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1. Introduction

During the past half century there has occurred a series of striking advances
in the mathematical theory of compressible irrotational fluid flow in two dimensions.
These developments have been concomitant with discoveries of génera.l mathematical
interest and to some extent with the growth of new mathematical disciplines. Among
these we may cite the hodograph transformation of Chaplygin [3], the use of function-
theoretical properties of quasi-conformal mappings [1, 6, 15], the theory of regular
variational problems {19, 20], potential-theoretic investigations [7], the development
of fixed point theorems in function space [11, 16], and the theory of pseudo-analytic
functions [2].

Since most of these methods are by their nature limited in application to two-
dimensional phenomena, the theory of three-dimensional flow has not fared so well,
and there seems to be little literature of a precise mathematical character on the
subject. There appear, in fact, to be serious difficulties in the way of a comprehensive
discussion, for the study of such flows is equivalent to the study of a non-linear

second order equation in three independent variables, and the problem of finding

(*) This investigation was supported by the Office of Naval Research.
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& priori estimates in a general case for the solutions of such equations remains
open..(1)

In the present paper we discuss questions of existence, uniqueness, and asymptotic
behavior of three-dimensional compressible flows. Our method of deriving asymptotic
estimates is a modification of a procedure suggested by Nirenberg which will be
published elsewhere. It differs from that of Nirenberg in important respects, and
permits us to obtain a fairly precise estimate on asymptotic behavior of the velocity
field (Theorem 1). This result is then applied to prove the uniqueness of a given
subsonic flow past an obstacle B (Theorems 2, 3, 4). We remark that we do not
require the flow to be uniformly subsonic (it may become sonic at B) and the
uniqueness appears in a class of flows which may admit supersonic regions. We
prove also that in a flow past B which is subsonic at infinity, no net force is exerted
on B by the fluid (Theorem 5).(2)

Section 9 is devoted to a proof of existence of compressible flows past an obstacle
B provided the maxium speed in the flow is sufficiently small (Theorems 6, 7). In
principle such a result should follow by straightforward application of the method
used by Frankl and Keldysh [7] in the case of two-dimensional flows, since this
method is based on potential-theoretic considerations which do not respect dimension.
We have been informed (oral communication) that an independent proof based on a
variational method has been given by Berg and Nirenberg. The proof we present
uses the fixed-point theorem of Leray and Schauder [11] and does not seem intrin-
sically simpler than the others; however, it leads to an explicit estimate of the
maximum speed for which existence is demonstrated. In the case of polytropic flow(?)
with y=1.5, it is sufficient that the Mach number does not exceed 0.53.(%)

Although this paper is directed toward the study of subsonic flows, the results

can be interpreted as statements on the solutions of elliptic differential equations.

(1) After the completion of this work our attention was called to a paper of H. O. CorpEs [4]
in which a priori estimates in a bounded region are obtained under remarkably weak hypotheses. It
would be of interest to determine whether methods similar to those of Cordes will yield an improve-
ment on the estimate at infinity which is essential for our results.

(?) This result has been announced by LUprorpD [13], but is not substantiated by the contents of
his paper.

(3) For definitions see Section 2.

(4) Added in proof: Professors L. E. Payne and H. F. Weinberger have remarked that a modi-
fication of one of our estimates will lead to a significantly better result. Using this remark and also
some improvemerits noted by the authors, it is possible to prove the existence of flows for which
the Mach number does not exceed 0.7. However, it seems likely that a much stronger result can be
proved. See the note “Added in proof II”” at the end of this paper.
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We adopt this point of view in Section 11, where we apply a modification of our
method to a study of asymptotic behavior of solutions of elliptic equations in n-vari-
ables. The main result consists in the statement (Theorem 10) that if a solution u (x)
is restricted to a certain order of growth at infinity then it must tend to a limit
with at least a preseribed rate.

Finally we present in Section 12 an extension of the classical maximum prin-
ciple for solutions of elliptic equations to a statement which applies also to the point
at infinity, Our method here is quite different from the argument on which the earlier
sections are based, and we are able to announce a result (Theorem 11) which is true
for a rather broad class of non-linear equations (which need not be uniformly elliptic),
and which is nevertheless sharp in the special case of Laplace’s equation. In eon.
junction with Theorem 1, this result implies the property of subsonic compressible
flows (Theorem 8) that the speed cannot tend to a maximum at infinity.

We point out that, except for the existence theorem in Section 9, the discussion
is entirely elementary, being based on formal integration by parts. The estimates we
have obtained in this way suffice to establish the qualitative theorems of the present
paper, but they are not best possible. In a later work we shall derive precise esti-
mates of asymptotic behavior for solutions of elliptic equations in n-dimensions by

an extension of the method of our earlier paper [6].

2, Notation and Definitions

To facilitate the exposition we shall use the summation convention,
n
a; xX; = Zl a/( Z;.
i<

The symbol x will denote the vector (z,, ..., z,). A scalar solution(!) ¢ (z) of

2 [ 2g] o .
axi [ant] —O’ 9_9(¢i)>0’ 7'—1, -..,3, (1)

will be called the welocity potential of an irrotational gas flow with density g. The
gradient V¢ of ¢(x) then represents the velocity vector of the flow. We shall write

Vb =w=(u;, Uy, us).
The speed q of the flow is defined as the magnitude of V ¢,

g=(u)t.

(*) We assume qS (x) has continuous partial derivatives with respect to all z; up to the third order.
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For simplicity, we shall occasionally restrict attention to equations of the form
(1), although most of our results admit immediate extension to solutions of equations

of the form
o4

ox;

b

o
a_xi[@i (uh ~~,un)]=0: u; =

with suitable assumptions on the functions ®;. Our special concern is the case of

—1 y-1
0= [1 - qz] : @)

Here y is the ratio of specific heats of the fluid, y>1.

polytropic flow, for which

If p is any function of ¢% then (I) takes the form

*é
%3 6:::18:3,_0’ @
. ’ ! d 1’ ":Z .
with a5y =00;+ 20 wuy, e =d_§2’ 6”={0 t=|=:7".

It is not hard to show that the quadratic form

ay; & &

admits only two distinct eigenvalues, A, =p+2¢'¢? 1,=21;=¢. Equation (3) is of el-
liptic type if all eigenvalues are positive, parabolic if at least one eigenvalue vanishes,
otherwise hyperbolic.

If g is defined by (2) there exists a critical speed

2 b4
q°=(7+1)

2 \?
and a maximum speed Gmax = (‘;/Tl)

such that (3) is elliptic, parabolic, or hyperbolic according as 0<q¢<gq, ¢=¢. ¢<

g <gmay, and g is (in general) not defined for ¢ > gpay.

The speed with which infinitesimal disturbances are propagated in a flow is called

1
—{_23.
a_( 29’)

The ratio g/a of speed in the flow to the speed of sound is called the Mach number,

2q2 )%
M=(—— ) -
0 e

the speed of sound,
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If ¢ is defined by (2), then

_rtl o,

1 B q
T

-5

Accordingly we shall call a flow

subsonic, if 0<¢<gq,;
sonic, if g=g¢q.;

supersonic, if ¢, < q<qmax-

A flow for which both subsonic and supersonic values of ¢ appear will be called
mixed.

Clearly the constants g, and ¢y, are defined (perhaps infinite) for any density
function p=p(¢®) with ¢’<0. If this is not the case there will nevertheless be an
interval 0<¢<g, in which (3) is elliptic. We shall then consider only those flows for
which ¢ lies in this interval throughout the flow region, and we shall refer to such
a flow as subsonic.

By an obstacle B we shall understand a closed surface which bounds a finite
region in three-dimensional space. We assume that B possesses at each point a unit
normal which varies continuously on the surface. Further restrictions on B will oc-
casionally be imposed and are indicated in the context. By a flow past B we mean
a velocity field derived from a solution of (1), which is defined throughout the exterior
of B and which is directed tangentially on B. A flow is called uniform at infinity if
the velocity vector tends to a limit as z—co,

The symbols C and K will be used to represent constants, the value of which
may change even within a given demonstration. Thus, from y<C(R*+1)} we may
conclude y <CR for R>1. We shall also use the notations p = O (R), ¢ =0(R) to mean,
respectively, (1/R)|y|<C, (1/R)|yp|—0, as R tends to some limit R,. Alternatively,
the symbol ¢(R) will be used to denote a quantity which —0 as R—R,,.

3. A Preliminary Estimate

We consider in this section a function u(x) defined and continuously differenti-
able in a region including the exterior £ of a sphere S in n-space, n>>3. We denote
by A(p) the Dirichlet integral of u(x) extended over the exterior E, of a sphere S,
about the origin of radius g sufficiently large that E,=E. The existence of A (p) is

here assumed, later to be proved. We assume further that for any point P in E the
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Dirichlet integral D(r) of wu(x) in a sphere of radius r about P admits a suitable
growth estimate as a function of r. We shall prove that u(x) then tends to a limit
4y at infinity and we shall estimate the rapidity with which |u (x) — u,| tends to zero.
Our method of proof is essentially the same as that already used by Nirenberg in

a similar connection.

LemMa 3.1. On every sphere S, about the origin there is a point P such that on
the extended radius from P to infinity u(x) tends to a limit u§, and such that

F A(Q) _ ¥ 1-4n
|u(P) u8|<[w%—n_(n_2)] et

where w, is the area of the surface of the unit sphere in n-space.

Proof: Evidently, f wir" 'drdw < A(p).

By

Thus, for some ray through the center of S,

©0

fufr"“ drs—l— A (p).
w’l
e

But for R>p,
R R
]u(R)—u(Q)I=]ju,dr|<“|u,|r*(""1’rw’"’drl
e e

and by Schwarz’ inequality,

R R

2-n

|u(B)—u(o)|P< fu?r"'ldr (rl‘”dr<A<g) e
¢ e

w, n—2

which proves the lemma.

Lemma 3.2. Let 87 denote a sphere of radius r about a point P such that the
sphere 83, lies in E. Let 6p(r) denote the oscillation of u(x) on the surface of Si. If
for all such points P and all o<2r,

n 2+a

D(e)<0

2(n 2+az)

where D (o) denotes the Dirichlet integral of w(x) extended ower the interior of S;, then
for all p<r,

()<K922n0:

2n+24mVn 2+a

Wn -1

where we may choose K=
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This lemma is essentially due to Morrey [15]. A simple proof in two dimensions

has been given by Shiffman [19]; the extension to n-space requires only formal changes.

Lemma 3.3. Let R be chosen so large that Ege < E. Then under the hypothesis

of Lemma 3.2, _
| (P)—u(P)|<KR* " ¥

for any two points P, P on a sphere Sy about the origin, where

28/C1/n—2+a

22 Wn-1

K<2®

This result follows from Lemma 3.2 and the triangle inequality, using the fact

that any two points on S can be joined by a chain of at most seven spheres of
radius R/4.

LemMa 34. Under the hypothesis of Lemma 3.2, the function w(x) tends to a
limit w, at infinity. If Ezpc E, and if P les in Eg, then

lu(P)—uol< ‘Kl Vm Rl’én _|_K2 RZ-n_\}a’

where K, <[(n—2)w,_1]}, K,<2" 28V l/n_2+“.

22 Wn-1

Proof: Apply Lemmas 3.1 and 3.3.

Lemma 3.5. Suppose satisfied the hypothesis of Lemma 3.2 and also the condition
A@)<Co ™2 for some constant C. Then there is a constant K such that if P lies

n 'ER and EngcE,
| (P) — uy| < K R* "~ 1=,

4. Growth of the Dirichlet Integral
We consider now a function #(x) which satisfies in £ an equation of the form

0 ..
EP [ai,(x) a—zj] =0, oy=ay b j=1, ..., n 4)

We suppose that the a;;(x) are continuously differentiable functions which tend to

limits af; at infinity, and that the eigenvalues of the quadratic form

al; & &
are all positive.
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Leuma 4.1. Suppose |u(x)|<Cr* as z—>oo, |x|=r, where x<Vn—1—-1(n—2),
and that the “outflow integral”

Q= faij 'VidS

where the v; are the direction cosines of the normal to S, vanishes for some r for which
E.cE. Then (i) Q=0 for every such r, (i) the Dirichlet integral

A= [|vuldv
E’

is finite, and (iii) for any prescribed >0 there is a constant C such that A(r)<Cr~?,
A=2Vn—1-¢.

Proof: A suitable linear transformation of coordinates will carry (4) into an

equation of the same form for which the coefficients tend to

I, i=j e

0= . . at infinity.
0, 1%+j

For simplicity of notation we assume that this is already the case in (4). An integra-

tion by parts, using (4), shows that

Jaij(x)%%ds= J‘ai, (x) v,dS
7

S, Sp

whenever E,cE, EpcE. This proves (i). A similar integration by parts yields the
relation, for r> R,
f ou a—udV A+ fua,-,-a—uv,ds, (5)
ox;

% oz o,

Ep-E, r

where A represents a surface integral over Sg. Denoting the volume integral in (5)

by Q(r), we have by Schwarz’ inequality(?)

(Q—-A¥< fu dSJ'(a,,a 6/ (as;viv;)d S

<Cr2n+n—1f(auz_u2_u_)ds 072u+n 1((11?

Sy

for a suitable constant .

(1) of. SHiFFMAN [18].
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Suppose A (r)=oo. Since the smallest eigenvalue of the form ay;¢; & is bounded
from zero in a neighborhood of infinity, @ (r) is monotone in r and tends to infinity

as r—>oco. In particular there will be an 7 such that @(r)> A for r>7. Thus,

1 4@ 1
(Q_A)Z dr/orn—1+ 2’

and for r;>r>7F

1 1 1 1 17
Q-4 Q(rl)—A C(n—2) |7 272 jp-2¥ex
Letting r,—oco, we find Q(T)éCr"_z“Lz” (6)

for a suitable C.

We shall now show that this estimate leads to a contradiction. If we introduce

the average of u(z) on §,,

1
’ZZ(T)=;‘7L_—1‘(0— fu(x)dS,

S

we may write (5) in the form

_ ou
Qr)—A= J(u—u)aﬁé;jvidﬂ'

Sy

since % is constant on §,. By the assumed behavior of the coefficients a;; near in-

finity, we may write on §,,

ou ou
aija—;_”i='67®+8(x)lvu|,
7

where ¢(x)—>0 as r—oco. Thus,
Q(r)—A=f(u u)—dS+s(r)f|u | |[vuldsS
S T

<K”:—1 J(u R — l/ - f(a“) ds+
n—

'
+s(r){f(u——ﬁ)zde|Vu|“dS} ,
ST

Sy

where we have used Schwarz’ inequality and the inequality ab<} (e®+b%). By an
inequality of Wirtinger()

(1) A proof in two dimensions appears in [9, p. 185]. In the more general case considered here a.

proof can be based on the fact that the minimum of J‘u%dS under the auxiliary condition:
s
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2
f(u—d)d8< — fu%ds, (6 a)
S,

r r

where %, denotes the magnitude of the projection of ¥ u on the plane tangent to S,. Thus,

2 ?1”)2_ 2
at+ (52) < lval,

since

r

—-A< 2dS+r wl®dS.
Q) -< = flvul e(r)flv I
Sf Sf

Again using the behavior of the a;; near infinity, we find

ou ou
2< =
IVl <Q+ee)a g o

for a suitable ¢(r) tending to zero. Thus,

Q

r d
Q(T)'A<2V—ﬁ(1+8(r))7i;' (N

Integrating, we obtain, for r>r,,
r \2Vn=1/(L+e)
Q- 4300 - 41(%) ,
1
where ¢ is an upper bound for £(r) in E,. If r, is chosen so large that

2Vn—1
(1+¢)

>n—2+4 2%,

this contradicts the previous estimate (6). Thus (ii) is proved, and we have proved
also that @(r)<A4 for all r. Therefore (7) can be replaced by

r aQ
A-Q< = Arem g
Again integrating, we find
2Y/n-1/(1+¢)
A4-Q()<[4-Q(r)] (’7‘) ’

which we may write as

A—Qr)<Cr ™ A=2Vn-1-e¢.

f (u—@)2dS=1 is the smallest eigenvalue of Au+Au= 0, where A denotes Beltrami’s operator
S,

(Laplacian) on the unit sphere. As is known, this smallest eigenvalue is equal ton —1 and is achieved
by the function u = x/r. The use of this inequality is an essential feature of the method of Nirenberg.
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Clearly, A <d+e(m)[4-Q()]

This proves (iii).
We shall need also an estimate for the growth of the Dirichlet integral in a
neighborhood of a finite point. We use here the notation of Lemma 3.2.

LEvmMaA 4.2. Under the hypotheses of Lemma 4.1,
D(o)< fT —2Vn—1-s¢,
where £—>0 as r—>co.

Proof: Repeating, for a sphere S; about P, the reasoning which led to (7), we
find 4=0 and

Q)< A1+ e (/20 52 Q

where Q(p) denotes an integral over the interior of S;. As before, this leads to the
inequality

Q@<ee/2) ()"

By Lemma 4.1, Q(r/2)<C(r/2)™%, q.e.d.

5. Asymptotic Behavior of the Velocity Field

Suppose ¢ (x) is a solution of an equation of the form

o
Ei_zr:,[@i (%, ..., )] =0, (8)
_0¢ 00, 00,

“"“ax,.’ du; ou =@

The equation (1) for the velocity potential of the flow an ideal gas is a particular
case of (8). Let u=w,, and differentiate (8) with respect to z,, We obtain, since

0w /0%, =0u,/0x;,
i ou -0
0 Z; a &; )
Thus, each velocity component u; is a solution of an equation of the form (4).

Suppose in addition, that all velocity components tend to limits at infinity.
Then the coefficients a;; tend to limits af; at infinity.
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If ¢ (x) represents the velocity potential of a flow past an obstacle B, and if §

denotes a sphere enclosing B, then the “outflow integral” over 8 vanishes,

f@,vidS=Jgg-(£dS=0. (9)
For f ¢d5’ f %dS
on

and the latter integral vanishes since 0¢/0n=0 on B.

If ¢@)=¢(xy, ..., 2,) is a solution of (8), then ¢"(x)=d(z,+ 5, x,, ..., 2,) is
again a solution, since (8) does not contain z explicitly. If 0¢/0n=0 on B then
0¢"/on=0 on the translation B" of B. If S is a sphere enclosing B and if A is
sufficiently small, then § encloses B". Thus, the “outflow integral”

h h
[otnas,  or-o(2f....2%)
S

oxy ox,

vanishes. Subtracting this integral from (9), dividing by A, and passing to the limit
as h—>0 shows that the “outflow integral”

ou
i Vil
Ja,axjv S
S

vanishes for any flow past B. It it easily seen that this relation persists after a linear
transformation of coordinates.

Finally, we suppose that ¢ (r) represents a flow past B which is subsonic in a
neighborhood E of infinity. Then the quadratic form

;& &
is definite (we may assume it positive definite) in E.
All hypotheses of Lemmas 4.1 and 4.2 are now satisfied by u(z). We conclude
the estimates of these lemmas on the Dirichlet integral of u(x) near infinity. Inserting

these estimates in the hypotheses of Lemmas 3.1 to 3.5 we obtain information on the

behavior of the velocity components of the flow at infinity.

THEOREM 1. Denote by u(x) a velocity component of a flow past an obstacle B.
If the wvelocity w=(u,. uy, uy) of the flow tends to a subsonic limit at infinity, and if

uy= lim wu(x), then for any prescribed e>0 there is a constant C such that in E,,

lu(@)—uy| <Cr?, p=31+V2—¢.
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For an equation in n variables, n <6, we find

=" Va1

6. Uniqueness of Subsonic Flows

Consider two subsonic flows with velocity potentials ¢, 4, past an obstacle B,
for which the velocities tend to equal subsonic limits at infinity. We may assume
that this limiting velocity is directed parallel to the z;-axis, and we denote its
magnitude by u,. We do not assume that the flows are uniformly subsonic up to B,
but we require the velocity field to be continuous up to B, with 8¢/0n=2984/dn =0 on B.
We shall prove that ¢ differs from § at most by a constant,

Both ¢ and § are solutions of an equation of the form (8). Let ©, =0, (Ty, g, Ug),

#=0¢/0x;. For a region B, bounded by B and by a sphere S, containing B we
consider the identity

Ju—a) (©,—0)dV = [ ($—¢) (©,— ) »d5, (10)
B, Sy

the integral over B vanishing because d¢/o0n=04/6n=0 on B.

The velocity potential ¢(x) can be obtained by an integration of its gradient.
By Theorem 1, if ¢(x) is changed by a suitable constant, |¢—w,z|<Cr 7% A
similar estimate must hold for ¢, hence |¢— §|<Cr ?*' in E,. Further, by the mean
value theorem, ®1—(§,-=a,-,- (u;—4,;), where the a;; are to be evaluated at certain
intermediate values of their arguments. Again by Theorem 1, |®,— ©,]<Cr™”. Since
—2y+1< —2, the surface integral in (10) tends to zero as r— oo, Thus, the volume
integral in (10), extended over the exterior of B, exists and is equal to zero. The

integrand, however, is at each point x non-negative and zero only if w, ()= (x).
Proof: Set F () = (w— %) [0, - O],

where the arguments in O are u;+¢(%— ), 0<t{<1. Then, F(0)=0, and F(1) is
the given integrand. But F'(t) =ay;(u;— @) (w;— %;). Uniqueness follows directly.

THEOREM 2. There is at most one subsonic flow past an ostacle B, for which the
velocity tends to a prescribed subsonic limit at infinity.(t)

(1) It is possible to prove this result with less knowledge of the asymptotic behavior of the
velocity than is used in the present proof. In fact, the proof as first obtained by us was based on
the estimate Iu—uo l <0r Y9 for some £> 0. The stronger estimate of Theorem 1 has permitted a
considerable simplification of our original proof.
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7. Uniqueness Among Mixed Flows

If the flow defined by ¢ (z) is everywhere subsonic it is unique among all flows
¢ (x) with the same limiting velocity, even though the competing flows may be super-
sonic in finite regions. For set @ (x)=¢ (z) — ¢ (x). If @ (x)=* constant, then either the
maximum or the minimum (we may suppose the maximum) of ® (x) must be attained
on B.(!) To prove this, we note that @ (x) satisfies an elliptic equation(?)

*o o0

a;; ———— 4+ b, —— =
Yoxox; Om

0

for suitable coefficients b;, and hence admits no interior maximum or minimum [10].
Since @ (x) has a limit at infinity, then either its maximum or minimum is achieved
on B. Denote the maximum of ®(x) by M. A point P on B at which M is achievd
cannot be a supersonic point for the flow ¢, since Y ® =0 at such a point, while
2®/2n=0 on B and therefore Y® =0 at P. For the same reason, if the flow ¢ is
uniformly subsonic (speed bounded from the sonic speed), P must be a subsonic point
of both flows. For a sufficiently small £>0, the set G: ®> M —¢ is finite and con-

tains no supersonic points. In the identity

[(w—a)(©,—0)dV = [ (®—M+e) (0~ 0)»dS,
G T

where I' is the boundary of G, the surface integral over I' N B vanishes sine d®/6n =0
on B, and the integral over the remaining part of I" vanishes since ® = M — ¢ on this
set.(®) As in the proof of Theorem 2, the integrand of the volume integral can be
expressed as a define form in (u; — @), since both flows are subsonic in G. Therefore,
®=M in @G, a contradiction.

In case the flow ¢ is not uniformly subsonic it is conceivable that P is a sonic
point for both flows. In this case the use of a lemma of Gilbarg and Shiffman [8],
under an additional hypothesis on the behavior of the velocity near P, leads to a
contradiction with the assumption that 6®/6n =0 on B. The discussion that can be
made quite rigorous, follows exactly that given in Section 6.1 of [6] and we therefore

limit ourselves to a statement of the result.

(1) We shall prove in Section 12 that both extreme values are attained on B, but we do not need
this fact for the present discussion.

(2) See, e.g., CouranT-HILBERT, Mathematische Physik 11, Julius Springer (1937), pp. 274-277.
The coefficients a;; are those of (3) and correspond to the (subsonic) solution ¢ (z).

(%) The technical difficulties arising from possible irregularities of I' are easily circumvented, cf.
Lemma 4 in [5].
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TaEorEM 3. A wuniformly subsonic flow past B is unique among all (possibly

mized) flows with the same velocity at infinity.

TaeEorREM 4. In the class of flows past B for which the velocity vectors have
bounded derivatives up to B, a subsonic flow is unique among all (possibly mized) flows
with the same velocity at infinity.(2)

8. D’Alembert’s Paradox

The classical expression for the x; component of the force exerted by the fluid

on a body B immersed in an irrotational flow is

Xj=— [pw+ou(w»)]dS, (1)
S

where g is the density, § denotes a surface enclosing B, and p is the pressure in the
fluid, p = const. — qudq. From the point of view of the formal development of this

paper, we may take (11) as definition.

THEOREM 5. The force exerted by the fluid on B vanishes for any flow past B

with subsonic limiting velocity at infinity.

We remark that this result is true even in the case that supersonic regions ap-

pear in the flow.

Proof of Theorem 5: We may assume that the limiting velocity vector w, has

the form w,=(u,, 0, 0). By the mean value theorem, we have

0 =00+ 0 (Jw—w,|),

p = const. — pu (1 — ug) + O (|w— w,y [?)

as |w—w,|—>0, where we have set w=u,. If j=1, we write (11) in the form

X, = [Tow(u—ug) v, ~ 0 (w—1p) (w;9) — 0 ug (%) + O (|w —wy |2)] 4.8
S?‘

where we have chosen for S a sphere S, of radius r. Thus,

Xy=—up [ ouindS+ fO(w—wyf?)ds.
5, §

r

() We assume here that every point P of B can be contacted by a sphere S such that S~ P
lies exterior to B.

18 — 573805. Acta mathematica. 98. Imprimé le 27 décembre 1957.
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The first integral vanishes since it equals —u, f ou;v;d8S and the normal component
B

of velocity must vanish on B. By Theorem 1, |w —w,|<Cr~?, y>1. Hence the second
integral tends to zero as r tends to infinity and we conclude X,=0.

Similarly, for j=2, we find

X,=00%, J' (uy vy — uy 1) S+ O (r*%7),
s

T

Since Owu,/0x,=0u,/0x,, a simple application of the divergence theorem shows that
the first integral vanishes, and again the second integral tends to zero. Thus X,=0,

and a parallel argument shows X,;=0.

9, The Existence of Slow Flows

The methods of this paper, in conjunction with the fixed point theorem of Leray
and Schauder [11] and classical results on linear elliptic equations, suffice to prove
the existence of compressible flows past a prescribed obstacle provided the maximum
speed in the flow is sufficiently small. As we have pointed out in the Introduction, a
result of this type can also be obtained by other methods; however the proof we

present leads to an explicit estimate of the permissible maximum speed.

THEOREM 6. Let 6=p+20" ¢% o' =dpo/d¢*<0, o(0)=1. Let g, denote a posi-
tive number so small that for 0<q<gqm, 0>3/2(1+V2). Then for any given obstacle
B(1), there is a unique flow past B which at infinity is uniform and has prescribed di-
rection, and for which the maximum speed (achieved on B} is ¢n.

We remark that for a polytropic gas with 9 =1.5, Theorem 6 ensures the exi-
stence of flows for which the Mach number does not exceed 0.53.

Proof of Theorem 6: We shall show that the problem can be formulated in terms

of a functional equation
w—F(w, k)=0, 0<k<], (12)

for which the hypotheses of Leray and Schauder [11] are satisfied.
As function space § we choose the linear manifold of all vectors w = (u,, uy, u,)

for which wu,, u,—0 at infinity(?) and such that w satisfies, in the closure E of the

(1) We shall here require B to be of class Bh. (For definition see LicHTENSTEIN [12].)
(?) Any prescribed direction at infinity can be changed to a direction (u,, 0, 0) by a rotation of
coordinates which leaves the problem invariant.
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exterior K of B, a suitable Holder condition. Precisely, let a be chosen so that for
q<gm, 0<a< min [1, 2 V2 8/(3—26)—1]; a vector function w will be said to belong
to § if there is a constant C such that for any two points 2, 2’ of the closure E

of E, the inequalities
|w (zl) —w (xll) l SOR‘I'aTam, |w (xl) —w (xn) l < CR—1—1/2,
where r=|z'—2"”|, R= min {|2’|, |2”|}, are both satisfied.() As norm of w we choose

|lwll= inf ¢+ max |w(x)].
E

To define the transformation F (w, k), we first regularize the differential equation
in a manner suggested by M. Shiffman [19].

We observe first that (1) can be obtained as the Euler equation of a variational
problem

S[F(gdV=o,
&

where F(q2)=fg(q2)dq2. For values of g larger than ¢, we may modify F (¢?) so
that the resulting Euler equation remains uniformly elliptic for all values of w, i.e.
so that the eigenvalues of the quadratic form a;;&; & are positive and bounded from
zero. For details we refer the reader to Shiffman [19]. Since we shall deal only with
solutions for which ¢<(g,, these solutions will appear also as solutions of the original
equation. Accordingly, we shall refer to the coefficients a;; of (1) without change of
notation.

Consider now the linear elliptic equation, for prescribed w (x),

ol
a”(’LU)‘ax'ax‘=0.
i 7

(13)

If w is in § there will be a unique solution ® (x) of (13) such that (i) the vector
V® is directed parallel to the z,-axis at infinity, (ii) 9®/0% =0 on B, and (iii) |V @ |
has a prescribed maximum in Z.2) We define J (w, k) to be the gradient of that

(*) The origin of coordinates is assumed interior to B.
(%) Precisely: if B is of class Bl and if the coefficients of (13) satisfy both the conditions

Ia” (w (2')) — aij (w (")) I <CR71~ocra/2’ |a,',- (w (x')) —aij (w (xu))|<CR—l—a/2

in E, then there is a unique solution @ (x) of (13) satisfying conditions (i), (ii), (iii), such that the
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solution @ (z} for which
max |V ®|=kgn.
E
1. F(w, k) is completely continuous for each k. For v® is in §, and |VO||
is bounded in terms of ||w|. (We use here the uniform ellipticity of the modified
equation (1).)

2. If k=0 there is only the single solution w=0 of (12). Since F (w, 0)=0, the

index of this solution is obviously one.

3. For 0<k<1, all solutions of (1) are bounded in §. This result requires an
a priori estimate on the gradient of a solution of (1) which we proceed to obtain

by the methods of this paper.

3 a. A priori estination on the boundary

It is sufficient to show that a suitable Hélder estimate can be obtained in a
(sufficiently small) neighborhood in E of a given point # of B, since an open set
containing B can be covered by a finite number of such neighborhoods. Let ¢ be a
prescribed positive number. Then there is an % (¢) >0, a sphere S, of radius 5 about
% and a 1—1 transformation &=7 () defined in S, such that (i) the image B of
BnS8, is a plane, (ii) on B the transformation is conformal, and (iii) at £ the Ja-
cobian matrix J (x) of the transformation is the identity I; throughout S,, |J (z)—I |<e.
To see this, we may choose as parametric lines on B the image of a suitable conformal
net. We may then introduce as a third set of coordinate lines the set of normals to
the surface, metrized so that the differential of arc length at each point on B is
equal to that induced by the conformal net. A scale transformation ensures that
J(#)=1, and by continuity of J (z), |J (z)—I|<e if 5 is sufficiently small.

In the original space, equation (1) appears as Euler equation for the variational

problem § f F(®)dx=0, F(g?)= } odq®. This problem transforms to ¢ f F (a1 W) ¥

Jd&=0, where ﬁi=6¢/8£i and o;;=46;; on the image B of B. For simplicity of

notation we have written J instead of det |J|. We may assume that B is a plane

through the origin and orthogonal to the £, axis. Equation (1) thus transforms to
1)

a_&(J‘F' (ocs 5 i &) - 005 %) =0

vector V@ is in §, and such that ”V (] ” depends only on C, « and on the ellipticity constant of
(13). The second derivatives of @ remain bounded up to B. A proof of this result will appear in a
forthcoming work by these authors.
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with 9¢/8&,=14,=0 on B. Differentiating with respect to &, we obtain

0 01U
7] 14
afi(a“af-i_b) 0 ( )
where Gij=2J F" - tix; Oym Ug G +J F' 035,
__o¢
==L,
0&

0 1’ - 'y a“ - =
b¢=a—£’(JOCij)‘F U+ F" J oy a;mu,ukum.
Note that ds;=d;3=0 on B if ¢=3, and that b;=0 on B if 1+3.

We now extend % to a solution of (14) on both sides of B. Specifically, we set

i (51’ 529 - 53) = —531 {7 (51’ 52’ Ea))
@&y &g — &3) =85 855 dis (&1, &5, &3),
bi (El: 52’ - 53) =53! 531‘ bi (61, ‘Sz; 53):

1,i=j

where 3ij=2(5if—%)={ ..
—1,e+9.

In analogy with the procedure of Section 3, we form the identity

_ 0nou o . giz ' 15
J(a”a&ag, ba&)dV Ju(a,,a&+b,)v,ds (15)

Sy

for a sphere S, of radius 7 about the origin. (The integrals over the surface B are
easily seen to vanish.)

By the choice of the transformation, d;;=a;;+ & where the |&;| can be made
arbitrarily small if |5| is chosen sufficiently small. For an equation of the form (1),
we have a;; (i, iy, %,) =0;;0+ 2 o’ 4; %;. For this choice of ay; it is not hard to prove
that the quadratic form a;;&; & has only two eigenvalues, of which the larger is o,
the smaller is g+ 2¢’ ¢*. Thus,

A daod R
+20 ¢ — <a; <(o+
e+2e'q—e) (as) 198 98, )(as)
for any preseribed £>0 in a neighborhood of each point of B. Further,

Heaali)
’b, \ ch 2k 7%,

o0&
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for any positive k. If k is chosen sufficiently large, we may write, for a suitable

constant ¢ and sufficiently small 7,

ou
D(”:Of(aft) av

0aou _
\SbedV+ f dSSf (d,’jvi‘li,‘) (a”6§i6§,)d‘s} +J‘ubivid8
r

8

where we have used Schwarz’s inquality on the right side of (15). Thus there is a

constant C' such that
%
D(r)—0r2<0'r((fl—1:) .

We may clearly suppose r<1. If for r=r, D(r)=C then by monotonicity
D(r)=0C for all r>r, Thus,

[D(r)—CP<C*r2 D (1),

the integration of which yields a bound on D (r) which depends only on the pre-

scribed bound for the speed and on r. A suitable covering of B by a finite number

of spheres with center on B suffices to show the boundedness of the Dirichlet in-

tegral of u in a neighborhood of B, the bound depending only on B and on ¢n.
Using the inequality 2ab<a®+b%, we obtain from (15)

(6,,,—8)D(r)<2l/—if dS+7 (a“) 48+

Sf T
+f12(a;, &) Ev,ds+ J‘ub v dS+ = szdv (16)
S, Sy

where 6, = min (o+2¢'¢%). If 1 is an eigenvalue of the quadratic form @;;&; &, then
1—-1 is an eigenvalue of the form (d;;—di;) & & If p=1 at the origin then in a

suitable neighborhood of the origin, |d;;—a;;| <& for any prescribed &>0, thus

2 R
[(6 a”)8§ ]\98 (3&)

If p+1 at the origin then there is a neighborhood in which the eigenvalues of

@;;&: & do not exceed unity, hence in which (d;; — d,;) & &; is non-negative, and we find

= 12
[(d,-]-—an-)ggv;] < [(a” B g ;‘ 2 ;‘] (81— @) v 5.
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Thus, in any case we will have

ou 12 8 W\ 2
[(dif_aii)ﬁw] <(1—6m+8)2(£)

for some ¢>0 which —0 with r. Hence,

. o9 =\ 2
fﬂ(du 11) 9E, vgdS (1' 6—"'2—:8)V2 f'azdS-l-(l g—l'/;;-e)r J‘(g—g) ds.

r fa ST

We may assume, as in Section 4, that j #dS=0. Applying the inequality (6a), we

ST
obtain from (186),
@n—e) D () <5 f|v Fds+(_fﬂi9’Jﬂv FdS+‘[uhmdS+é‘[HdV
Sf
(3—28,+e)r .
<—~_‘—_‘D' r +O7'
e

for some constant C. Thus, for suitable € and &,
a
D (r)—;D(r)+C’r>0,

where = 2 V2 (O~ &),
2 (57,;

Thus, r D)} +Cri%>0,
D(r)<[ri®D(r)]r*+Cr® [ r'"%dr, r<ry.
r

1
Case 1: 1<a<2. Set r'"®=r"+*"% Then [+' *dr<r} *logr,/r, and using the
4

known boundness of D (r,), we find D (r)<Cr®log r,/r for a suitable constant C.
1
Case 2: a>2. In this case frl‘“dr<r2‘" log (r,/r), from which follows D (r)<
r
Cr® log (ry/7).

Thus we have found an estimate for the growth of the Dirichlet integral of u

at the boundary. The same method evidently leads to a corresponding estimate at
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points in a sufficiently small neighborhood of B. Applying Lemma 3.2, we find that
the solution w = (u,, u,, u;) satisfies in such a neighborhood a Hélder condition with
exponent larger than L« for any o< min [1, 2V26,/(3—28,)—1], with a constant
depending only on ¢, and on B. This completes the a priori estimate of w at the
boundary.

3b. A priori estimation at infinity
As in Section 4, we use the identity
s
Q(r)= f LT fua,,-g—gvids (5)
1

0 X 0 Zj
Ep-E, S,

where we shall now permit Sp to denote an arbitrary closed surface containing B.
The reasoning of Section 4 shows directly that @Q(r)<Cr as r—>oco. Using the
estimates of part 3 a on the quadratic form a;;&; &; we find that if @ (r) exceeds 4, then

3-26, dQ
O A<3as, Tar

from which follows Q=C7r?, y=2 V2 0m/(3—20m). By hypothesis, y>1, hence @ (r)

tends to a finite limit. As in Section 4, we then find
A-Q<{A4-Q)rir™?, r>r.

In order to use this result we shall need an a priori bound for A. We have

ou
A= J‘ua,,-a—xjvids,
Sk

2
A*<C f (a—“) ds
ax,-

SR

for some constant C, by Schwarz’s inequality. In 3 a we have proved the boundedness
of the Dirichlet integral of u in a neighbourhood of B, the size of the neighbourhood
depending only on B. Hence there is at least one surface Sy lying in this neigh-

2
borhood for which f(g—g) d8 is bounded. This observation provides the needed
SR '

estimate.
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3 c. A priori estimation at interior points

We find, as above, if Q(r) denotes now an integral over a solid sphere S; of
radius r about a point P of distance 2 E from the origin,

Q(R)
Ry

77,

Q<

By the estimate of 3b, @ (R)<CR™”. Hence
Q(r)SCR vy
from which we find by Lemma 3.2,
|w (@) —u (@) |<CR DD

with r=|2’—2"|, R= min {|2’|, |2”’|}; by Lemmas 3.4 and 3.5, there is a u, such
that |u (x) —ug| <CR™ ¥V, hence |u (2')—u(a”)|<2CRI oD,

This completes the necessary a priori estimate on the solutions of (1). All hypo-
theses of the Leray-Schauder theorem [113} are now satisfied, and Theorem 6 follows.

THEOREM 7. For any prescribed obstacle B there is a positive number qu such
that. if 0<gy<qu there is a unique flow past B for which the velocity has prescribed
direction and magnitude q, ot infinity.

Proof: The theorem of Leray-Schauder establishes the existence of a continuum
of solutions corresponding to the segment 0<Ak<1. The speed at infinity is a con-
tinwous function of £ on any branch of the continuum. It is zero for £=0 and non-
zero for k=1, since the solution for given velocity at infinity is unique (Theorem 2).
Let g be the upper bound of limiting speeds for 0<k<1 and all permissible values
of ¢, (Theorem 6). Evidently ¢, has the property required by Theorem 7.

10. A maximum Principle for the Speed

It is an immediate consequence of the maximum principle for the solutions of
second order elliptic equations that the speed of a subsonic compressible flow admits
no maximum interior to the flow region. This result has been extended to include
the point at infinity in a two-dimensional flow, first by Bers [1], later with a simpler
proof under less restrictive hypotheses by the authors [6]. We present in this section

two results of this type which are valid for three-dimensional flows.

19 — 573805. Acta mathematica. 98. Imprimé le 27 décembre 1957.
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THEOREM 8: If a subsonic flow is defined in a region E which includes the
exterior of a sphere, and if the velocity of the flow tends to a subsonic limit at infinity,
then the speed admits no maximum interior to the region or al infinity.

From Theorem 1 we conclude that the velocity vector (and hence the speed)
tends to its limit as o{1/r). It is thus sufficient to show that this estimate implies
the validity of the maximum principle at infinity. Such a result is best formulated
as a general theorem on elliptic equations; we present it in this context as Theorem 12

in Section 12.

TeEOREM 9: If a flow is defined in a neighborhood E of infinity and if the
speed in E is everywhere so small that (8—e)/(3—208)>1/2V2, d=p+20'¢% >0,
then the velocity of the flow tends to a limit at infinity {and hence Theorem 8 applies).

By the discussion in Section 9 we see that the Dirichlet integral of the velocity
vector is finite in a neighborhood of infinity and tends to its limit as 7%, y=

212 (6 — ¢) /(3—20)>1, 8y =lower bound for § in E. A corresponding estimate holds
in a neighborhood of each finite point. Theorem 9 then follows from Lemma 3.4.

11. Asymptotic Behavior of Solutions of Elliptic Equations

The considerations of this section differ from those of Section 4 in that the
outflow integral is not assumed to vanish. We consider again a function # (x) which
satisfies in a region including the closure of a neighbourhood E of infinity an equa-

tion of the form

0 ou
a—xi [a;,-(x) 5;;] =0, Qi ; =dj;, } (4)
. ,n

We suppose that the a;;(x) are continuously differentiable functions which tend to
limits af; at infinity, and that the eigenvalues of the quadratic form af;&; & are all
positive.
LeEMMa 111, Let x<Vn—1-1(n—2),n>2. If u(x) is a solution of (4) in E
and if |u(x)| <Cr* as r—>oo, then the Dirichlet integral D (9)= [ |V u[*dV is bounded
E-E
in o. Here E, denotes the exterior of a sphere S, of radius p z:bout the origin.

Proof. Suppose D (g)—oo. The reasoning of Section 4 leads to the inequality

daQ

_ 2 2

@-Ar<0 fu s,
s,



THREE-DIMENSIONAL SUBSONIC FLOWS 289

ouou

a”a 3 ,dV Using the

where A denotes a fixed contour integral and @ (r)= f
E-E,

hypotheses on u (x) and on the a;(z), we find, as in Section 4,
Q(r)<Cr+2x2, (6)

On the other hand, we may write (5) in the form

]
Qo) 4~ [@-wa, 2 was o), an
S, 7
where C= fa”a—uvgds
8x,~
s

(4

is independent of ¢ and #(p) is the average of u(z) on S,. We may assume that

a suitable linear transformation has been made, so that
0 'u, 3
Gig o ? z +8(0)|V'“|

where &(9)—>0 as p—>oo. Thus, setting A+ C4(g)=B(g) and applying the estimate
introduced in Section 4, we find

Q@) —B(g)<

e aQ
l+eg - 18
Suppose first that u () is bounded. Then % () is bounded, hence B(g)<B< oo
for all ¢>R. This implies

2Yn=1/(L+e)
(L7 e

Q()—B>[Q(e)—-B) (&
451

where ¢ is an upper bound for &(g) in E,. This contradicts (6).

Suppose « (z) is unbounded. We are given that |B(p)|<cpo* as p—>oo. Set
v=[2Vn—1/(1+¢)] [(6—c)/é] and choose ¢ and p, so large that »>x. If for some
00> 01, @ (0p)>Cof then there is an interval I of values g > g, in which this inequality
is satisfied. We assert that I extends to infinity. For if not, let § denote the upper
end point of 1. We will have @ (g)=¢g*. But by (18) and the choice of ¢,

aQ
Q(e)—<Q(e)—B(e)< V—(l )d—g
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1 dQ v

or AT T

Q) de ¢

. _ Q@ _@

Integrating from to o, e

graving @o [ Qo)) o6
Q(@)>cok 'é’=c‘§?,-, 8

hence Q@)>cg",

a contradiction
Thus, either @ (g)>cg” for all g>g, or else @ (9)<ép* for all 9> p,. The former.

case contradicts (6), hence we conclude
Qe)<cg”,  Dfo)<cg™ (19)

A simple modification of Lemma 3.1 shows the existence of a radial line joining
8, to Sz, on which

Iu(21‘)—'u(r)]2<ll—2z2 "

( < 0rx+2—n
w, n—2

For a sphere S lying interior to E we find by (17) that
ou
J‘a”a—;jv,d8=0,
sP

sinee in (17) the inner sphere can be contracted to a point in E. Repeating the
reasoning which led to (18) we find that in this case B (¢)=0 and hence

Qr/2) (112_)21/5/(1“) .
Q@ ~\e

But Q(r/2)<cr* by (19). Thus. in the notation of Lemma 3.2,
D (o) <orbe-2/amieed 2yai.

By Lemma 3.3, the oscillation of u(x) on S, is bounded by Cri®* "**~9 Now

x—n+2<} Vn-1- 3(n—2)]<0, hence if r is sufficiently large, & can be chosen

small enough that (x—n+2)+e< —a<0. We have therefore proved the existence
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of a constant C such that if r is sufficiently large, no value of % (x) on S, differs
from any value of u(x) on S,, by more than Cr~* The corresponding estimate for
the spheres S, and S,y, becomes, by repeated use of the triangle inequality,
Cr*[1+2 %+ ... +277%, Thus, on the sphere 8,n,, 4 (x) remains uniformly bounded
for all N. But a solution of an equation (4) admits no interior maximum or minimum
{10]. Hence u(x) is bounded, and by the reasoning we have already presented for

this case, u (x) has a finite Dirichlet integral.

TarorEM 10. Let x<Vn—1-}(n—2), n>2. If u(x) is a solution of (4) in E
and if |u(x)|<Or* as r—>oo, then wu(x) tends to a limit w, at infinity. Further,
| —uy| <Cr *** for any prescribed e>0, where A= min [(n—2), 2Vn—1].(%)

Proof We have already shown the existence of a limit u, (for n>6 this is
obvious), and we have proved |u(x)—u,|<Cr * for some a>0. We may therefore
write (17) in the form

Q)— A= f(u——d)a,,Z—:vid8+0uo+0(d—uo),
7
S,

e

. - aQ o
from which B—-Q)-C °‘<——9———l+e—=— " (0),
@©-0e <5 2e(tag =20 (@)
where B=A4+Cu,, ,,=2_l”’_1 .
l1+¢
Thus [ (@—B)] +vCp*1>0.

Suppose »>e«. Then, since by Lemma (11.1) @ is bounded,
0<B—-@Q<Cpo™"%

from which we conclude that the Dirichlet integral tends to its limit as ¢™*. Similarly,
for a neighborhood of a finite point

Q(e)<Q—$‘—)e”<cef”'“e", <o

Applying Lemma 3.1, 3.2, 3.3, we obtain

Ju (@) —uy | SO P10 = Qp -2+

(') The hypothesis that the a;;(x) tend to limits at infinity can be weakened, cf. Theorem 9.
Theorem 10 overlaps a similar limit theorem, first proved by L. Nirenberg (to appear).
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I n>2 this is a better estimate than the one we started with, and implies the
correspondingly better relation

B— QS Cr~}(n—2+az)

provided (n—2+ a)/2<y. This in turn implies

2 (n-2)-}(n-2+)

ju—uy|<Cr~

Thus, after a finite number of iterations, we find Iu—uo|<0 P ®=2-9 for any . pre-

seribed £>0, or else |u—u)|<Cr™”, q.e.d.

12. An Extension of the Maximum Principle

Let u (x) be a solution of

0 ou
ey (au 6—1',) =0, a;=ay, )

in a neighborhood E of infinity. It is known that if all eigenvalues of the form
a;; & & are positive, u (x) admits no maximum or minimum interior to its domain of
definition [10]. In this section we present an extension of this result to include the

point at infinity.

TusorREM 12: Lel u(z) tend to a limit u, as x—>oo and suppose |u (x)—u,|=
0(r* "), n>3. Suppose further that a, & &> A ()&, A>0, and that |ay|< M < oo in-
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dependent of x. Then in every neighbourhood of infinity there are points where u (x) > u,
and points where u (x) <u,.

Remark 1. It is not assumed that (4) is uniformly elliptic in a neighborhood
of infinity, ie., there may be sequences {z} of points along which 2 (z)—0.

Remark 2. Theorem 12 is sharp, even for Laplace’s equation Au=2a%u/daf=0.
For this equation admits the solution u (x) =1 —r*"" with uy=1, u (z) <, for all z==0.

Remark 3. In conjunction with Theorem 1, Theorem 12 implies that the maxi-
mum speed in a subsonic flow past an obstacle B, with subsonic limiting velocity,
occurs on B.

Remark 4. If n<2 a much stronger result is true, cf. [6].

Proof of Theorem 12: Suppose u{x)<u, in E. The maximum principle of E.
Hopf [10] shows that u (x)<wu, in E. Let ¥ denote a sphere about the origin whose
surface lies in E and let % be the maximum of u on the surface X. Corresponding
to a sequence of numbers @ <wu; <wuy< .+ <uy< - <Uy Ui—>U,, there is a sequence of
regions G; in E, defined by the inequalities u, <u (x)<wu;, and bounded by level

surfaces X, and X; on which w=wu,, w=u; respectively. We have(?)

ou ou
‘[aii%vids= Ja,-, a“x‘i'}'de:Kl
m z‘

Also,

@y — —
Yo 0
1m

ouo 7 0
Qim= f “ udV= fumaijé—%jv,dS— fulaijggv,ds=(um—ul)K1.
2WL

1

Let L= (uy—u,) K;. Then
Qim— L= (un—1u,) K,. (20)

Let R be the smallest number such that the sphere Sp of radius R about the
origin contains X,. By (20) and by the definition of @,,, we see that as m—oo,
@, m—>L in increasing. Hence the left side of (20) is decreased in magnitude if the

region of integration is enlarged. Thus, if

dudu
Jai,axj

mm=fm

GR

av,

where G is the region bounded by X, and Sg,

(*) See footnote (3), p. 278.
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L—Q(R) <|(uo—u,,,) K1|

But since S contacts ¥, we have by hypothesis |uy—u,|=¢ (R) R*" where ¢ (R)—0
a8 R—oo, Thus,

L-Q(R)=o(R*™), (21)

that is, the quadratic functional @ (R) is bounded and tends to a limit as fast as
does u (x).

On the other hand, we may write

ou
QR)= f(u—ul)a,,av,ds,
Sp

iy —— ——
ﬁaxiaxj

Q@ (R) < J.(u—ul)zde( a“a“)(a,,v,v,)ds.
Sr

Sg

The eigenvalues of a,; %7 are by assumption positive and »*=1. Thus |a;, ]| is

certainly bounded by the sum of its eigenvalues. An orthogonal transformation which

carries this form into diagonal form with the elements on the principle diagonal equal

to the eigenvalues leaves invariant the trace. Thus |a;;v; vj|<a“<M , and we obtain
a9

2 n-17%
@ (R)SCR™ o2

for some constant C. Integrating, we have

1 1
__,___20 RZ—n_Rz—n, R.>R.
a® Q@ L L B
Letting R, >0 _1__l>0R2—n
g 1 H] Q(R) L/ .
Thus, L—Q(R)>CLQ(R)'R2_"

which contradicts (21) since @ (R) is an increasing function of R. A similar discussion

disposes of the case u (x)>wu, in £ and completes the proof of Theorem 12.

Added in proof I. The limit theorem of section 11 can be improved to the
essentially sharp result, |u—wu,] <Cr* ™', by means of the following inequality

recently proved by Payne and Weinberger (see the next article, [21]): Let » be any func-
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tion having a bounded Dirichlet integral in E. Then the average value of u over

concentric spheres of radius r has a limit % as r—oo, and

A= [|yupars"s? [w-aras
ET sf

where E, is the region exterior to the sphere S,. This can now be applied to a result
of Nirenberg(*) which states that if % is a bounded solution of (4) in E, then the
Dirichlet integral of » is bounded in E and the hypotheses of Lemma 3.2 are satis-
fied. It follows simply that for any £>0, A(r)< K> "**, and hence, by Lemma 3.4,

2-n+e

one concludes that Iu—uo|<0 r This result remains valid, for fixed ¢, if the

coefficients in (4) are allowed some oscillation at infinity (depending on &).

Added in proof II: In a note, “Parabolic Equations”, Proc. Nat. Acad. Sci., U.S.4.,
vol. 43 (1957), pp. 754-758, J. Nash states that if u (x) is a solution of an elliptic
equation (4) in a region R and if |u|<M, then

_ x— & *

e -l <on [ ot ©
where d(x) denotes distance to the boundary of R, and the constants C and o de-
pend only on n and on upper and lower bounds for the eigenvalues of the associated
quadratic form. No assumption is made on the eigenvalues except that they should
be positive and bounded from zero and from infinity. The authors believe that this
result, in conjunction with the methods of the present paper, will lead to a proof
of the existence of a subsonic flow past an obstacle B for any prescribed maximum
speed ¢, smaller than the sonic speed ¢.. New estimates on linear equations, to be
published elsewhere by these authors, show that if the space § of section 9 is suitably
enlarged, (*) is sufficient to provide an a-priori estimate at interior points and at
infinity. The only remaining difficulty is a discussion of the boundary behavior of
a solution. This may require a slight extension of the result of Nash to include

equations of more general structure.
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