentially of Cauchy type and the integrations being in the
sense of Cauchy principal values; this field has been studied by a number of authors,
of whom we shall mention N. E. MusarrLisaviLy, whose book! contains an extensive
bibliography, VEcoua, W. J. TrirrzINsKY? (who considers the case of intersécting
curves) and MICHLIN, whose monograph® will be referred to as [M]. The transition
from the situation in the complex plane, as indicated above, to a greater number
of dimensions presents substantial new difficulties. Instead of studying the more
general problem, when S is a (suitably smooth) n-dimensional manifold (n = 2),
with edges, imbedded in m-space (m > n) — we are limiting ourselves, as stated at the
beginning of this section. This is done for simplicity and is justified by the fact that
the case actually treated in these pages embodies the essential difficulties of the
case when § is a n-dimensional (» > 3) manifold. In this sense the subject of multi-
dimensional principal integrals, and the related problems, have been implicitly
treated in the present work.

Amongst the outstanding developments in the field of multidimensional integrals
are those of MicHLIN [M], G. GIRAUD? (also see references to Giraud in [M] and
Tricomr) (see [M]). The essentially novel feature of our work is the possible presence
of edges in 8, a circumstance adding great new difficulties. Tt is to be mnoted,
however, that very special instances, when surfaces with edges are present, have
been ingeniously treated by Tricomi. We did not find it possible to generalize
Tricomi’s methods to our more general case; thus our methods are unrelated to
those of Tricomi. The work of Michlin [M] contains some valuable indications

for the purposes at hand, especially with respect to regularizing (1.2). On the other

1 N. E. Mushelishvili, Granicnye Zadaci Teorii Funkcii i Nekotorye ih Prilozeniya k Matematiceskot
Fisike, Moscow-Leningrad, 1946, pp. 1-448.

2 W. J. Trjitzinsky, Singular Integral Equations with Cauchy Kernels, Trans. Amer. Math. Soc.,
vol. 60 (1946), pp. 167-214.

3 8. G. Michlin, Singular Integral Equations, Uspehi Matem. Nauk (N. 8.) 3, no. 3 (25), pp. 29-112
(1948}. This work is referred to in the text as [M].

4 . Giraud, Equations & intégrales principales, Ann. Sec. de 'Ecole Norm. Sup., t. 51, 1934, pp.251-
372; also, in the same Journal: Sur une classe d’équations intégrales ot figurent des valeurs principales
d’intégrales simples, t. 56, 1939, pp. 119-172.
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hand, it is Giraud’s work that enables transition to n-dimensional (n > 2) manif-
olds.

S s to denote a finite number of bounded surfaces, some closed and some open (that
s, having edges); these surfaces are to be without common points; for each a positive
and a negative side can be assigned. In section 2 precise hypotheses satisfied by S
are given; also a definition and investigation of so called ‘completely regular’ surfaces
is presented; the latter are used just in a few connections.

Much of this work relates to integrals

Ky, ¢
(1.3) P(g) — SS ;z(-(yy t;

q(y)do(y) [¢ Holder on §; ¢ on §7,

where the kernel k(y, t)r—2%(y,t) ((3. 1), (3.1a)) is a principal one in the sense of section 3.
In Definition 3.19 classes [«|S], [«[C(8)] are defined. Most of the developments are
under the conditions of Hypothesis 3.20 (supplemented by other assumptions, such
as (3.27)). Theorem 3.25 presents conditions in order that the integral (1.3) should
exist, for ¢t on §, in the sense of principal values. The integral, related to (1.3),

Y(x) :§ zcigi, ?)

(1.3a) \ vy )

q(y)do(y) (= in C(8)),

exists in the ordinary sense. In section 4 it is proved that for ¥(x) there exist analogues
of the well known Plemelj formulas (for integrals with Cauchy kernels in the complex
plane); thus Theorem 4.28 asserts that, when  (in C(S)) tends nontangentially to a

point ¢ on 8, one has

lim Y(z) = q(O)K()+¥(¢),

x>t
where P(t) is (1.3) (that is, an integral in the sense of principal values), while K(¢t)
is a function independent of ¢, but generally depending on the direction of approach;
K(t) is explicitly given by (4.22); this is obviously a very important function in all
boundary value problems, relating to integrals of form (1.3), (1.3a); some of its
properties are stated in Lemma 4.26.

Theorem 5.38 asserts, substantially, that ¥(z) is [«]C(S)] (if « > 0), is [0,

log |C(8)] (if &« = 0; cf. Definition 3.19), provided g¢(y) is [x|S8], with 0 =< x < 1.
This result refers essentially to the order of infinity, near the edges of S, of ¥(x).
In section 6 a study is made of the order of infinity of the principal integral ¥(t)
[(1.3), t on 8], for ¢t near edges; theorem 6.36 amounts essentially to the assertion
that ¥Y(¢) is [A|S], if ¢ ¢ [¢]S] (x4 B < 1), where 1 is a certain number depending
on the various Holder exponents and numbers, specifying orders of infinity (near
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edges) of ¢(y) and of the kernel in (1.3). Theorem 6.38 supplements the above result
in the case when § is completely regular (in the sense of section 2).

In theorem 7.18 is found the asymptotic form, near a point ¢ on the edges §,
of the curvilinear potential (7.1), whose density is along § and is of a Hoélder class;
(7.20) presents a solution of a certain related functional problem of use in treating
(1.1).

Boundary value problems (1.1) of HILBERT-RIEMANN type are studied in
section 8 [cf.: Notation 8.3; Definition 8.12; Lemmas 8.13, 8.14; Classes (4%*) (8.16),
(B*, A) (8.16a); Theorems 8.19, 8.25, 8.27, 8.29]; in these developments use is made
of most of the preceding developments.

Now, in the complex plane (when § is a collection of curves and Cauchy kernels
are involved) the situation is as follows. With the aid of Plemelj formulas singular
integral equations are related to suitable Hilbert-Riemann boundary value problems;
appropriate classes of solutions of the latter are found; then, using the fact that in
C(8) the integrals involved are analytic, one derives solutions of the integral equation
from those for the boundary value problems. This idea was carried out first in a
special case by T. CARLEMAN!; subsequently this idea of Carleman was combined
with some other considerations, leading to a fairly complete theory of singular
integral equations (with Cauchy kernels) in the complex plane, when § consists of
a finite number of closed and open curves [Mushelishvili, Vecoua and many others).
It is natural therefore to attempt treatment of the singular integral equation (1.2)
along similar lines. With the aid of Theorem 4.28 the equation (1.2) can be transformed
into a Hilbert-Riemann boundary value problem (1.1); on the basis of section 8 one
can find certain classes of solutions of the latter; however, it appears impossible to
obtain solutions of the integral equation from those for the boundary problem, the
reason for this being that nothing as simple (from our point of view) as the theory
of analytic functions is now available. Thus, for the present, the indicated approach
to integral equations will be not attempted. Instead we take the cue from the other
method, largely due to MrcHLIN and used by him in the complex plane as well as
for equations with multidimensional principal integrals (cf. [M]). This method
consists in forming an operator, whose application to the integral equation transforms
the latter into a regular Fredholm equation of the second kind [provided the ‘symbol’
(Def. in [M]) does not vanish]. Presence of edges in our case adds serious difficulties.
This approach is carried out in sections 9, 10, 11. Singular operators are studied in

1 T. Carleman, Sur la résolution de certaines équations intégrales, Arkiv f6r Math. Astr. och Physik,
t. 16, No. 26, 1922.
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section 9. Theorem 10.32 presents a formula of composition of singular integrals
(this involves Michlin’s operators k,,, defined over the Euclidean plane £,). Regular
operators are specified in Definition 11.2 and, finally, the regularization is carried
out in accord with Theorem 11.12.

The following notation will be used: points on S are denoted by t = (i, ty, t3),
T, Y, 1,...; points in the complement C(8S) of S are designated by x = (z,, %3, Z3),. . . ;
c* is the generic designation for a positive constant; l(t) is the distance from t to the
‘edges’ f of S; r{wx, y) = distance between x and y. The edges 8 are assumed to consist of a
Sinite number of simple closed curves f,, without common points and with continously
turning tangents. Let ¢ be any point of 8, and B; be the projection of 8; on the tangential
plane P, (at ¢) to §; Let the y,-axis be along the tangent line at ¢ and the y,-axis

extend from ¢ in P,; we assume that near c the representation of 8 in the (y,, y,) system

is of form y, = ().

2. Completely regular surfaces. It will be assumed that in a neighborhood
of every point 7, for which I(r) > 0 ( that is, not on edges f) the following is true.
On choosing the coordinate system (y,, y¥,, y3) so that its origin O is at 7 and that
the y,, y.-plane is concident with the tangential plane at v (such a plane is assumed

to exist for every t), the equation of the surface for ¥ near O has the form

(2.1) Ys = Flyy, y2) = anyi+2a,541Ys+0s5ys+R(Ys, ¥a)
while
, oF or
(2.1)  — = 2a,y,+ 20,59, + B, (Y1, ¥s), =— = 2045y, + 2045595+ Bo(y1,Y5) »
oY, 0Ys
ozF ..
du.oy. — 2aij'+Rij(y17 ?/2) (’L;] =1, 2); IR(yl: ?/2)! = 0*73(.7/) H
(2.1a) Y

|B(y1, yo)| = e*r¥(y), |Rylyss o)l = c¥r(y) [r3(y) = yi+u3] .

The following is assumed with respect to the nature of S near edges. If 7 is a point
on the edges and the y-system is chosen, as above, with its origin O at 7, the equation
of § near this point being y; = F(y,, ¥,), then the first and second order partial

derivatives of F(y,, y,) exist and are continuous and

*F (Y1, Ya)

(2.1)
%0y,

=c¢* (,j=12),

including a portion of § in the neighborhood of O (that is, of 7).
The above conditions will suffice for most of this work.
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S will be said to be completely regular if the above holds as well as the following.
On writing ¢? = (y,—1,)*+(y,—t,)? and forming the function
Gyle, 0) = [F(t;+e cos 0, ty+ ¢ sin 0)—F(1y, t,)—F, cos 6 p—F, sin 6 gJo~2

(2.1b)
[F, = 8F/ot]

where p, # are polar coordinates (in the ¥,, y,-plane) with pole at (¢, t;), one has

(2.1¢) IG 0, 0)—Golo, 0)] = c*(ti+15)F;

oF  oF s ol
(2'1d) @“ = é;‘}_ai, t(Q, 6)9 ) \Gi, t(@: G)V_Gi, 0(95 6)] é c* (ti_‘_t;)E'

1 3

8 is completely regular if in (2.1) one has

(2.2) Ry, y5) = .Z;G bisi Y Y)Y Y;Ys
7,
[biji, = byg, when (x, f,y) ts a permutation of (1, j, k)], where
2 b? 0 b Ve i b
(2.2a) Y1 Yo) = a_y: ik bijk(yu Y)Yy = ykm ik

are O(1) (that is, uniformly bounded in a vieinity of y = y, = 0).
We now proceed to prove the above assertion. For Ry, Ry, R;;in (2.1") we have

(2.3) By, y2) = EA:{,‘(le, Y YiY;s B, (Y1, y2) = ‘].ZYBZU(?/D Y)Y »
(2%} ic
(2.3a) A7y y2) = 3b,(yy y2)+,§ bijn¥1s Y)Y »
(2.3b) B (1, Y2) = 60yt 3 208, +0%olyi+ 200y, -
% 2%}

By (2.2a} the coefficients in (2.2), (2.3) are O(1}; the inequalities (2.1a) thus ensue.
In view of {2.2a)

(2.4) by yde Lip 1, blulyy, ya)yp© Lip 1;

(2.4a) A%y, ys)c Lipl, By y))cLipl.

For the function G,(p, ) (2.1b) we obtain

(2.5) I = 92'[Gz(9’ 0)—G (o, 6)] = R(t,+ oy, tot09) — Rty £,)— B{o1, 02)

aR/[. .
—B4(t), ty)01— Bolty, ta)0s {Ri(tb ty) = ?{2 0y = pcos 0; g, = psin b

1

Substitution of (2.2), (2.3), (2.3a) yields
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. I = I/+I”; I' = [szk(t1+917 l +92) z]k(tb tz)]tzt;tk
6.k
bi};{( )t t7t;{gl’ I - 3 pra [bmjk(tl_}—glf t2+92) ’L]k‘(tli t2)]tzt]gk
.5, %,
+3.>7 bijk(tf!‘Ql’ tz—l_@2)Qi9jtk+.—§;[bijk(t1+91’ tz"‘@z)*bijls(é’n Qz)]@i@j@k
7.k bk

In view of the first property (2.4) one has

(2.5a) I = O(r2(t)p?)+O(r(t)e?)+O(r(t)e*) = O(r(t)e?) ,
where r(f) = (££413)%. With the aid of a mean value theorem
- ]fgbw(tl—{—ﬁgl, ty+905) —bl (41, L)ttt 0, 0<d<1)
and I' = I,+4-1,, where
I, =2 [bw b+ 001, b+ 002 (E,+00,) —blu(ty, )0,

475, A

= ”_192 zjx t1+19@1, t2+ﬁgz)titj9u91 ‘

7/ ] %

By the second property (2.4)

I, = O(r*(t)e?);
on the other hand, in view of the assumption regarding the first function displayed
n (2.2a), we have I, = O(r*(t)p?). Thus I’ is of the form O(r¥(t)p?}; together with
(2.5a), this implies that
(2.5b) I = O(r(t)e?) .
As a consequence of the first equality in (2.5) the above signifies that G/{g, 6) has
the property (2.1c).

Turning to @, (g, 0), as defined by the equality in (2.1d), we obtain

1, = o[@, (0, 0)—G, o(0, 0)] = R, (t;+oy, tat02)— B, (b1, 1) — R, (01, 02) -
Substituting (2.3) one deduces

y[A (it 01, tat02)— (tv tz)]titj

+22 vAV (t1+01, tat02)t 05 [A (t1+915 tyt02)— (91’ Qz)]@i@j .

)
Since (by the remark subsequent 2.3b) A%(...) = 0(1), on taking note of the
first property (2.4a), one obtains

I, = O(r*()e)+O(r(t)o)+O(r(t)e?) = O(r(t)e) ;

accordingly
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Gv,t(@: 6)'—01/, 0(@7 0) = 0(’/'(i)) »
which establishes the inequality in (2.1d). The italicized statement (2.2), (2.2a) is
thus proved. An analytic surface (that is, one for which F in (2.1) is a series in positive

powers of y,, y,, convergent near y, = y, = 0) is completely regular.

3. Principal kernels. We look for conditions under which a series

k(y, x)

¥y, x) ¥y, x)
3
(3.1a) k(y, 2) = 3 Viryta, . .. im Wi (Y, B)w,,(y, ). . .w,; (¥, )
iy nntm=1
1 . L. . . . Yi—%;
[yil'__im = Vi1 ijm when (¢,...%,) is a permutation of (j,...7,,)], w,(y, ) = ( ),
r(y, «

convergent for all y on S and all x, represents a principal kernel; the y, ; (y) will
be assumed to be of a Holder class on S; more precise conditions in this regard will
be given in the sequel. Let ¢ be a fixed point on S (not on §); we write

(3.2) kn(y, @) = k,(tly, 2)+Fk,,(ty, ©),

k;n(tly’ .’E) : 12-/‘7/11 . ..im(t)wil(y’ LE) . 'wim(y? x) 2

2

kn(tly, @) = 2o i@ =7y i)y, @) w0y, (Y, @)

- -Tm

and
(3.2a) kly, x) = k'{tly, )+k" (¢|y, x) ,

Bty 2) = 3 k,(tly, %), E'(ty, x) = 3 ky(tly, ) -
m=1

m=1

Correspondingly for (1.3) one has

k' s
(3.3) v = o, wo={ "0 e,
Jg s
oKy, Y
) =\ L 1),

Provided, as we assume it for the present without further detail, the y... and ¢
behave near g suitably, the integral for ¥ (t) will exist as an ordinary integral;
the conditions for this will be inferred in the sequel by examining the inequality

k"(tly, 1)

3.4
3.4 r3(y, 8

q(y)

1 o
<;y—lq(y)l‘2' S Wi in® =i @)

- ( 3 t) m=141,...un
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Under such an assumption, we are to show that k'(t|y, t) s a principal kernel, that is
that the integral for ¥’(f) exists in the sense of principal values.

Introduce a Cartesian coordinate system (Y, Y,, Y,), whose origin O is at ¢
and whose 4- Y ,-axis is coincident with the positive normal to S at ¢; the Y, Y ,-axes
will be in the tangential plane to S at . Capital letters will designate points in the
new coordinate system. We thus have an orthogonal transformation

(3.5) yi = t+a,Y+a,Y,+a,Y; (t=123),
where

- —0G+h), , _
(3.5&) %‘a%}azk = % a:;ia;ci - 6] { =1 (.- — k)y aii‘) - n’t(t) b4

with the 7,(t) denoting the direction cosines of the positive normal at {. One may,

for instance, choose the a;; as follows (when n, 4 1.1):

G e G 74(t) —NNg n
11, 12’ 13 —‘:’ I ———— 3 1
Vieni@) y1—ni
(3.5b) Og1; Qagy Boy | = 0, l/l—ng, N
- — TNy

g1, Age, A —_——, _—, n

31 32 33 Vl_ng l/]__ng 3
When |n,(f)] is near 1, a suitable modification of the above matrix is to be used.
One accordingly has (cf. (3.2))

+

3
(3.6) k, (tly,t) =k, (Y,0) = Z’I’slt..Sm(t)Wsl( Y,0)...w, (Y,0),
81y...8;m=1
where 1
(3.6a) WY, 0)=rYY,0)Y,,

3
Fsl, 82,. . .am(t) : Zyil. . .im(t)aih 1%, 8" " Qi 5m -

... =1
Let 8, , (a, > 0, sufficiently small) be the portion of S, projecting orthogonally
on the tangential plane at ¢ into a circular region of center ¢ and radius a. On writing

’ 1,0 ! k, ’
(3.7 V() = V,(0)+F;°1), Y. () = Sq %q(y)da(y),
k(tly, ¢
wh o) = S—%y—t)—)q(y)da(y) (over §—8,,),

it is observed that the integral for W2°(t) exists in the ordinary sense, provided
the kernel and ¢(y) is of proper order of infinity for y near $. Accordingly we are
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to secure existence of the integral for W.(t) in the sense of principal values. In the

(Y,, ¥, Y;) coordinates one has
(3.8) v =\ ¥, 00 ¥, 0)(Y)do(T),
where S(0,a) = 8, , and
(3.8a) K(Y,0)= Xk (Y,0) (cf. (3.6)).
m=1

Introduce polar coordinates in the Y,, Y,-plane,

7
(3.9) Y,=pcos 0, Y, =pcosf, 0,=0, 6225—0.

Near O the equation of the surface will be of form

(3.10) Yy = F(Y,, Y3) = 0(¢%);

one will also have

o _ Olp) (i =1,2), {1+(8F )2+(8F)T: 14+0(g?),

oY, oY,/ "\ev,

(1°) do(Y) = odedd[14-0(¢*)];
furthermore

e i 0 — 0(e?)

(Y00 TiHYiETY YIRTiAY o040
so that
2 L 140
(2°) 73(1;’ Oj = (_; %15
whence, by (3.6a), (3.10) and (3.9),

1

(3%) WY, 0) = O(p®)r-1(Y, 0) = O(QZ)E[H—O(QZ)Tlr = O(g) .

WY, 0) = [14+0(p?)] cos 8, (s=1,2).
Thus, in view of (3.6)

2 .
kY, 0) = 3 Iy ., OW (Y,0)...W, (Y, 0)+0(g)

Sm
S1, 0 Sm=1

(3.11)
2
=’ r,  ..(t)cosb, ...cosb, +0(g)

81y..-8m=1
and, provided suitable conditions of convergence (to be specified in the sequel)

are satisfied,
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(3.11a) k(Y,0) = k"*(t, 8)+k" (o, 0); ko, 8) = O(o);
E*,0) =3 M, ,(@cosf, ... cosb, .
m=1 81,...8p=1

Accordingly as a consequence of (3.8), (1°), (2°) we may write formally

ot 27

! 1, * 1,0 d
W“”:S 5 W’<%m+k’@ﬁﬂu+0@Mq@ﬂ%fdm
0=0 Y§=0

where q(p, 6) = ¢{Y). Since

(B *(t, 0)+&" (o, O)I[1+0(g%)] = k" *(t, 6)+0(o) ,
it follows that

(3.12) Wit = WL+ P,

with the last term expressed by an ordinary integral and

2

(3.13) WL * () — S g

0=0 ¥Y9=0

d
k¥ (¢, 0)q (e, 0)~ df

%
(formally). If in the Fourier expansion of k" *(¢, 6),

(3.13a) kb *(t, 6) = -%fo(t)-lr-‘g’ [f.(t) cos nB4-g, (1) sin nd]

n=1

one has f,(t) = 0, it follows that
2n

(3.14) S KoE( 0)d0 — 0 [of. (3.11a)];
0

k" *(t, 0) is then the ‘characteristic’ (terminology of [M]) of the kernel (3.1) at the
point t (on S). When fo(t) in (3.13a) s zero, the integral (3.13) and, accordingly, the
integral for W(t) (1.3) will exist in the sense of principal values (¢ is, of course, of a
Hélder class). Since the condition securing the principal character of the kernel

(3.1) is (3.14), we may also proceed as follows. One has

2
(3.15) I, . (Bcos b, .. cos 0, =p,({t)+p,t 0=k, * 0)],
81,00 S =1
m W27
Pult, 0) = X [P, (1) cOs vO+p,, (2) sin v6] , 5 P(t, 0)d0 = 0
v=1 0

PO+ 2,8, 0) ts the ‘characteristic’ of the kernel k,(y, x)r—*y, x) (cf. (3.1)); this
kernel is, accordingly, a principal one if and only if p,,(t) = 0. In order that the kernel
k(y, z)r=2(y, ) (3.1) be a principal kernel it is not necessary that all the kernels
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k,(y, x)r—%y,x) (m=1,2,...) be principal; k(y, x)r~%(y, ) will be a principal

kernel if

(3.16) PO+l = 0;
in fact, (3.16) will secure (3.14). One has

(3.16a) Pplt) = 0 (m odd)
and

(3.16b) Pat) = Iy 4 (D) +175,5(0)]

Pat) = g[Fl L1, l(t)+2rl 1 22(t)+F2222(t)] s

,,,,,,,,

To get the general expression for pw(t)(,u = 1) we write

2 20
(3.17) 2, o (t)cos b, ... cosl, 2 Ik(t) cos 270 sin %0

815+ .. Sp=1 =

(m = 2u). The term free of § in the Fourier expansion of cos #7%0 sin *0 is A*F,
where

(—i)katmgmt — 02/“’“0’"( 1 (for k < p),

8=

=3

"
= MO FCE(—1)°  (for k> u), = 0 (for k odd)

- s
s=k—pt

(C:: are binomial coefficients). Thus

3
(1) pol) = S IHHOART ez 1),
o2k
(3.172) ar g Yooy (o= k=t),
810

I
AmPh — g7 3T O SRR (— 1)t (ﬁ <k= ﬂ)
T p—s 8 2 =
s=2k—pu
I'*®¥(t) is the sum of Fsl,_“@”(t) over sets (s;,... 8y,) consisting of 2u—k numbers
‘one’ and k numbers ‘two’; the number of such sets is C7#; furthermore, Iy seu(®)

is unchanged when the subscripts are permuted; hence
(317b) Fz'u’k(t) - Olzcur2/,¢—k;k(t) 3 F2'u-k;k(t) = Fl...],2.“2
(1 repeated 2u—£k times, 2 repeated k times).

In view of (3.16), (3.16a), (3.17b), (1°), (3.6a), it is observed that k(y, x)r—*(y, x)
(3.1) is a principal kernel (on S), provided
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(3.18) Do) +palB) -+ -+ Py, () F--- =0,
where
u
(3'183’) p2[u(t) = é:)O‘?ZlLlﬁAM‘rii‘yfﬁk;‘zk(t)
[A* % from (3.17a); cf. notation (3.17b) for T'.......],
3

(3.18b) Fw-‘zk;zk(t).: Eﬁil...izﬂ(t)[ail,laiz,l s Gy, -

t1s e day=

o TP .aim"z] (v = 2u—2k);
here the a;; = a,(t) may be defined as stated in connection with (3.5b) (the a;; satisfy
(3.5 a)); the above is asserted under the supposition that suitable conditions of
convergence of the series involved are satisfied (this will be formulated in the sequel).
With the aid of (3.5a) we obtain the explicit formulas
(3.18¢) palt) = %{)J Vii— 2 ynn}

1,92

— 3 ¥
palt) = §{%’7i,i,k,k_ 2 2 Vi, i My T 2 yil,ig,ig,i4ni1ni2ni3ni4}:
s

%1, %257 215 %2,73, U4

Pelt) = x%{ 2 Vi by —,32 Vir,inini, b, k70, Ty

ik, v i1rdz, i K

1,12, %3, 14, 0 ,. . .16

‘7
+32 i 5, gy 1y Ty Ty i Py — o Viy iy + Mg s o -

as remarked before, ko (y, 2)r—*(y, x)((3.1), (3.1&)) is a principal kernel (on 8§), if
Py(t) = 0 (on 8). Use will be made of the following.

Definition 3.19. It will be said that q(y) is of a Holder class or, simply, is a
Holder function on S, if
(3.19a) lgy)—aly") = @y, y") (0<v=1)

forally', y'" on S, not on §; here Q is bounded for y', y'" at any positive distance from f;
@ may become infinite as y' or y'' tends to §; a function satisfying (3.19a) will be termed
of class H or, more specifically, H,; if @ can be selected as a constant, it will be said
that q(y) s uniformly H or H,. The class of functions q(y) of class H, for which

(3.19b) lg(y)] = c**(y) [y on S near B; Uy) from (1.11); 0 =< «f,

will be designated by [x]8]. The number involved in the latter symbol will be always = 0.
If q(x) is defined in O(S) (complement of S) near  and

(3.19¢) lg(@)| < ¥ (@)
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fx in C(8) near §; tangential approaches to S or f excluded), its class will be designated
by [x|C(8S)]. In the cases when (3.19b), (3.19¢) are replaced by

(3.19b1) 4] = ) log
I(y)
(3.19¢1) 4@ = H@) log
l(y)

respectively, the classes will correspondingly be designated by

[x,log |S],  [x,log |C(S)].

Hypothesis 3.20. We assume that the y, ; (y)c[0]S]; specifically,

(3.20a) |7r;1...¢m(?/)i = €

Sfurthermore, it will be supposed that

(3.20D) ¢ = e 3", 0= e, 3" < oo,
1 1

With regard to continuity of the y...(y) it is assumed that
(3.20¢) Iys, i W) —Vi, in O = Ay, 7"y, 1) (0 < h < 1; h independent of m) ,
where y(y, t) is bounded for ly) = 6, U(t) = 6(6 > 0) and

8

A

(3.20d) ¢ = X' m?], 6" < 0.

gl

Under the above hypothesis for the functions &, (y, x), k(y, ) of (3.1), (3.1a)

one has
3

(3'21) |km(y7 x)] é 2} lyil...im (y)l é 3mcm ’ |k(y: x)[ g CI >

by ip=1
moreover, the series for k(y, ) converges absolutely and uniformly (with respect
to z, y) when l(y) = é (any d > 0); for the functions of (3.2), (3.2a) we have

(3.21a) tly, ) < Xy s (0] = 37,0,
1, -t
ktly, @) = XWviy i @) —=Vig. i O = 30,9, 0" (9, 1)
K (ty, 2)] = ¢, (s )] = ¢ "y(y, Oy, 1) 5

the series for £'(tly, ) converges absolutely and uniformly; the series for k" (t|y, x)

converges in the same way when l(y) = 6, I(1) = 6.
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We recall that the study of the integral ¥(¢) (1.3) can be carried out on the
basis of the decomposition (1) = ¥'(¢)+ ¥ (¢) (3.3) when the kernel k(y, x)r—2(y, z)
is a principal kernel, which is henceforth assumed. Let ¢ be a fixed point on § not
on f3. Let S, , be a portion of S, as stated subsequent (3.6a). The integral for ¥’(¢),
extended over S, ,, that is, ¥,(t) (3.7), exists in the sense of principal values; the
integral for ¥'(t) over §—8, , = S’ has been designated as ¥,"(t) (3.7). One has

. C K (tly, 1) .
el = \ S a)idoty) = et iy, 0] la@)ido)
Jsr T3y, ) Vg
Thus by (3.21a)

L) <= o \'S la@)ldo(y) < o*\ laty)ldoty) .
Qs vS

The integral last displayed, and hence the one for ¥} °(t), exists in the ordinary sense if
(3.22) dy)clalS]  (O=a<l).

The truth of this assertion can be seen from the following considerations. It is
sufficient to prove existence of the integral

(3.22a) y = § lg(y)lda(y) ,

ve

where s is a part of S consisting of a narrow strip, whose boundary is a ‘curvilinear
rectangle’ one of whose sides is a small portion g’ of . In view of the ‘smooth’
character of the surfaces S and the curves g, it is sufficient to regard s as a true
rectangular domain R, with §' as one of its rectilinear sides; choose the origin o of
the y-coordinate system at an end point of §’, so that g’ lies on the -y,-axis, while
one of the other sides of R is on the +y,-axis; {(y) is then replaced by y,. It is then
observed that existence of the integral » (3.22a) (under the condition (3.22)) is
secured if the integral

01

C2
g \ y,*dydy,  [e;> 0, ¢, > 0]

Yy2=0"y1=0
exists; this is the case since « < 1. Our conclusion, then, is that the integral ¥'(t) (3.3)
exists (in the sense of principal values), provided Hypothesis 3.20 holds and q(y) is [«]S],
with « < 1. We turn now to ?’'(¢) (3.3); as a consequence of (3.21a)

(3.22b) |¥P(N)] = c* \ Y@ Vg (y, do(y)  (k, > 0, from (3.200)).
vs

The integrand above is bounded when I(¢) = 25( > 0) and y satisfies
Hy) =6, rly,t)=09.
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Hence to prove existence of ¥''(t) (fixed ¢, with I(t) = & > 0) it is sufficient to prove
that

(1) v = 10 0la)P . Do) < oo,

s

where s is small neighborhood of § as in (3.22a), and that

(2 n = {7, D@, Do) < 0o (over iy, 0 7).

In the latter integral

(3.23) (¥, Higy)| < as(t) < oo (a,a(t) independent of y) ,
™(y, tydo(y) = O(¢"'dedb) ,

where g, 0 are polar coordinates in the tangential plane P, to S at t, with pole at
¢t and p being the length of the orthogonal projection of the radius vector (¢, y)
upon P,; accordingly
< c*S as(t)o"'dodb< co  (some &, > 0),
06y

inasmuch as A > 0; (2°) is thus established. As to » (1°), it is observed that

(3°) vate, = | v i),

(as(t) < oo), provided the strip s is taken sufficiently narrow so that
r(y,t) =46°>0 (6° independent of y; yins).
The conclusion thus is that the integral for W' (t) (3.3) ewists if

(3.24) Ssy(y, HlgW)ldo(y) < oo

in particular, if y(y, t) < c*, then ¥ (f) exists for all ¢(y) c [|S] with « < 1 (this
follows in view -of the remarks with respect to (3.22a)).
We sum the above as follws.

Theorem 3.25. Supposethey, . (y)are subject to Hypothesis 3.20 (cf. Definition
3.19), while
(3.25a) PO +Pult)+ - - APy =0 (all ¢ on 8)

(P2u(t) given in (3.18a,b,¢)). The kernel k(y, x)r~2(y, x) (3.1) is then a principal kernel
for all integrals of the form
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© k(y, ¢
(3.25D) v = 20D iy,
g T (y> t)
where q(y), c [x|S] with 0 < & < 1, 1s such that the integral
(3.25D1) \ 7, ig@)idoty)
'

exists for t on S (not on B).

Note I. The condition with respect to (3.25b!) is deleted when y(y, f). < c*.
If Hypothesis 3.20 and (3.25a) are satisfied and

(3.26) Yy, 1) < at)l Ply) (for 0 <ify) S }(); 0= F<1),
the principal integral ¥(¢) in the Theorem will exist for all g(y) such that
(3.26a) dwcxS]  (O<a; atf<l).
To establish the above we note that, to start with,
(Y, 1) < polt) < oo (some y(f) independenf of ¥)

for I(t) > 0 and I(y) = }I(t); this follows by the statement subsequent (3.20c).
Therefore for any ¢(y) of class H (Definition 3.19) the integral

ve =\ v(y, Dla)ldoty) ,
extended over the part of § for which I(y) = 1i(t), exists. In order to establish
‘existence of
v = \rly, Dla@ldoy)  (Uy) < 3(w))
we make use of (3.26), obtaining
v, < e\ P@law)ldoy) (W) = H);

under (3.26a) the integrand above is O(l“’“ﬂ(y)) ; with o+ < 1, by the same reasons
as previously applied to (3.22a) it follows that the integral for y,” exists. The integral
in (3.25b1) is y,+y, and, accordingly, it exists for all ¢(y) satisfying (3.26a). The
statement (3.26), (3.26a) ensues from the Theorem.

Note II. The condition in the Theorem, stated in connection with (3.25b') can
be replaced by the following (special case of (3.26), (3.26a)):

HPy)  (if Uy) = 1), .
(3.27) y(y, £) < {c*rﬁ(t) (if 1(t) = Uy) [x+B<1; 0 <8].

2 — 642138 Acta mathematica. 84
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4. Limits of ¥(x) (1.3a) as & — £. Assume Hypothesis 3.20 and (3.25a). Thus
the kernel k(y, x)r—2(y, ) in the integral (1.3a) is a principal one for all ¢(y) satisfying
the conditions of Theorem 3.25. Let (4,) be a continuously varying direction at ¢;
more precisely, let
(4.1) A4(8) (j=123)

be the direction cosines of (,); the A,(f) are assumed to be of class H. Let 2 be a
point on the line L,, extending from ¢ and having the direction (4,); #(z, t) = h > 0;
L, is not to lie in the tangential plane P, to S (at ¢). Suppose for the present that

(4.2) H¢t) = angle between the directions (+mn,), (4,) [(+n,) is the direction of the

positive normal at {]
satisfies

(4.22) 0 = 8(t) < g

Let (Y) be the coordinate system (origin O at t), defined by (3.5), (3.5a) and
achieving the situation as described preceding (3.5). Whenever #(f) &+ 0, the half
plane extending from the normal (that is, from the Yj-axis) through X intersects
the tangential plane at ¢ (the Y, Y,-plane) in a certain ray extending from O; let
@(t) be the angle from the + Y ,-axis to this ray. The angles d(t), ¢(t) obviously define
the direction L, (when 9(¢) = 0, ¢(¢) is undefined and is superfluous).

On taking note of the decomposition of k(y, x), given by (3.2a), (3.2), we write

(4.3) Wia) — W)+ VL @)+ V)
where
(+:32) Vi) =\ Ky, zr, w)at)
11 * () * k )
i@ =\ By o, oawioty), Vi) =\ W) oty)
bt,a s (y, x)

here, with a( > 0) suitably small, S, , is the portion of S which projects orthogonally
upon the P, plane as a circle of center ¢ and radius a; 8" = S—S8, ,. For x on L,
(h suitably small) and y on S’ 7(y, ) is bounded below by a positive number inde-
pendent of ¥, x; thus

(1°) \S

Iz) = \ Ik(y. 2)] lq@)ldo(y)  [alt), < oo, independent of a].
vy

k{y, x)

r*(y, x)

q(y)da(y)J <a)\ [k, 2)lla)ldoy) = a)l(@);
CS/
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By (3.21)
(2) Iw) = ¢ | law)ldoty) .
vs

The latter integral exists for all ¢(y)c [«|S], with
(3% x <1

for reasons of the kind applied to (3.22a); Moreover, the integrand in (2°) is inde-
pendent of x. Hence the integral for ¥)(x) converges uniformly with respect to z.

(when 2 is on L, and, in fact, also when z is on the prolongation of L, to the negative
side of S); accordingly ¥i(x) is continuous in x at ¢, that is in A at » = 0. One has

(4.4) P+ = PUt)- = lim ¥'(x) =

h-—>0

Q(y)do(y) = Y1),

S’Tz(y: t)

S k(y, ©)

independent. of the direction of approach (provided ¢(y)c[x|S], o < 1).
As a preliminary to the study of ¥, (z) (4.3a) we shall need to prove that

7(y, t)

4.5
(+5) r(y, )

= b(t) < oo (b(t) independent of y, x)

for z on L, and for y on S, , (a = a, sufficiently small). Introducing the (¥) system,
as stated after (4.2a), we let X, ¥ be the designation for z, y in the new coordinates;
O (the new origin) will designate ¢ in the new coordinate system. We introduce
polar coordinates in the Y,, Y,-plane (cf. (3.9)), so that

(4.6) Y,=opcosf, Y,=psinb, o2 =1r20,Y)= YiL Y.

With X on L,, the angle between 0,4 Y ; and O, X being 9(¢) ((4.2), (4.2a)), r(0, X)=h,
and the point ¥’ = (Y,, Y5, 0) in the Y, Y,-plane, we find that

4.7) r3(X, Y'Yy = h2-4-p2—2hp cos (0—¢) sin ¥(t) ,
r3(X, ¥Y')  (h 2 h o .
ﬁ(b,_ﬁ = (E> —2B <g>+1 , B = cos (0—¢) sin 4(2) .

Since |B| =< sin ¥(t) < 1, it follows that
#2—2Bu+1 = 1—B% = cos? () > 0

(for all real u); whence
(4.7a) riX, Y20, Y') = cos? &(t) .

In view of (3.10) Y 0~' = O(p), Y3072 = O(1); hence

(4.7b) | = [(Y30-1)*—2h cos H(t) Y402 < 3 cos2d(t) (for h<h, o <a),
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where A, (> 0), @ = a, (> 0) are chosen suitably small, independent of Y. Also
(4.7¢) X, = hsin &(t) cos ¢(t), X, = h sin &(¢) sin @(t), X3 = k cos 9(t) .
Accordingly, by (4.6), (4.7)

Yi4+ Y3+ 73 _
(X =Y+ (X, — V)P (X3 —Yy)?
B o2 ¥? _ 0°+0(e")
 h24-0%+ Y2—20h cos (0—¢) cos #—2h cos Y, %X, Y')+ Y2—2h cos 9Y,"

20, Yyr¥X, Y) =

Thus by virtue of (4.7a), (4.7b)

140()  _ o(1) — ) < o0

MO0, Yyr2*3X,Y) = =
r(0, )X, 1) r¥X, Y')o 2+v  cos?dt)—}% cos? (1)

since r(0, Y) = r(t, y), (X, Y) = r(z, y), (4.5) has been established.
By (3.21a) and (4.5) the absolute value of the integrand in the integral repre-
senting ¥, (x) (4.3a) satisfies

(Sl

(y, t)J
7y, )

= c'b0A, 1), Ay, ) = vy "y, Dlg(y)] -
Now the integral

(%) & (tly, )=y, 2)a(y)| = ¢"y(y, " (Y, 1) {

SAmnw@
S

is identical with that in (3.22b); it accordingly exists, if (3.24) holds; the latter is
the case in view of the assumed conditions of Theorem 3.25.

It is also observed that b%(f)A(y, ¢) in the third member in (1°) is independent
of x. Hence one may pass to the limit under the sign of integration, obtaining

(4.8) lim ¥,@) = | Gim... = ¥y, -2, ta)dow)

h—>0 YSt,a St,a

= V() = V() = P, (t);

here the integral exists in the ordinary sense and the limit is independent of the
direction of approach.

We now come to the consideration of ¥, (z) (4.3a). The transformation introduced
subsequent (4.53) gives

r,—t, = a; 1 X1+a; , Xo+a,,X;, Yi—ti = a1 Y +a;, . Yota, , ¥,

(here the a,; are certain functions of ¢); thus for w,(y, ) = r~(y, )(y;—=x;) one has
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(49) w@(y! (17) = wi( Y7 X) - r_l(Y’ X) ,2/1 a’is(Yg'—Xa) .

s=1

In the new coordinates (cf. (3.2))

3
k;n(t‘y: x) = k;n(tl Y, X) = Zyil...im(t)wil(Y’X)'

i1 dm=1

(Y, X).

1 m

Thus
(4.10) (1Y, X) 2]’

81,.--8m=1

WY, X) = MY, XNY,—X,);

W, (Y, X)... W,

Sm

(¥, X),

Sm

here I', . () is identical with the function so designated in (3.6a). The expression
for ¥,

.(%) becomes

(4.11) Vi) = X =\ KOY, XY, Xa(F)do( )
Y8(0, )
SO0 = S0, dN)=gl),  FOY.X) = SHAT,T) (410

we further write

(4.112) V.(X) = g A(X)+ BX),

A(X) = § K@Y, XY, X)do(Y),
vYS0,a)
BX) =\ KUY, XY, X)) —qO)do(¥) .
Y80, a)

Since ¢ is of class H, one has
1Y) —q(t)] = lg(Y)—¢(O)| = O((0, Y))
(some 0 < v = 1), where O(...) may depend on ¢; thus by (3.21a)
(1°) k't Y, X) r=%Y, X)(¢(¥)—q(t))] = b'@t)r-2Y, X)*(O, Y),
where b'(f)(< oo) is independent of Y, X; in view of (4.5)

(0, Y)

m’rv_2(0, Y) g b'(t)bz(t)WP (O, Y) .

(2°) first member in (1°) < &'(¢)
Accordingly, the absolute value of the integrand in B(X) is bounded by a function
independent of X, whose integral, with respect to ¥ (over S0, a)), exists (since in
the last member in (2°) »—2 > —2); whence one can pass to the limit under the

integral sign, obtaining
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(4.12) B¥(t) = B-(t) = lim B(X) — \ B ()Y, Oy-2(Y, O)g(Y)—q(t)|do(¥)
x—>1 S0, )
=\ ®y. or-2, (e —a®)iaty) = B ;

vSta

this limit is independent of the direction of nontangential approach.
As a preliminary to the study of 4(X) we establish the relations

(4.13) rY, X) = XY, X)+-0(r(Y', X)),
(4.13a) WY, X)=WJ(Y', X)+}»,, v, = O{p) (s=1,2,3).
(Here and throughout this section O(...) may depend on ¢). This will be proved,

regarding the left members as functions of Y, alone, with the aid of the relation
(valid in the present situation)

() f(Yy) = fO)+fD(Zy) Y
and of the notation
(ii) Z = (Y, Y, Z;), some Z, between 0 and Y, .

It is observed that by (4.5)
(4.14) rYY,X), rYY', X) < b()r~YY,0) Zb(t)e~t = O(p~") .

Let f(Y;) = r~Y(Y, X); then

fOYs) = —(Yi=Xgr(Y, X),  |fOYy)] < r¥Y, X) < b2t)o~
the last member is independent of Y, In view of (i)
rUYX) = e YL X, bl = O Vsl < bé(t)e-2 Yl

since Y3 = O(p?), one has » = O(1); inasmuch as »(Y’, X) = O(1), we have
(iii) O(r-Y(Y', X))+ 0(1) = O(r~Y(Y', X));
as a consequence of this (4.13) follows.

To prove (4.13a; s < 2) let f(¥;) = W (Y, X); now (by (4.14))

Oy = —(¥Y =X )Y, —Xy)r3(Y, X), |[fOY,)] < r (Y, X) < b(t)e™?
whence|f(Z,)|(Z; as in (ii)) = b(t)o~*; accordingly
WY, X)= WY, X)+v,, v, =fOZ)Y5 = Og) .
When s = 3, we write f(¥;) — W,(Y, X), obtaining
JOT) = (Y, —X,)2H (Y, —Xo)2r %Y, X) = r (Y, X) < b(t)e?,
Wa(Y, X) = Wy i", X)+vs, vy = fO(Z;) Y3 = O(p) .



Multidimensional Principal Integrals, Bound. Value Problems and Integral Equations. 23

The |[W (Y, X)|, W, (Y’, X)| are bounded (< 1). Hence, as a consequence of
(4.13a)
WAY, X)WAY, X) = W (Y, X)WY', X)+v;, »;=0().

Step by step one arrives at

(4.15) W, (Y, X)...W, (Y, X)= W, (Y, X)...W, (Y, X)+»

S1...8m 7

where v, = O(g). By (4.10) and the above
(4.16) FY, X) = Xk, (1Y, X) = kh, o, 0)4+»'(¥, X),
where .
e} 3
(4.16a) kth,0,0)= 3 XTI, , OW (Y, X)...W, (Y, X)

m=18y,...sm=1
and v'(Y, X) = Op). In deriving the above use is made of the satisfied conditions
involved in Theorem 3.25.
As a consequence of (4.13) and (1°; subsequent (3.10))

r=2(Y, X)do(Y) = odedf[r—2(Y’, X)+0(r—1(Y’, X))
+0(¢ - or=1(Y", X))+0(e> %Y, X));

now, by (4.14), or—Y(Y’, X) = O(l); hence the last three terms in [...] above,
combine into

O(r-1(Y", X))+ 0(g)+0(1) = O(r-3(¥", X))+0(1) = O(r—-X(¥", X))
(cf. (ii)); thus
(4.17) r2(¥, X)do(¥Y) = odod[r-*(Y", X)+0(—XY", X))],

By virtue of the above and of (4.16)
k() Y, X)r (Y, X)do(Y) = [k(h, ¢, O)r—*(Y", X)+

+v' (Y, Xyr=%Y', X)+k(h, o, )O(r~1Y", X))+v'(Y, X)O(r- YY", X))];
since k(k, o, 8) = O(1) and »(¥Y, X) = O(p), one obtains

[..] = k(h, g, 0)—2(¥", X)+0(or-X(¥", X))-+O(r-(¥", X))+ 0(er—1(Y", X)) ,
which (by (4.14)) equals

k(h, 9, 0)r=3(Y", X)+O0(r—1(Y", X))+0(1)

Thus, on taking note of (iii), it is deduced that
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(4.18) k' (1Y, X)r~2(Y, X)do(Y) = ododb[k(h, o, 0)r—*Y’, X)4+O(r-Y(Y", X))
= k(h, o, O)r—%(Y’, X)odod0-+0(1)dodb .
From the above we obtain for A(X) (4.11a) the decomposition
(4.19) A(X) = A7 (h)+A45(X),

where

K(h, 0, 6)odedd,  K(h, o, 6) —

a 71 k‘(h, Q, 6)
\H (Y, X)

g=0"*
(cf. (4.16a), (4.7)) and

a 27
(4.19a) A%(X) = S S 0(1)dod6 = O(a) (uniformly with respect to h).
0=0 Y4=0

We shall now proceed finding the limit of 4} (%) for & — 0, that is, for X - O,
which means for  — ¢ along the direction (4,). Introduce quantities f(t), §,(t), 6;

as follows:

(4.20) f.(t) = sin 9(t) cos @(t), B,(t) = sin H(t) sin (), B4(t) = cos &(t);

0, — 0, 0, — ——0, 0,— —; B(t) = sin &) .
2 2
By (4.7c¢) and (3.9) one then has
(4.20a) X;=Bth, Y;,=pcosb;, (j=1,23),

when X is on the line L, and when Y; = 0. In this connection we note that Y,

in the expression for K(h, g, 6) is zero. In view of (4.7) one may write
r}(Y’, X) == h2—28(t)hp cos (0 —¢p)+0?;
accordingly by (4.16a), (4.19), (4.10)

(4.21%) K(h, 0,0) = X [h*—26(t)he cos (§—@)+07T 7 .

2T on(®)e cos 0, —B, (DR). . . (¢ cos 6, —B,, (O)h) .

81,...8m=1

On substituting ¢ = 7h and taking note of the absolute and uniform convergence

of the series involved, we infer
ah—1

(4.21) A:(h)zg K*(n)dr
Yoo

where
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x

(4.21a) KrX(x) = g i 2 t[1—-28(t)T cos (0——(p)—}—r2]‘%_1.
Y=0m=1

2T, ()7 cos B, —B, (1))...(r cos 0, —B, (£))d0
1

$1- - -Sm=
(cf. (3.6a), (4.20)); we observe the important fact that K(r) is independent of
k. The limit

oo

(4.22)  lim A*(h) :S K*()dv = K(t) [cf. (4.21a), (3.6a), (4.20)]

h—>0 =0
exists if and only if the integral above converges. We shall prove that this integral
exists. By (3.6a), (3.20a)

1Ty, e® = 2 7iy in®) =370, , 3T, 5,0 < 3%,

21y dm=1 81,---Sm=1

(") 3 G, DI =c (cf. (3.20D)).

m=18y,...8m=1

Since the quantities
(4.22') w7, ) = [1—2B(t)7 cos (0—g)+72]-}(x cos 6,—B,(t)) (s=1,2,3)

are in the nature of direction cosines and are thus bounded in absolute values (< 1),

we obtain

ot
int d for K/*(7)| =
]1n egran for : (f)l_ I—Qﬂ(t)‘l cos (0—(P)+72

cu ( _ 1)
= 1 2B(tyu cos (0—g) L u? “=3)
Using the fact that 1—2¢g74-12 = 1—¢2 (all real 7), we deduce

(2°) 1—2fcos (0—¢@)r+72 1—2cos (0—@lutu? = 1—F2cos? (0—¢) =1—-2 =
cos? 9(t) > 0;

hence

c® tsec? 9(t),
(3°) lintegrand for Kf(z)] < c°lse02 8(0).
Accordingly '
(4.22a) KX ()| < 2mc%T sec? 9(t), 27w°1 sec? d(t).

T

In view of the above, existence of the integral
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To
ﬂ K*()de

Yrog
is evident for all 0 < 7, < co. On the other hand, for v large (and ¢ fixed on 8) the

relation

KXty =0 <1>

T

is insufficient for the existence of the integral defining K(t) (4.22). If one thinks of
T as a complex variable, it is observed that K*(z) is analytic in 7 for |7| = 7, (any

7o > 1) and that K*(r) = O(|7|-!) for |z] large; we have an expansion
. « ky Ky
(i) KX(r) = —t++ (convergent for |7| = 7).

T T

The integral (4.22) thus exists if £, = 0; one has

i 4

(4.23) =\ ko0,
vy _o
where k,(8) is from the expansion
(i1) integrand for K}(r) = ij(g)r—ﬂ;i
5=0

(the series here converges absolutely and uniformly with respect to 0, 7 for |7| = 7,);
by (4.21a)
ko(0) = limit [7 - (integrand for K*(t))]

T->00

[e ] 3 m
=lim Y 5. s O E—2B(t)u cos (0—(;9)—{—1]*‘2"1(008 b;,—Ps,u). . . (cos O, —B, u)

oo 3
=) M (tycos B, ...cos b, .

S1...8m
m=1sy,...9;m=1

Since (by (4.20)) cos 0; = 0, in view of the remark with respect to (4.23) we conclude
that for the existence of the integral for K(t) (4.22) it is necessary and sufficient that

P24 00 2 7T
Gy | X X7, .0 cosh,... cos8,40 =0 (91 — 8,0, ——9).
Ya=0m=1sy,...6m=1 2
The integrand here is identical with k" *(¢, 6) (3.11a); thus (iii) is precisely the
condition securing vanishing of the term f,(¢) in the Fourier expansion (3.13a); (iii)
accordingly holds inasmuch as the kernel k(y, x)r—2(y, ) (3.1) has been assumed to

be a principal one.
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This completes the proof of the existence of the limit (4.22).
Let us study K(¢) (4.22) near edges § of S. Denoting the integrand in (4.21a)
by K}(z, 0), define B*(z, 6) by the relation

1, 1
(4.24) - KX, 6) = SR BX(z, 0);

inasmuch as k, (4.23) is zero, one then will have

1 i 4

(4.242) K¥(t) = _2\' B} (z, 6)d6 .
T g0
B/ (t, 8) is expressible in the form
o 3
(1) Bi(z, 0)=23" I, (B4
m=1sy,...5,=1
where

A% = 31— 267 cos (0—(]?)-%-‘[2]7?»](‘[ cos 6, —f,)...(tcos O, —f, )

—7ceos b, ...cos 0, =A+A",
with

A" = t[1—~2Bt cos (0 —¢@)+712] 2 (TCOSO —B,). . (vcos O, —B, )—7tcosb, ...cosb
A" = [1—2f7 cos (6—q)+v2][ 2672 cos (0 —g)—7] - 0, (7, §). .. .0,,(7, 0)

(cf. (4.22)). One has
2872 cos (0—¢)—1 ‘ B ‘ 26 cos (0—¢)—u
T 1287 cos (0—g¢)+12] 1~2§; cos (6f<p)+’;2

Sm?

whence in view of (2°)
(I,) A" = (2+u) sec?¥(t) = 3sec2¥(t) (for Tt =1).
The set of integers s,,. .. s, consists of ¢y, ¢, and 753 numbers 1,2 and 3, respectively,

with ;+9,+%; = m; accordingly, by virtue of (4.20)

m

A’ = 1[1—287 cos (6 —¢)4-12] Z(r cos H—pB,)7(zsin 6 —B,)2(—p,)"
—7 cos 10 sin 200" (0° = 1)
(Iy) uA' = p™(cos 0, —f, u)"(sin 0— Byu)?(—Psu) —cos 10 sin 260% |
P = p(w) = [1—26(t)u cos (0 —p)+u?]t.

Designate the function uA’ by f(u); use will be made of the formula

Sw) = fO)+f Py = fOu (some 0 < v < u).
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One has
fO) = fit - +fa

where

fi = —mp*z(uwﬂ cos (6—<p)) (cos 0-— ﬂlu>“<s1n 0—PByu ( /33u> ,

)
, [cos O—pau\ ! in 6—f,
e Y (B

p p p
and S - .
o (cos 6;/3&)”_;2 (sm O;ﬁzio) (—B.) <—£3u> ,
B\ sin 0— Bau\® iy [ — By
f, = (cos Op g u> (sm - B u> %<%) (—fa) .

It is observed that the functions
p~Ycos 6—Bu), p~i(sin 0—pfu), —pfup-?!
are in the nature of direction cosines and, thus, their absolute values are < 1;
moreover, as noted previously, p~! < sec 9(¢). Whence, for 0 < u < 1,
W) = 2mp—24-4p= 1 Higp~+isp~t < 3m sec? §(7) .
The same inequality is satisfied by f®(v). Hence

[ud'] = |fP(v)u] < 3msec? &(t) - u O=uwgl)
a‘nd’ by (IZ):
(L) Ao <A A7 < B(me 1) sec? B(t) (= 1).
By (I;) and the preceding, on noting a formula subsequent (4.22), we obtain
the inequality

B (z, 8) < 3 sec? 9(t) X'(m+1)3"c,, (r=1),

m=1

useful only if the latter series converges (note the assumed convergence of the
series ¢® (3.20b)). In view of (4.24a)

(4.25)  [K}(7)] < t72%67 sec? d(t) D (m+1)3%"c,, = 1-2B*(t) (for 7 =1).
By the first inequality (4.22a)
(4.25a) KX (1) < 2n¢® sec2 9(8) - © (for 0 =7 <1).

Hence from (4.22) it is inferred that
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1 +Soo

The following has been proved.

K@) < (S ) K *(v)|dv < mcd sec? 9 () - B*(1) -

=0 7=1

Lemma 4.26. Assume the conditions of Theorem 3.25. Let t be on S (not on the
edges of S). Suppose x — t, nontangentially to S, along a direction (3,), as described in
(4.1)—(4.2a). The limit K(t) (4.22) will then exist. If the series

(4.26a) 8 = M (m+1)3°"c,,

mo==

—

converges, K(t) satisfies
(4.26D) K ()] < (c®+6s°%)m sec? (t) (c® from (3.20Db)) .
In view of (4.3), (4.4), (4.8)
Ya)— W) > PUO+ P (as b 0).
By virtue of (4.11), (4.11a) we may substitute above ¥.(x) = q(t)4(X)+ B(X);
thus from (4.12) it is deduced that
P(2)—q(t)A(X) > B@)+Ya)+ ¥, (¢);

as a consequence of (4.19) we may here let A(X) = A4)(X)+AJ(h), obtaining (by
(4.22))
(4.27) V() —q(t)A5(X) ~ gOK () +Bt)+ Fot)+ P, () = J,0) -

a

From (4.12), (4.4), (4.8) it is inferred that (with & = S—8, )

Tty = K@)+ |y, 0r2(y, ta(y)daty)
S/

+ g E (tly, tyr—2(y, t)(q(y) —q(t))do (y)+ S k' (tly, tyr-2(y, t)q(y)do(y) .

vSt,a t,a

As a — 0, the first integral above tends to the principal integral () (1.3) the second
and third integrals are in the ordinary sense and tend to zero. Thus

(L) Jo () = v(O)+,(8) . v(t) = ¢ KO+ P(),
where

(20) lim v, () = 0 (as @ — 0).

The meaning of (4.27) is that

(30) P (2) ~q(t)Aa(X) = »(t)+ra(t) v, B)

where v,(t, h) (as b — 0). As stated in (4.19a), 4%(X) is O(a), uniformly with respect
to h; hence (by (2,))
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(4) o)+ aOAUX)] <

for some sufficiently small a( > 0), independent of 4. By (3,) one has
&€
[P (@) =) = [r,(8)+q(O) Aa(X)|+|valts B)] < 5T R
Now, with a fixed so that (4,) holds, choose A, (> 0) so that

&
ot W)l < o (for 0<h = hy);

one thus has
| (x)—w(t)] < & (for 0 < h < h,);
that is, lim ¥Y(x) = »(f) (for A — 0).
On taking account of (1,) the following is concluded.

Theorem 4.28. Cosider the integral

* k(y, x)
(4.282) W)= | Sl qy)doty)

Js T (y7 x)
and assume that k(y, z), q(y) satisfy the conditions in Theorem 3.25. Suppose x — {,
nontangentially to S, along a direction (4,), as described in (4.1)—(4.2a). We then have
(4.28Db) lim ¥(x) = q(t)K(¢)+ ¥(¢);

x—t

here K(t) is defined by (4.22), is independent of q(t), but generally depends on (4,);
the integral
k(y, t)

(.280) OB W)

s in the sense of principal values.
Let us distinguish between two distinet directions
(4.29) ) ),
the corresponding direction cosines (1), 2/ (1) being functions of the type of the
4;(t), as described at the beginning of this section; let 9'(¢) be the angle between

(4,) and (+mn,) and assume 0 =< §'(f) < g (as in (4.2a)); for the angle #"(t), between

(A;) and (-+n,), we shall assume either

(4.292) 0 < 9"(1) <g (all ¢ on S)



Multidimensional Priricipal Integrals, Bound. Value Problems and Integral Equations. 31

or

(4.29b) 7—25< () =« (all £ on S).

Designate by ¢'(t), ¢”’(t) the angles corresponding to the angle ¢(t), introduced
subsequent (4.2a). In all cases tangential approaches to ¢ are avoided. Let K'(z)
be the function K(t) (4.22) for (4,) = (4,) and let K" () be the function K(t) corre-
sponding to A”'(t); (4.28b) gives

(4.30) P(t) = li;n Y() = ¢)K' @)+ ¥() (v -t along (1)),
V() = liin P(x) = q)K"'(t)+P(t) (vt along (1,));
at points ¢ for which K'(t)—K''(t) + 0 we, accordingly, have
(4.31) q(t) = a«O[F"O) =" ()] ,P(t) = o, ()P (1) +xo() P (D)
a(t) = [K'())—K"(1)]7Y, a,(t) = —K"(0)x(t), ay(t) = K'(H)x(?) .
Suppose for the moment that (1;) is a direction opposite to (4,). To obtain the

function K}'(z) (4.21a), corresponding to the direction (1,), we replace #(t) by
¥(t) = n—(1) and ¢(t) by ¢'(t) = p{t)+7; by (4.20)

Bilt) = —Bi(t) (J=1,2,8); f'(t) = B(t);

K} (r) = S dé X <[1+26(t)r 005(0_?;(;))_}42]‘3—1 .

§=0

3
Y Iy (t)(rcos b, +p.). . .(vecos b, +6,).

8§y,...8m=1

Replacing 0 by 0--7, the cos 0, are replaced by —cos 6, (s = 1, 2, 3), respectively,
and one obtains

(4.32) K}'(r) = 5 40 37 o[1— 28ty cos (0—p()++7T ¢ .
#=0 m=1

3

=1y (’Fsz___Sm(t)(r cos O, —f, (). . .(v cos 6, —B, (1)) .

S1y.--8m=1

The function (4.22), corresponding to (1;), is

By (4.21a), (4.32)
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K@#)—K'(t) = Smd‘r g nd@ 521[1 —28(t)7 cos (e—w(t))_i_.[z]_:“‘g
0 Y0 H=0

(4.33)
pX Psl...swﬂ(t)('f cos 0, —p, (1)). . .(z cos 082,4+1‘/3sw+1(t))

SL.--S2pt1

(for opposite directions). If in the kernel k(y, x)r—2(y, ) (3.1) we have
(I 7i1,..im(?/) =0 (for m odd),

so that k,(y, x) (3.1a) = 0 (for m odd), in view of (3.6a) the I, () will be zero
for m odd and, by (4.33), we shall have

(4.33a) Kt)—K'(ty =0 {opposite directions).

Consider the case when

(IT) yil...im(y) =0 (for m even);
then the I, , (f) will be zero for m even; one then has
(4.33Db) K@)+ K'(t)=0 (opposite directions) .

For the present we shall not examine the conditions under which positive lower
bounds for «(t) (4.31), |K'(2)] (or |K"'(?)]) exist.
Consider the approach along the positive normal, (4,) = (+n,). We then have

Br=P8=0, f3=1, (t) = 0 and

7cos 0,—f, =tcos 0 (s=1),=718nb (s=2), = —1 (s=3).i

In view of (4.21a)

227 o0 m 2
(1) Kf(z) = ‘ { K ian ) ! 21y, (t) cos 0,,...cos 6, + Sz, 0)} do,
Y9=0 Um=1 81,.--8m=1
where '

8, 8) = ‘2’ Se[14-72] 2 _1]’81”.31"(t)(1 cos 0, —B, (1)) . .(z cos 8, ,—B, (1)) ;

m=18y,...8m

here the primed sum is over sets (s,,...s,,) containing one or more numbers 3. Let

(20) Filzizzi3 (t) - 111,‘..1,2,...2,3,..43(’5) (i1+752+i3 = m) ;

in the second member 1, 2, 3 are repeated 4,, ¢,, 9; times, respectively. By (3.6a)

I

5,...sp(0) 18 inchanged when the subscripts are permuted ; the number of permutations

of i, numbers 1, 4, numbers 2, 7, numbers 3 is ; hence

RERTA



Multidimensional Principal Integrals, Bound. Value Problems and Integral Equations. 33

= S’ 21[1—]—12]—%_1 i

m=1 1y,79,i3 1! 1/2! 3 !

’Lx i3: 13(1,' cos 6 "ﬂl( ))

(7 cos 0, B(2)) (v cos O;— By(8))* = ;;’ P r[l—i—ﬂ]_%_ m!

m=1141,59,i3 1’1! @2! 7/3!

“ T iy, (D)(x cOs 0)(x sin 6)72(—1)%

The contribution to K*(r) arising from S,(z, ) is

m 2n
izt L 42] 2 lpilzigzig(t)s cos ‘16 sin 26d6

0

B 2 2 (=

- ENEN
me1 iy igds 1,0 21 25!

(i1+9,-+¢5 = m, i3 > 0). We shall modify the function of 7, displayed after the
summation symbol with respect to m in (1,), subtracting from it t-1, when v = 1,
and leaving it unchanged for 0 =< 7 < 1: this can be done in view of the satisfied
condition (3.14). Let A(7) be defined as 0 for v < 1 and as 1 for © = 1. The part of
K}(t) (1,) obtained by disregarding S,(z, §) will then be

o] _m_ }. 2 27
(40) P [r’"“[l—{—ﬂ] R g)] P Ly s (t)g cos 0, ...cos 6, db ;
m=1 E;

1se o Sm=1 0
the function [...] above is bounded and is O(z~2) for 7 large. K*() is the sum of the
functions (3,), (4,). Thus, by (4.22), for the approach along (+n,), one has

(434) K(t) = SW{ 2081...8mF81...8m(t)+ 2 (13 > O)Oz’l:iz:i:,ri]:iz:ig (t)

m=1 yeSm=1 ty1t+igt+ig=m
) 7
(cf. (2¢) for Iy .;,.;,), where (with 6,=0,0,= 5—0)

$O0 _m A W27
(4.34a) C, . = S {r'”“(l—i—r?) 2 —(T)] dr - S cos 0, ...cos 0, db,
0 T 0
* 4 m! Py +ig+1 —G-1 - % L
Ciligeiy = S (— )3z R TR (14-72) 2 dr- S cos "0 sin “20d0
0 1 2 8 0
(1, +72+13 = m); the integral last displayed is zero except only when i, and i, are
both even. In view of (3.6a) and since a; 5 = n(t), the I, (t) (s;,...8,, = 2) are

unchanged when the approach is changed to the negative normal; inasmuch as

Filzizzig (t) : 2%&- ( )[a’h, 71; le ]y+1 g0 -y, 2][nfk+1' . ‘njm]

(v =4y, k = 1,+15; m—k = 13 > 0), it follows that I"; (t) changes to —1I", ., ., ()

71: Z3 ’Lg 11:4g:t3
3 — 642138 Acta mathematica. 81
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for 4, odd and is unchanged for ¢, even. With the aid of these remarks we come to an
agreement with (4.33a), (4.33b), when the directions are normal.

5. Order of infinity of ¥(x) (1.3a) near §. Consider a point ¢ on the ‘edges’
of 8. Let P, be the tangential plane to S at ¢, T, be the tangent line to § at ¢ and =,
be the positive normal to S at ¢. Designate by §’ the orthogonal projection of f on P;
let S{(c, a) (small a, > 0) be the neighborhood of ¢, such that its orthogonal projection
on P, is a region S'(c, a), bounded by a portion of " and a portion ¢’ of the circum-
ference of a circle of center ¢ and radius a. Denote by H, the half plane part of P,,
bounded by 7', and containing ‘most’ of 8’(¢c, a); that is, H _ contains the intersection
of ¢’ with the perpendicul'ar N, to T, at ¢ (in P,). We introduce

Definition 5.1. With the above notation in view, let N{c, ¢) denote the neigh-
borhoods of the tangent line T, (to ) at ¢, consisting of two circular conical regions with
common vertex at ¢ and T, as axis, the angle at ¢ (for each cone) between the generating
lines of the surfaces and T, being ¢. Designate by W (c, ¢) the neighborhood, of the tangential
half plane H ,, bounded by two half planes meeting along T, and making angles ¢ with H,
(on the two sides of H,); Wi(c, &) contains H,.

We consider N(c, ¢), W(c, ¢) as closed. The point of the above definition is that
if « remains exterior N(c, ¢)-+ W(c, ¢), « cannot tend to ¢ tangentially either to the
curve 8 nor to the surface S.

With & (> 0) fixed, choose a (> 0) so small that the portions f, ' bounding S(c, a),
S'(c, a), respectively, are in N(c, g) ,while S(c, a)isin N(c, g) -+ W(c, ;) We shall pro-
ceed with x, near c, exterior N{c, e)+ Wi(c, ¢} and with q(y) subject to conditions of
Theorem 3.25.

We express Y(x) (1.3a) as follows:

(5.2) Wr) = W z)+Po2) ,
(5.28) vie) =\ ko, wiot)
Y 8(c, a)
W) = SS Ky, 22y, 2)q(y)doy) [ = S—S(e, a)] .

For z at distance < 2-'¢ from the perpendicular to P, at ¢ and for y on 8’
one has r(y, ) = 2-%a; in view of (3.21)

!

o 4 4c’
i@l =\ kw9l liwldow) = 5\ lawiaew.
as Jgr

NEd
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Since g(z) ¢ [«]8], the integrand here is O(I"*(y))(« < 1); thus by virtue of the remarks
with respect to (3.22), (3.22a) one has
(5.3) |Pala)] = c*.

Some of the proofs in the sequel will be with the coordinate awes y; assumed
so that the origin is at ¢, the y,-axis coincides with the tangent line T, the +y,-semiaxis
falls along the positive normal n, and the +y,-axis lies in the H, half plane; let

(5.4) Y = (Y1, Y2, 0);
for y on S(o, @) one then has
(5.4a) ys = Fy,, y») (F as in (2‘1))§

S'(0, ) is a subregion of the circular region r2(0, ¥') = yi+v; < a2, bounded by
an arc o' of the circle 7(0o, ¥') = a and by a curvilinear arc g’ (projection on the
Y1, Yo-plane of a portion of g); 8’ is tangent to the y,-axis at o and is given by an
equation

(5.4b) Yy = fly) = O(1);

the regions N(o, ¢) are given by the inequality

(5.4¢) ' vy+a; <zl tgte,

while W(o, ¢) is represented by

(5.4d) |2s| <y tg e, 2y, =0,

To say that x is exterior N(c, )+ W(c, ¢) is equivalent to the relations

(5.5) il > x) tgte; lzg| > @, tg & if x, = 0).

The following will be now proved.

Lemma 5.6. When y is on S(c, a) (a, > 0, small) and x is (near c) exterior
N{c, &)+ W(ec, ¢), one has
(5.6a) r~ix, y) =< k(e)r—Ye, ),
where k(e) (> 0) ts independent of x, y and is O(e2).

Choose coordinate axes as stated subsequent (5.3). It will suffice to give the
proof when xz; > 0; we then have
(1°) Xy > a0, b & (if 2, = 0); xi+al > x) tgle .
Designate by (W+(o, ¢) the ‘top’ part of the boundary of W(o, ¢); thus (W+*(o, ¢))
consists of points x such that

Xy = Xy tg e (zy = 0).
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Exterior W(o, &) {x; > 0; x, = 0) one has

(2%) el tal] "t > sin O tg e (0 = arc tg ﬁ) :

4]

on (W+(o, €)) > 0 is here replaced by =; (W+(o, ¢)) intersects the surfaces of the
cones N(o, ¢) along lines I+, I-, extending from o and expressible parametrically as
follows:

(3°) X, = 4t X, =tsineg, xy3=1ts8inetge

(+ for I+; — for I-; t = 0); on I+, -

2 2 . : Za .
(5.7) 2g[2]+25] } —sine tg ¢[1+4-sin? 3]_% = tg 2¢,; TI =tge, =-sine.
Iy
On the part of (W+(o, ¢)) between I+ and I-, by (2°),
(4°) xy[22 422t = sin g, tg e = tg 2¢, .
The intersections (for z; > 0, z, = 0) of the conical surfaces N(o, ¢) (5.4¢), z3+23 =
x] tg? e, with the planes

X, = |2,| tg 0 (0 =tgh = tge,; 2, =0)

are given paragmetrically by

along these intersections (with z, = 0)

a2 422 = Vtg? e—tg? 0 cos 6 = Jtge—tg e, cos e, = tg 2¢; .
Accordingly
(5°) wlaid-ap]t = tg 26,

for x (with x; > 0, z, == 0) on the conical surfaces N(o, ), between the line [+[I-] and
the y,, ys-plane. By virtue of (4°), (5°) it is seen that

(5.7a) zo[xj 3]t > tg 2, (e, from (5.7))

when x (with x3 > 0, x, = 0) is anywhere exterior N(o, )+ W (o, ¢); designate by K,
the conical domain (5.7a) and by (K3,)) its surface. Choose a(>0) so small that the
portion S(o, a) of the surface S lies (except for o) between the conical surfaces (K3)), (K)
[K, being the symmetrical image of (K ) across the y;, y,-plane]; thus for y on
S(o, a)

(5.8) ]y3|[y§+y§]_% =tge .
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Case 1. Let x be in K, and y satisfy (5.8) (y not necessarily on the surface S).
With z,y on the opposite sides of (K), one has

(1o) r(@, y) = r(x, 1),
where n = (771, Na» 7]3) with

R — . x
m=Vyi+yicos 0, 7, = Vyitylsin 0, tg 0 = ;2;

1

7 satisfies (5.8) and the points x, n are on the opposite sides of (K ), but in the same
half plane bounded by the y;-axis. We have

@, n) = r(x, ¥°),

where y° is the point of intersection of (K) and of the line joining x and 7. Let
x° be the foot of the perpendicular from x to the line (o, ¢°); clearly r(z, ¥°) = r(x, °)
and, by (1,),

r{x, y) = r(x, ) .
Now z,, z are on the opposite sides of the conical surface (K3, ); the angle at o
between (K} ) and (K3, ) being &, it is inferred that

r{x, %) = r(o, z) sin ¢, ;
thus
(5.9) riz, y) = csc erYo, x) (in the Case I; &, from (5.7)).

Case II. Let x be exterior N(o, €) and y be in N(o, g) (y not necessarily on the
surface S). { It is observed that if y, with y, <0, is on S(o, @) (a sutably small)
then y is in N(o, g)} We now have

€
(5.10°) @+adtal > tge; (el < tg

It will suffice to give the developments for y, > 0, #, = 0. The plane y, =

& &
const. intersects a cone N (o, 5) in a circular region K y of radius y, tg 5 Let C,,

be the surface of the right circular cylinder having K, for a cross section. Suppose
Jirst that x (subject to (5.101)) is exterior C,,- The plane D,, containing x and the
yi-axis, intersects K, in one of its diameters; let  he the end point of this diameter
nearest to x; we have r(z, y) = r(«, 7). Designate by x, the foot of the perpendicular
from z on the line (possibly extended) joining o, n; clearly r(x, #) = r(x, z,). In the
plane D, we accordingly have a triangle with vertices o, 7, x; the segment (o, 7)
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forms part of a generator of N (o, ;) , while a generator of N(o, ¢) extends from o,

intersecting the side (7, x) internally; this is due to the hypothesis that x is exterior
N(o, ¢). Thus in the triangle the angle at o exceeds £/2; hence

£
&, z,) = (0, ) sinE;

that is

r{x, y) = r(o, x) siné— (Case II for x exterior O, ).

Suppose now x is on or interior the cylinder O, and is still subject to (5.10"). The point
N3 = (Y1, Ta, ¥3) is in the circular region K, . It is observed that r(z, y) = r(x, 7°).

The segment (x, #°) intersects a generator of N (o, —2—) in a point #* (it may happen

that #* = #°); one has

r(z, n°) = r(z, n*) = r(z, 2°) ,
where 20 is the foot of the perpendicular from x on the segment (o0, *). A generator
of N(o, ¢) passes between (o, z) and (o, n*); accordingly the angle between (o, x)
and (o, n*) exceeds ¢/2 and we have

r{x, y) = r(x, %) = r(o, x) sing (Case I1 for z on or interior C, ).

From the above it is inferred that

(5.10) r~Yax, y) < csc %r—l(o, z)  (in Case II) .

Case III. x s exterior N(o, &) and 2, < 0; y, = 0 and y lies in the region bounded
above by (K) and below by (K, ) (that is, y satisfies (5.8), y, = 0). For purposes of
the discussion one may take z;, x; = 0 (note that the regions for z and y are each
symmetric with respect to the y,, y3-plane, as well as with respect to the y,, y,-plane).
Let ¥’ = (¥, 45, 0). If y; < 0, then (x;—y,)% > 2% and, so,

r@, y) (@ ya) (@ Y) o () -1

¥z, ¥') (@1 — 1)+ (T —y,) 2425

with r(x, y) > r(x, ¥’), it will then suffice to obtain a suitable lower bound for

r(z, y'). In view of this remark we shall proceed under the supposition that y, = 0.
We may therefore take

(5.11) B 20, @, S0, 7, =07y, = 0,7, =0,
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Let C be the semicircle consisting of points z such that
2y = Yo 22 = Yityn 2 = 0;

the point y is on C. As a consequence of elementary considerations, of all the points

on C one of its end points, namely
n=(/yi+u 0, y)
is nearest to x. Thus
(Lo) r@,y) = (@, ) .
For the angle x between the -+-y,-axis and the line (o, ) one has
(24) 0o <6 (<e).
Since &, < &, the segment (o, ) lies in N (o, ¢). Let x, be the foot of the perpendicular
from « on the line (o0, n) (the line extended, if necessary). Consider the triangle
0, , ; inasmuch as 5 is interior N{o, ¢) and x is exterior N(o, ¢), there is a generator

g of the surface of N(o, &), extending from o and intersecting the segment (z, %)
between x and 5. Thus the angle at o in the right triangle o, x, x, exceeds the angle

(30) B = angle between g and the segment (o, %) ;
one has
(5.12) r{x, 1) = r(x, 2y) = r(o, x)sin § .

To get a lower bound for f introduce new coordinates (Y,, Y,, Y,) so that the
+ Y ,-axis coincides with the +y,-axis and the 4 Y ;-axis falls along the line joining
0, 7; the surface of N(o, ¢) (cf. (5.4¢) with the equality sign) is representable by the
equation
(40) a, i+ Yi—a,Yi+a, ;Y Y, =0 [a; = cos®x—sin? x tg?;

a, = cos? « tg? e—sin® o; @, 5 = sin 2« sec? ] .

The pencil of planes through (o, ) will be given by Y, = 1Y, (1 a real parameter);
the intersection of one of these planes with (4,) is a generator @ (of which ¢ is one)

of the cone (4,); along such a generator (with Y, <0, ¥, > 0)

a J—|~]/aTl27+4a
5 Y, :Y,:Y,=1:h(A):— S h(A) = 18 !
(50) 10 Y, Yy W(A): —R(A)A; h(1) 20T o

where a° = af -+ 4a,4a2,. Let o be generically a function of ¢, tending to zero with e.
We have &, = }e2(1+w). Hence by (2,), (4,), (54)

?

(5.13) Mi)= " (14w) (for || bounded).
| 14 A2
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Let B be the acute angle between 0,4+ Y, and the generator @ (5,); by (5.13) one
has

cos? B = [1+A2(A)+A2(A)A%]1 = [1+e3(14+w)2] ! = [14-e2+e2w] L.
Hence

sin? B = e2(1+o)[1+22(1+ o))

and
(5.14) sin B = ¢4 (some ¢, = c*),

provided ¢ is suitably small. Now £ in (5.12) is a particular angle B, involved in (5.14);
namely, the angle corresponding to the value of 4 for which the plane of the pencil
of planes through the line (o, 1) passes through the point x. Accordingly (by (5.12),
(5.14))

r{x, n) = r(o, x) sin § = r(o, x)cee ,

which together with (1,) yields

1
(5.15) iz, y) <—
Co

o | -

r~Yo, x) (Case I11) .

We now come to the proof of the Lemma 5.6. It will suffice to proceed with
the coordinate axes chosen as done in the text after the formulation of the Lemma,
with z; = 0 and with the conditions of the Lemma satisfied.

By the remark preceding (5.8) points y on the surface S(o, a) (a suitably small)
are between the conical surfaces (K} ), (K,,) and, thus, satisfy (5.8). In view of the
text in connection with (5.7a) points , for which z, = 0, are in K,, . Whence from
(5.9) it is inferred that

(i) r~Y(z, y) = csce,ro, x) (x exterior N(o, €)+ W(o, &), with z, =< 0;
all y on S(o, a)).
Points y on S(o, a), for which y, < 0 (if any) will be in N(o, g) ;on the other

hand, points z with z, < 0 will be exterior N(o, ). Case Il is then applicable; hence
by (5.10)

(ii) r~z, y) = csc gr.—l(o, z) [z exterior N(o, &)+ W(o, ¢), with %, < 0;
y, with y, =<0, on S(o, a)].
The points y on S(o, a), for which y, = 0, lie between (K7 ), (K) (a fact stated

previously for all ¥ on S(o, a)). The z, with 2, <0, are exterior N(o, ¢). Case 11}
now applies, yielding (cf. (5.15))
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o |

(iii) r iz, y) = r=(o, x) (z exterior N(o, &)+ W(o, &), with x, < 0;

o=

y, with y, = 0, on S(o, a)) .

Cases (i), (ii), (iii) embody all the possibilities envisaged in the Lemma. The
inequality (5.6a) accordingly holds, with k(¢) equal the greatest of the three quantities

in the second members in (i)- (iii). Since &' = O(e~2), it is inferred that k(e) = O(e~2).

The Lemma is thus proved.
We return now to the function ¥(x) (5.2). By (3.21) and since ¢(y)c [«x|S]

(5.16) i@l <ot T edet)

v S(e,®)
Choose again the coordinates as in the text subsequent (5.3} and recall the definitions
of 8'(0, a), B, o’ (the text from (5.3) to (5.4b)). We proceed with x exterior N(o, &)+
W (o, ), near o. With the surface S(o, a) (of which §'(o, a) is the orthogonal projection
on the y,, y,-plane) and the ‘edge’ § in the vicinity of o suitably regular, the essential
features (for the purposes of study of the order of infinity for  near o) of the integral
above are embodied in the case when S(o, a) is a semicircle (in the y,, y,-plane),
(5.17)  Slo,a)=8(0,a)={0=e=Vyityi Sa; y=0; 9320},
while § is the rectilinear boundary of S(o, a),
(6.17a) ﬂ=ﬂ’:{~a§y1§a; ?/2:?/320}-
Introduce polar coordinates (with pole at o),

(5.17b) o= Vyi+v:, 6 = arc tg (ﬁ) .
Y

Use will be made of the decomposition
(8.17¢) 8(o,a) = 0,+0,; o, = part of S(o, a) for which g < 2r{e, 2} ;
o, = part of S(o, a) for which ¢ = 2r(o, %) .
For the case under consideration
(5.17d) y) =y, = psin 0.
For the component of the integral in (5.16), corresponding to ¢,, one has

(1,) I(@) = S Y2y, 2)dyydy, .

01

As a consequence of Lemma 5.6,
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L) < k)0, ) \ yidysdys;
D o1
o, lies in the rectangle

—2r(0, x) = y, = 2¢(0, x), 0=y, < 2r{0, 7)
hence the integral above is bounded by
2r(0,2) 2r(0,)
S dy, S y;%dy, = c*r’ (o, z) ,
—2r{0,x) 0
inasmuch as « < 1; accordingly for x exterior N(o, &)+ W (o, ¢)
(5.18) I, (x) = c*k2(eyr—*(o, ) .
There is occasion to consider
(2) L@ = \ g2y, o)do(y)
. Yy

only if 2r(o, x) < a. Let K be the sphere of center o and radius r(o, x); the plane
ys = @, intersects K in a circle C,, with center on the y,-axis and radius /2’4 aZ;
x is on C,. Designate by «° the point on C, in the half plane

(34) § = arc tg (@) ;
Y1

clearly r(x, y) = r(z? y). Let 5 be the point of intersection of K, the half plane (3,)
and the y,, y,-plane. With y in oy(a = o = [y’ -+y2 = 2r(0, 2); ¥, = 0; y, = 0) and

R Ui Y
n= (o) Volm=r@), =7 (1, z0),
/)]
it is observed that

r(@® y) = r(n, ¥);

furthermore

(o, y) Z (o, y) = HVyi+y: = de;
thus
(519) r(x, ?J) % %Q (y = (?/1, Z/z»o) on 02) .

In (2,) one may put do(y) = pdoedf. By the above inequality and (5.17d)

. Tt "
L) < 4\ (¢ sin—0)0=2 - (ododf) = 48 sin*aada\ o do ;
Yoo 0 Y 2r(o,x)

the integral with respect to 0 of course exists, since « < 1; thus

(5.20) Ly(x) = c*r*o,2) (@ 0<a< 1),
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1
(5.20a) I (x) < c* log - (i = 0)

r{o, )

(one may as well take 70, x) = }).

The second member in (5.16) equals ¢*(I,+1,); whence, by (5.18), (5.20), (5.20a),
it is inferred that
(5.21) [P ¥ (x)| < c*k2(e)r (o, x) f0<a<ly,

W ()| = o*b¥e) log TZ—L (if «=0),

Jor x near o exterior N(o, &)+ W{o, &) in the case (5.17), (5.17a).
Before considering the more general case, when
(5.22) S(o, a) = 8'(0, a), (8 = B’ near o),

with the ‘edge’ § not necessarily rectilinear near o, we shall need the following result.

Lemma 5.23. Let y = (41, %2, 0)s 7 = (1, Yo+, 0), 0 < d < |y, tg ; with

(5.23a) £ < § = arc tg%2 = n+£, 0 = Vg}??y? =a;
2 Yy 2
one then has
(5.23D) 02 e, T e
{y, ) r(n, x)

1
Jor x exterior N (o, &)+ W(o, €); here ky(e)(< oo) is independent of y, n, x and is O (—-) .
€

It will suffice to proceed with z; = 0. We note first that

° 7-2(,,], 12 _ ’ _ ¥d 2__ xz___yf J‘ .
(1°) ;é(y’ x) = 1t+ow(y, 5, 2), oy, n, ) = <r(y, x)> 27,(3/’ x)r(y, x) i
r*(y,

>2 2x2—y2—d dﬁ
7(

)
= l+qly,n,@), g 2) = < nx@) 1)

7(n, )

Case (i). =z is exterior N{o, &)+ W(o, &), while z, = 0, y, = 0. By the remark
with respect to (5.7a),  is then above the conical surface (K7, ); that is,
(2°) x3 > tg? 2e,(xlFad) (g, from (5.7)).
Consider the semicircle consisting of points z = (2, 2, 2;), such that
(3%) 2y = @3; 21428 = ai4ak; 2, =0;

x is on (3°); of all the points on this semicircle the point 2° = (2}, 29, #3) in the plane
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2, = 2z, tg 0 (containing %) is nearest to y; thus r(y, ) = r(y, 2°); 2° is above (K3,

and, so, satisfies (2°); clearly

ry,2) > 1y, ), = (2, 7 z) [ = tg 26/ 2]
z’ is on (K},). The angle at o in the triangle o, y, 2’ is 2¢,; let z* be the foot of the
perpendicular from y on the side (o, z’) (extended, if necessary); we have
r(y, ') = r(y, 2*) = r(o, y) sin 2&;
and, finally,
(4°) r{y, x) = r(o, y) 8in 2¢, .

In view of the inequality for d, given in the Lemma, one accordingly obtains (cf. (5.7)

for &)

. d - ¥|?/1|

r(y, @)~ (0, y)

£ €
tg 3 cse 2¢; =< ‘oggcsc2 g < c¥e7t;

hence for o in (1°) we have
(5.24) oy, n, x)] = c*e? (in Case (i)) .

In Case (i) one has y,+d = 0. Repeating the developments from (2°) to (5.24),
with » in place of y, we find that |q(y, n, x)| also satisfies (5.24).

Case (ii). z is exterior N(o, ¢); y; = 0. We now have

& Yy 3
(1o) ——<f=arctg <0 or =0 =a+t_;
2 Y 2
~£§0': arc tg “Zz_}_ §i or n—ig 0'§7z+£.
2 Y1 2 2 2

Let © = (z,, 7,, 0) stand either for y or for 7; thus

(20) < « = arc tg

w|m
t\'Jlm

It will suffice to proceed with v, = 0. Let C, be the circle consisting of points
z = (24, 24, 23) Tor which

) 2,2 __ .2 2.
2y = Xy, zpt2; = X%

x is on C, ; C, intersects the y,, y,-plane in two points of which omne, say 2° =
(xy, 22, 0), is nearer to T (the sign of z; is not opposite to that of 7,). We have
r(v, ) = (v, 2°). A generator g of the conical surface N(o, ) extends from o

between the segments (o, 1), (0, 2°); 7, 2° being on the opposite sides of g, one has
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r(t, 2°) = r(t, z*), where z* is the foot of the perpendicular from 7 on g. In view
of (2), the angle f at o in the triangle o, 7, 2* is = ¢/2; thus
r(t, 2*) = r(0, 7) sin § = r(o, 7) sin £

and

r(t, ) = (o, 1) sin% (t=y or 7).

Similar to the inequalities preceding (5.24) we now obtain

d - ly1l " € ¢~ € d - |y, € ¢ €.
g —csec — = sec —, = tg — cse — =< sec —;
r(y,x) ~ r{o,y) ~ 2 2 2 r(n, x)  r{o,n) 2 2 2

accordingly, as a consequence of (1°),

(5.25)  [o(y, 7, @), lqly, 7, @)| = sec’—+2sec— <ot (in Case (i)

Case (iii). = is exterior N(o, &), while x, < 0; y, = 0. Let 7 = (7, 7,, 0) represent
either y or #; in either case 7, = 0. Designate by C(z,) the semicircle, containing =z,
consisting of points z for which

2, .2 2, .2 .
2= Ty, 2yt = Xty 29 =0

7 and x are not on the same side of the y,, y;-plane; hence the points of C(x,) nearest
to 7 are its end points; consequently

e, @) = 11,2, 20 = (x,0, Jaital);

2% is exterior N{o, ¢). Consider the semicircle C,, containing v and consisting of
0
points u for which
2 2 9 2 .
Ui +u; = 1,471, Uy =0, uy =0;

the end points of C, are points
1 = [£7(0, 7), 0, 0];

we have r(t, 2%) = 7(1% 2°), where 1° is given by the above with the sign chosen so
that 70, 2° are not on the opposite sides of the y;-axis. In the y,, y,;-plane there is on
hand the triangle o, 7°, 2°. Since 2° is exterior N(o, ¢) there is a generator g of the
conical surface N (o, ¢), extending from o between 1°, 2°. The angle between g and
the side (0, °) is ¢; hence the angle 8, at o, exceeds ¢; thus, designating by z* the
foot of the perpendicular from 7° on the side (o, 2°) (this side possibly extended),
we obtain
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r(z° 2%) = r(z° 2*) = r(0, °) sin § > r(0, t°) sin ¢ .
Since r(o, °) = (0, 7), it is inferred that

r(r, x) = r(t, 2°) = (7% 2°) > r{o, T) sin ¢ (t=wy or 7).

Recalling that d =< |y,| tgg, it is observed that

d tgg d
< 91l — =1 sec2£; = 9] 1 sec?— =< lsec?—
r(y,x) ~ r{o, y)sine 27 r(n, %) r(o,n)

Whence, by virtue of (1°)

(5.26) oy, 5, x)|, gy, n, x)] < %sec‘*;—Jrseczg < c* (in Case (iii)) .

Cases (i), (ii), (iii) cover the situation envisaged in the Lemma. Therefore
from (1°), (5.24), (5.25), (5.26) it follows that, under the conditions of the Lemma,

0L @ T L oty = 02 ;

2y, @) rin, z)

this leads to the desired result (5.23b).
We are now in position to study ¥ (x) (5.2a) in the case (5.22). In view of

(5.16) one now has

(5.21) W) <o\ i, e o)
“S0,a)

(do(y) = element of plane area, at y, in S'(o, a)). The portion f’ of the boundary
of §'(0, @) consists of points 5 = (1, 7, 0) such that (cf. (5.4b))

(5.278) gy =fO) =00 (—a' =m=a’;0<d,d" Za),

the end points being
A(—d', f(—a"), B(a", fl@"));

furthermore

(5.27b) el = )| = il tg 5 (on ),

if @ (> 0) is suitably small; f©(5,) = O(#,) is assumed continuous for —a’ =<, < a’’.
With y in §(0, @) not on ' and I(y) denoting the distance from y to f’, one has
(6.27¢)  I"Yy) = c*7'(Y), 0y) = ¥~ fy) >0 (-0 =y, =a"}).

In view of (5.27)
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(5.28) [P¥(x)| < c*(x), T'(z) = S O (y)r—*(y, z)da(y) -
S7(0,a)

Introduce a point transformation in the y,, y,-plane

(1°) Yi=uy, Y= Yo—f(y1)

its inverse is

(2°) v =Yy, y. = Y, +f(Y,).

‘The Jacobian here equals unity and do(Y) = do(y); we have 8(y) = Y,. The boundary
f’ is transformed into the rectilinear segment g*
(39) BHY, = 0; —a' < ¥, < a"};

The region S'(0, a) is transformed into S*; in S* one has Y, = 0; S* is bounded
by g* and by a curve o* (the transform of the circular portion ¢’ of the boundary
of §'(0, @)); for ¥ on o* one has

Yi+Y; = a*+u(y), v(y) = fys)—20f(y1) = O@)+0(a®) = 0(a?);
thus along o*

(4°) a(l—¢) < R= [T+ VI < a(l4¢") = a*,

where 0 < ¢',¢"” < 1 and ¢, ¢ can be made arbitrarily small by taking a ( > 0)
suitably small.

Let y, Y, in the preceding, play the role of y, # of Lemma 5.23 (not necessarily
in the stated order) and let d of the Lemma be equal |f(y,)|. This can be done in
view of (5.27b) and the location of the points y, Y, provided @ in the Lemma is
replaced by a* (4°). Accordingly

(Y, x)
r(y, x)
for all ¥ in S* and all y in 8'(0, a). Thus I'(x) (5.28) satisfies

< kole) = O<l> (z exterior N(o, &)+ W(o, ¢))

&

P2 oy
ri(y, x)

629) Twy={ ¥rrwaim =  veeur
Sx C*(a)
<ke)\ Yy, 2)do(¥)
CO*(a)

Jor x exterior N(o, e)+ W(o, €); here C*(a) is the semicircular region (containing S*)
consisting of points Y such that

(5.29a) Yi4Y; < a*? (cf. (4°) for a*); Y,=0.

We thus reduced the case (5.22) of a plane surface, whose edge in the vicinity of o is
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curvilinear, to the case when the edge near o is rectilinear—that is, to the case
(5.17), (5.17a). Apply the result (5.21) to the last member in (5.29) and take note
of (5.28). It is inferred that in the case (5.22)

(5.30) [Pk (z)] < c*ky(e)r*(o, x) {for 0 < &« < 1),
P X (2)| < c*ky(e) log (for & = 0)
r(o, x)
for « exterior N(o, &)+ Wio, ¢); here
(5.30a) ky(e) = Ele)k?(e) = O(e~®) (k(s) from Lemma 5.6).

Before treating the general case we shall prove the following.

Lemma 5.31. Suppose x = (x,, y, ;) s interior the conical domain K, (thus
(5.7a) is satisfied), x3 = 0, and is exterior the conical regions N(o, 2¢,), when z, < 0.
Suppose y is in the region bounded above and below by the surfaces (K} ), (K ), respectively,
when y, = 0 (¢f. (5.8)), and is in N(o, &), when y, < 0. On letting y' = (y1, ¥», 0),
one then has

r(y’, )
- (5.31a) ——— = 1+sece = c*.
r(y, x)
It is observed that
Tz(?/w’i) 1 2‘”3“?/3 Ys 3/?2,
r¥(y, x) ry, x)r(y, ©)  riy, x)’
80 that
r(y,x)épr A .
7y, x) r(y, x)
Now

lysl < Vyituitg e (for ys = 0), (s < Wyi+9i = Iyl tg e (for g = 0);
thus, in either case |y;| < (0, y’) tg ,; whence

r(y’, x) r(o,¥') (0, y)
< <
) = Tt = Litge o

(5.32) ", 7) .z

Case (i). », = 0. Let C(xz;) be the circle consisting of points z = (2y, z,, 23)
such that
— . 2 2 _ .2 2.
23 = X3; 21F25 = X+ ;
C(x;) contains x. Of the points on C(x;) the point 2° = (2, 2, x,), lying in the half
plane extending from the y;-axis through y, is nearest to y, thus r(y, z) = r(y, z°).
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In this half plane we have the triangle o, y, x°; let § be the angle at o; between the
sides (o0, 7}, (0, 2°) there extends a generator g, of (K} ) (possibly coincident with
(0, y) and a generator g, of (K, ); the angle between g, and g, is &;; hence § > ¢,;
let x* be the foot of the perpendicular from y on the side (o, 2°) (this side extended,

if necessary); one has
r(y, °) = r(y, x*) = r(o, y) sin § > r(o, y) sin ¢, ;
thus 7(y, x) > (0, y) sin ¢; and, by (5.32),

(5.33) M < I4tge csee = 1+4sece (in Case (i) .

(y, x)

Case (ii). ¥, < 0. In this case we shall use the fact that y is in N(o, &,) and that

x is exterior N(o, 2¢,). Designate by C(x,) the circle, containing z,
2, = 2, , zyk2 = aytal .

Let P be the half plane extending from the y,-axis through y. The intersection
20 = (%, 23, x3) of C(x,) and P is the point of C(z,) nearest to y; thus r(y, x) = r(y, x°).
Consider the triangle o, y, 2° (in P); the angle 5 at o exceeds ¢,, because from o and
between y and x° there extends a generator g, of the conical surface N(o, ¢;) and a
generator g, of the conical surface N(o, 2¢,); the angle between g,, g, is &, (g, may
coincide with the side (o, y)). Denote by a* the foot of the perpendicular from y on

the side o, 2° (extended if necessary). We have

ry, z) = r(y, 2°) = r(y, ©*) = r(0, y) sin f > r(o, y) sin ¢, .
Thus, by (5.32),
(5.34) i(y_,i)) < 1-}sec ¢, (in Case (ii)) .
r(y,x

Case (iii). =, < 0; y, = 0. We shall now use the fact that x is exterior N(o, 2¢,)

and that y is in the region bounded above and below by (K})), (K), respectively.

For all z,, satisfying z, =< 2z, < 0, one has

(Ya—24)% = (Y3—25)%;
whence

r(y, x) = 1y, ?) [for all z = (xy, 2y, %;), With z, =2, < 0];

the points z, referred to above, constitute a rectilinear segment L whose end points
are z and (z,, 0, z5). If xjjx |1 = tg 2¢,, that is if (2, 0, z4) is on or exterior the
surface of N(o, 2¢,), we have

4 — 642138 Acta mathematica. 84
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(1%) ry, x) Zr(y,2°) (2°= (25,0, 25)) .

When z;)z,|-! < tg 2¢,, one has

(2°) "y, x) = r(y, 2°) [2° = (2, 2, 23); @ < 23 < 0],

where 20 is the intersection of L with the surface of N(o, 2¢,). Now if (1°) is on hand,

the reasoning used in Case (i) (with x, = 0) applies; thus, corresponding to the

inequalities preceding (5.33), we obtain
r(y, 2°) > 7(0, y) sin ¢, (Case (1°))
and r(y, ) > r(0, y) sin &, which (by (5.32)) yields

’

7(y’, x)

(5.35) . 2

< 14sece, (in Case (1°).

It remains to examine the case (2°). We designate by C(y,) the semicircle consisting
of points z, such that z; = y;, 2]4-25 = yi-+ys, 2z, = 0; C(y;) contains y; its end points
are y° = (il/f—@g, 0,%s). When 2, > 0, we use the plus sign; in the contrary case —
the minus sign. With such a definition of y°, it is observed that of all the points of
C(y,) the point y° is nearest to 2° = (,, 23, ;). Thus, by (2°),

(3% ry, x) = r(y, 2°) = r(y°, 2°) .
Suppose, for example, x; > 0 (we previously let z; = 0). Then y° = ( Vg_/?:{——g/“g, 0, ¥s).
Consider the semicircle C(x;) consisting of points w = (u,, u,, u3) such that

Uy = @y Uy = 25423 uy <0

C(z,) contains z° (C(,) lies in the surface of N(o, 2¢,)). The end points of C(x,) are
u® = (x,, 0, +us), where
£) U = Vaital = | tg 26 ;

—

we note that the lines o, u° are generators of the conical surfaces N(o, 2¢,). Of all the
points on C(z,) the end point «° is nearest to »° if we let:

uO - (xl) 0: ug) (lf 3/3 Z 0) 3
u® = (,, 0, —ul) (f y, < 0).

It will suffice to proceed under the first of the above alternatives. Accordingly,
7(y° 2°) = r(y°, »°). Consider the triangle o, ° u° (in the y,, y;-plane); let the angle
at o be B. The sides (o, u°%), (0, ¥°) make angles 2¢,, arc tg y,(y°—+y>)~* with the
+ys-axis, respectively; the latter angle is =< &, (because y° is on or under (KL)).
Whence g = ¢,. On letting «* denote the foot of the perpendicular from %° on the
line (o, u°), we obtain
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r(y®, 2°) = r(y° u®) = r(y°, u*) = (0, y°) sin f = (0, y°) sin ¢, .
Now (o, ¥°) = r(o, y); in view of (3°)
7y, x) = r(o, y) sin g ;
accordingly by virtue of (5.32)
r{y’, x)
(Y, )
The truth of the Lemma follows by (5.33), (5.35), (5.36).
Now in the general case we have (cf. (5.16)), with suitable choice of coordinates,

(5.36) < l+sece, (in Case (iii)) .

(L) Wr@)] < @), A =\ U)Xy 2)doly) .
*8(o, )
We keep x exterior N(o, ¢)-+4 W(o, ¢) and let a (> 0) be sufficiently small (to enable
application of the various Lemmas). By Lemma 5.31 and since
do(y) < ¢*da(y’) [y = (Y1, Y2, 0); do(y') = dy,dy.] ,
it is inferred that

20 @) =

Y80,

¥y, @) [:EZ ’ 2

J doy) < e*\ ¥y, )do(y)
'S80,y

here S'(o, @) is a plane surface, being the orthogonal projection of S(o, @) on the
Y1, Yo-plane. In the above I(y) is the distance from y (on S(o, a)) to the edges f3; thus
ly) = r(y, u(y)), where

u(y) = (u1(y), uao(y), us(y))
is a certain point on f; we observe that

uy = Flu,, uy) , uy = fluy),

where F, f are from the equations of the surface (near o) and ', respectively. It is
to be recalled that the first order derivatives of ¥, f are continuous and

oF )
Fu,, u,) = O(g?), P = 0(p), flu,) = O(uy),

fOu) = O(wy)) (o= Vui4ud).
It 1s observed that
r(y’, w')
Uy)

=c*  [w = u(y) = ((y), ua(y), 0)]

and
l’(yl)

= c¢* [I'(y’) = distance from ¥’ to §'7,
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provided uo is suitably small. To establish this we use essentially the fact that S(o, a),
g approximate (near o) S'(o, a), §', respectively, while ' approximates a rectilinear

segment. Thus I'(y')~(y) < ¢* and

l/ X
( rwr ey = v N g ity
*'8’(0,a) S'(0,a) l(?/)
= C*S U(y') ry', #)doly’) -

8’(0,a)
To the integral in the last member the result (5.30) (the case of surface planar near o)
applies; whence, in view of (1,), (2,), in the general case we have

|P¥(x)| < c*ky(e)r*(0, x) o<a<l),
(5.37)

* (if « =0)

PE@)] < o¥lae) og

(Ky(e) from (5.30a)) for all x exterior N(o, ¢)+W(o, ¢). By virtue of (5.2), (5.3) the
function ¥(z) (1.3a) will satisfy inequalities of form (5.37). We accordingly state
(with the assumption after (5.3) easily deleted) the following.

Theorem 5.38. Suppose that q(y) c [x|S] (Definition 3.19) and that Hypothesis
3.20 holds. Assume that 0 < & < 1. The function ¥(x) (1.3a) will then satisfy

(5.38) [W(x)] < c*ky(e)r *(c, x) (¢f «>0),
o*
r(c, x)

for x exterior N(c, e)+ Wi(c, €) (Definition 5.1) near any point ¢ on the ‘edges’ g of S.
In view of Definition 3.19 it can be also stated that

(5.38a) Y(@)c[x|C(S)] Gf a>0), Wkx)c[0,log|C(S)] @Gf «=0).

P(@)] < c*hy(e) log (if x=0), kyfe)=0(",

6. Order of infinity of principal integrals near 8. We now proceed under
the conditions of Theorem 3.25, with y(y, t) satisfying (3.27). Consider the principal
integral (3.25Db),

(6.1) w(t) =\ Ky, -2y, Daly)do(y)

'
(@S, 0 =a<la+p<1;0 < B). As follows from the works of G. GIRAUD
and MicHLIN (cf. references to Giraud in [#]) the principal integral ¥(¢) is certainly
of a Hélder class for ¢ on the surface 8, at positive distance from the edge (that is,
for I(t) > 0), provided ¢(y) is of a Holder class (for /(y) > 0) on S. We shall not examine
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any closer these aspects of ¥(¢). Let ¢ be a point on the ‘edges’ 8. The problem now
is to study the order of infinity of ¥(t) for ¢ (on S) near ¢, avoiding approaches

tangential to 8 (near c).
Proceeding with the notation of the beginning of section 5, we let t be in the

neighborhood of ¢, defined by the conditions
a
(6.2) tin S(c, 5) , t is exterior comes N(c, ¢)

(Definition 5.1). We take a (> 0) so small that the portions of the curves 8, ' bounding

S(c, a), S(c', a), respectively, are in N(c, g) .

Now r(y, t) = % (for tin S(c,%) and y in §—8 (e, a)) ; in view of (3.21) and
since ¢(y)c [«|S] one has
(6.3 i, D2, Doty | = o {1 doty) < o0

(integration over S-—S(c, a)). Hence it will suffice to study the component of the
integral ¥(t) (6.1) extended over S(c, a),

(6.4) D)= kg, Oy, a(eMoly)
v 8(c, a)
We recall the definitions of k'(¢ly, ¢), k”'(t/y, t) in (3.2a), (3.2) and write
(6.42) D(1) = B'(1)+ 9" (1),
where
(6.4b) 20 =\ Ey0r, ta)ot)
vS(e,
20 = |y 0y, Da)doty)
(¢, @)

Here @'(t) is ¥''(¢) in (3.3), with S replaced by S(c, @); thus by (3.22b)
(6.40) D7) < e*I"'(t),  I(t) = S Yy, )"y, t)do(y)
Ste, a)
(B, y(y, t) from (3.20c)), where the integral exists by Note II (end of section 3).
As a consequence of (3.27) for the integral I'(t), above, we have
(6.5) () < XY+ (1))

where

F1’<t>=S 1B (y) 2y, Odo(y) , r;’<t)=l—f*<t>s )"y, t)do(y) ,

Wy w3
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with @, and w, denoting regions
o, {y in S(c, a); Uy) < 1(1)}, w.{y in S(c, a); l(y) > U1)} .

Choose the (y,, Y, i3) coordinates with the origin o at ¢, as described subsequent (5.3).

Consider first the planar case when S(o, ) is a semicircle (in the y,, y,-plane)
(6.6)  So,0)=80,0) =0 SVyitvi=as g =0; 9. 20},

f (near o) is the rectilinear boundary of S(o, a),
(6.62) p=F={asy =a; y=y;=0};

suppose for the present that ¢ = (¢, t,, 0) is on the normal to 8 at o,

(6.6b) t=(0,1,0; 0<t,=-.

We then have l(y) = vy,, do(y) = dy,dy, and

(6.6b") w, = part of S(o, a) with y, < t,; w, = part of S(o,a) with y, >, .
Introduce the transformation, between sets of variables (y,, y,) and (I, r),

(6.7) L=vys 7= [+ 1)
we have

lJ(‘%’ Ya

lLr

|
V= it doty) = eyl
Vr2—({—t,)?
On taking account of the symmetry of S(o, a) and of the integrands involved with
respect to the y,-axis, it is inferred that
2] r’

() = 2S l*“‘ﬁdlS P [ ()2 A
0

to—1l

where
’ P 9 N l/5
(1%) 1= V=D @) S Vitae Sa' = e
Let r = (t,—1) sec 6; one has
1" b2 o t2_l
rie < 2S l“"“ﬁdlg (t,—1)" ! sec *0d0 , 0’ = arc cos ——
0 “o a

7
(0 <§ < ;); further, with [ = i, ,

o % h—x—f L B h—1 o h ’ s
) I = 2, gr (1 _r) dr< sec 6d0; cos 0/(z) — 2(1—7) .
: a

vy “o
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Tt is noted that
N 1

v o= S sec " 0dO = \ w1 —u?) tdu
Y0

060
when A < 1

v = \ w1 —u?) tdu = c*:

for h = 1 we have

1

- ...+g%...

o% 100

:
bo

Whence, by (2°), the following is inferred. For A < 1

1
e = c*té‘“"‘ﬁg B )iy < o

(since h—1> —1, —x—f> —1); for h =1

a’ ¢ .
I/ @) < ce*tl*#log —«S TPy ferl
0

2

glr_o‘”ﬁ log

*0

dt

1—-7

a
Zc*i P log 7+ c*ty P
2

Accordingly (in case (6.6)—(6.6b))

(3°)  I() <+ F (for b < 1), I')/(t) < el > logat—

’

2

(for A = 1).

55

L du 2 oddu a’ 1
(1—u?)2 — =< c*—{—~w_-§ — Z c*log —+c*log —-.
u /3 dg, u ty 1—7

Continuing in the case (6.6)—(6.6b), we turn to I%'(f) of (6.5) and note that

() = 2z;ﬁg l‘“dlS

2]

U r2— (1—1,)2] tdr

(r' from (1°)). The substitution r = (I—t,) sec § yields

W0

I < zt;ﬂS rwdz\ (I—1,)+" sec "0d8 ,

I 0

’ 17t2
§' = arc cos ——,
a

where 0 << 0’ < 2-1zm; we again let | = #,7, obtaining

cat
(4°) ) < 2t3—“~ﬂ\ P (e 1Y Y(n)dr

with

ty
cos ' = —(v—1),
a

S

sec "0d0 .
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Since a’ = 2—1V5a and 1 < 7 < at;!, we have

1 L r t2 2
o) =\ wt—wrylan (6= e—1); 0 = <=
leo

thus
v(r)§§...<c* (when A < 1).

Whence by (4°) (for A < 1)
: aat7!
T/ < e >BL), It :5 P ¥ r—1)dr
1
(at;* = 2), where
2

at ! at;! 1\*1!
I(t)=§ +S R §0*+§ ’ r“"*"‘1<1~—> dr;
1 2

LK .,2 T
thus
at
It < c*+c*g Pty
_ vy
Accordingly
(5°) Iy < e*y>Ff  (h<a),

() < e*t;f log; (h=a), TV <cP (x<h<]l).
2

By virtue of (6.5), (3°), (5°), the following holds. In the case (6.6)—(6.6b) one has
6.8) Ity < P (for h<); IV < ;P (for a <h<1),

I"(t) < ¢*t;% log (?—) (for b = «x).

2
Consider now the case when A = 1. The inequalities (3.20 ¢) (Hypothesis 3.20) now
yield (vvith y(¥, t) subject to (3.27) and with y, ¢ on the surface)
Pir @) = Vir i = Ay (s (Y, 8) = Ay (y, )7y, (g, 1)
< A"y, )y, 1) (A", > 0, independent of m),

where we let » be a fixed number such that « < » < 1. Applying the second inequality
(6.8), with b = », it is inferred that
(6.8a) Ity < ext;f (for h = 1; in the case (6.6)—(6.6D)) .

It does not appear possible to get a sharper result for & = 1, using the integral

for I';(t) (6.5).
Generalize now the case (6.6)—(6.6b), replacing (6.6b) by the requirement that
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(6.9) &= (4,1,,0) is on S(o, a) (6.6), exterior N(o, ¢); r(o, 1) <

ro| R

We have
a
8] > [t tg e, It < 3 cos £ .
Introduce coordinates y, = y,—t,, ¥, = ¥,; in these, S(o0, a) (6.6) is a certain semi-

circular region (with center at (—t,, 0)) S’; 8" is contained in another semicircular

region S*, consisting of points (y;, y2) such that

Y

S Vyli 4y < ta; s

furthermore, the point ¢ is on the +y,-axis, ¢’ = (0, ,);

0};

Uy) = Uy') = 9o =y, U) = U') = to, do(y) = do(y'), 7(y,8) = r(y', 1) .

For I'/'(t), I','(t) of (6.5) one accordingly has

L) IO <O =12, THo =\ 1hgr=y, tdy),

Yoot

rro =)\ ey ety
. wz
where
o, = part of S* with y, <t;; w, = part of S§* with y, > ¢, .

The regions o), w, are formed precisely as w,, w, were in (6.6b’), except that a is
replaced by § a; moreover, {, < %. The integrals for Ff‘(t) (j = 1,2) are identical in
form with those for I7'() (6.5), considered in the case (6.6), (6.6a), (6.6b), with a
replaced by fa. Whence the results (6.8), (6.8a) continue to hold in the case (6.6),
(6.6a), (6.9).

We observe that, under (6.6), (6.6a), (6.9), ¢, > r(o, {) sin ¢ and there exists
a positive constant b° so that
Bo

er(o, t) '

(6.9a) ' < b%~1r-Yo, t), log (;) < log
2
By virtue of (6.4c), (6.8), (6.8a) and of the preceding italics it follows that

bO
(6.10)  |®"(t)] < c*[er(o, )] P(h < a); 1@ (1)] < c*[er(o, 1)1 P log LT»(Zt)J

(h = «); |@7(8)] < c*[er(o, )]  (x<h = 1)

wn the case (6.6), (6.6a), (6.9) (that is, when the surface is planar and the ‘edge’
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is rectilinear near o). Note that by (6.5) 10" (t)| < c¢*I"'(t) < ¢*(I'}(t)-+T7'(t)) and that
I, IV Ty satisfy (6.10).

Continuing the study of I'’(¢) (6.5) we go from the case (6.6), (6.6a), already
studied, to the case when S(o, a) = 8'(o0, a) 1s stll a plane surface, but the boundary

a
B = B’ of S(o, a) near o may be curvilinear; t = (¢, ty, 0) will be kept in U’(o, §> exterior

NAo, ¢). With (5.4b) in view, one may say that the part of 8’ involved in the boundary
of 8'(0, a) consists of points 4 = (3, 1,, 0) such that

(6.11) Ny = fln) = O(y])  (—a' =y =a”;0<a’,a” <a);
the end points are A(—a', f(—a')), B(a"', f(a'’)). As remarked subsequent (6.2), the

£
arc (6.11) is in N<o, 5) ; thus on this are

€
(6.11a) Ipol = 1fOr)] = Il b -
On letting 0(y) = y,—/(y:), we have
(6.11b) I-Yy) = c*o~Yy) [y on 8'(0,a), not on §'; —a’ Zy, =a''].

Apply the transformation (1°) (given subsequent (5.28)) between sets of variables
(W1, ¥2), (Y1, Yy); S'(0, @) goes into a region S*, in which Y, = 0; the arc (6.11) is

transformed into the rectilinear segment
(10) ﬂ*{}Yz — ()’ *(J/, g Yl g a//};

to the circular part ¢’ of the boundary of §'(o, @) corresponds an arc ¢*, joining the
points (Y, = —a’, ¥, = 0), (Y = a”/, Y, = 0). As subsequent (5.28), one now has

(2°) a(l—¢') < R = [+ Y < a(14¢") = a*

(0<é¢,e" <1;¢,¢e -0 with a) for (¥,, Y,) on o*. Since d(y) = ¥,,

(3°) I(y) < e*Y,! (in S*).

S* lies in the semicircle C* { ¥4 Y; < a*2; Y, = 0}. Apply the same transformation
to ¢ as was applied to y; ¢t then goes into 7, where

() 7= (T, Ty 0);  To=t,To=t—ft);  f)] = Il tg 55

clearly r(y, t) = r(Y, T). Since [t#7'| > tg e,

5° Tz,, b2 E(jﬁ‘, gl £
(-) ) Tfll 2 ﬁ]_ lt1| > tg € tgz > tg 3 .
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Now

r{o, T) < r(o, t){(1+¢"), e = Ole);
hence
(6°) (o, T) < La® [a® = (14-&%a = a+0(e)],

when ¢ is in S’(o, %) exterior N(o, £). We shall need an inequality for (Y, 7}, r(y, t).

We note that
) —f(t)] = e*ly,—tl 5

moreover,
r2(Y, T Yo—taf (y1) —S(t1).
L Sl Ml A — p-2 — 2 S
(. ) +9, g =r"y, ) [fly)—f(t)] 27(% D rgn
here
9] = {C*Iyl‘tlir 9 [C*]%‘th [y2—1s] < ok
Loyt iy, t) 1y, ty T
hence
(6.12) r Ny, t) < c*r WY, T).

Turning to I5'(t) (6.5) (with the y coordinates chosen as stated subsequent (6.5)),
by (3°) and (6.12) we obtain
(6.13) ') < c*S Y, By, TYdo(T)

N

rye) < e\ vy, Tho(y),
Ywg

where do(Y) is element of area at ¥ and o), o) are transforms of w,, w, (in (6.5)),
respectively. To describe w,, w, consider the curve (x) (in the ¥,, y,-plane), within
S’(0, a) and consisting of points y such that I(y) = I(t); let (x*) be the transform of
(«); (a*) goes through 7" and joins two points on the part ¢* of the boundary of S*;
w; is the part of §* bounded by the rectilinear segment S*, by {«*) and by two
portions of 6*; w,* is the rest of S*. The arc (x*) is ‘nearly’ a rectilinear segment; it
is ‘nearly’ parallel to the arc 8’ (of which f* is the transform); in particular, on
letting (¢*) denote the part within 8* of the parallel (in the Y,, Y,-plane) to f*
through 7', we observe that the arc (x*) is tangent to (¢*) at T'; («*) lies in a region

R(¢'), consisting of points Y such that
(7% Re') = {Y in 8*;  |[Y,—T| =[¥Y,—T},
where &' (> 0) is small. By adding or subtracting from the integrals in (6.13) integrals

(with integrands as in (6.13)) over suitable subregions of R(¢’), the integrals in (6.13)
can be modified so that o is replaced by the part of S* for which 0 < ¥, < 7,
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while o is replaced by the portion of S* for which ¥, = T,. Let e;, e, be any
(measurable) subregions of o[ R(¢'), o) R(¢'), respectively; it is observed that the

functions

(8°) Ii(ey; T) = S YR, T)do(Y),  Tyen; T) = TEﬁS Y3 (Y, T)do(Y)
ey Yeo

are not of greater order of infinitude (in 7', for 7' near o) than the corresponding
functions in the second members of inequalities (6.10). The integrals in (6.13) are

expressible in the form
(6.14) FEHTY (e T), IS (T)+Iyley; T)

(suitable sets ey, e, as in (8°)), respectively, with
rHT) = S Y5 P Y, TYdo(Y)  (over S*, with ¥, = T,),
3T — T3 \ Y75 Y, TYs(T)  (over S*, with ¥, = T,).

Recall the statement, subsequent (3°), with reference to 8* and the semicircle C*;
one has

(6.142) (7)) < S YR Y, Thda(Y)

w’

Ty < T;ﬂg Y3 Y, T)do(Y)

w/
where o', ' are the parts of C* for which ¥, = T,, Y, > T,, respectively. The
integrals in (6.14a) are precisely of the form of the integrals for I7,'(t), I','(t) (6.5),
respectively, in the case (6.6), (6.6a); now, however, they are modified in accord
with (2°) (note a*) and (6°); moreover, in view of (5°), ¢ is replaced by g At any
rate, the results (6.10) apply to the sum of the second members in (6.14a). Thus,
for T satisfying (5°), (6°), one has

(6.15) THTY+THT) < eXerfo, TV P (f h < &),

b()

< ¢*[er(o, )] log {_w,,\} (if b= &), < c*[er(o, T)] P (if x<h=1).
er{o, T')

By virtue of the statement with respect to (8°), the sum of the functions (6.14),

that is the sum of the integrals in (6.13), satisfies inequalities of the above form;

the same is true for I')(t)4-17'(t) and, accordingly, for I"'(t) of (6.5). Since
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TS Tl tg S (49),

we have

r¥o, ) T, [f(Tl)J {f(Tl)

2
' o, 1)

2 e 2
= -1 =11 — *.
r2o, T) r(o, T') } = < +tg2> =

(o, T)
thus
(0, T) < c*r=o, t) .

Whence, T in the second members of (6.15) can be replaced by ¢; ¢, as assumed preceding
(6.11), is on S(o, %> = S’(o, %), exterior N(o, ). In view of the above and of (6.4¢)
the following holds. In the case described preceding (6.11)

(6.16) |@"(t)] < c*[er(o, )1 Bh < &) ;

bO
|97 ()] < c*[er(o, 1)) log [( tJ (h=a); ["(0)] < c*er(o, ] F (x < h = 1)
er(o,
Jor t exterior N(o, &). These inequalities are also satisfied by I'y'(t)+17;'(t) (6.5).
When S(o, a) = S'(0, @) is a plane surface, one may utilize the fact that d(y) =

Ya—f(y,) satisfies inequalities
(6.17) b'l(y) > 6(y) > b"'l(y) (b = c*, b = ¢¥),

of which (6.11b) is a part; (6.17) implies that d(y) can be made to play the role of
I(y) in local considerations (near the point o, under consideration). Suppose in the
developments, leading to (6.13), we replace l(y), I(t) by d(y), 6(t) (absorbing 4" and b"’
in the generic designation c* of positive constants). Then the curvilinear arc a¥*,
separating wf, w,°, becomes a rectilinear segment ¢*, through 7' and parallel to the
rectilinear boundary g* of S*; consideration of integrals (8°) will be unnecessary;
Ii(e; T), Ley; T) in (6.14) will be zero.

We now consider the general case (with origin of (y) at ¢) when S(o, a) is not

necessarily a plane surface near o. Let
Y = (Y1, ¥, 0), ¥ = ({;, 1, 0), I'(y") = distance from y' to g’ .

On taking note of the developments preceding (5.37), we have [=(y) < c*I'~(y);

moreover,
do(y) < c*do(y’), r Yy, t) =r 'y, t),

where do(y) is element of area, at y’, in S’'(o0, @). Accordingly, for I';'(¢), I','(¢) in
(6.5) one has
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(6.18) £ < o\ 1)y Odoty)
vd,

Iy < 6*1/(t')7ﬁg Uy )y ™"y, t)do(y)
Ydy

with d,, d, denoting orthogonal projections on the y,, y,-plane of the regions w,, w,
(involved in (6.5)). Repeating the developments, which led to (6.13), we obtain for
the I';'(t) inequalities of form (6.13), where o, o] are replaced by regions of the
same type; that is, an argument of the kind used with respect to (8°) again applies,
leading to inequalities of form (6.16) (with 7(0, ') in place of r(o, 1)) for I','(t)-+ I';'(t).
We have
lts] = |F(ty, )] = c*r¥(o, ¥');

thus

r2(o, t)

== 14-457(0, )2 < c*; r~o, ') < c*ro, 1) .
(0, t')

Whence in the inequalities of form (6.16) (with r(0, t') for (o, 8)), referred to above,
one may replace r(0,#')in the second members by r(o, ). Since |9 (t)| < ¢*(I'}' (0)+ 15 (t)),
the following can be stated. In the general case (with the origin o of the coordinates
y at ¢), as formulated at the beginning of this section, the function @' (t) involved in (6.4 2)
satisfies

(6.19) D (1) < c*[er(o, )P (h < &), < c¥er(o,)]? (x < h 1),

bO

< c*[er(o, t)]P log[ } (h = &)

er{o, t)

Jor t in S(o, g) , exterior cones N(o, ¢). This is also satisfied by I')'(t), Iy (¢).

We now come to the study of @'(t) (6.4b),

(6.20) @'(t):ﬂs K (tly, tyr>(y, Da(y)doly) (cf. (3.22), (3.2))
* 80,

a
(origin of the y system at o); let ¢ be in S (o, 5), not on f, exterior N(o, ¢). Designate

by 8, the portion of S, whose orthogonal projection on the tangential plane, P,, at t,
18 a circular region S'(t, b), with center t and radius b. We shall take

(1) b = cyer(o, 1) (small positive constant c,).

Use will be made of the decomposition
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, , k' (tly,t
(6.21) o) = o +op0, o0 = S D00,

98, TRY, t)

(e = \ k(tly, 072, Datpdoty)  1s = S(o, a) =8,
Inasmuch as
g(y)c[x[S], K@y, ) = ¢ (3.21a); r(y, t) = b (for y in ),

on letting 0 < 6 =< 1 we obtain

|D3°(t)] < 6*\' =2y, O (y)do(y) = c* \ 2y, Oy’ (Y, do(y)] ,

8

(20) DL < * T, () = S 1)y )doly) ;
S(o, @)

we write

IO = JO+Tu) = |

where w,, w, are regions as in (6.5) (¢ at the origin o of the y system). It is observed
that

Ji) = IV, T =10,
the I’;'(t) (j =1, 2) being defined by (6.5), with § = 0 and & = 4. In view of the
remark subsequent (6.19), J,, J, satisfy (6.19). Thus, on letting § =0, h = d in
the second members in (6.19), it is inferred that

0

J(t) < c*[er(o, )™ (if § < «), < c* log[ } (if 6 = a),
er(o, t)
< c* (if x <6 =1);
whence by (2,), (1,)

b()
[ DLt)| < c*[er(o, )T (if 0 <6 < o), < c¥er(o, )] log Lr(o t)]

(if 0 <8 =u), <c*er(o, )] (if x<d=<1);
here 6 (0 < ¢ =< 1) is at our disposal, while « is fixed (0 =< « < 1). Whence the
above yields
(6.22) |D(t)] < c*[er(o, )] (f « > 0),
(1) < c*er(o, 010 (if & — 0);
in the latter inequality 4(> 0) may be taken arbitrarily small; this inequality can

be improved. Let 4" be the orthogonal projection of ¥ on the plane P, and let o =
r(y', t), 0 be polar coordinates in P,, with pole at ¢; one has
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r(y, t) = o, do(y) < c*pdoedl ;
accordingly, when « = 0,

. - . d
|Py"(1)] < c* S =¥y, tydoly) < c* 5 S Ldo (some L = c¥).
s 6=0"=b @

In view of (1,), the second inequality (6.22) can be replaced by

bo
(6.22a) |D;°(t)] < ¢* log Lr(o t)} (if x =0).

Introduce the orthogonal transformation (3.5)
y; = t;+Za;Y;  (a; from (3.5b));
its inverse is '
(6.23) Y, = {aij(yimti) .

It is observed that when r(o, t) — 0, the positive Y ;-axes tend to the corresponding
y;-axes. As before, let O be the origin of the ¥ system. The tangential plane P, to S
at f is the Y, Y,-plane; ¢ = O and o will be designated by

Z = (Zly Zz> ZS) B Z]' - —Zaylz

(capital letters are used for representation of points in the Y system). @,(f) can
be represented as follows:
(6.24) o) =\ K(¥, 0p(Y, 0)q(¥)ao(Y),

S0,y
where

oY) =q), (Y. 0)=23 X I, , W (Y, 0)... W, (Y,0)

m=1sy,..
(cf. (3.6 a)); 8(0, by = 8, 4, that is (0, b) is the portion of § projecting orthogonally

on P, in a circular region, consisting of points Y for which

(1%) Vi4Y2<b% Yy=0 (b = ceer(o, 1)) -

3

Sm=1

We reintroduce the polar coordinates (3.9), ¥, =pcos 0, (¢ =1,2), 6, =0, 6, =
g-@, and recall the formula (3.11a),

(2°) K(Y,0) = E"*(t, 0)+%k""(¢, 0),

where Lk *(t, 6) is the ‘characteristic’ of the original kernel. We let

(3°) Y,= F(Y,, Y, = O(Y!47Y}) (as in the early part of section 2)

be the equation of the surface near O (that is, near y = t); the equation of the surface
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(near y = o) in the y coordinates will be written as

(4°) Ys = F(y1, y2) = O(yi+y3) s
F(Y,, Y,) generally depends on t; Fo(y,, y,) is independent of ¢. Introduce quantities
vy, vy as follows (with Y3 = F(Y,, Y,)):

Yi+7Y3 [ 8F)2 <8F>2]%_ B .
YIPLT 1+(-67; Hz7:) | = e 8 a(D)—20) = e, )

the »;, depend on ¢t. We then have

oF \* oF \*%
~2(Y,0)do(Y) = [Y]+ Y Y2—1[1 —— ) | = J dodb
T, 0Ma(Y) = (¥i+ 2 70 14 () + (5 | ete

d
= (L2, 0) 65 a(¥) = gO)Fule. )

In view of (2°), @,(t) (6.24) is expressible in the form of a principal integral

b 27 dQ
(6.24") S S (k]’*—I—kl’o)(l—f‘vl)(Q(O)—i—%)—d@;
0=0v4=0 e
that is
, b W27 d b 27 d
Dy(t) = ¢q(0) S S k" *(t, 0)~9d6+ S S Ao, 0)Ldp,
g=01f=0 e Yo=08=0 4

where the first integral displayed is in the sense of principal values and is zero in
view of the satisfied condition (3.14). Thus

b 27 d
(6.25) o0 =\ | 002,
2=0"%4=0 0
with
(6.25a) Ao, 0) = E'(Y, O)(14»)r,+q(O)k' (Y, Oy +q(0)k™° .

The integral (6.25) exists in the ordinary sense.
By (3.20a) and (3.6a) |I, , (f)] = 8™c,,; whence (cf. (6.24))

(6.26) |k'(Y, 0)] = c° (c° constant from (3.20b));

also, since gc [«|S],
(6.26a) lg(O)] = lq(®)] < c* (1) .

By definition of [«|S] it follows that
(6.27) lg()—a@)| = @y, O)r"(y, 1) (some »; 0 <v = 1),

where ()(y, ) is bounded when I(y), I(f) = ¢ (> 0). It will be necessary to introduce
some specific statement regarding the behaviour of @(y, t) for y and for ¢ near edges;

5 — 642138 Acta mathematica. 84
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this we shall do along the lines of the corresponding conditions (3.27) for y(y, t)
(relating to the y, . ); thus we assume that

(6.27a) Q. 1) < X y)  (if Ity) < 1),
< ¥ To(¢) (it Uy) = Ut)) (v = xg; og—7 < 1).
The special case, tmportant in applications, is when in (6.27), (6.27a) one has
(6.27b) v=1, 6y = a+1.
As a consequence of the above, », of (5°) satisfies
(1o) vale, O) = @y, t1*(y, t) = QUy, " (Y, 0) = c*Q(y, t)o” .

By methods of the type, previously used for similar purposes, we find that
I(t) = coer(o, t) (c, > 0), that is

(20) I(t) < c*[er(o, t)]2 (t near o, exterior N(o, ¢));
in proving this use is made essentially of the fact that the curve  (near o) is in
N (0, g) Furthermore, by the triangular relation
r(0, 1) = r(t, y)+r(0, y)
and on noting that for y in §,, one has
(30) 7(t,y) = 1(0, Y) < k%%(0, Y') < k% = kOper(o, t) [Y' = (Y, ¥,, 0); k° = ¢*),
it is inferred that in S,
(4o) r=Yo, y) < ¢*r Yo, 1),
provided ¢, in (1,) is taken suitably small. In view of (2,)
A, 1) < e*(er(o, )™ (f Uy) SUD), < c*(erlo, 1)) ™ (if Iy) = L)

hence, by (4,),
Qy, t) < c*(er(o, t))™  (y in 8, ,; t exterior N(o, ¢)).

Thus, as a consequence of (1),
(6.28) lva(o, 0)] < c*(er(o, t))*‘"“gv .

Before we study », (5°), k' (2°) it will be necessary to examine the first order
derivatives of F (3°). The equation of the surface in the y system for y near o being
Y3 = Fy,, y,), consider the function

G( Yl: Yz, Y3) = yS_FO(yla ?/2) s
where (cf. (3.5))
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Y, = t;-+ 2 a;Y;  (ay from (3.5b); a; are functions of ).
Regarding the Y, as independent and letting

0 0
G; = aT.G(Yl, Y, Ys), Fiy,y.) = ‘a;Fo(yl» Y2)

i i
one obtains

2
I Gj = a’?,,j‘z Fiy,, Y2) by
i=1
G(Y,, Y, Y,;) = 0 is the equation of the surface in the Y system; one has
oF 0Y, —G;

(L) =
Y, 2y, G,

()] < [Fity, 1)l (6=1,2), 0 <mgt) = 15 |Fi(ty, £2)] = c*r(o,8);
hence the a;; (3.5b) satisfy inequalities
(I3) [aml |a]| <C T(O t) (’L:‘:jz 7".7: 1: 2’ 3)> 0/3’3:713 2”’, ZC*'

Inasmuch as
2

SFiy, yoa

g=1

2
| = 2 1Py, y2)| = c*rlo, ).,
we have -
(Ly) |Gs| = n'—c*r(o0, y) = c*,
provided r(o, y) is sufficiently small (which is achieved by taking the number a,

used in defining S(o, @), suitably small). Write —@G; (I,) in the form

@ = ZF (6, te)ay—as, ;| + 2 5 (Fiy, y2)—Filty, 1))y

i=1

[...] here is zero for j = 1, 2. On the other hand,
(Is) | Fys, Yo)—Fity, )] = C*[(yl_tl)2+(y2—t2)2]% = e*r(y, 1)
{as consequence of the assumed continuity and boundedness up to the edges of
the second order partial derivatives of F°). Thus
Gy = 57 Iy y2) =ity t)| = c*r(y, 1) (j=1,2)
and, by (I), (L)

(6.29) — | Z ¥y, t) =c*r(0,Y) =k (J=1,2; kg =c*);
J
it is essential to note that k, is independent of .
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A corollary of (6.29) is the relation

()] e

(here and in the sequel O(...) is independent of {). By a mean value theorem

0
oU,;

K]

2
Y3:F(Y1,Y2)=2

=1

F(U, U Y, (Y;=gcos ),

where (U,, U,) is some point (in the Y, Y,-plane) on the segment joining the
points O, (Y, ¥,,0); hence, by (6.29), |Y,] = c*p? and
(6.29a) [ Y0~ = c*p.

Turning to », (5°) we note that

L4ny = [1- Y320, ”{H(aF)*(:ﬁ)r

Since p% = Y2+ Y2, in view of (6.29a) one has
Y3 (Yg0~1)?

(6.290) (0, 7)1 (¥a)?

= (Fyo1)? = c*o®.

Accordingly

Iy, = [140(0?)] [1+0(0?)]
and, finally,

(6.30) vi(o, O)] = c*p®.
For the function k'° ((2°), (3.11a)) the following holds

(1) kg, 0) = K'(Y, O)—k"*(¢, ) = 2, 2 s OW, (Y,0)... W, (Y, 0)

m=18y,. :1
— 2 2 Iy, (1) cos b, ... cos b, = 2 2’ oy smtd >
m=18y,...8m= 1 m=183,...sm=1

where

Soroom = Loy s W (Y, 0).. . W, (Y, 0)—cos 0 ... cos b1,

5’2 sy s OW (Y, 0)... W

m=1 81,...8m

Y, 0);

sl

the prime with the summation sign signifies summing over sets (sy,. . .s,,) containing
at least one element, say s’, equal to 3. Now

(xg) W(Y,0)= Ys"‘i(O, Y) = g cos O,[o*+ Y3IF = cos O,[1+4(¥,07)2]*
for s =1, 2; thus
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(oxg) W (Y,0)... W, (Y,O)—cosf,...cos 0, = cos b ...cos 0, f,
[0 s 80 = 21,
where (by (6.29a))
_m m
[fd = [=1+[14+(Y3e71)?] 2| = (Yo )? = mhk'e®,

2

with & = ¢* independent of m; |I', () (3.6a) is bounded by 3"¢, (c, from
(3.20a)); hence by ()

| oo 2 o 2 0
(oa) 1 2 2| =2 28Tl ] = B 3 m2"870,,0° = c*p?
m=181,...8m=1 m=18y,...5m=1 m=1

the series last displayed converges by (3.20b)). We come to J. It is observed that,
play ges by

by {6.29b),
[Ws(Y, O)] = [Yalr=40, ¥) = c*o;

using the fact that |[W (Y, 0) =1 (s =1, 2, 3), one obtains

<3 N 8Mc,c*0 < c*p.

m=18y,...8m
This, together with (x,), (x), implies that
(6.31) k" (e, 0)] = c*o .
As a consequense of (6.25a), (6.26), (6.26a), (2,), (6.28), (6.30), (6.31) one has
(6.32) [A (e, 0) < c*(er(o, 1) 0" +c*(er(o, 1)) %0 .
Hence |@,(t)| (6.25) is bounded by an expression of the form
c*(er(o, 1)) b +-c*(er(o, 1)) b .
Recalling that b = ceer(o, t), we finally obtain

(6.33) [Dy(1)] < c*(er(o, 1)) ¥4 c*(er(o, )™ < c*(er(o, £))™;
in the case (6.27b) one has
(6.33a) [Dy(8) < c*(er(o, 1)) ™ .
Write, for short, L(f) = (er(o, t))-*. By (6.4a), (6.21)
(6.34) D(t) = D" (1) +Dy°(t)+ Dy(t) ,

where the three terms in the second member satisfy (6.19), [(6.22), (6.22a)] and
[(6.33), (6.33a)], respectively. There are following cases (valid for ¢ exterior N(o, ¢),
near o).

(6.34a) h <o (then 0 < b < x < 1).
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One has
oty = O(LA1)) [A = max. (x+B—h, x, xg—7)] .

(6.34b) h =« (then 0 < h =« < 1).

It is noted that
(1) = O(LA) [if 4 = max. (B, x, xg—7) > ],

D(t) = O(LAHi) log (1)) (it 2= ).

(6.34¢) O<a<h=1.

Then
D(t) = O(LAt)) [A = max. (B, x, xg—7)] .

(6.34d) 0=a<h<1.
It is observed that
(t) = O(LA(¢) [if 2 = max. (f, xp—») > 0],
P(t) = O (log L(t)) (if 2=0).
We restate for convenience some of the previously made hypotheses. The
Vir...in¥) c[O1S] (ef. (3.20a)) and
Vi i) Vi, in®] = Ay, 0y 1) (0 <h = 1);

Y, 1) < *P(y) (for Uy) < UD), yly, 0) < XU Pe) (for Uy) = Ut);

q(y) c [«|8] and
lg(y)—a(t) = Qy, t)*(y, t) (0 <v = 1);

Qy, t) < c*x™(y) (for Uy) < UD), Q. 1) < ™) (for Uy) = UD);
00, 08 a+-f<1; & = o) xp—v < 1.

On taking account of (6.34)—(6.34d) and of (6.3) we can formulate, independent

of the choice of coordinates, the following.

Theorem 6.36. Under Hypothesis 3.20 and, more specifically, under the con-
ditions stated subsequent (6.34d) the principal integral W(t),

W0 = Ky, 0, 0o
satisfies tnequalities
(6.36a) P(@)| < e*L ) [if h<o; A= max.’(zx+,3~h, &, %g—)];
(6.36b)  |P()| < c*LMt) [if h = « and A = max. (§, &, xg—v) > ],

< c*LAt)log L(t) [if h = « and A (above) = f§];
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(6.36¢) Pt < c*LAt) [if 0<ax<h <1; A= max. (§, %, xg—7)];
(6.36d) |P(t) < e*LMt) [if 0=o<h <1 and 1 = max. (f, x,—») > 0],
<c*logLt) [if 0=a<h =<1 and A (above) = 0] .

Here L(t) = [er(c, t)]71 and ¢ is a point on the edges B of the surfaces S. The above is
valid for t on S, near ¢, exclusive neighborhoods of ¢ tangential to the curve § near c;
specifically, for t in S(c, a®) (@° > 0, small), exterior N(c, e} (Def. 5.1). In all cases
0 < A< 1. The above also implies that ¥(t) < [A}S], or <[4, log 8], or < [0, log |S],

depending on the case.

Note. In many cases one has & = 1, ay = x+1, » = 1; the inequalities (6.36a)—

(6.36d) can then be restated as follows:
(6.37) |P(t)] < c*LAt) [if « > 0; 4 = max. (§, )] ;
(6.37a) |P(t) < c*IP(t) [if « =0 and § > 0);
(6.37b) |P(t)] < c*log L(t) [if x =8 =0].

Let S;s be the part of the surface for which 0 < I(t) < 4. Let ¢ = ¢, be a conttnuous
transformation of S on itself; we arrange to have ¢, of a Holder class, edges included ;
furthermore, the choice of ¢, is made so that neighborhoods of ‘edges’ are transformed
into edges; more precisely, S5 (for 4, > 0, small) is to transform into edges. We take
0, > 0, suitably small so that, for ¢ in Sy, ¢, can be defined as a point on g such that
the tangent to g at ¢ = ¢, is perpendicular to the rectilinear segment (c,, t).

Theorem 6.38 (Supplement fo Theorem 6.36). Suppose the surface S is completely

regular (section 2) and the y,  ; (y), q(y) are uniformly Lip. 1 (that is, of Hélder class

H,, edges included); one may then take x = oy = f = 0, h = v = 1 and the inequality
(6.37Tb) will hold. This result can be improved replacing (6.37b) by

C*
r(c,, t)

(t in Sy), where W*(t), vy(t) are uniformly of a Hdélder class (edges included).

(6.38a) W(t) = PH()+ale)oglt) log

The proof of the above result is not easy; it can be achieved by methods of
type used in proving Theorem 6.36 and utilizing properties of completely regular
surfaces. We shall omit the details.

W(t) in Theorem 6.36.1s a sum of three terms ¥'(t) such that

(6.39) ['(1)—W'(ty)] = VAP, to) (for UE) = I(ty)), = X1 (E)r™1(¢, )
(for Uty) < UD)) ;
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if atB,00+8—v <1, we may choose 0 < v, < 1, x;—v, < 1. To prove this write

¥ =V¥,+V, where ¥, ¥, are integrals over the parts of S for which I(y) <

§ min. (I(t), I(t,)) and I(y) = } min. (Ut), I({%,)), respectively. To ¥, we apply largely

the methods of this section and to ¥, those of GIRAUD, obtaining the stated result.
If x4+, xg+p—v < §, then o;—v, < }.

7. Curvilinear potentials. We recall that g8 = g,+8,+ -+ constitutes the
edge (that is, the edges) of S, where f,, B,,... (finite in number) are regular (with
continuously turning tangents) simple closed curves, without common points. In
this section, we shall study the potential
(7.1) K(z) = g k)

Jp i, )
where ds(y) is the element of length of 8 at y, k(y) is real of a Holder class on § and z
is not on . We shall determine the asymptotic form of K(x) for x near ¢, exterior
Nc, 2¢) (¢ > 0, suitably small). Write

ds(y)

k(y)
. 7%, Y)
where f, is the part of B, near ¢, for which

(12) K@) = Ko@)+ K@), Kyfo) =
B

(7.2a) r(c,y) = a (some a> 0);

a is taken suitably small so that g, lies in N(c, ¢);  (exterior N(c, 2¢)) is supposed to

be mear ¢ so that

(7.2b) r(c,z) = a® (some a®>0; a® < a).
For y on f—p, one has r(x, y) = a—a® > 0; hence
(7.2¢) | K ()] < c*.
Turning to K,(x), we write
B ds(y) _( ky)—k(c)
(7.3) Ko@) = k(c) Sﬁo o gy TE@, @) = S o) -

Now, ¢ separates B, into two parts By, B, . Consider the integrals along B;, for instance.
Choose the y system so that ¢ is at O and so that the positive y,-axis coincides with
the part of the tangent to f§, at ¢, extending from ¢ in the direction of §,, while
Z, > 0, ; = 0. One has

(7.4) dy, = ds(y) = sedy ,

where s, = 1, is independent of y and tends to unity when a — 0; moreover,

(7.4a) r¥}z, y) = r¥@, ¥°) = (& —y) 2+ (@—y2)?  (¥° = (41, Y2, 0))
and '
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(7.4b) 7y Z |on] tg 265 lyol = Vyibyl S yitg 2e.

Let y+, ¥~ be the points of intersection of the line y, = const. (> 0) with the traces
in the y;, y,-plane of the conical surface N(o, ), i. e. with the lines y, = +y, tg e,
respectively; thus

(7.4c) yt= (1118 0), ¥y = (y, —y.tg8¢ 0).

For z, = y,tge and 0 < z, < y, tg ¢ we have

(7.4d) ri(e, %) = r¥(e, y*) = (@1—y1)*+ @~y tg 6)*, 7@ 4°) = y1—2, (> 0),

respectively. By (7.4a), (7.4d)

(7.5) (for y, = z,ctge),

1
(7.5a) — < _
7(x, ¥) Y1—%

With k(y), say of class H, (0 < A =< 1), with the aid of (7.4) we obtain

h
S,k(y‘)i(i)ds(y)l <ot ” ©.9) 4y,
gy 7, y) o 1@, Y)

0

(for y; = x,ctge) .

a’

(7.6)

where

’

a
0<a Z=a; ——>1 (as a—0)

a
and y,, y; are thought of as functions of y, (the equations of §). Now y is some point
in the cross section of N(o, ¢) by the plane y, = const.; clearly 7(o, ) < r(o, y*),
where y* is any point on the circumference of this cross section; thus

r(o,y) = y,sece .

Accordingly, in view of (7.5), (7.5a)
e yhdy,

h
B Y14y,
T—%—sec € —
0 ’I‘(x, Y ) ”acgctgsyl—_xl

a’ h
S T (O, ?/Z d@h é sec hSS
0 'r(x, ?/)

if @, ctg ¢ = a’, integration in the first term in the second member, above, is over

(7.7)

(0, 2") and the last term is missing. When

xyetge =y, =a’,
on noting (7.4b) we deduce that y,—x, = r(x*, y*), where y* is from (7.4c) and x*
is the intersection of the lines

x, =y, bge, x,=x tg 2
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in the y,, y,-plane; that is,
Y1—% = Y—y, otg 2e tg e =y,

where ¢’, > 0, is a constant. Hence
a’ hd 1 a’
(7.7a) Y -\

he1 -
< yy Yy, = ¥,
"xgc’ogeyl‘xl [

Vg ctge
when there is occasion to consider the integral in the first member.

With ¥ denoting the foot of the perpendicular from y+ (7.4c) upon the line
Ys = ¥y, tg 2¢, we observe that

ri@,yt) =y, yt) =y, tge;

whence
am ti’%) ogel ddn S e eg e S ot
In consequence of (7.6), (7.7)-(7.7b)
[ 4
oy (@, Y) |

There is an inequality similar to the above for the integral over 8, (see the text
subsequent (7.3)). Combining the two inequalities, we state the following result

(independent of the choice of the y system)
(7.8) [R(x)] = c*¢ ™1 (x exterior N(c, 2¢); r(c, x) < a°).

We proceed on taking note of the text subsequent (7.3). By (7.4)

¢ ds(y) “ dy
(7.9) o) =\ 0 = s .
8,72, ¥) p—0 (@ Y)
utilizing (7.5), (7.5a) one obtains
a’ dy xp ety £ L a’ dg/
92) | (et (T
Yy1=0 7‘(.’1}, y) 0 Yza ctggy]_xl

if z; ctg ¢ > a’, the last integral above is deleted and the first is between the limits
0,a.
Now a® < a, while @’ (< a) is arbitrarily near a for a suitably small; thus we
may consider that a® < a’. On writing
Ly
7 = arc tg—,
Xy

we have
2e = S a—2
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and

0<a—a’=<a—r=<d-—z,=a—rcosy<ata® (r2=x|+a});
thus
(1%) llog (a—w,)| = c* (for myctge =y, = a');

on the other hand,
Z, ctg e —x, = r csc e sin (n—e);

since ¢ < 5—¢& < —3¢, so that sin (3—¢) = sin e, one has
(2°) 7 X X, ctg e—w; =< rosce.

In view of (1°), (2°)

dy, 1 ,
(7.10) S ———— = log — —-+log (&' —2,)
e ctge Y1~ %1 T, Ctg e—x;
1 1
= log —+'(z}); —c*—log—- < v'{x) < c*.
r £

It is observed that
xg9 Ctg £
| v e tg o) Hy, = cos e L(a),
xg ctg £ 0
1@ =" Ton—rp)rg iy, p = cos (—e) cose, g = sin (y—¢) cos e
0
One has
1 xg ctge
I(x) = log [((y,—rp)2+riq*) e 4y, —rp] %0
n—e&
= log (o} +0,)—log 242 log csc 5
where
o, = (sin 7 csc e—cos (1—e))24sin? (n—e) = csc? e[sin® s+-sin 7 sin (y—2¢)],
g, = sin 7 csc e—cos (—e) = } csc gsin n-Fsin (—2¢)], log cse ?%f < log cscg.
Whence we infer that

1
1< a%+02 < (2t 41)esce; 0 <I(w) <c* log —;
&

hence

Lz ctg & d 1
(7.11) S N < ¢*log .
(&}

Viw =)+ (@—y, tge)?® ¢
As a consequence of (7.9), (7.9a), (7.10), (7.11)
1

1
g(x) < sylog ———+4c* log—.
r{0, x) 3

bl

A similar inequality holds for the integral
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,——— (B, from the text after (7.3)).
Bo iz, y)

By virtue of these two inequalities we may assert that

g ds(y)
8, (%, Y

S ds(y)

<

1 1
< 2s, log ———4c¢* log—
= 2s, log e x)—}—c og .

~—

o

for x exterior N(c, 2¢) (r(c, ) < a°) (suitable s,, =1, - 1, as a— 0).
In view of (7.2), (7.2¢), (7.3), (7.8) and (7.12) one has
k(y)ds(y)

(7.13) K(z) = SBW — k(e) [230 log

1

r(c, x)

+{(e, x)] +ole, @);

1
(e, )| < c* log—, |o(c, )] < c*¢ ! (for « exterior N(c, 2¢); r(c, ) = a°); in the
&

above
1

r(c, x)

Envisaging again the situation as set forth between (7.3) and (7.4), we proceed
to obtain an upper bound for r(z, y). Now y = (¥, ¥s, ¥5) is a point in the circular

region O(y,; ), at right angles with the y,-axis, with center (y,, 0, 0) and radius
y, tg e. For y,, y, fixed

(>0).

. 2s, log

ds(y)

¥: = yi tgd ey
thus
rHE, y) = (X — Y1) (X — )2y = (x1_91)2+y¥ tg? e+ay(xy—2Y2)
since |y, = y, tg e, so that
[y~ 2y,| = 2,42y, tg ¢,
one has
rx, y) = (2 —y1) -y g2 et ant2ay, tg e
hence
r3(z, y) < sec? gly; —2(x, cos e—x, sin £) cos ey, +r2 cos? &] ;
substitution of
X, = rCosy, T, =rsiny, r:= i+

yields

(7.14) ri(z, y) < sec? el(y,—rp)*+r7?]
where

(7.14a) p = cos (n+e)cose, ¢ =sin (n+e)cose.

By (7.4) and (7.14)

e

(7.15) 1]

a’ d
gg (4 = I(x)cos e,
RAC)
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a’

(7.152) 1) =\ [@—rp)+rgay,.

Now ’

(19 I(z) = log [y,—rp+V (s —rp)+r7¢?)| = logn—logr,
where, in view of (7.14a),

(2°) yy=a —rp—l—l/ +r g%, vy, = 2rcose sin2<%f> .
Since

rp] < a® < a’ (suitable choice of a?),

it follows without difficulty that

0 < 2(a’"—a’ < v, =c*;
thus
(3°) llog ;| < c*.
Inasmuch as
S _mte_7 ¢
2 2 T2 2

one has

n+e

3e
= sec ¢ ¢sc? e < c¥e2;

TN
0o

1 < sec ¢ < sec ¢ csc?

thus by (1°), (2°), (3°)

where

[ o(x)] =

+8> l < c¢*42 logl.
2 £

log %—l—log ((sec ¢ csc?

By (7.15), (7.15a) we accordingly obtain

d
$@) = cos ¢ log

-1
> 1
7@, ) (0, @) ) } =oooneo

(7.16) SB {1—{—]0(27) <1og

(0, x) (o, x)’

where g is arbitrarily near unity for a® (> 0) suitably small. There is a similar inequality
corresponding to ;. Independent of the choice of the coordinates (yi, ¥, ¥s) we

infer that

ds(y)
(7.17) S ey = 20, log o,

Sfor x exterior N(c, 2¢), with r(c, ) = a°, where o, is arbitrarily near unity by suitable

choice of a® (possibly depending on ¢). From (7.12) it is inferred that
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ds(g)_ = 20, log _-L_

72, Y) T r(c, z)’

(7.17a) S

where ¢, has the properties assigned to ¢, in (7.17).
With the aid of (7.1), (7.2), (7.3), (7.8), (7.12), (7.17), (7.17a) the following is
established.

Theorem 7.18. With ¢ any point on the ‘edges’ f, the curvilinear potential K(x)
[(7.1), with k(y) of Hélder class H,] satisfies

s 1 —h—1
—e Ml < K(x) < 204k(c) log —— &0

(7.18a)  20,k(c) log e, ) (e, )

for x exterior N(c; 2¢) (Definition 5.1), with
ric, ) Za® (a®>0),

where a® is suitably small; in the above 0 < o, < o, (when k(c) > 0) and 0 < 0y = 0,
(wken k(c) < O) and oy, a, may be taken as near as desired (but not necessarily equal to)
unity by choosing a® sustably small (possibly depending on &).

Recall the transformation ¢ = ¢, of S on itself, as described subsequent (6.37),
and the definition of Ss (set of points ¢ such that I(t) =< 8). Fortin S, ¢ = ¢,ison §
and the tangent to § at ¢ = ¢, is perpendicular to the rectilinear segment (c,, #).
We extend this segment till it meets the boundary of S5 other than f; let A[c] denote
this segment (all the points ¢ of 1[c] are in S5 and transform into the end point c).

As a consequence of the theorem one has
(7.19) —c%+20,k(c,) log r—(c,, 1) < K(t) = ¢+ 204k(c,) log r—c,, 1)

for t on 84 (not on ), with oy, o, as in the theorem and ¢° a positive constant.

Problem 7.20. To construct a function y(x), real and harmonic for x everywhere

not on B, y(oo) == 0, with the properties

(7.208) —O—f ) log < o¥,
T(Ct, t)
(7.20b) y(t)+f(t) log b = c*+4vlog - 0=»<l
(¢, t) r(cs t)

for t on Sz (not on B), f(t) being an assigned real function of a Holder class on Sy, 6 being
suitably small.
Now (7.20a), (7.20b) are equivalent to
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1
e < e*dp]
o) = O e

(¢ on §,, not on B). Consider (7.19), where v(t) = K(¢) is of the form (7.1) with k(y)

(7.21) —c* = p(t)+f(t) log

1
as yet undetermined; add to each member in (7.19) the term f(t) log —; one has
’

1 1
(7.22) e+ (ok(e)H0) log o = 0+ ) log

1
= o+ (200k(e,)+f (1)) log -

(t on S;). Inequalities (7.21) will be secured as a consequence of (7.22) if (for ¢ on S;)

one has

(7.23) 20,k(c)+f(t) = 0,

(7.23a) 200k(c,)Hf(t) < ¥ .

Now one may take

(7.24) oy =1—¢, o= 14+¢& (if k(c) > 0),

o, = 1+& 0= 1—-¢ (if k(c) < 0),
where 1 > £ > 0, is a constant that may be taken as small as desired. (c° in (7.19),
(7.22) is possibly increasing as £— 0).

It will be shown that (7.23), (7.23a) are satisfied and Problem 7.20 is accordingly
solved with y(t) = K(t) (7.1), provided one constructs k(c) in accordance with the
following succession of steps:

(I). Take any 0 < v < 1.

(IT). Let &(> 0), § be taken so small that

v
(7.25) H(&, 0) = EBH-(1+&)h(0) = 2
where B is the upper bound of |f(c)] on 8 and A(d) is from the inequality

(7.25a) If(c)—f(B)] = A(d)

(¢ is on the segment A[c,] ‘crossing’ S4; A(d) is independent of ¢ and -~ 0 with J).
(I11). Let j be a constant such that

(7.26) HED) ;2= HE9)

1-¢ I+¢

(IV).- In y(t) = K(t), as defined by (7.1), put

(7.27) k(c) = —%f(c)% (c on B).
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We observe that (7.25) makes the inequalities (7.26) consistent. In view of
(7.27), it is observed that (7.23), (7.23a) hold if

o(J=fe)+ft) Z 0, ay(j—fle))+ft) <.
On writing f(c,) = f(t)—q(?) one has

(7.28) ()] = h(S) (o Sy);
accordingly we are to secure

(7.29) w01 Z 0, wet0yf =y,
where

0, = (1—0,)f(O)+0,9(t), 5 = (1—0,)f(t)+04();
by (7.24), (7.28) and (7.25)

oy, lwp] = H(&,8) (on Sg) .
We now note that
w,+0,j = —H(E, 0)+(1—-8)5;

hence the first inequality (7.29) holds by virtue of the first part of (7.26); on the
other hand,

wyt0of = H(§, 0)+(1+8)];
thus the second inequality (7.29) will be at hand as a consequence of the last part

of (7.26). Accordingly, (IV) gives the required solution.

8. Boundary problems. Using the notation of section 4, let (4), (&) be
asigned directions (nontangential to S) at ¢, defined by the direction cosines
(8'1) ;"j,(t), Z']“(t) H

respectively; these functions are to be of a Holder class on S, edges included. The
corresponding lines extending from ¢ will be designated by L;, L, ; also we let

(8.1a) 9'(t) = angle between the directions (-+mn,), (4,)

(similar definition for ¥'(f));

(8.2) 0= () < g; g <) <.

Let ¢'(t), ¢"'(t) be the angles corresponding to the angle ¢(f) (cf. text after (4.2a)).
Designate by K'(t), K" (t) the functions K(¢) (4.22) corresponding to the directions
(4), (A;"). Generally, the primes and double primes will relate to the directions

(A), ().
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Notation 8.3. Given any function A(x), defined for x in C(S), we write
A1) = lim A(z) (as 2, on L, - t); AY"(¢) = lim A(x) (as =, on L, , > t),
provided of course the limits exist.

Use will be made of the formulas (4.30), (4.31), valid for ¥(x) of (4.28a) at points
for which K'(t) == K''(¢),

(8.4) PO = qOK O+ PO, PO = 0K O+PE);
1
— (OTRNIR /1! all) = )
(8.42) alt) = SO OO PO at) = g
(8.4b) (t) = oa) PO+ al) PO, & = —K'x, 5y = Ko

We shall now proceed to abtain classes of solutions of the Hilbert-Riemann
boundary problems
(8.5) POty = A0 ) ,
(8.6) PO(t) = A)P (W) +B(t) ,
where A(t) -0 on S, B(t) are functions of Holder class, assigned on S. Further

hypotheses will be introduced in the sequel.
We shall first proceed heuristically. Let

k(y,
(8.7) ®,(x) = exp. V(z), V(z)= Ssrz(é’/ z))

u(y)da(y) ,

where u(y) is to be determined so that @,(x) satisfies (8.5). One has

VO = uK'+7V, Ve = uK"+V (on 8);
thus
&0 = o7 exp. (uK'), B = &” exp. (uK”)

and we should have
At) = exp. [(K'—K")ul;

that is,

(8.7a) u(t) = a(t) log A(2) .
The function

(8.Th) Bo(w) = OD,(x) ,

where y(x) is a curvilinear potential (as yet undefined) of a density distributed
along B, as in (7.1), will also satisfy (8.5); we note that y"(f) = y"(¢). The non-
homogeneous problem (8.6) can be solved on making the substitution

(8.8) B(x) = Do(x)¥(2) .
We have

6 — 642138 Acta mathematica. 84
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¢$}/)gj(/) _ A@E)I/)T(/,)+B — @E}/)T(//)_*_B;
thus
(8.8a) q(t) = x(O)BO[D ()] = a(t)[ PO @) —P()];

in form this is identical with (8.4a). Whence a solution of (8.8a) is given by

(8.8b) () =

« k(y,
S (9, 2) q(y)do(y) .

sT(Ys %)

Since «K’ = «,, by (8.7b), (8.7a), we obtain
(8.8¢) q(t) = x(t)B(t)A™O() exp. [—y()—V ()]

The above considerations indicate that it is desirable that «(t) be finite every-
where on S, except possibly at the edges; that is, we should obtain conditions under

which one can find a function ky(t) so that
(8.9) |K'(t)— K" (t)] = ky(t) > 0 (edges possibly excluded) .

Secondly, inasmuch as use is made of the principal value V(t) of the integral
V(x) (8.7), we are led to require that A be such that

(8.10) wly) = «(y) log A(y)c [7|S] (some 7; 5+ < 1).

Here g is from (3.27) (hypothesis (3.27) being assumed in place of the eondition
(3.25b!) of the Theorem).

Thirdly, since some of the above considerations indicate that the principal
value ¥(t) of ¥(x) (8.8b) should exist, we should have

(8.11) q(y) (8.8¢)c [«]S] (some &; a+pf < 1).

Definition 8.12. Suppose «(t) (8.4a) is finile on S (edges possibly excluded). We
shall designate by (A*) the class of functions A (nonvanishing on S) such that (8.10)
holds. Given a particular A(t)c (A*), let (B*, A) denote the class of functions B(t)
such that
(8.12a) 4 = a(OBEHA(1) exp. [—p(t)— V(O)T} < [»I8]

for some x such that «x+p < 1. Here y is a fixzed potential of form (7.1).

With K'— K" + 0, it is fairly easy to determine whether a function 4(t)c (4*).
With A(f) denoting any particular function c (4*), the determination of whether
B(t)c (B*, 4) is more involved, but can be carried out (for instance with y(t) = 0)
by ascertaining with the aid af Theorems 6.36, 6.38, the behaviour of the principal
integral V(f) near the edges and by examining the expression for ¢(f) in (8.12a).
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When (8.9) holds and A(t)c (A*) and B(t)c (B*, A), the heuristic process
described from (8.7) to (8.8b) is rendered rigorous and we have on hand a class of solutions
of the Hilbert- Riemann boundary problems (8.5), (8.6). The behaviour of these solutions,
that is the possible orders of infinity of these solutions for z (in C(S)) near the edges
of S, can be ascertained with the aid of Theorem 5.38.

Relating to the question of (8.9) we have the following.

Lemma 8.13. Suppose the y, ., (f), for m = 1, satisfy

3 [
(8.13a) D ritm(t) = ag > by= 1} 3 3"(6m+T)c,, (all t on S)
1 m=2
or
3
(8.13b) D2ritn(t) £ —ap < —b, (all t on S).
1

Let K'(t) be the function K(t) (4.22), corresponding to the approach along the positive
normal. Then
(8.13¢) K'(t) < —2n(ay—b,) < 0 (case (8.13a));
K'(t) = 2n(ag—b,) > 0 (case (8.13b)).

For the purposes of the proof the prime will be deleted. We have
(10) K(t) - Kl(t)+K2(t) s
where K,(t) is the part of K(¢) arising from the y,(y), while K,(t) is the part arising
from the y;, . (m>1). In view of (4.34), (4.34a)

2
K\t) = X CI(0)+Co.0:T:0.4(0) 5
s=1
here I'y.,.,, = I'; and

00 y W27
C, = S [22(14-72)§— ﬂ] drs cos 0df = 0;
i T 0

e <] 27

C, = S [as above] d-rg sin 0d0 = 0 ;
0 Yy
> 27
00:0:128 —T(1+12)‘%drg do — —2x.
'0 0

Recalling (3.6a), we obtain

3
(2 K,(t) = —27 3 y(¢n;(¢) < —2na, or = 2na, .
1

To K,(t) Lemma (4.26) can be applied, with $(f) = 0 and the y; , (y) for m =1
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omitted. Thus, replacing ¢, (in (3.20a)) by zero one obtains

(3°) Ks(0)] < 7 X 3™ (6m+T)e,, — 2b, .

m=2

The Lemma ensues by (1°), (2°), (3°).

Lemma 8.14. Let K'(t), K''(t) be the functions K(t) (4.22), corresponding to the
approaches along the positive and negative normals, respectively. If (8.13a) or (8.13b)
holds, one has
(8.14a) K'()—K"(t) < —4n(a,—by) < 0 (case (8.13a));

K'(t)— K" (t) = 47(ay—by) > 0 (case (8.13b)); ()] =< c* (all t on S).

This is established by noting that, by (4.33) (with &) = 0), K'(t)—K"(t) is
double the expression for K'(¢), with the y; , (y) for m even deleted, and by utilizing
Lemma 8.13. The above result can be generalized to fairly general situations, still
obtarning |x(t)] < c*, as follows:

I. When y, , (y) =0 for m =1,2,...,2u, but not all the y, , (y) for
m = 2u-+1 are zero, assume conditions analogous to (8.13a), (8.13b) for the y, _;,.(y)
with m = 2u+1.

II. After making an extension of Lemma 8.14 on the basis of 1, allow approaches
to t not along the positive and negative normals, respectively, but require these
approaches to be suitably near to approaches along opposite normals ; more precisely,
in this extension, assume that ¢'(¢) it near 0, while 9''(¢) is near = and ¢'’(t) is near
@'(t)+= (cf. the text after (4.31)).

We shall omit the details of such extensions.

In the rest of this section it will be assumed, on the basis of Lemmas 8.13, 8.14

and extensions (1), (IL), that there is a following situation on hand:
(8.15) a(t) maintains sign on S; |a(t)] < c*; x,(t), xs(t), K'(t), K''(t)

maintain signs. With the y, . (y), the n(1), ¥'(t), ¢'(t), ¥"(t), ¢"'(t) uniformly of
a Holder class on §, edges included, we shall have

(8.15a) a(t), K'(t), x,(t), x(f)

uniformly of a Holder class, edges included. The assumption with respect to the
Y4y...im(y) means that g of (3.27) is 0. ‘
Turning now to the italics subsequent (8.12a), we are now able to replace the

definitions of classes (A*), (B*, 4) by simpler ones as follows.
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Class (A4%*). This is the class of functions A(¢) such that
(8.16) : log A(t)c [5|S] (some 75; 0 =5 < 1)
and (8.16b) holds.
Class (B*,A4). Let A be a particular function of class (4*); (B*, 4) is the

class of functions B(t) such that
(8.16a) B(t)4*20() exp. [—p()—V(H)] < [«|S] (cf. (8.7), (8.7a))

for some x < 1 (y(t) is a curvilinear potential at our disposal).
Is is observed that u(y) = «(y) log 4(y) will be [5|S]; furthermore (with some v),

(8.16b)  |u(y)—p()] = uly, th*(y, 1) (O <v = 1); p(y, ) < ) (Uy) = UL));
uly, t) < e*72ot) (ly) = I(t)); some oy (= n) such that xo—v < 1.
Applying Theorem 6.36 with u(y) in place of ¢(y) and «, S replaced by 7, 0, respectively,

we obtain
(8.17) V()| < c*LAt) (it < n; 2 = max. (n—h, 7, xg—7)) ,
< c*LXt) (if =17 and A = max. (0, 7, ay) > 0),
< c*LMt)log L(t) (if b =7 and 1 (above) = 0),
<e*LAt)y (if 0<n<h <1; 2= max. (0,7, x—7),
< e*LMt) (if 0=7n<h =1 and 2 = max. (0, xy—7») > 0),
< c*log L(t) (if 0 =5 <h <1 and 1 (above) = 0).

In the above 4 is the Holder exponent for the y, ; (y); since & > 0 and the third
mequality cannot occur unless # = 0, this inequality could not possibly take place,
as stated.

With A(t) denoting some particular function c (A*) (8.16), the corresponding
principal integral V(t) [(8.7), (8.7a)] is of form

(8.18) ' V(t) = v(t)o(L(t)) ,

where Q(L ) 18 ome of the functions of L(t) (depending on the case) in (8.17) and
|o(t)] = c*, while v(t) is of a Holder class for I(t) > 0. However, in general, there is
no agsurance that V( ) is uniformly of a Holder class, edges included. Under these
circumstances the problem of determination of whether B(t) c (B*, A) (with y(t) = O)
s that of finding whether (near edges)

(8.18a) B(t)A=*O(t) exp. [—v(t)o(L(t))] < [x]S]

Jor some & < 1 (x,(t) satisfies (8.15), (8.15a)); this can be carried out without much
diffuculty. We therefore may state the following.
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Theorem 8.19. Suppose (8.15), (8.15a) have been secured. Then the heuristic
process, from (8.7) to (8.8b) is rendered rigorous, when log A(t) is [5]|S] (some n < 1),
for all B(t) such that (8.18a) holds (with y = 0) for some x < 1; (8.16b) assumed.

Let us consider the following case.

(I). § is completely regular (section 2);

(II). The y; . ;.(8), 9'(t), ¢'(t), &' (¢). 9" (t)c (u) Lip 1 (that is, are uniformly of
class H,, edges included) ;

(I1I). A(t)c (u.) Lip 1. (A(f) =0 on S).

In view of (II), «(t) will be (u.) Lip 1; whence, as a consequence of (III), we

shall have
m(t) = «(t) log A(t)c (w.) Lip 1 (u(t) c [0S]);

in (8.16) one will have = 0 and in (8.16b): » = 1, xy = 0. Accordingly Theorem
6.38 will apply to u(y); we have

(8.20) V(t) = V*(#)+ulev(t) log

(near edges),
(¢,

where V*(t), vo(t) are uniformly of a Hélder class, say H, (0 < p =< 1), edges included.
Furthermore, since K'(f) is (u.) Lip 1,
(8.20a) A0ty = exp. [—K'(u(t)]c (w.) Lip 1.

Since u(y) may be complex valued (when A(y) assumes negative values); vy(¢)
is independent of u and is real; write

(8.21) plevo(t) = vi(t)+oa(t) )/ — 1 (vy(t), vyft) real) .

Construct a function y(x), real and harmonic for  not on edges, zero at infinity,
with the properties:
(8.22) (1°) —p(t)+v.(2) log r(c, t) = ¢*,

1
(2°) p(t)—oy(t) log r(c,, ) = c*+o log (m t))

(0 =0 < 1) for t on Sy (that is, for 6 = I(t) > 0, with §(> 0) small).

Such a function y(x) can be actually obtained in the form of a curvilinear
potential (7.1) (K(x) of section 7 not to be confused with K(x) of Theorem 4.28),
extended over edges f# in accordance with the scheme used in solving the Problem
7.20 (on the basis of Theorem 7.18); we just replace f(t) of Problem 7.20 by w»,(¢)
and » by ¢. In all cases y(x) can be so chosen so that o (if not = 0) is as small as
desired.
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When |A(y)] = 1 we have v,(t) = 0; one then may take y(x) =0, 6 = 0.
As a consequence of (8.20), (8.21) and (8.22)
(8.23)  lexp. [—y(t)— V(D] = o* exp. [—y()+v(t) log (e, )] = c* ,
lexp. [y(t)+ V()] < c*r*(c, 1); exp. [—y()—V(1)] is of a Holder class for () > 0.
By (8.20a) and the above
A70(t) exp. [—y(t)— V()] < [0]S] .
By virtue of the statement with respect to (8.16a) it is observed that all functions
(8.24) B(t)c [«|8] (with « < 1)
belong to the class (B*, A), for all A(f)c (u.) Lip 1 (the same is true under certain

more general conditions). The following has thus been established.

Theorem 8.25. Assume the situation as described in connection with (8.15),
(8.15a); suppose S is completely regular and that

(8.25a) Vir...inlt) #'(0), @"(8), 3 (2), 9" (t) € (w.) Lip 1;

then the hewristic process, from (8.7) to (8.8b), for solving the Hilbert-Riemann boundary

problems (8.5), (8.6) is rendered rigorous for all A(t)c (u.) Lip 1 (A(t) %0 on §)

and all B(t)c [x|S] (with « < 1), with y(t) chosen in accordance with (8.21), (8.22).
Suppose we obtained solutions in accordance with the theorem 8.19. The

homogeneous problem is solved by

k(y, %)

3y, x)

To study this solution for = (not on S) near edges 8 of § we apply Theorem 5.38.

(8.26) Do(x) = D,(x) = exp. H uo(y)|  (u(y) y) log A(y)) -
S

In view of the hypotheses involved in theorem 8.19
ay)log A(y)c 7S] (0 =%n<1).

It is inferred that, with ¢ denoting any point on 8, one has

(if n =0)

g k(y, ' _ . 1
(y)daly) | < c*ky(e)r e, x) (if % > 0), < c*k,(¢) log
‘AS T(C, .’L‘)

(k,(e) from (5.38)) for @ near ¢, exterior N(c, )+ W(c, ¢) (Definition 5.1). The integral
in (8.26) can therefore be expressed in the form

ve, x)r e, x)  (if 5 > 0), v(c, x) log " ! {(if =0},

’

where [v(c, z)| < c*ky(e); thus
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(8.26a) Dy(x) = exp. [v(c, z)rNc, x)] (if n>0),
Dy(x) = r(c, )™ (if 4 = 0; x near ¢, exterior N(c, &)+ Wie, £)) .
With B(t) such that (8.18a) holds, the function ¢(¢) [(8.12a), with y(¢) = 0] will be
in [&]S] (x < 1); by Theorem 5.38
k(y, «)
sy, @)

|P()] = \S 4)doly) | < *y(e)r(e, 7)  (if &> 0),

< ¢*k,(e) log (if « = 0); x exterior N(c, &)+ W(c, €) ;

r(c, x)
hence

(8.26b) ¥(x) = ulc, z)r *(c, x) (if o > 0), = u(c, x) log ;% (if « =0),

>

where |u(c, )| < c*k,(¢) (exterior Nie, &)+ Wie, s)). On taking note of (8.8) and of
the preceding, the following is concluded.

Theorem 8.27. When solutions of (8.5), (8.6) are obtained in accordance with
theorem 8.19, the solution @(x) = D(x)¥(x) (8.8) of the nonhomogeneous problem has

the forms:

(8.27a) u(c, x)r *(c, x) exp. [v(c, x)r (¢, x)] (Gf x>0, n>0);
(8.27b) u(e, )r*(c, x)r(c, 1) (if « >0, n = 0);
(8.27¢) u(c, z) log r(cf?) exp. [v(c, z)r (e, x)] (if « =0, 5 >0);
(8.274) u(c, ) log - r(c, )P (if o = 0,n = 0);

r{c, )

the above 1s asserted for x near any ‘edge’ point c, exterior N(c, e)+ W(c, ¢); the functions
u(c, x), v(c, ) have bounded absolute values (the bounds may depend on &).

In any actual case, in applying the above result, supplementary more precise
information can be obtained by determining the numerical sign of the real part of
(e, x) (v(c, ) is defined by u and may therefore be complex valued). We will not
go any further into this.

Proceeding on the basis of theorem 8.25, it is noted that a solution of (8.5) is
given by
(8.28) Dy(x) = @ exp. V(z) (y(x) as in (8.22)).

As noted preceding (8.20), u(t) c (».) Lip 1 and is [0|S]; hence in view of Theorem
5.38 (where ¢(y), « are replaced by u(y), 0)
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V(x) = v(c, x) log ——1 lo(c, x)| < c*ky(e) .

r(c, x)’
Now y(x) is defined by a potential (7.1) (so that (8.22) holds). By Theorem 7.18

1 1
204k(c) log —— —& " 'e* < y(@) < 20,k(c) log ——— &7 c* (exterior N(c; ¢))
r(c, ) r(c, x)

(h here is the Holder exponent of k(y) of (7.1)), where o, o, are certain positive
numbers, as stated in the theorem. Hence, near c,
(8.28a) Dy(x) = r(c, z) ™2 uy(c, )| < c*ky(e) ,

where k,(¢) is a certain function of ¢ which may tend to oo, as ¢ ~ 0; these inequalities
can be made sharper, utilizing the special construction of y(x). We shall not linger
on this point. With B(f)c [x[S] (x < 1), a(t)c (u.) Lip 1 (cf. the text preceding
(8.20)), A™*¥(t)c (u.) Lip 1 (8.20a), in view of (8.23) we infer

q(t) = a(t)B()A™**(t) exp. [~y —V]c [«I8];
hence (8.26b) holds again for ¥(x). Now D(z) = @y(x)¥(z) is a solution of (8.6).
Therefore the following can be stated.

Theorem 8.29. When solutions of (8.5), (8.6) are obtained in accordance with
theorem 8.25, the solution ®(x) (8.8) (with y defined as in (8.22)) of the nonhomogeneous

problem has the forms

(8.29a) u(e, 2)r(c, )1 (if x> 0),

1 .
— (tf «=0)

(8.29b) u(c, x)r(c, x)~"2 log
r(c, x

for x near any ‘edge’ point ¢, exterior N(c, e)+ W(c, €); |ulc, x)|, |va(c, )| have bounds

Sfinite for ¢ > 0.

9. Singular operators. In the remaining sections we shall study integral

equations, involving operators of type

k(y, 1)

(9.1) auy+ | 57
STy 1)
here k(y, t)r—2(y, t) (3.1) is a principal kernel as described in section 3, while a(f) is
of a Holder class on § (for I(f) > 0), a(t) & 0 (for I(t) > 0). As remarked before, the

essentially novel feature (and one involving substantial new difficulties) of our present

w(y)do(y)[= A, (w)];

developments, in so far as integral equations are concerned, consists in the possible
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presence of edges B in the manifold (surfaces) S. The latter fact necessitates care
regarding orders of infinity near §.

We shall proceed under the conditions of Theorem 3.25, with y(y, t) satisfying
(3.27). In order that the integral in (9.1) should exist in the sense of principal values,

in view of the considerations of section 6 we are led to require that
(9.2) ut)c [xS] (0 =« < 1; a+f<1; g from (3.27)).

Use will be made of a number of formulas of section 6, with ¢(y) replaced by
u(y). Let ¢ be a point on the edges . Suppose the y system has its origin at ¢; thus
¢ = 0. This hypothesis is not essential. We have

9.3) ¥ Eg k(y, tyr=2(y, huly)do(y) = g k(y, tyr=2(y, tyu(y)do(y)+D(t)
',S .G/

[¢' = 8—8(0, a); a, > 0, small], where (by (6.3))

\ . 2w, thutdoty) ’ < o*

Yt

(9.3a)

and
D(t) = S k(y, thr=2(y, yu(y)do(y) = D" (t)+D'(t)
S (0,a)
(cf. (6.4), (6.4a)p (6.4b)); here

(9.3b) [0 (t)] =

SS (o’“)k”(tly, Hr*(y, t)u(y)da(y)‘ < *LPME) (b < a),
< c* Pty (x < h £ 1), < c*LP(t)log L(t) (h = «); (cf. (6.19));
[L(t) = (er(0, )~%; ¢ in S<o, %) exterior cones N(o, £)];
further (by (6.20), (6.21)),

(9.3¢) D'(t) = k' (tly, thr=2(y, thu(y)do(y) = 5" () +DPy(t) ;

SS(o,a)
here (by (6.22), (6.22a))

| &t 020, uty)o)

s

(9.3d) |PLO(t)] = < ¥ A (f x> 0),

< c*log L(t) (if « =0) [s= S(0,a)—38,,],

where b = ceer(o, t) with ¢,, > 0, suitably small (independent of ), in accordance
with the text subsequent (6.20). At this stage introduce the orthogonal transformation
(3.5), going from the y system to the Y system, the origin O of the latter being at t, as
described preceding (6.24). We then have
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(9.4) Pty — SS K(Y, Op~2(Y, Oyu( Y)do(Y) ,
J5(0; by

where w(Y) = u(y) and £'(Y, O) is as in (6.24). Introduce now polar coordinates

T
Y;=peos; (i=1,2), 0,=0,0,=5—0.

One then has (cf. (2°) after (6.24))
(9.4a) k(Y,0) = f(t, 6)+ (e, 9),

where f(t, 6) is written for k" *(t, 6) of the preceding sections;

[ee] 2
(9.4b) fe,0)=3 3 I, ,@®cosb, ...cosb, (cf. (3.11a)).
m=1 8y,...8;m=1

The function f(t, 0) is the characteristic of the kernel in (9.1).
It will be necessary to modify the procedure that led from (6.24) to (6.25).
In the expression for @(t) (6.24') replace u(0)-+v, by u(Y); thus

, . d
2} = { (16,040, 0)(1le, O)u(1) 7 d8
(0=<p=<b; 06 =<u). One has
(9.5) Dy(t) = P*()+ (1) ;
here
RO o do . fit, o)
(9.50) P (1) _SO SO b, 01" a0 SS(O,b)“(O, F YAy,

(Y = (Y,, ¥,,0)) is a principal integral and

d
(9.5b) Wi(t) = S S[k/(Y, Op(e, 0)+k; (o, 0)]u(Y)f~ do .

5(0,b)
The integral P*(t) (9.5a) will be termed the characteristic part of the principal integral
Y(t) (9.3); P*(t) is defined for I(¢) > 0; when I(t) < §, (small fixed §,, > 0), b in
S(0, b) is taken as cyer(o, t) (cy, > 0, small), as stated before; when I(f) > 8, b (> 0)
can be defined as a fixed suitably small constant.

Inasmuch as (9.5)-(9.5b) differs from (6.25) merely in the grouping of the
various terms, from the text leading from (6.25) to (6.32a) it is easily seen that
P(t), ¥,(t) satisfy inequalities of the same form as @,(t); thus

(9.6) PO, [F2(#)] < c* L™

(9.6a) [P*(8)|, |W1(8)] < c*L*(t) (in the case (6.27b), for u(y))
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for ¢ (on S) near the edge-point o, exterior N(o, ¢); here «,, » are from the inequalities
(9.7) lu(y) —u(t) = u(y, t)r"(y,t) (some »; 0 <v =X 1},
(9.72)  u(y, t) < *1(y) (for I(y) < I(t)), < c*™(t) (for Uy) = UL));

&= xgy xg—v < 1.

Lemma 9.8. Let u(t) belong to the class of functions satisfying (9.2) (so that (9.7),
(9.7a) hold). The operator A,(u) (9.1) is representable near an ‘edge’ point ¢ (in an y
system, tn which ¢ = o) in the form

(9.8) Au) = AF(w)+ A} (u)

where

(9.8b) A (u) = a(tyu(t)+P*@E)  (P*(t) from (9.5a))
18 the characteristic part of A, (u) and

(9.8¢) ) = wo(t) =kl Or-2(, u(y)do(y)

+ S k" (tly, r=*y, Hul(y)do(y)+ S k'(tly, hr=2(y, huly)do(y)+ ¥1(l) ,
S(o, )

[P1(®) is from (9.5b) and o' = §—8(o, a), s = S(0, a)—58, ;]
is the regular part of A, (w). We term AJf(u), A)(w), briefly, characteristic operator and
regular operator, respectively; W*(t), AY(u) satisfy inequalities near edges of the same
form as hold for W(t) in Theorem 6.36 (obvious changes for ¢ = o).
Write the Fourier expansion of the characteristic of the kernel in 4,(u) in the
form

(9.9) ft, 0y = 3 ft)e™,

where the prime signifies omission of the term for n = 0; we recall that f(¢) = 0,
as a consequence of (3.14) (where k"*(t, 8) = f(t, 0)).
Use will be made of the following result in the theory of Fourier series. Let

F(0) be continuous, of period 27, and let
w(d) = max. |[F(0+d)—F(0)| (for |d| < 9)

be its modulus of continuity; then the complex Fourier coefficients of F(6) satisfy
T
(9.10) IF,| < 1o (—) (n= +1, +2,...)
: n

[Cf. A. Zyemu~Dp, Trig. Series, Warszawa-Lwow, 1935; p. 18].
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Let a prime in parentheses denote the partial derivative with respect to 6; thus

, 0
(9.11) FO 0) =10, 9).

Since

——(cos 0, ...cos 0, ) <m

do
and |y ()] =< 3¢ (3.20a), by (9.4b) one has

2

(9.11a) FOCROIZ Y 3 mil 0 < 3 me,6m< oo

m=181,...8m=1

(¢® from (3.20b)); ewistence and continuity, in 0, of f(¢, ) ts evident.
The surface is regular; thus the a;; = a,;(t) in the transformation (3.5) can be
selected (u.) Lip 1, that is so that

lai(y)—a;(t)] < her(y, 1) (hy = ¢*);

since |a,(t)] = 1, it follows by induction that

@6, (¥) - B, (Y) =5 5, (D), 5, ()] = mbgr(y, 1) 5
in view of (3.6a), the I, (y,t) = I, ,.(y)—T1 () are bounded in absolute

s S1... 8

value by
. 2 Wir. . im @@y 5,(Y) - - Qi (W) — 5 5 (8) - - @y, 6, ()]

s -tm

+ ):' Wir. i@ —Viy. i@y 5, (&) - @, 5, ()] 5

.- -tm

thus, as a consequence of (3.20a), (3.20¢), (3.27),

(9.12) Ty O = M, 3™ hgr(y, 1) +3" 2, (y, (Y, 1)

< Gy 3"y, DI () [, = max. (me,,, 4,); go = ¢*1,
where
(9.12a) n =y (when l(y) < i(t)); n =t (when I(t) < ().
We have

(9.13) F(y, t, 0) = f(y, 0)—f(t, 0) = S’ > r, ., (ytcosb, . ..cosb, .

Inasmuch as

|cos (04-d)—cos 6, |sin (6-4-d)—sin 0] < |d| (01 — 6,0, = g —0>,

one obtains by induction

(1g) [cos O, . ..cos 0, (for 6+d)—cos b, ...cos 6, (for 0)] =< m|d|.
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d
Now %(cos f,,.-.cos 6, ) is a sum of m products of form

' . +cos B, ...cos 6]'m ;
hence, in view of (1,),

d d
20 ——(cos 0, ...cos 0, )for 6+4d)— 70 (cos O, ...cos O, ) (for 0)| = m?|d|.

By virtue of {9.13), (9.12) and of the above

(20)

©.13)  [FOW 4, 0+d)—FO(, ¢, 0)] = E XL e

=1

< g™y, 0P| g = g, 2 m26™A, = c*],
1

where 7 is as in (9.12a) and the series for g’ converges, since the series c° (3.20b),
¢’ (3.20d) converge. Similarly, by (9.4b) and (2,)

(9.13b) O, 6+d)—f e, 0)] <2 2 [, sn@m?|d]|

m=181,...8m=1
< »|d| [h’ = Y'm?%, 6™ = ¢*, convergent by (3.20b)].
1
We have
1, 1,

in
where f.(t), F,(y, ) are complex Fourier coefficients of

(9.14a) O, 0), FOy, t, 0) = fOy, 0)—f "¢, 0),

respectively; f,(t) = Fi(y, t) = 0. The third members in (9.13b), (9.13a) give upper
bounds for the moduli of continuity (with respect to 6) of the functions f¢°(t, 6),
F(y, t, 0), respectively. Hence, as a consequence of (9.10), |f,(t)| and |F,(y, )| are
bounded by

7 1
—k’ —g "y, )P ) —;
g 2gr(y, ) (n)n

whence (with 7 from (9.12a) and » <+ 0) by (9.14)

1

(9.14b) OV Z S0 5 1) —£0] = 5 g7, 01 %)
n

1
n?

| R

The above inequalities give information regarding the behaviour near the edges, as
well as continuity properties of the coefficients in the expansion (9.9) of the characteristic
of the kernel in A, (u).
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Definition 9.15. The function

(9.15a) alt, p) = S’ a,He™? (0 < ¢ < 27),
where a,(t) = a(t) and i

27 27
(9.15b) a(t) =" flt) ) == (1,0 (> 0)

will be termed symbol of the operator A, (u) (9.1).
The definition of the symbol is in accord with [M; p. 92]. A simple condition
for the nonvanishing of the symbol a(t, p) is that

(9.16) la(t) = a® > 2r2h _;: In|=3 (= a');

this follows from the inequality (ensuing by (9.14b))

SV a, )| < N n]-3 .

If § has no edges, then, as can be seen from [M], the following is true. If the
symbol a(f, ¢) of 4,(u) does not vanish, the operator 4,(u) can be regularized in the
sense that there exists an operator B(w) (whose symbol is a~1(¢, (p)) so that BA(u)=
u+T(u), where T'(u) is a completely continuous operator. Without further considera-
tion, this cannot be asserted when edges are present.

Let B,(w) = B;(w) be the characteristic operator (Definition in Lemma 9.8),
defined by the symbol

= Zoo’ b(t)e™ (0 = ¢ < 27).

(9.17) W) =

Whether as a consequence of (9.16) or in any other way, we forthwith assume that
(9.18) b(t, I{ = la=1(t, g)} S b0 (b0 = c¥).
A corollary to a theorem of N. WIENER asserts that, if the Fourier series S(f) of f(8)

1
converges absolutely and f(0) = 0, then § <?> also converges absolutely [cf. Zygmund,

p. 143]. Now the series (9.15a) for a(f, ¢) converges absolutely; hence the series
(9.17) for the symbol b(t, ¢) converges absolutely for 0 =< ¢ = 2z, for every ¢ for
which a(t, ) == 0; in view of (9.18) such convergence is assured for all £ on S. From
(5.17) the characteristic of the kernel in the operator B,(w) is reconstructed in accord
with (9.15b), (9.9); thus
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(9.19) git, 0) = 3 g.(t)e™,

Nn=-—0

n n
galt) = 5 0u(t), gn(t) =5 (1)) (n>0),

will be the characteristic for B,(w). Convergence of the series for g(¢, 6) is a corollary
of the absolute convergence of (9.17) [M]. The operator B,(w), itself, has the structure
of (9.8b), (9.5a); that is

(9.19a) Byw) = b(tyw(t)+-PE(t);  b(t) = by(t);
g de gt 9)
YEE) = £, Ow(Y)—do = ———— (Y)Y, dY,
“ SoSo o6 Ol ) e SS(O,b)“(Q )W( :

[the ¥ system has its origin O at {, as in (9.5a); in the above ¥ = (Y, ¥,, 0)].
The following formula due to MicHLiN is found in [M; p. 93]:

) alt, ) = — | log [2i sin (0—p)If(t, 6)d0+a(t)
(in the present notation). This we put in the form

21

(') alt, ¢) = —S log (2i sin 0)(t, g-0)d0+a(t) .

0

By (9.15b), (9.14b) a(t, ¢) can be obtained deriving (9.15a) term by term;

a'’(t, p) is continuous in ¢ and one has

(9.20) a0t ¢)] < 72 31t — hi(= o¥) .
1
Also, in view of the same formulas
(9.20a)| ay, ¢)—a(t, @)| = he'rMy, N Pm) () = c*)
Further, by (9.18) and (9.20)
(9.20b) O, @) S by (= hi(B0)? = c*)..
It is observed that
(1°) BO(y, 1, p) = by, ) —b"(t, ) = H(y, t, p)b%(t, p)b*(y, @) ,
where
(2°) H(y, t, ¢) = at, p)a(y, 9)—a"(y, p)a’(t, @)

= a(t, 9)(aly, p)—alt, 9))(aly, p)+alt, 9))+ (", ¢)—a"(y, P))a’(t, ¢) .
Now, by virtue of (9.4b), (3.20a), (3.20b)
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(9.20a") [t 0) =g, = D ¢c,6™ =c*
1
also, from (9.13), (9.12) one derives
[e ] 2
(9.20a") |f (g, 0)—f(t, 0)] = 2 IFE1 sml®s D)
= g™y, Py { 0 =90 X I ;
1

hence by (I') (with » from (9.12a))
2

021 latt,9) < .| Tlog (24 sin 0)a0+la()] = 9.8 +la®) = Tu(0);

laly, @) —alt, )l = goi'r"(y, P ) +laly)—alt) = T(y, 1) .

With the aid of (2°), (9.20), (9.21), (9.20a) one infers
(9.21a) |H(y, t, ¢)l < WT(y, DITo(y)+Tolt)]+hy ™y, OFP)THE) = Taly, 1) -
Whence by (1°) and (9.18)
(9.22) |BO(y, t, )] = (0°)Ts(y, 1) -

Let the n-th Fourier coefficient of b(¢, ¢) be b, ( ); by (9.20b) and since b,(t) =
(in)71b,(t) (n % 0),
(9.23) ()] = (b ()] - 0|2 = bolm| =15 by = c*; m O

b,(t) >0, as n—> +oo.
Since

1 ’
Bn(y: t) = bn(y)—bn(t) = E Bn(y: t) (’IL + 0) >

where B, (y, ) is the n-th Fourier coefficient of B(y, t, ¢), from (9.22) it follows that
(9.23a) [0,(5) —b, ()] = |Bo(y, )| In]71 =< (BO)*T(y, H)|n|~1; n+0;
B,(y,t)—> 0, as n— +oo [T,(y,t) from (9.21a), (9.21)].

The formulas (9.23), (9.23a) are important because they furnish information
regarding the behaviour of the coefficients g,(t) in the expansion (9.19) of the characteristic
g(t, 0) for the operator B/w).

The following can be proved. Suppose (9.18) holds and

(9.23b°%) la(t)] = c*, la(y)—a(t)] = c*r(y, O F(n), S mo6"4, < oo}

then

7 — 642138 Acta mathematica. 84
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(9.23b) IfD] = c*inf=5 | fu)—fulO)] = e*ry, O P(p)n| ™",
a0 = *(n)=3, g, (1) —ga(0)] = *ry, O P)inl

where 5 =t (for Ity = l(?/)), =y (for Uy) = l(t)). Furthermore, n3g,(t) — 0,
nS\gn(y)—gn(t)\»’)(), as 172/\-—9 o0,

The proof of this will be omitted; we shall only remark that, under the above
conditions, the fourth order partial derivatives, with respect to 6, of f(¢, 6), b(t, 0)
exist and that a suitable elaboration of the methods used in proving (9.23a) will lead
to (9.23b).

In so far as the coefficient of w(t) in B(w) (9.19a) is concerned, one has (by
(9.17), (9.18))

(9.24) 1B(t)] = [bolt)] = b0 = ¢*;
in view of (9.18), (9.21)

lb(y, @) —b(t, @)l = () T'(y, 1) ;
thus

1 @27
(9.24a) bly)—b)] = o \ 1b(y, p)—b(t, @)ldp = (b°)*T'(y, ¢} .
JT Wy

The a,(t), b,(t) are the Fourier coefficients of a'"\(f, ¢), b(t, ) (the partials
with respect to ¢); we have (cf. (9.15a), (9.15b), (9.17), (9.19))

la, ()] = 271,85 [b,(0)] = 279, ()5 a(t) = by(t) = 0.
It has been noted in [ M ; p. 101] that Parseval’s identity leads to relations between

the integrals of the squares of absolute values of derivatives of symbols and of
characteristics; thus, in our case:

12 gt gy = § 10, 9l
0 Yo
27 W27
() \ 1, p)irdy = 42 § 17 )iy
0 0

By (9.18) [b(t, ¢)| = (6°%(a°(t, ¢)|. Hence

27T 2

(9.25) { ot ohirdy = @ 17 g)i2dg = 2ngicooy
o 0
(91, = ¢*, is from (9.20&')). Inasmuch as

lan(y)—an ()] = 271 f.(4)—Fu@];  1b()—b,()] = 27lg,(y)—g.(1)] ,

we have further relations
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2 27T

(ii) s\ v ot e = {1690, ¢) 60, 9)12dp
0 v
(i) \ 10w, 0 —a, )y = 422 1, ) fie )y
0 0

Now by (9.18) and the inequality subsequent (9.24)
6Oy, @) — b, )| = 1b2(t, @)(a(t, ¢)—a(y, p))+aV(y, @)b(L, 9)+-b(y, @) -

(6(t, @) —0(y, @)l = (6°)2(a"(t, @)—a' ™y, )i+ 2(6°)3a Xy, )| T(y, ?) .
Hence

27

2 27T 3
[\ 5y, 9) =", w)iqun] = (b%)* [\
N

*0

3
la(t, @) —a(y, w)l%ﬁ

2

r20 70| § a0, D]

by (4i3) and (3) the second member is bounded by

o 27

b 3
02| {170 011 e | 2091, 027 |10, e
Accordingly by (i7) and (9.20a’)

27

(9.25a) { SO

27

lg(y, p)—g(t, @) I2d<pré (b°)? [ \ |f(y, #) —f(t, ¢)12d¢r

0

1

+2(0)°T (0, 1) H 1, 9)i% Fg b°>2“ Flo o)1 o)

+2)/ 279,62 T(y, t) (T'(y, 1) from (9.21)).

The above formula gives properties of mean square continuity (with respect to y)
of the characteristic g(y, ¢) in the operator B; these properties are related to similar
properties of the characteristic f(y, ¢) in the original operator A. In view of (9.20a’") we
have the corollary:

(9.25b) “ 19(y, 9)—9( @) [*de = V27 (80) 295y, 1 P(n)

0

+ 2/ 2rg,(6°2*T(y, ) (n as in (9.12a)) .

10. Composition of singular integrals. It will be necessary to study in some
detail the result of application of the operator B, (9.19a) to the operator A} (9.8b).
For this purpose we introduce the notation: (10.1) ¢, ¢/, ¢’ are points on the surface S
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(near one another); P,, P, are tangential planes to S at ¢, ¢’, respectively; 7’ is the

orthogonal projection of ¢ on P,; 7'’ is the orthogonal projection of ¢’ upon P,;
o =17t 1), o =r{,1"); o, ¥ are polar coordinates of 7' (in P, with pole at t);

o', 0 are polar coordinates of " (in P,, with pole at t'); furthermore,

(10.1a) T = (1, 7y); T, =opcos ¥, 1, =psin¥; di = dvydr,;

' ’ ’r

’t 1’ 17 . 143
T = (7,,1,); 7y =0 cosb, 1, =o' sinb; di" =dr dr, .

Let ¢ be a point on edges, near which the operator product BA*u will be studied.
Assume ¢ = (0, 0, 0) = o0 in the y = (y,, Ys, Ys) sSystem; the (y,, y,) plane tangent at c.
Designate by Y = (Y, Y,, Y;) a variable coordinate system with origin O at ¢,
the + Y ,-axis coincident with +#, (the positive normal to S at #), the Y, Y ,-axes
in P,; we arrange so that the point 7’ (10.1a) is representable in the Y system by

Yi=1,Y, =1, Y,=0.
We have (cf. (3.5))

3 3
(10.1b) yi=t+a;Y,, Y= > aut)y;—t).
g i1

The system (Y), corresponding to ¢ will be designated by Y’ = (¥,, Y¥;, Y3);
3 3

(10.1c) Y=t Y agt) Yy, Y= X agt)y—1t);

k=1

i=1

the origin O’ of the Y’ system is at ¢, the Y, ¥ ,-plane is identical with P,. Choose
the + Y -axis in the plane Y, = 7, (in the general direction of the -+ Y,-axis). The
angle 6 (10.1a) will be measured from the -+ Y,-axis. The orthogonal projection of
0’,+ Y, on P, is the ray extending from 7’ parallel to O, + ¥,. The point 7'’ (10.1a)
is representable in the Y’ system by

Y — Y, =1, Y =0.
Near y = o (the edge point) the surface is representable in the form
(10.2) Ya = Fy1, 5) = O(ni+) -
In the Y, Y’ systems the equations are
(10.2a) Y, =F(Y,Y,)=F({Y, Y, =OY:+ Y},
Yy=F(Y,, Y,) = F('|Y,, ¥,) = O(Y’+ T,

in (10.2a) the symbols O(...) depend on t, ¢/, respectively. As remarked preceding
(6.29)
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0 .
(10.2b) iF(i)(?/l’ yz)“F(;(tla ty)| = c*r(y, b) [Fg(yl’ Ys) = @Fo(y1: Ys); 1=1,2},

since the second order partials of F®are continuous, bounded up to edges. Further-

more, in view of (6.29), (6.29a)

wozg | ceminin |0 serrirm =12,
. = 217 ’ = 2 — 4
27| oY)
, P oF \* ([ oF\*}
i seriry, viseore ;s () H(S) | = oy,
oY,/ " \ay,

{1 <aF'>2 <8F'>T_1 O(Y 2Ly’ 0 independent of ¢
_}_TY; +87Y; = 14+0(Y’+7Y,”) [O(...) independent of ¢].

The function b(t) (= b in (9.5a), (9.19a)) can be defined as follows. Assign
6 >0, 1> by> 0 suitably small and define b(t) for all points of 8 by the relations

(10.3) b(t) = 6 (for Ity = ;) b(t) = bllt) (for 0=10) < 5—) ;

0 0

b(t) s uniformly Lip. 1 (edges included) and vanishes on edges.

The function u(y) on which various operators will be applied, should satisfy
conditions of the type imposed on ¢(y) in section 6. Thus, assume u(y)c [«}S],
that is
(10.4) lu(t)] < *I"*(1t) (0 = x<1; a8 <1; § from (3.27));

also (cf. (6.27), (6.27a))
(10.4a)  |u(y)—u(t)] < %P (y,8) [0<v =1; o < ag; xp—v < 1
n is y or ¢, depending on whether I(y) or I(t) is smaller].

Let &, n (% 0) be integers, possibly negative, and form
nf
e

(10.5) A, (ult)) EQ ult', v dr” = ot
Yol < b(E) 0
where
(10.5a) ult', '] = u(t”’)
[¢" is the point on 8, whose orthogonal projection on P, is 7''];
similarly
eikw
(10.5b) A l) Eg Wte, 7] —dt’ [= A A (ult)],
Yo < bty 0?

with
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(10.5¢) v[t, 7] = v(t')
[t' is the point on 8, projecting orthogonally on P, in 7'].

’

Designate by 2’’ the orthogonal projection of v’ on P,; write ¢’ = r(z’, z"")
and denote by y the projection of the angle 0; y is the angle between the direction

(0, +Y,) and the radius vector (v, z’). Let

(10.6) ' = (x,,x,,0) (in the ¥ system) .
Now t' is (¢, t;, t;) in the y system and is (z;, 75, v;) in the ¥ system; by (10.1b)

3
10.1) 6= tt YagOn = 6t 7), 7 — F(zl ) — Flllei, 7).
k=1

Moreover, in view of (10.1c)

s

3
t; = ti+ Yy, w =F@ w)=F w),
k=1
(r,', 7y, 7;’) being the representation of ¢’ in the Y’ system. One has
2
(10.7) t; =4t T)+ X aglt' ¢, o ))v Fant' ¢ ONFEE ) )
k=1

where
(10.7a) t'(t,7') = (¢, T), to(t, T), 158, 7)) (cf. (10.7)).

We shall need to express the v,/ (k = 1, 2) in terms of the v;, x; (i = 1, 2); this
will be done in the course of investigating the difference

(10.8) w = o' "2y —o' 2"l (dx' = dw]'dx)) .
One has
1 1
(10.8a) dv"’ = da"'[14+Fi+F}); — = — [14+(F{4F3) cos? (y—o(z))]*
0 g
where
, 0 .y 0 Coa F,
(10.82))  Fy=_— F(z}, 7)) = —F(tjt,75) (i=1,2); tgg()) ="
a7, o7, ~ F,

[unless F, = F, = 0, when ¢ = ¢'].
In fact, on letting & be the angle between (+mn,), (+mn,), we obtain
cos ¥ = [1+F24F2 ¢,

thus, the first relation (10.8a) is obtained on noting that dz’ is the projection on P,
of the areal element dv”’ (in P,). The equation of P, in the Y system is

(1°) (Y,—1)F +(Y,—1))F, = Y,—1, (‘r; = F(z,, 1’)) .



Multidimensional Principal Integrals, Bound. Value Problems and Integral Equations. 103

Now 7"’ is the point in P, projecting into z”’ (z,, x,’, 0) (in P,); hence in the ¥ system
the coordinates of "’ are

z 2y, %y ) = Y3 from (1°) (when Y, =2;; i = 1, 2);
thus
2
(20) 9(}3 ‘—13 :2 (x’I/ _Ti)F’L .
i=1
Accordingly
2 2
o =, ) = M (] —1)*+ (w; —T)F ]
1=1 i=1
Substituting
(3°) x, —7, =0 cosy, X —1, =0 siny,
we obtain

"% = o"}[14(¥F, cos y+F, sin y)?*],

which leads to the second relation (10.8a). In view of (2°), (3°) the direction cosines
of the vector ¢/, 7" (in P,) are

7 7 ’

(4°) G—Icos Y, (L, sin y, g; [Fycosy+Fysiny] (with respect to the Y system)
e 0 @

for any value of the polar angle y (in P,, with pole at 7’ = (1}, 73,0)). As a consequence
of the choice of the - Y,-axis (in P, ; cf. the text subsequent (10.1c)) the direction
cosines of the -+ ¥ -axis, with respect to the Y system, are obtained replacing y in
(4°) by 0; these cosines are

[1+F3)4, 0, (1+-Fi)-AF, .
Hence for the polar angle 0 with the aid of (10.8a) we obtain

1
b — A)FL],  Axy) = (F2+F2) cos? (y—g(t')) .
cos GRSt [cos y+A(p)Fy), A%(y) = (Fi+F3) cos? (y—g(z'))

From this it follows that

. 1 .
sin 6 = Vim0 Vi P sin y[1-+F? 4+ F2)E .

In view of the first inequality (10.2c)

(4o) Wil = c*o, |Ay)] = c*g;
whence the preceding relations yield
(5°) cos 0 = cos y+u, sin § = sin y+8;

locl, 1B] = cop®s co = c*.
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Thus
(6°) ¢ = ¢7(a+if); |a+ifl = J/2ee0?
Now, for n a positive integer,
€m0 gy — (g giv)(enLi0 | . ..y gn-Divy
e‘mo_ e—iny = ( e ei()) P ) ( e—(n—m'o 4+t e—(n—l)iy) .

Hence by (6°)
[eirinﬂ_e‘l'i"}’[ = c*np? (n>0).

Thus

(10.8b) e — ¢ Ly v | < cynlo?, ¢, = c*

for integers n = 41, +2,....

We deduce
(L) [+ V1 F4F = 145 [J| < V1+FiFi—1-2%)]
Fi+F; 2

e 2y) | S HEHF)A0) ;
1+V1—|—F +F2 () 2\ (v

in view of (4,)
(I2) IJ] < c*o®.

As a consequence of (10.8a), (10.8b) and (I,)

. 1 . V1+F2+F y
r_g B .11 __ o 2
(I,) O = (@)
1 . dx"’ .
— (@ A = () s
0-’2 o 2
(Iy) Wil = [Je™ 49,(14-J)| < c*o+c*lr,| .
Accordingly for o (10.8) one has
¢10.9) w=Jdx", J,= Jc'72
(10.9a) 1] = c*|n|e?;

Surthermore, in view of (1,), (I,), (10.8b), J, is a function of t, T', y (of period 27 in y)

and is independent of o, while
27T
(10.9b) \ S Jdy —0;
0
(10.9b) also follows indirectly; in fact if (10.9b) did not hold, the integral P.'(z')

(10.22a) would not exist in the principal sense (cf. text from (10.22b) to ( 10.220)),
which would contradict the existence of the principal integral 4, (u|t') (10.5), (10.21),
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We turn to the 7; (k = 1, 2), involved in (10.7’), obtaining
(10.10) v =) Ay Al S c*e’e? (k=1,2).
In fact, by (10.1a), (10.8a), (5°), (4,)

7' = o'V 14+22(y) (cos y+a) = o'[14+0(e*)][cos y+0(e*)]
where O(. . .) is independent of ¢; the formula for 7,” follows on noting that ¢’ cos y =
x,'—171; the proof is similar for ;.
By (10.7") and (10.10)

1!

(10.11) t =t x) =t v, Ty s ay) = 4, T)+
2

+ X ag (¢, )@y — T A Fa(t @ TNFE T e — 1A @y — 1)

k=1
The function «[t’, 7''] in (10.5) can be represented in the form

(10.12) [t 7] = u(t"”) = u(ty’, &, t5") = u(ty’, 7, FO(t;', 85)) = wlty’, 85') ;

thus, by (10.11),

(10.128) wft', 7] = u(t;'(t; 7' 2), 8,/ 75 ) = U, &) = Ulxy, g5 2, 23)
in the notation U(z’, «""), t is not displayed. In the above 7', " are regarded as

points in the plane P, which are given in the (¥, Y,) system by (z;, 1), (x;’, 2;'),
respectively. We take note of the following configuration in the plane P, (that is,

the Y, ¥,-plane). Points 1/, #’’ are in the plane, r(O, ') 1/11—}»12 r(z',x")=0";
the angle between the radius vector O, ¢’ and O, + 7Y, is ‘P the angle between the
radius vector 7/, " and O, + 7Y, is y; we write ¢’ = r(0, z"') = Jx,*+x,” .

1 1

By (10.11), (10.7) and since 4, = 0 (k = 1, 2) for (7, 7;) = (21, 2, ),

3
(10.13) i =ti(t, 2") = t;-+ N autx,, x) = Fl,, x,) = F(tlz,, ;")
k=1
when (71, ;) = (7', ;). Thus
3 3
(10.13a) U(x"” x")-u(tl—}— Saytx,, ta- 3 aylt xk> (cf. (10.12)) .
k=1 k.,
It can be verified that
(10.13b) U, 2") = U, ") .
We write
(10.14b) ult, 7'} = U, 2") = U@, 2" )+ V', z").
One has

(10.14c) V(' 2") = U, 2" )= U@", ") = u(t;, t;))—u(t;' (&), ;' (@),
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where the ¢, (i = 1, 2) are from (10.11), (10.7), that is,
3 2
(10.14¢") £, = t,+ Ya, )+ Zaik(t'(t, r’))(x,’cl—r,’c—}—lk)
k=1 k=1

Fay(t't, TNFE )] —1— Ay, 2 — 71— ),

and

3
a1 = F(z),v;), 2 = F(z,', ;) ;
k=1

(10.14¢”)  t'(@") = t,;-+

accordingly

tr

(10.14d) 6. —t' (2" = 2(aik(t’)—aik(5))(xk — 1) () (ts—ay)
k=1

+ X ag (0 g t-au () F (¢ lay —11— 4y, 23— 75— 1) -
k=1 .

In any case the a;(t) are defined as in (3.5b), while the a,,(k = 1, 2) might be
possibly suitable modifications of the corresponding expressions in (3.5a). One has

()] = [LHFi(t, t)2+Fo(ty, 82T FE, 1) = |Ft, L))
(notation of (10.2b); ¢ = 1, 2); thus by (2.1'), (2.1a)
(1°) la;s()] = Ini(B)] = e*r(o, 1), lau(t)] = ¢*r(o, ) (1 =1,2);
one may replace r(o, ) here by VZ‘;’T::? We have

rr

2
IT;_'Z‘J;,] = IF(TII3 T;)-F(xily Xy )| - 2;' F(ul’ u2)(1;_x£,) ]
1

3,
where % = (-ul, u,) is some point on the segment (z/, x'’); by (10.2¢) and a triangular
inequality the above is bounded by

c*r(0, w)o' < c*[r(0, t')+r(r, u))o’;
(0, T') = p, r(’, ) = o’; hence
(2% [5—25'| = c*(g+-0')o’ (= c*d’).
In view of the inequality for ¥, in (10.2¢) and (10.10)
(3% By 1Ay, @y —15— )| = *[(2] — 11— 241) 2+ (% — 73— A)?]

< o*o'2(14 032 < c*g'2 (for p < c*).

With %, 4" = 1 one has

((Iu')F—(14u)? < c*u—u'|;
inasmuch as (by (10.2b)) [Fi(t;, t,)—F}t, t,)| < c*p (¢ = 1, 2) and since
| F(ty, ty)] =< c*r(o, t), we have
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(4°)  Img(t)—ny(0)] = 0| X [Fity, )2 —Fi(ty, 1)°]| < c*g - (r(o, t)+7(0, 1)) .

=1
Since n,(t) = —Fi(t)ny(t) (i = 1, 2), as a consequence of (4°) one has
(5%) it )—ni(t)] = c*o (i=1,2).
Also, in view of (1°), (5°)
(6°) [(1—m() E—(1—n3()*}] < c*o - (r(o, )+ r(o, 1))

further, by (4°), (6°), the modulus of continuity for ns(t)(1—nj(t))~ is bounded by
an expression of the form of the second member above; by (1°), (6°), (5°) the modulus
of continuity of n,(t)(1—ni(t))* is bounded by c*o. The moduli of continuity of

1

—my (a1 =030, —ny(na(t)(1—n3(0))E

are bounded by
c¢*g - (r(o, t)+r(0, 1)), c*o,

respectively. If the a;,(t) are defined as in (3.5a), the above shows that
(10.14e) gt —ag(0)] < c*o.
The -+7Y;-axis has been chosen as indicated subsequent (10.1c). This entails a
modification of the expressions given for the a,, in (3.5b); however, (10.14e) can
be shown to continue to hold in the present situation. On the other hand, the a,
could have been left as in (3.5b), which would require a modification of the definition

of the angle y, but would have no effect on the conclusions of this section. As a
consequence of (10.14d), (10.14e), (1°), (2°), (3°), since ¢ < c*(r(o, t)+r(o, t’)) and

(1
2
= Xyl = cto'p? (cf. (10.10)) ,

k=1 i k=1
one obtains
(10.15) lt; —1; (@) < c¥(r(o, H)+r(0, )0’ (i =1,2).
Accordingly [by (10.2b) and with u = (u,, u,) on the segment (¢;,t,’), (¢ (x x'))
in the y,, y,-plane]
(10.15a) [t, —t5 (') = |Fo(t,, ") — Fo(t; ("), £, ()]
2 i
Z Fouy, u)(t; —1; (")) | = e*r(0, u)(r(o, t)+r(0,t'))o" = c*(r(o, t)+r(0,t'))o”;

a more precise inequality can be obtained on noting that

O u < l/t”2+t;'2__|_l/t // 2—+‘t ( //)

From the above it is inferred that



108 W. J. Trjitzinsky.

(10.15b) (7, t"(x")) = c*(r(o, ) +r(o, t'))o’  (cf. (10.14¢', ¢")).
Whence, as a consequence of (10.4a), (10.12) the function V(z', 2”’) of (10.14c)
satisfies
(10.16) |V(z', )| < e* () (t”, ¢ (x")) < e**(n)[r(0, t)+7(0, t')]0™,
where 4 is ' (10.14¢’) or #’(¢”’) (10.14¢”’), depending on whether /(") or I(i" ("))
is smaller.

The relation (10.13b) indicates that V(z', z”) > 0, as p— 0. In fact, it can be

shown that
(10.16")  |V(z', &")| = e*I"*(n)[r(o, t)+7r(o, t')]’e” (n as in (10.16)).

To establish this rewrite (10.14d) in the form

3

(1) t;'—t' (") = 27(ailc(t,)—aik(t))(xl;,_"[/;)“{" 2 au ')y,
k-1 -

’r

)t ant)w' —2); o' = F|n, w), o = a —n— A
T =y = vt vy = F(t), o) —F(tn, w); ve = F(tr), o)) —F(tje), %) .
By the methods employed in proving (2°), with the aid of (10.10) we obtain
(I2) ol = c*(g+0')e -
By (10.14e), (2°), (10.10), (1°), (10.2¢c) (for Y,) and (I,) and since |»,|] = c¥*p,

;' =t (@")| = c*d’o+c*r(o, )e*+c*r(o, )| = c*o’o+-c¥r(o, ) -

v

Whence
(s) t; —t" (@) < c*(r(o, t)+r(0, )0 (1=1,2,8),

which corresponds to (10.15), (10.15a); thus r(¢”, " (x"')) is O(r(0, 1) +r(0, 1'))e; (10.16")
follows by (10.14c), (10.12), (10.4a).
Consider the triangle o, ¢, ¢'; a triangular inequality gives

r{o, t') < (o, t)+r{t, ') .
Now by the third inequality (10.2¢)
rit, t') = o>+ F(1;, 7,) = o tc*et = oo’
also, o =< b(t) < c¢*l(f) = c*r{o,1t); thus
(1) r{o,t") < c*r(o, 1) .

Let S,y denote the portion of 8 projecting orthogonally on the plane P, in the

circular region
Q, — T(t/, T”) é b(t/) (T” — (T{I, T;/, O)),
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as stated before, 7' is the orthogonal projection of t' on P,; designate by S(t) the
sum of the (nondenumerably infinite) collection of portions S, v, corresponding to all
T’ belonging to the circular region

o=r(t, ) =bt) (v'= (1), 7, O)) .

The points ¢, ¢'(x’), referred to in (10.14¢’, ¢”’) are in S(¢). Consider for a moment
the special case when the ‘edge’ § is rectilinear near o and the surface is plane near o
(thus lying in the y,, y,-plane). For ¢ near o, by (10.3), one may take b(t) = bl(t)
(0 < by = ¢* < 1). In the plane case S(¢) will consist of a region at distance (1—b,)2l(t)
from the edge, so that in (10.16) one has

(20) ln) = e*lit) ,

where ¢* = (1—b,)2. In the general case (2,) continues to hold, with a possibly
different value of c¢*. Such a positive constant can be shown to exist, provided
bo(>> 0) is taken sufficiently small. The proof of this assertion is based essentially
on the regular character of the ‘edges’ § near o (§ has a continuously turning tangent)
and on the regular character of the surface; the indicated circumstances imply
sufficient closeness of the general case to the plane case; we shall omit the details.
In view of (1,), (2,), one may write (10.16), (10.16’) in the form

(10.16a) VT, 2")| < c* () (o, 1)’
(10.16a") WV, 2")] < c*o(tyr(o, t)"o" .

We now turn to the component U(x", z'’) of U(z’, 2”") (10.14b)
3
(10.17) U”, 2") = ult, ("), t,' (")), t;' (@) = t;+ 3 ayt)x
k=1

(xy' = F(x;,2;")). The ¢'(2"') (i = 1,2, 3) are coordinates in the y system of a

rr rr

point ¢’(x'') on S; the representation of this point in the ¥ system is (x;’, ;’, ;).
As a consequence of the remark in connection with (2°)

(10.17a) I (@) = e¥l(t) .
By (10.12)
(10.17a) U, 2"y = ulty (&), ;' ("), &' (")) ;

whenee in view of (10.4), {10:17a)

(10.17b) U, 2")] < e**(t"(x"")) < c*I7%(t) .
One has
U@, &)= U, 2,)] = |u(t1 (@), 8, (@), t;"(@"") )—u(tx ')

II

t3 xo )],
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where @, = (2, %y, o), With 24 = F(x,;, x;). By virtue of (10.4a) the above is
bounded by
L) cHo(n)r (@, @),

where one may define r(z'’, ;') as a distance in the plane P, that is

7’ 1’ ts

(L) ria, ay) = (0, —agy) 2+ (2 —3)? -
In (I,) # is that one of the points '/, x;" on S which is nearer to the edge. For reasons
essentially of the type that led to (2,) (preceding (10.16a)) we have
(15) ln) = c*l(t) .
From (I,), (I,) it is inferred that
(10.17c) U@, 2")—Ulxy, a)')| < e*I (@) (2", z,') (r(”’, x;) from (I,)).
As noted before, 1" is on Sy ,; the orthogonal projection of S, 4, on P, is the
circular region ¢’ = b(t'); the orthogonal projection of the latter region on P, is
an elliptic region E(¢, 7'):
(10.18) 0= =d'(y), 0=y =215 o'(y) < b(E);
the function ¢’(y) can be determined with the aid of (10.8a). Designate by E(t) the
sum of the (nondenumerably infinite) collection of regions E(t, '), corresponding to all
points v = (11, 15, 0) (in P,) for which o = r(t,7’) = b(t). In (10.17b), (10.17¢) the
point (z;, x,’, 0) is supposed to be in E(t).

We extend the function U(a', x'') over the whole Euclidean plane
(10.19) E,=P,,

define U(z"’, &) for all 2"’ (x,’, ;’, 0) of E, so that in E(t) U(x"’, 2’) coincides with
the function (10.17), that the inequalities (10.17b), (10.17¢) continue to hold in all
of E, and that

(10.19a) U@’ @) =0 (for o = Va,"+x,° = a = c*),
where a 1s sustably great. To obtain such an extension U*(z”, z'') define V(z'') by
V(') = U@’ 2")*(@) (2 in B(t)).
Then (10.17b), (10.17c) will yield
(10.20) V(@) < c*Po™(t), V(&)= V()| < e*r’(2", a;)
(in E(1). Designate by V*(z"') the continuous extension of V(x'') so that
V*a"”) = V(z”) (in E(t)); V¥@')=0 (for ¢" = a);

[V*@")| < X% %), |V*a')—V*a))| < c¢*¥(@’, x,’) (in all of E,).
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The function

(10.20a) U*(x", 2"y = V*(@' " )[*()

will be an extension of U(x”’, 2"’} with all the required properties. We drop the

superscript with U* and designate the extension of U by the same symbol.
With the aid of (10.8), (10.9), (10.14b) the operator 4, (u|t') (10.5) is expressible

in the form

(10.21) A, (ult') = S ult', 7|6 2" 4 J Jda”
Ei, 1)

1 I n d.%'” ’ ' ’r iny dx”
—\ v rn S v een ) T

S ! 2
E¢,1) o E¢,1)

here E(t, ') is the elliptic region (in P,) (10.18) and

227
(10.21a) I, = Jy(7, y) { 2l = e*nlo?; | Jldy=0}

0
depends on £, but is independent of o’. The first integral in the last member of (10.21)
is a principal one; the last term is an ordinary integral, by virtue of the presence
of the factor ¢’” (0 < » < 1) in (10.16a). Inasmuch as E(t, 7') is the projection of
the region o' =< b(¢') (in P,), by (10.8a) we find K(¢, 7') defined by
(10.21b) 0 < o’ = o'(y) = bE)[1+22(»)T %, Aly) = F, cos y+F,siny,
0

F,= k,F(r{, T;) (1= 1, 2).
ot

As a consequence of (10.16a) and of the inequality for J, in (10.21a),
V(' 2" )™ 1] < el ()" (o, o™ .

Since o'(y) = b(t') = c*b(t) = c*i(t), we have

) dx’’ 2 c*l(t)
e A e e e N A e
o

0 0

(10.21¢)

SE(t,‘[/)
= cHn|lT0@)r (0, 8)  (v—ag > —1);

here c*|n| can be replaced by c*, inasmuch as by (10.8a) and (I,) (subsequent (10.8b))

(10.21¢") lo'=2(e™ +-J)da'' | < o't < c*o' 2z’ .
The integral
i dxll
(10.22) P, (1) =S U",x" W\, ) —;
E¢,7) o

is a principal one. In order to express this in terms of ordinary integrals write
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’ ’ ’ ’ rre 1yt ’ dx”
(10.222)  P,(v') = Pe)+ U, )P (), Pl =\  Tw.nor
YE¢.T) o

dxll

E

Po(v) = (U@, 2")= U, ) (v, y)

SE(t,'r’)
P/

n

(7) is an ordinary integral; by (10.17c¢), (10.9a) and since o'(y) < c¢*I(¢),
(10.22b) [Po(7))] < c*n|o2 (1) SS o lda'dy = c*n|l""*(t)g* .

The principal integral P,’(¢') is the limit, as &> 0, of

W27 o’/(Y) dO‘,
S dVS Jy(T', )

o/=¢

P(') = —
y =0 ¢
by (10.21a) (since J, is independent of ¢')

27
Piw) =\ L, 9)og oy
y =0
thus

27

(10.220) P =\ L. )leg )y,
y=0

the integral being ordinary. Essentially as a consequence of (2,) (preceding (10.16a))
one has (') = c¢*I() (for p < b(#)); thus by (10.21b) (since A%(y) < c*) and (10.3)
(1°) o'(y) = e*b(t') = c*lUt') = o l(t) (for o < b(2))

(6o = ¢*, suitably small); accordingly

7

k
(2°) llog o’(y)] < ¢* log (i(t)) (' = c*).

From (10.22¢), (10.21a), (2°) it is inferred that

(10.22d) PL()] < c*infe? log (%) :
In view of (10.17b), for x'' = 7',
(10.22¢) U, )P, (t))] =< c*|n]e® *(t) log %))
Define the operator
(10.23) B (U) = b (UJY) = h,(U; 7') = %SEZU(CU”’ &) Gn: da'” |

where Uz, ') is a continuous extension to the whole Euclidean plane E, of the
function  designated so originally, as stated in connection with (10.19), (10.19a).
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This operator is identical with the operator h, in [M; p.90]. In view of (10.19a)
there exists a, = c¢* so that, for ¢ =< b(?),

(Lo) U',2") =0 (for o' = |/(x] —7))*+(2; —1))* = q,) .

On letting e, = E,—E(t, T'), by (10.17b), (1°), (1,)

iny ) do’ S O de’
(10.238) || U@, x">e,2dx”‘§s e dy =\ e o=
e G € o 0 07=0") 7
ag d 4 ’
< c*z—“(t)g ) log(i> (@' =c*; 0 = b(1);
oty © i)

an inequality of the same form will hold when ¢ < c¢*.
Consideration of (10.21), (10.22), (10.23) yields the decomposition

(10.24) A, (ult) = 2ah (UIE)+uult)
where
iny . dx//
(10.242) o, (ult') = —S U, 2") lzdx”—{—g V', &)+ T, S + Py ().
o a YEt,1’) g

We recall that o« < 1, xg—» < 1; thus, by (10.23a), (10.21¢, ¢’), (10.22a, b, ) and
since o < c*l(f) (for o < b(t)), one has

C*
ue)

< c*nllCE)  (if xg—y > ).

(10.240)  Jo,uit)] < e*mli=0)log (7 ) (i & = g3 ¢ < b(1),

In agreement with (10.23) we write

eikq} .,
S At (A’ = drdy,);

|
o) = Iuol) =5\ ot v)

this is a principal integral extended over the total plane P,. With (10.5b) in view,
consider the operational product (cf. (10.24))

iky
(10.25) AL A, (ult) =S [2h, (U[t)+ 0, (ult)] =, dv
0 bit) e
eimp eikq)
= U0+ Ts T =\ elt)® Jar =\ 2ah,Uit)® Jav .
e b(®) e 0> b 4

It is observed that here A h,(U|t) is the product of two principal operators, extended
over all of E,; the formulas of MicHLIN hold for this product; thus (cf. (M; p. 90)),
on writing k = A,

8 — 642138 Acta mathematica. 84
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(10.25a) h,(Ult) = %h”(Uli) (rn > 0);

h_(Ult) =

(‘nl)nir"(Uu) (n > 0); b (Ul) = —h7(Ult);

h-h(Ut) = hh=Y(U|t) = h(UJt) = U(0,0) — ult) ;
the last relation follows by (10.13a), (10.12), on noting that #;'(0) = ¢,

(2

(t=1,2,3).
From (10.25a) it is inferred that, for k£ > 0, » > 0, one has

(10.25b) h, = g pn = D e
' L ’
(—DF (—DF"
bhoyh, =-——hk*m p kb = BT
kT kn kT kn
It will be shown that the second integral in the expression for I, (10.25) satisfies
iky c*
(10.26) S 2nh, (UJt) dv' | = c*%(t) log2<n) (if &« = og—v),
0> b(®) o® I(¢)
C*
= c**() log <w)> (tf ocy—y > o) .

Inasmuch as

o
g ., dx’ =0 (integration over o' = I(t)),
do

by (10.23) we have
. ei")/ a ein)/
(1°) 2=k, (Ult') = S U, 2") - dx’"+ S [UE”, ") U, v')] —;da’’ ,
o a'? o o
where ¢, is the circular region ¢’ < I(t) and ¢’ = E,—e,. In view of (10.17¢) (valid
for the extension function U(z", z"))

iny ’

dx'’

(2°) S U@, 2") — U, )]

€1

= et o

€1

< oXP() .

’ =

g'? o

The number a in (10.19a) may be taken > I(¢); when o = 2a one has
Ue’,2") = U(r,7) =0 (for ¢’ < 1))

(since then o’ > a); thus

ey

da'’" =0 (for o = 2a).

(3°) S U@, ") — U, 7')]

?
ey 0-/2
Suppose ¢ < 2a; if ¢’ = 3a, in view of the triangular inequality

o = o+0" = 2040”7,
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we shall have ¢’ = a and (by (10.19a)) U(z", «") = 0; hence

ety

S U, 2")

e’

dx”:s ... {for o £ 2a),

&
g o0

where e® is the region {(t) < ¢’ =< 3a; accordingly by (10.17b} (for the extension)

ny

(4°) dz”’

{ 06,

P

2n 3a d ’ *
< c*ro‘(t)s dyS T < ox1(t) log <i)
0 Ky @ \()

o'?

when o =< 2a. Consider the case ¢ > 2a; then the circular regions
o =a, o =)

are exterior each other; the first of these lies in the regions s’ consisting of points x"’
such that
a
(50) p—a =0 = p+a, —p EA=E 4 (Ao = are sin ~> ;
4
here ¢’ and angle 1 are thought of as polar coordinates of »"', with pole at " and
the polar axis extending from 7’ through O; the region (5,) is bounded by portions
of the tangents from 1’ to the circle p”” = a and by circular arcs with center at v’
and radii g+ta; since U(x”,2”") = 0 for ¢ = a, we have

. &y
S U'’, oy ——dx"’ :S e
. g2 y

4 §

hence by (10.17b) (for the extension)

» iy da'’
(5%) { var, oS | = S L= c*r“(z)g " (for o> 2a);
o g o A
here
da'’ et dg’ 2a 2a
S ’2 :S dlS m= 20 log | 14——| < 20— < Badeo™";
o0 “do Yoa O e—a o0—a
since ap~! < 2! and, for 0 < u < {,
1 2
arcsinw = (1—v%) 2y (some 0 < v < u) < —u,
one has V3

hence the integral in the last member in (5°) is bounded by c*e~2; thus

ny

S U@",a")—, do"" | = c*™(t)o=* (for ¢ > 2a).
e’ o

(6°)
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In view of (1°), (4°), (2°), when p < 2a, and by (1°), (6°), (3°), for ¢ > 2a, one has
C*
Ut)
b (Ult)] = ¥t~ (0 > 2a) .

(1) U] = o) log (0 )+t = 00) (o = 20

The integral in (10.26) is bounded by I"-+1"', where

!

of d
I = \ 2slh, (U|t')] ‘tz (integration over b(t) < o < 2a),
Y e

1 '

d
I — S 2 lh, (Ut)] 2

— (integration over 2a < g < o0).
e

Since b(f) > c*I(t), by (7°) one has

2 2a d@ c¥
r < ZnC(t)S dsz 22 < ex0(t) tog -,
0 b € 1)
27 o0
= c*l“"‘(t)g dtpS 0-3dp < c*I(t).
Yo 20
From the above (10.26) follows.
Turning to the first integral in the expression for I, (10.25), we note that in

view of (10.24b)

eikzp e'ikzp
(10.27) \ e iar ={ o arasn,
e S bty @ o Sty e
where (with &« not to be confused with the same letter in [«|S])
(10.27a) x=c*<1 (xas small as desired; i(t) < b(1)),
b3
(10.27b) 1AB" | < c*lnfi(2) log (26(7)) or < ¢*[n|l"%0() .
By (10.24a) (with e, = E,—HE(t, 7))
eikq} 3 eikqp
(10.27¢) S onlult) — dv' = Zg o, i(T) - dv',
e=<alt) 4 i=1 Yo <alh) [
’ \ 1 173 ei"V 17 ’ X ’ 1t iny dx”
Q"’l(r ) = —S U(.’L‘ » & )WT.; dx ) @n,?(‘[ ) = \ V(T > & )(el )+J1)F/—‘;1
€ o YE@t,T) o

00,3(T') = P, () .
It will be first shown that

ei ky

(10.28) —dt’

S On ,1(T/)
e<al® 4

=< c**(¢) log (%) .
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Let ay(= ¢”’) be the distance from O to z”. Since Uz, 2”") = 0 (for o, > a),
one may express g, (') (10.27¢) in the form

: einy
(1) ot = =\ vE e
€
where ¢, is the part of e, for which o, < a, that is, ¢, s the set of points &'’ such that
simultaneously
(1°) o >dy) Oy =2n), oy=a.

The outer boundary of ¢, is independent of ¢; the inner boundary of ¢, depends-on 7’
and, thus, on p. One has

(2°) —0un(®) = (@), n() = U, r')S_eZy d"
. €0
vo(T') = s_ (U@, z")y=U(', t')] e’“"i’ dx'' .
We note that -
(2" o' = r(o, op w) = —p cos w+)o,? —p? sin’w, ©=y—yp,
and (for o < al(t))
(2") c* Za—odit) Ea—p Lo, a,0) Satpe = atal(t) £ a®=c*.

The set e, consists of points x'’ such that o'(y) < o' = r(o, a, y—v). Thus, by (10.21b)

a iny 27 . .1‘(Q’a’w)d ’ a7 e )
{ = (om0 = Cog |10 i) ey
o 02 o g 0 a

ey [224VD)}

Now, A(y) is uniformly O(p) and

log 7(97’3’ “) ’ = ’ log {l/ 1— <g>2sin2 w —gcos w}l < c*p (for o < al(t)).

a

Hence

< G*Q+C*92 < c¥p;

S o'~2eVdx"
€

0

thus, in view of (10.17b),
eikzp |
v (7')dr’

o < e* ) .
o=l '

iny
e

7
5 dx"’ ;
ag

(4°)  9,(7) = o) —oy(v) Fag(t), a(7) =S (U@, 2") =T, 7]

€j

here e, is the set of points x'' such that b(t) < 6, < a; e, is E(t, v')—E(¢, 0) and e, is
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E(t, 0)—E(t, v'). Now 7’ is interior the region ¢ < b(t) (since o < al(t) < b(t) for «
sufficiently small). The least distance from ' to the circumference o = b(t) is
b(t)—o = c*I(t). When 2" is in e,, one has b(t)—p < ¢’ < o'(y). Thus by (10.17¢)
(for the extension) :

o oW
(44) lxg(T7)] < c*I0(2) S o’y < c*l“"‘“(t)s dyg o' do’
ez Ybh(ty—o

= ex20(0) [0/ (b()— o)1y

(primed integration is over y for which o, > b(f)). Observing that f(z) = H > 0,
f(x)c Lip 1 implies
@) —f"(@)] < *H" o' — x|

and noting that [b(t')—b(t)| < c*e, while b(t') = c*l(f) (for o < al(t)), we infer
B¥(t")—0"(t)] = X \(t)o .
On the other hand (with some 0 < p < p),
I(b(t)—o)’ =" ()] = (b(t)—p)* "ol = c*"(t)o .
Hence (since A(y) = O(p))

")~ (M) —o)’| = |o7(y) b ()4 1b"()—(b(t)—o)’] < c*(t)o+
IO 010 +220) T 1S (oo Do+ lne?
The last member here is O(I" '(t)g). Accordingly, by (4,),

(4) log(z')] = ¥ N (t)p  (same for ay(t'))

eikw

o [ xa(T) Fog(T)dr' | = *P7() .

Sesle(t‘) ¢
Inasmuch as for o, > b(t) and ¢ < «l(t) one has

o'~ = 0,7 [14+-0(ga,™")] = 05~ +0(es, %) ,
by (4°) it is inferred that

(6°) [ orrea i’ = )+
[ 410)
. eiktp iny
Aty =\ i \ (e o)~ U@, o) pde
Yo < xl@) 92 ey 20
eikw ’ rr rr rr
Ba(t) :S : dr'\ (U, ") — U, r)]O( >dx
o= alit) e Yey gy
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Within the ranges of integration ¢’ < c*c,; thus by (10.17¢) (for the extension)
U, 2")—U(', 7'}y is O(*(t))o"” = O(I™(t)o}); whence

v’ ¢, ol
(7°) g oo S o Liden < e do
Yo<aly” ey D0 vy
W *
ool < Xty (if v < 1), < c*l'-™ log (—c—) (f v = 1).
bty i(t)

As a consequence of GIRAUD’s work, a singular integral applied to an ordinary
integral can be expressed with the order of integration changed; thus (e, being
independent of 7’)

ey ey
by =\ e | 060w 1

Yool

on writing

U@’ a")—Ur',v') = (U@ ") —Ulo, 0))—(U(z', ') —Ulo, 0))

and noting that (with dz”’ = o dody)

iny W27T . 4
Se),gdx”:\ e”"’dys @:O,
e, 70 <o bt %o
we obtain
einy eiky) |
B =\ Spder\ (U@, ) ~Ue, 0 |
Ve, O Yo <l 4
’ 3 710
= ety | dig ot = o) d"ﬁﬂ oo
vey 00 Yo ality bty To Yo
thus
c*
(5°) ) = oty tog (7).

The conclusion (10.28) ensues by (2°)-(8°).
We show mext that

(10.29) \ @) | < mlro)1 (5ot
. T T = c¥n 0 og | —Jr(o,1) .
. g§o‘l(t‘)@n’ ’ o* o 8 I
By (10.27¢)
’ ’ ’ ’ 1 e dx”
L) 00al®) = Al Falr) o) o) = | V') e+~

dx”

G=23s o) =\ v e,
YE(t, 0)

where the e; are as in (4°). In view of (10.16a), (10.21¢c')
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loo(T)] = e*I7*(t)r(o, t)”S i A

€2
except for the factor 7(o, t)* the last member here is identical with the second term

in (4;); hence corresponding to (4'} we now have

loj(z)] = X" (tr(o, D)0 (= 2,3).

Thus
. P
1,) 3 [o(t') —0y(v)] — d’ | < P~ (t)r(o, 1) .
ool 4
On the other hand,
. s
(1s) \ o.{7") . dv’ = Ay+4,,
Yo <alty [
iky dz”
Ay = S ¢ 5 d-c’S V', z'")e™ —-sz ,
ool @ B(t,0) o
thy dx"’
a4, = ( ¢ . dr’g V', x”)Jl—gf—z.
Yool @ CE(t,0)
By (10.16a), (10.9a)
(1,) 1A,] < e*lm| () (o, t)”g dT'S oV’ .
Yo < ality 0y <b®)
We let da' = o’do’dw and, on noting (2') (subsequent (10.28)), obtain
. 27 b(t) -
S o'’y = S de 6" o’ < c* S\(l/bz(t)—g2 sin? w— g cos o)’ —g'|dw
0y < b 0 0y=0

= () = (),
inasmuch as ¢ < «l(f) < 1b(¢) (for & = c* sufficiently small); hence
(15) L] < c*[n|l=2 (t)r(o, 1)
The inequalities (10.16a), (10.16a’) may be written in the form
(10.30) IV, ') < e* = (t)r(o, 1)'g(d’, @) ;
(10.30a) glo', o) = o (for ¢’ < p), = ¢” (for ¢ = 0').

For A, of (I;) one then has

S OP) dx”’
|4g| = c*T7*(t)r* (o, )Ty, T :S £S g(e,0')—5;
o O YEu o0 o

here, by ((2') after (10.28)) and on writing ¢'(p, ®) = V/b2(t)— p? cos® w—p cos o,
one has
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ol (t) d@ 27 o’ (0, w) do’ 210 dg o+b(®) do’
ozg —S dwg 9(9,6’)—,26*5 ~-S g(o, 6"y —;
Yo g v “p o 0 2 Y o
xlty g S o+bty g5t
FoéC*g £[SG’” G+§ e”jf};
dy 0 0 [ Yo o
C*
a direct calculation gives I', = O(Z”(t) log i(?))’ thus
C*
(Te) Ay = c*l2(t) log <ﬁt—))rv(0’ t).

The result (10.29) ensues by (I,)-(I;) (actually a sharper inequality can be stated).
For g, 4(+') (10.27c) one has (cf. (10.22), (10.22a))

0n,s(t) = P (") + U, 7)P/(v)
in view of (10.22b), (10.22e)

iy
S ¢ P(v')dv'

= ¥l ;

e=al(h) 92
ety ' c*
Ur',7)P, (')t | £ c*n|l™*(¢) log (——\) 13(¢) ;
Yosau 0 i)

(10.31)

c*

1(t)

< c*n|l P2 (¢) log ( > (if & = xg—»),

eiki/)
| s
Yo ality e

C*
1(t)
By (10.27¢, 28, 29, 31) the first. term in the second member of (10.27) is

o(m log (

= c*jn|l>0t2 (8) log ( ) (if & < ag—7) .
C*
Ut)
(10.27) is 0<|n| log

- "% () {; hence by (10.27b) the integral in the first member of
y g

c*

I

assumption that ¢ = 0 leaves the conclusions intact. By (10.25, 26) we infer.

). l_""(t)), where &' is max. (x, ap—7v). Deletion of the

Theorem 10.32. Let u(y)c [x[S] (¢f. (10.4), (10.4a)); consider the singular
integrals A, A;, ((10.5), (10.5b); n, k = 0). For the operational product one has

(10.32a) A A, (ult) = dnhh (Ult)+T,

n >

where hy, b, are principal operators extended over the plane E, and are identical with
the operators so designated in [M; p. 90] (¢f. 10.25a, b), while
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(10.32Db) [T, < c*n|l7%(2) 10g2<%> (if « = ag—7),

c*

l(t)> (i & < xg—7).

< c¥|n|lP () log (

11. Integral equations. Consider the singular integral equation

(1L.1) — o uyde(y)+T(ult) = f(1);

dg (Y, 1)

here k(y, t)r—2(y, t) (3.1) is a principal kernel as described in section 3; f(¢) is given,
c (18] (1 < }); a(f) is of a Holder class on S (for I(t) > 0) and |a(t)] = a® = c*
(as in (9.16)). T' is an operator regular in the sense of

k(y,
a(tyu(t)+ .9

Definition 11.2. An operator T*, consisting { for example) of a number of ordinary
integrals of type as in (9.8¢), will be sard to be regular, if for every u(t) c [x|S], satisfying
(10.4), (10.4a) with o« < %, xyg—v < &, one has T*(ult)c [7|S] (some 7 < }), while
w(t)+T*ujt) = F(t) (Fc Ly, on 8S) is a regular Fredholm equation.

The operator

k(y, ¢
(11.3) atyuit)+ | 20D iy )doty) — A ) = Atut
gt (ya t)
is the one studied in section 9. By Lemma 9.8
(11.3a) Afu) = AF )+ Aw) ,

where Aj(u) (9.8¢) is a regular operator (as a consequence of Theorem 6.36), while
A (u) is the singular operator (9.8b). Accordingly the equation (11.1) may be written

in the form

.0
(11.4) a(tyu(t)+- S 7;]0(’% ;)
8¢0, b) s

notation as in (9.4), (9.5),...; f(¢, 0) is the characteristic of the kernel k(y, t)r—2(y, t)
(cf. (9.4b), (9.9)); T = AJ(w)+T(ult) is a regular operator. The operator

t, 0
B = b+ 20 ryavav, (= Buio)
Jswo.0y7%(0, Y)
(cf. (9.19a), (9.19), (9.17)) would certainly be a regularizing operator, as a consequence
of [M], if S had no edges. In the present case application of B to (11.4) yields

BA*(ujt)+ BT (ult’) = B(fli) = g(1) ,

w( Y)Y dY 4T (ult) = f(¢);
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which can be expressed in the form
(11.5) w(t)+T, (w)+ BT (ult) = B(f|t) = g(t)

This ts a regular integral equation of the second kind, provided

(11.5a) T, (u), BT'(ult)
are regular operators,
(11.5b) B(fitycw'|S] # < }).

Thus the problem of regularizing the integral equation (11.1) is solved when (11.5a),
(11.5b) are proved.
The statement with respect to (11.5b) is taken care of by

Lemma 11.6. Suppose f(t)c [H|S], with & < }, while the Hdolder condition is
of form
(IL.6a) |f(tY—f@)] < c*Mo(mr(t’, ) [0 < vy < 1; Hy = H; Hy—vy < 3]
(n ©s t or t', whichever is mearer to edges). Then B(ft) c [B'|S], where 1’ =

max. (Hy—vy, H) < §.

Note. In many applications H, = H+1, », = 1 and, so, the conditions of the
Lemma are satisfied.
To prove the above, reverting to the notation of section 10 (cf. (10.5b)), we have

B = bfo+rw; 1o =\ Va1V

Yosbey @ do<bny €

(f()—f(B)de".

By (9.24) |b(t)] < c*; thus

(1°) b(8)f(t)c [1]S] .

In view of (11.6a), and since r(t', 1) = c*p, I={3) = ¢*I-1(t) (for o < b(t)),
()= f ()] = e* ()™ .

Thus (since b(t) =< c*I(t))

W27 b o270

r@ = et 0\ 19 vle dedy = v | gt )iy
'.'O IO ./O
Accordingly, in view of (9.25), I'(t) is O(I""(t)); the Lemma follows by (1°).
Using the notation involved in (10.5)-(10.5¢c), one has
[t v)
, U
Yooy €

—+ S g(t,;p) [a(t')u(t/) + S Ji(fl@u (t”)dr”} drv’ .

139
by @°F

BA*(ult) = b(t) [a(t)u(t) + (t’)dr’}
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Substitution of (9.9), (9.19) yields

ny
e

dr’
2

BA*(ul) = be@u(t)+50 3,0 ()",
Yo=b®) '

‘L

30\ aone) a3 Ym0
J Yo bit) 0 7 n Yo < b(t)
inf

12 eWH u(t")%dr”} dr’ .
4 Yo < b(t’) ¢
We replace f,(2'), al(t') by
Fal)H(£lt) =1 ®), alt)+(alt)—a(t))

respectively, obtaining

BA*(ult) = b(t)a)u(t)+ D 5’ () [ () A, (ult) +
+ X g har)4 <u[t>+2)] g0 f DA A, (u]t)4-A;

, e
(L) A=3"g0\  w)at)—aw) A
J

einﬂ
L dr”] dr’

PX44
fu) %, H ') =
e b) 07 Leg<byn ¢

We have
A, (ult) = 2=h, (W)4-T, AjAn(ult) = dm2h;h, (w)+ T,

where the h, I';, are operators of Theorem 10.32; I, is g,(u|t) from (10.24) and
satisfies (10.24b). Thus

(20) BA*(ult) = b(t)a(t)u(t)+2n2 () f(t) +2n2 g;(t)a(t)h;(u)
a2 XY )’ g](t Fut)R; +A°+A
j

10

In view of (10.25a), (
in the form

(40)  b(O)a(t)ho(u)+ X b 0" () + X b D)’ (u)+ ?Zb ) ()R

5b), the terms in (2,), apart from A°4-A, are expressible

here the a, () are from (9.15b) (cf. (9.9)) and the b,(t) (by(f) = b(t)) are from (9.17),
(9.19); a,(f) = a(t). By (9.17) and since the series for a(¢, ¢), ( @) are absolutely
convergent one has

:)0: bi(t)a,, ;(t) = 0 (for m = 0), =1 (for m = 0);

j=—00
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hence the terms (4,) combine into

)j 5 bi(t)a, (B (w) = hO(u) = u(t) .
J=—00 n=--00

Accordingly
(1L.7) BA*(ult) = w(t)+T, (u), Ty (u) = A°+A (cf. (15), (3,)),

a fact of type already utilized, in [M], in MICHLIN’s treatment of equations with
integrations over K, or over ‘edgeless’ manifolds. With respect to a(t) (= ao(t)) we
have previously assumed |a(t)] = a® and that a(¢) is of a Holder class for {(f) > 0;
we shall now specify the behaviour near edges and Holder conditions by the
assumption

{11.8) lat)] < ¢*; |a(t’) —a(t)] < X Pyh(t, 1) (for o = b(t)),

(here 0 < h = 1; 8 =0; x+p < 1, as stated previously). These conditions are in
conformity with the inequalities (9.14b) for f, (1), f,(t')—f,(¢) (one may use a modifi-
cation of (11.8)).

By (9.25a), (9.21), (11.8), (9.14b)

27 3

) 3 o270 3
(I) H [Ig(t’,w)—g(t,w)lzdw} éc_*“ ft, o) —fE @)2de| +
0 “0
Fe*P(t)e" < X (1" (for o < (D)) .

Utilizing in succession the Bessel inequalities for series and integrals, by (9.25),
(10.4), (11.8) we infer that the absolute value of the simple series in A (1,) is
bounded by

(I2) {

W27 RZ0) do '21 3
ol

g0 X\ ey u)(at)—alt)
7 Yo 0 .

27
= 0*{5
0

Denoting the double series in A4 by s” and letting

R0

d
\ u(t')(a(t')—au(t))—eg

: )4
dw} < XX PR |

D)

7 d@ \
F,(y) = SO (fult)=1u®) ?‘SQ'—E b

ezn@

(u(t”)*u(t’)) —dt",
0

in view of (9.25) one has

1 B 2 ,
o712 =1 27g,) S 2F ey = 3|3 -
J n J
, R 2 , B 2 W27 , 2
2> S D F(pe¥dy| <c*\ | X F () dy.
7 0 n Yo n




126 W. J. Trjitzinsky.

1
Now by (9.14b), (10.4a) and since b(t') < c*i(t), we have F, (y) = O (lh‘ﬁ“’““ﬂ(t) . —2> .
n

Hence s = O(Zh“ﬁ“”““(t); together with (I,), this tmplies that

(11.7a) |A] < X P) - exl-o)hPt) < el (1)

(o = max. (x+f—h, xg—r+p—h)). It is noted that with x < }, x,—v < }, to start
with (which s a property of ), we shall have

(11.7b) ' x <},

provided (0 <) B =< h (the latter being a property of the kernel).
With the aid of Theorem 10.32, (3,), (10.24b) and of certain other cosiderations
of section 9, we obtain

(11.7¢) |4 < e*I7*(t) log?® (%) (for & = oxy—7),

c*

1)

at least under the conditions involved in the result (9.23b). These are forthwith assumed.
In view of (10.7)-(10.7¢) one has the result

= c*l" () log < ) (for ag—r > «)

Lemma 11.8. Suppose u < [«|S], satisfying (10.4), (10.4a) with & < }, xg—v << §;
assume that p < h (x+p < 1) (a condition relating to the kernel). Then T, (u) (in
(11.5), (11.5a)) satisfies
C*

l(t)) 6f & = xy—r),

(11.8a) [T, (w)] < c*7*(¢) log? (

c*
Ut)

As a consequence of the above T, (u) is a regular operator when § = 0.

= c*"™(t) log ( ) (f xg—v > «).

Turning to 7" in (11.4), one has
(11.9) BT'(ult) = B(A](u))+ BT (ult) .

A)(w) is given by four terms in the third member of (9.8¢); these terms satisfy
inequalities (9.3a), (9.3b), (9.3d), (9.6), respectively; in the latter one may put
L(t) = c*-1(t). With « < 3, 60—y < L, 8 Z h, f < }, we certainly have

(11.92) A% < (D) (some 70 < §);

if a++p < %, ag+pf—v < %, then by (6.39) A° is a sum of three terms 4’ for which
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(1°) [y () —A[ ()] = X, 1) = *TV ()" (for o < b(1)),

where H®, »® are some numbers such that 0 < % < 1, H = 1%, 0° 2% < } (in a wide

variety of cases H® = 794-1, 4% = 1). We have

(2°) B(A% () = b(t )+\ 169 4oy
o<b@py @

Since |b(t)] < ¢*, by (11.9a) one has

(3% lb(t) 4} ()| = e*'(t) .

In the integral, above, A4;(u) may be replaced by A (u)—Aj(u); by (1°),
(9.25) this integral is a sum of three terms, each of modulus bounded by

W2 b(t) , , dg . W27
ot o] § 1000 — A0 %y = o0 o wiay
Yo 0 0 0
b(t) 27
' S g = o () lgtt, pldy = X0
0 *0
Thus by virtue of (2°), (3°)
(11.9b) |BA(w)] < e*I™(2) (H’ = max. (7% H°—?%) < %) .

It is concluded that BA® {s a regular operator (at least when f = 0). We shall
proceed under

Hypothesis 11.10. Let the operator T(ult) in (11.1) be of the form

(11.10a) T(ujt) :S H(y, tyu(y)do(y) ,

where g 1

(11.10b) H(t) = [S [H(y, t)|2da(y)} e ) (0 <8< });
S

H*(t', 1) E“ [H(y, t')— t)|2do (y }g Xl Mo(T)y (it 1)
vS

O<s=1; hy—s<b;v=0¢ (for I(t') =U(t), =t (for U(t) < Ut))].

With % as in Lemma 11.8

" %
(1) T (ult)] = C*H(t)“ lu(y)lzdﬁ(y)] = c*l(t) .
'8
On the other hand, since the integral of |u|2 over S exists, one gets
(20) T (ut')— T(ult)] <H*(t t)“ [u(y)|*da(y)
s

< X, 1) < exl (e (t ,t) (for r(t', t) < coU(t)) ,
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when ¢® = ¢* is suitably small (say, as in b(t) = ¢%(t)). Now

(3) BI(ujt) = () (ult) + S e

Yoy €7

wlt’)d

T(ult)+- § (Tl y—T(ull)lde .
Yo < bty

The latter integral is bounded in absolute value by (cf. (9.25))

W27 RG]

o o §

\.b(t)

0

27

d
I t) =T (ul) ﬂ dy < 7 0) \ ot v)idy -

0 *0

1

o g = o* ) [Sdnfg%t, vl dwrg cH (1)

YV (30), (Lo}, (40) one has
(11.11) lBT(u(t)[ < c*l’H”(t) (H” — max. (80, ho*—S) < %) .

Hence BT (as well as 7'} is a regular operator.

Theorem 11.12. The problem of regularizing the singular integral equation
(11.1) (cf. the text up to (11.5)) is possible when the conditions of Lemmas 11.6, 11.8
and of Hypothesis 11.10 are satisfied, at least when B =0 and (9.23b°) holds.

We shall terminate this work with a few remarks. Of the remaining questions
outstanding is the problem of equivalence (handled in [M] in the cases therein
considered). This and other matters will be relegated to a later work. The develop-
ments given in these pages, in so far as integral equations are concerned, can be
extended along following lines.

I. Systems of integral equations.

II. Hilbert space theory.

ITI. Equationsinvolving principal integrals extended over (sufficiently ‘smooth’)
m (> 2)-dimensional manifolds, with sufficiently ‘smooth’ edges, imbedded in a
Euclidean space of n (> m) dimensions.

The developments of (I) present no essentially new difficulties. Only part of
the work can be extended along the line of (II). Extension to (III) would involve
use of expansions into spherical harmonics (instead of Fourier series) and is possible
as a consequence of a very important formula of Giraup, found in [M; p. 94].
The various ‘regular operators’ in the texte are actually equivalent to regular

Fredholm integral operators (when f = 0).



