
THREE-DIMENSIONAL SUBSONIC FLOWS, AND ASYMPTOTIC 
ESTIMATES FOR ELLIPTIC PARTIAL DIFFERENTIAL 

EQUATIONS 

BY 

ROBERT FINN 

University of Southern California and 
California Institute of Technology Q) 

AND 

DAVID GILBARG 

Indiana University and 
Stanford University( 1 ) 

1. Introduction 

During the past half century there has occurred a series of striking advances 

in the mathematical theory of compressible irrotational fluid flow in two dimensions. 

These developments have been concomitant with discoveries of general mathematical 

interest and to some extent  with the growth of new mathematical disciplines. Among 

these we may cite the hodograph transformation of Chaplygin [3], the use of function- 

theoretical properties of quasi-conformal mappings [1, 6, 15], the theory of regular 

variational problems [19, 20], potential-theoretic investigations [7], the development 

of fixed point theorems in function space [11, 16], and the theory of pseudo-analytic 

functions [2]. 

Since most of these methods are by their nature limited in application to two- 

dimensional phenomena, the theory of three-dimensional flow has not fared so well, 

and there seems to be little literature of a precise mathematical character on the 

subject. There appear, in fact, to be serious difficulties in the way of a comprehensive 

discussion, for the study of such flows is equivalent to the study of a non-linear 

second order equation in three independent variables, and the problem of finding 

(1) This investigation was supported by the Office of Naval Research. 
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a pr ior i  e s t imates  in a genera l  ease for  the  solut ions  of such equat ions  remains  

open, . ( ! )  

I n  the  presen t  pape r  we discuss quest ions of existence,  uniqueness,  and  a s y m p t o t i c  

behav ior  of th ree-d imens iona l  compress ible  flows. Our m e t h o d  of der iv ing  a s y m p t o t i c  

es t imates  is a modi f ica t ion  of a procedure  sugges ted  b y  Ni renberg  which will be 

publ i shed  elsewhere.  I t  differs f rom t h a t  of Ni renberg  in i m p o r t a n t  respects ,  and  

permi t s  us to  ob t a in  a fa i r ly  precise e s t ima te  on a s y m p t o t i c  behav io r  of the  ve loc i ty  

field (Theorem 1). This  resu l t  is t hen  app l i ed  to  p rove  the  uniqueness  of a g iven 

subsonic f low pas t  an  obs tac le  B (Theorems 2, 3, 4). W e  r e m a r k  t h a t  we do no t  

requi re  the  flow to be un i fo rmly  subsonic (it m a y  become sonic a t  B ) a n d  the  

uniqueness  appears  in a class of flows which m a y  a d m i t  supersonic  regions.  W e  

prove  also t h a t  in a flow pas t  B which is subsonic a t  inf ini ty ,  no ne t  force is exer ted  

on B by  the  f lu id  (Theorem 5).(~) 

Sect ion 9 is devo ted  to  a proof  of exis tence of compressible  flows pas t  an  obs tac le  

B p rov ided  the  m a x i u m  speed in the  flow is suff ic ient ly  smal l  (Theorems 6, 7). I n  

pr inciple  such a resul t  should  follow b y  s t r a igh t fo rward  app l i ca t ion  of the  m e t h o d  

used b y  F r a n k l  and  K e l d y s h  [7] in the  case of two-d imens iona l  flows, since th is  

m e t h o d  is based  on po ten t i a l - theore t i c  considera t ions  which do no t  respec t  dimension.  

W e  have  been in formed (oral communica t ion)  t h a t  an  i ndependen t  proof  based  on a 

va r i a t iona l  m e t h o d  has  been  given b y  Berg a n d  Nirenberg .  The  proof  we presen t  

uses the  f ixed-poin t  theorem of L e r a y  and  Schauder  [11] and  does no t  seem int r in-  

s ical ly s impler  t han  the  o the r s ;  however ,  i t  leads  to  an  expl ic i t  e s t ima te  of the  

m a x i m u m  speed for which exis tence is demons t r a t ed .  I n  the  case of po ly t rop ic  flow(a) 

wi th  7 = 1.5, i t  is suff icient  t h a t  the  Mach number  does no t  exceed 0.53.(a) 

Al though  this  paper  is d i rec ted  t o w a r d  the  s t u d y  of subsonic flows, the  resul ts  

can be i n t e rp re t ed  as s t a t eme n t s  on the  solut ions of el l ipt ic d i f ferent ia l  equat ions .  

(1) After the completion of this work our attention was called to a paper of H. O. CORDES [4] 
in which a priori estimates in a bounded region are obtained under remarkably weak hypotheses. I t  
would be of interest to determine whether methods similar to those of Cordes will yield an improve- 
ment on the estimate at infinity which is essential for our results. 

(3) This result has been announced by LUDFORD [13], but is not substantiated by the contents of 
his paper. 

(8) For definitions see Section 2. 
(~) Added in prool: Professors L. E. Payne and H. F. Weinberger have remarked that a modi- 

fication of one of our estimates will lead to a significantly better result. Using this remark and also 
some improvemelits noted by the authors, it is possible to prove the existence of flows for which 
the Mach number does not exceed 0.7. However, it seems likely that a much stronger result can be 
proved. See the note "Added in proof I I"  at the end of this paper. 
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We adopt this point of view in Section 11, where we apply a modification of our 

method to a study of asymptotic behavior of solutions of elliptic equations in n-vari- 

ables. The main result consists in the statement (Theorem 10) that  if a solution u (x) 

is restricted to a certain order of growth at infinity then it must tend to a limit 

with at  least a prescribed rate. 

Finally we present in Section 12 an extension of the classical maximum prin- 

ciple for solutions of elliptic equations to a statement which applies also to the point 

at  infinity. Our method here is quite different from the argument on which the earlier 

sections are based, and we are able to announce a result (Theorem 11)which is true 

for a rather broad class of non-linear equations (which need not  be uniformly elliptic), 

and which is nevertheless sharp in the special case of Laplaee's equation. In  con- 

junction with Theorem 1, this result implies the property of subsonic compressible 

flows (Theorem 8) that  the speed cannot tend to a maximum at infinity. 

We point out that,  except for the existence theorem in Section 9, the discussion 

is entirely elementary, being based on formal integration by parts. The estimates we 

have obtained in this way suffice to establish the qualitative theorems of the present 

paper, but  they are not best possible. In  a later work we shall derive precise esti- 

mates of asymptotic behavior for solutions of elliptic equations in n-dimensions by 

an extension of the method of our earher paper [6]. 

2. Notation and Definit ions 

To facilitate the exposition we shall use the summation convention, 

a~ xi = ~ a~ x~. 
i=l 

The symbol x will denote the vector @1 . . . . .  xn). A scalar solution(1) ~(x) of 

0x~- e~-~x~ =0,  e = e ( r  i = 1  . . . . .  3, (1) 

will be called the velocity potential of an irrotational gas flow with density ~. The 

gradient V ~b of r (x) then represents the velocity vector of the flow. We shall write 

V r = W = (Ul, U2, U3). 

The speed q of the flow is defined as the magnitude of V r 

q = (u~)L 

Q) We assume ~ (x) has continuous partial derivatives with respect to all xt up to the third  order, 
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:For simplicity, we shall occasionally restrict attention to equations of the form 

(1), although most of our results admit immediate extension to solutions of equations 

of the form 

-~ [0, (u~ . . . . .  ~ ) ]  = 0,  ~ = U ~ , '  

with suitable assumptions on the functions Oi. Our special concern is the case of 

polytropic /low, for which 
_ -11/(7-1) 

+ 

Here ~, is the ratio of specific heats of the fluid, ~ > 1. 

If  5 is any function of qZ, then (l) takes the form 

O z ~  = O, (3) 

with atj=St~j+25, utu~, 5,=dOdq ~' (~t~ = {1,0, i=Jt # j" 

I t  is not  hard to show that  the quadratic form 

admits only two distinct eigenvalues, 2z =5  + 25' q2, 22 =2a = 5. Equation (3) is of el- 

liptic type if all eigenvalues are positive, parabolic if at  least one eigenvalue vanishes, 

otherwise hyperbolic. 

If  5 is defined by (2) there exists a critical speed 

\ 7 - 1 /  

such that  (3) is elliptic, parabolic, or hyperbolic according as 0 ~< q < qc, q = qr qc < 

q ~<qm~, and 5 is (in general) not defined for q >  qm~x. 

The speed with which infinitesimal disturbances are propagated in a flow is called 

the speed o/ sound, 

The ratio q/a of speed in the flow to the speed of sound is called the Mach number, 

/ 2q 2 
M = l - �9 

\ 



THREE-DIMENSIONAL SUBSONIC FLOWS 269 

If ~ is defined by (2), then 

M ~ = 1 

Accordingly we shall call a flow 

subsonic, if 0 ~ q < qc ; 

sonic, if q = qc ; 

supersonic, if qc < q ~< qmax. 

1 ~ + l q ,  - - T  

1 -- -~--~ q~ 

A flow for which both subsonic and supersonic values of q appear will be called 

mixed. 

Clearly the constants qc and qmax are defined (perhaps infinite) for any density 

function 0 =~  (q~) with 0 ' <  0. If  this is not the case there will nevertheless be an 

interval 0 < q < qc in which (3) is elliptic. We shall then consider only those flows for 

which q lies in this interval throughout the flow region, and we shall refer to such 

a flow as subsonic. 

By an obstacle B we shall understand a closed surface which bounds a finite 

region in three-dimensional space. We assume that  B possesses at  each point a unit 

normal which varies continuously on the surface. Further restrictions on B will oc- 

casionally be imposed and are indicated in the context. By a ~low past B we mean 

a velocity field derived from a solution of (1), which is defined throughout the exterior 

of B and which is directed tangentially on B. A flow is called uni/orm at infinity if 

the velocity vector tends to a limit as x-->~.  

The symbols C and K will be used to represent constants, the value of which 

may change even within a given demonstration. Thus, from v2<~C(R2+ 1) �89 we may 

conclude yJ ~< C R for R >1 1. We shall also use the notations y~ = 0 (R), v? = o (R) to mean, 

respectively, ( 1 / R ) ] v [ < C  , (1/R) lv]-->0, as R tends to some limit R 0. Alternatively, 

the symbol e (R) will be used to denote a quantity which -->0 as R-->R o. 

3. A Preliminary Estimate 

We consider in this section a function u (x) defined and continuously differenti- 

able in a region including the exterior E of a sphere S in n-space, n>~3. We denote 

by A(~) the Dirichlet integral of u(x) extended over the exterior Ee of a sphere SQ 

about the origin of radius ~ sufficiently large that  E q c E .  The existence of A (~) is 

here assumed, later to be proved. We assume further that  for any point P in E the 
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Dirichlet integral D (r) of u (x) in a sphere of radius r about P admits a suitable 

growth estimate as a function of r. We shall prove that  u (x) then tends to a limit 

u 0 at infinity and we shall estimate the rapidity with which ]u ( x ) -  %] tends to zero. 

Our method of proof is essentially the same as that  already used by Nirenberg in 

a similar connection. 

L E M)aA 3.1. On every sphere Sq about the origin there is a point P such that on 

the extended radius /rom P to in/inity u(x) tends to a limit uS, and such that 

] u (P) - u8 [ < [~on A (o) ~(~t--  2) ]  �89 ~1- �89 

where con is the area o/ the sur/ace o/ the unit sphere in n-space. 

Proo/: Evidently, urr drdco<A(~). f 2 n - 1  

EQ 

Thus, for some ray through the center of S v 

But  for R > ~, 

oo 

f u2rr n-1 d r <  1-- A (e)" 
CO n 

0 

R R 
] u ( R ) - u ( o ) [ = l f u r d r  < ] f  iurlr~(n-l 'rW-~'dr 

0 0 

and by Schwarz' inequality, 
R R 

]u(R)_u(o)[~<~ fu2rr n - ldr  f r i - n  

0 q 
which proves the lemma. 

dr <~ A (e) e ~-~ 
w. n - 2  

LEMMA 3.2. Let S f  denote a sphere o/ radius r about a point P such that the 

sphere S P2r lies in E. Let 5p (r) denote the oscillation o/ u(x) on the sur/ace o/ S~. I /  

/or all such points P and all Q < 2r, 

D (e) < C ~ i '  

where D(~) denotes the Diriehlet integral o/ u (x) extended ower the interior o/ S P, then 

/or all ~ <. r, 
~t 

~5e (0) <~ K~ ~ r 2-~-~, 

where we may choose 
0~ (On -1 



where K 1 < [ ( n  - -  2 )  (.On_l] - ~ ,  

Proo]: Apply Lemmas 3.1 and 3.3. 
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This lemma is essentially due to Morrey [15]. A simple proof in two dimensions 

has been given by Shiffman [19] ; the extension to n-space requires only formal changes. 

L~MMA 3.3. Let R be chosen so large that EnI2~E. Then under the hypothesis 

o[ Lemma 3.2, 
] u ( P ) - u ( P )  I <~K R 2-~-t~ 

/or any two points P, P on a sphere SR about the origin, where 

28 VO l / n - 2  + 
K < 2 "  Y 

- -  (-On-1 

This result follows from Lemma 3.2 and the triangle inequality, using the fact 

that  any two points on Sn can be joined by a chain of at most seven spheres of 

radius R/4.  

L~.MMA 3.4. Under the hypothesis o[ Lemma 3.2, the /unction u(x) tends to a 

limit u o at in/inity. I] ER/2cE,  and i/ P lies in ER, then 

] u (P)  - u o ] <~ K 1 V ~ )  R 1- �89 + K 2  R 2- n-  �89 

28 ]/C ] / n - 2 + a  
K2~<2" [ 

0~ r 

LEMMA 3.5. Suppose satis/ied the hypothesis o/ Lemma 3.2 and also the condition 

A(~)~<C~ -(n-2+~) /or some constant C. Then there is a constant K such that i/ P lies 

in E• and El~I2 c E, 
[ u ( P ) - % [ < K R  2-~-�89 

4. Growth of the Dirichlet Integral 

We consider now a function u (x) which satisfies in E an equation of the form 

Ox--] a,j(x) =O, atj=ali, i, ~=1 . . . . .  n. (4) 

We suppose that  the a,j(x) are continuously differentiable functions which tend to 

limits a~ at  infinity, and that  the eigenvalues of the quadratic form 

are all positive. 
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LEMMA 4.1. Suppose lu(=)l<c  as x-->~, Ixl=r, where x < / ; ~ : i - � 8 9  

and that the "out/low integral" 

= a~l(x ) ~xV~ dS, 
sr 

where the vi are the direction cosines o/ the normal to S~ vanishes /or some r /or which 

Er c E. Then (i) ~ = 0 /or every such r, (ii) the Dirichlet integral 

A ( r ) =  flv I=dV 
Er 

is /inite, and (iii) /or any prescribed e >  0 there is a constant C such that A (r) <~Cr -~, 

Proo/: A suitable linear transformation of coordinates will carry (4 ) in to  an 

equation of the same form for which the coefficients tend to 

1, i = j  
(~i~ = 0, i # j at  infinity. 

For simplicity of notation we assume that  this is already the case in (4). An integra- 

tion by parts, using (4), shows that  

Ou f Ou f ai~ (x) ~ - y ~ d S  = a~j (x) v~ d S  
j oxj 

S r  S R 

whenever Er c E, 

relation, for r > R, 

Ea c E. This proves (i). A similar integration by parts yields the 

f ___,eU~ au aij ~ u ais e--~-, vtdS, (5) 
w /  

E R - E r S r 

where A represents a surface integral over Sn. Denoting the volume integral in (5) 

by Q(r), we have by Schwarz' inequality(x) 

8 r  S r 

Cr2u+n-I a~t Ox~ Oxj] d~ 

N r 

for a suitable constant C. 

(1) cf. SHIFFMAN [18]. 
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Suppose A ( r )=  co. Since the  smallest eigenvalue of the form a~j}i }s is bounded 

from zero in a neighborhood of infinity, Q (r) is monotone  in r and tends to infinity 

as r-->oo. I n  part icular  there will be an f such t h a t  Q ( r )>  A for r >~f. Thus, 

and for r ~ > r > f  

1 dQ>~ 1 
( Q - A )  ~ dr  Cr ~-1+ 2~' 

Q ( r ) , A  Q(rl )=A>~C(n-2)  ~-~+2~ r[-~+2~ " 

Let t ing  rl--> do, we find Q (r) <. Or n-~+2~ (6) 

for a suitable C. 

We  shall now show tha t  this est imate leads to a contradiction.  I f  we introduce 

the average of u(x) on St, 

~(r)  1 f = - -  u (x) d S, 
r n - 1  c o  n 

Sr 
we m a y  write (5) in the form 

Q (r) - A = t" (u - ~) 
a u 

aij ~ v~ d S 
q J  

Sr 

since ~ is constant  on St. By  the assumed behavior  of the coefficients a~j near in- 

finity, we m a y  write on St, 
~u ~u  

~xj 

where e(x)-+O as r ->c~ .  Thus, 

Q(r)-A=f(u-a)  uds f lu- l lvuldS 
Sr Xr 

2r +--Vn-12 \~n] 
dS+ 

,S r S r 

If f +e(r) (u-fe)2dS IVu]:dS ", 

Sr 8r 

where we have used Schwarz '  inequali ty and the inequali ty a b ~ 1 (a2+ b2). By  an 

inequali ty of Wirtinger(1) 

(1) A proof  in two d imens ions  appea r s  in [9, p. 185]. I n  t he  more  genera l  case considered here  e 

proof  c an  be based  on  t he  fac t  t h a t  t he  m i n i m u m  of ~ u 2 d S  unde r  t he  aux i l i a ry  condi t ion,  
S 
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f r,f (u -  ~) ,iS < u~ dS, 
n - - 1  

sr mr 

(6 a) 

where ut denotes  the  magn i tude  of the  pro jec t ion  of V u on the  p lane  t a n g e n t  to  St. Thus,  

since 

Iv ?, 

Q (r) - A < r f f 
Sr s, 

dS. 

Again  using the  behav ior  of the  a~j near  inf ini ty ,  we f ind 

Ou Ou 
]Vu] 2<(1 +e(r))att0z ~ Ox 1 

for a sui table  e ( r )  t end ing  to  zero. Thus,  

Q ( r ) - A < ~ 2 1 / _ ~ ( l + e ( r ) )  �9 

In teg ra t ing ,  we obta in ,  for r >  rl, 

Q (r) - A/> [Q (rl) - A] - - ( T____)2 Vn-~- 1](l+e), 
k r l /  

(7) 

where e is an  upper  b o u n d  for e ( r )  in Er,. I f  r 1 is chosen so large t h a t  

2V~-l 
- - > n - 2 +  2~,  
(I + e) 

th is  con t rad ic t s  the  previous  e s t ima te  (6). Thus  (ii) is proved,  and  we have  p roved  

also t h a t  Q ( r ) <  A for al l  r.  Therefore  (7) can be rep laced  b y  

r dO 
A - Q(r)  (I + -d r" 

Again  in tegra t ing ,  we f ind 

A - Q ( r )  < . [A-Q(rx ) ]  ( ~ )  ~ ~V~-I/('+~) , 

which we m a y  wri te  as 

A - Q ( r ) < . C r  -a, 2 = 2  n V n ~ - l - e .  

f (u - ~2) 2 d~  = 1 is the smallest eigenvalue of u + ;tu = 0, where denotes Beltrami's operator 

(Laplacian) on the unit sphere. As is known, this smallest eigenvalue is equal to n - 1 and is achieved 
by the function u = x/r. The use of this inequality is an essential feature of the method of Nirenberg. 
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Clearly, A (r) ~< (1 + e (r)) [A - Q (r)]. 

This proves (iii). 

We shall need also an estimate for the growth of the Dirichiet integral in a 

neighborhood of a finite point. We use here the notation of Lemma 3.2. 

L~.MMA 4.2. Under the hypotheses o/ Lemma 4.1, 

D(q)<~ C-r~ ~ ~t=2 nV-n~-l-t ,  

where 8-->0 as r-->c~. 

Proo]: Repeating, for a sphere So e about P, the reasoning which led to (7), we 

find A = 0 and 

(1 + e (r/2)) d_QQ 

where Q(~) denotes an integral over the interior of S[ .  As before, this leads to the 

inequality 

Q (~) <<- Q (r/2) ( r ~ )  ~" 

By Lemma 4.1, Q (r/2) ~< C (r/2) -a, q.e.d. 

5. Asymptotic Behavior of the Velocity Field 

Suppose ~(x) is a solution of an equation of the form 

~ (ul ..... u.)]  [0, O, 

u~ = ~ ,  ~ uj a u--~ = atj. 

(8) 

Thus, each velocity component u~ is a solution of an equation of the form (4). 

Suppose in addition, tha t  all velocity components tend to limits at  infinity. 

Then the coefficients a~j tend to limits a~~ at infinity. 

The equation (1) for the velocity potential of the flow an ideal gas is a particular 

case of (8). Let  U=Ul, and differentiate (8) with respect to x r We obtain, since 

0 uf f~  x 1 = ~ u l / ~  x~, o [ 
O x--~ a~ ~ = O. 
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I f  r (x) represents the velocity potential of a flow past  an obstacle B, and if S 

denotes a sphere enclosing B, then the "outflow integral" over S vanishes, 

fO, ,ds=fe dS=O. (9) 
S 8 

For 0 ~n  d S =  e On d S  
8 B 

and the latter integral vanishes since O C/On = 0 on B. 

I f  r  . . . . .  xn) is a solution of (8), then r  x + h , x  z . . . . .  xn) is 

again a solution, since (8) does not contain x explicitly. I f  Oq~/On=O on B then 

Or on the translation B h of B. If  S is a sphere enclosing B and if h is 

sufficiently small, then S encloses B h. Thus, the "outflow integral" 

~ X l  . . . . .  O X a ] '  S 

vanishes. Subtracting this integral from (9), dividing by  h, and passing to the limit 

as h-+O shows tha t  the "outflow integral" 

Ou 
r ais - -  ~i d S  
J Oxj 

vanishes for any flow past B. I t  it easily seen tha t  this relation persists after a linear 

transformation of coordinates. 

Finally, we suppose tha t  r (x) represents a flow past B which is subsonic in a 

neighborhood E of infinity. Then the quadratic form 

a~ ~l ~j 

is definite (we may  assume it positive definite) in E. 

All hypotheses of Lemmas 4.1 and 4.2 are now satisfied by u(x) .  We conclude 

the estimates of these lemmas on the Dirichlet integral of u ( x ) n e a r  infinity. Inserting 

these estimates in the hypotheses of Lemmas 3.1 to 3.5 we obtain information on the 

behavior of the velocity components of the flow at  infinity. 

T H E 0 R E M 1. Denote by u (x) a velocity component o/ a /low past an obstacle B.  

I] the velocity w = (ul, u2, u3) o/ the /low tends to a subsonic limit at in/inity, and i/  

% =  lim u(x), then /or any prescribed e > 0  there is a constant C such that in Er, 

lu(x)-n01 < C r - r ,  7 =1- + l / 2 - e .  
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For  an  equat ion in n variables, n ~< 6, we find 

n - 2  

277 

6. Uniqueness of  Subsonic Flows 

Consider two subsonic flows with velocity potentials r  ~, past  an obstacle B, 

for which the velocities tend to  equal subsonic limits at  infinity. We m a y  assume 

t h a t  this limiting velocity is directed parallel to  the xl-axis , and we denote its 

magni tude  by  u 0. We do no t  assume t h a t  the flows are uniformly subsonic up to B, 

bu t  we require the velocity field to  be continuous up to  B, with ~ r  n = ~ ~/~ n = 0 on B. 

We  shall prove t h a t  ~b differs f rom ~ a t  mos t  by  a constant .  

Bo th  4 and  q~ are solutions of an equat ion of the form (8). Let  (~ = O, (ul, u2, ua), 

= a ~/Ox~. For  a region Br bounded by  B and  by  a sphere ST containing B we 

consider the ident i ty  

f ( u , -  ~)  (~),-  ~ )  dV = f (4 - 4,) (0~-  0~) v, dS,  (10) 
Br Sr 

the  integral over B vanishing because ~ 4 / ~ n = ~ / S n = O  on B. 

The veloci ty potential  4 (x) can be obtained by  an  integrat ion of its gradient.  

B y  Theorem 1, if 4(x)  is changed by  a suitable constant ,  [4-%xl<. . .er -~+l .  A 

similar est imate mus t  hold for ~, hence ] 4 -  ~[ < C r-~+l in Er. Fur ther ,  by  the mean  

value theorem, ~ - ~ = a i j . ( u s - ~ j )  , where the  aij are to  be evaluated at  certain 

intermediate  values of their arguments .  Again by  Theorem l, ] ~ -  ~)~1~< C r -r. Since 

- 2 ~ +  1 < - 2 ,  the  surface integral  in (10) tends to zero as r -~oo .  Thus, the  volume 

integral in (10), extended over the exterior of B, exists and  is equal to  zero. The 

integrand, however, is at  each point  x non-negat ive and  zero only if u~(x)=~ (x). 

Proo/: Set F (t) = (uf - ui) [~i - | 

where the arguments  in ~* are u j + t ( ~ j - u j ) ,  0~<t~<l. Then, F(O)=O, and F (1 )  is 

the  given integrand. Bu t  F '  (t) = atj (u~- ui) ( u j -  ~j). Uniqueness follows directly. 

TH~.OREM 2. There is at most one subsonic /low past an ostacle B , /or  which the 

velocity tends to a prescribed subsonic limit at in/inity.(1) 

(1) I t  is possible to prove this result with less knowledge of the asymptotic behavior of the 
velocity than is used in the present proof. In fact, the proof as first obtained by us was based on 
the estimate l u - u 0 ] <  Cr  -1/(2-~) for some ~ > O. The stronger estimate of Theorem 1 has permitted a 
considerable simplification of our original proof. 
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7. Uniqueness Among  Mixed Flows 

If  the flow defined by r (x) is everywhere subsonic it is unique among all flows 

q~(z) with the same limiting velocity, even though the competing flows may be super- 

sonic in finite regions. For set (I)(x)= r ( x ) -  ~(x). If  (I)(x)~ constant, then either the 

maximum or the minimum (we may suppose the maximum)of  (I)(x)must be attained 

on B.(1) To prove this, we note that  (I)(x) satisfies an elliptic equation(2) 

a~r + b~ 0 
~xi~xj ~ = 

for suitable coefficients b~, and hence admits no interior maximum or minimum [10]. 

Since (I)(x) has a limit at infinity, then either its maximum or minimum is achieved 

on B. Denote the maximum of (I)(x) by M. A point P on B at which M is achievd 

cannot be a supersonic point for the flow ~, since V (I)40 at such a point, while 

~r on B and therefore V( I )=0  at P. For the same reason, if the flow ~b is 

uniformly subsonic (speed bounded from the sonic speed), P must be a subsonic point 

of both flows. For a sufficiently small ~ > 0, the set G: (I)> M - e  is finite and con- 

tains no supersonic points. In the identity 

f (u ,  - a , )  ( o ,  - d V  = f 
G F 

where 1 ~ is the boundary of G, the surface integral over 1 ~ N B vanishes sine ~ (I)/O n = 0 

on B, and the integral over the remaining part of 1 ~ vanishes since (I)= M - e  on this 

set.(a) As in the proof of Theorem 2, the integrand of the volume integral can be 

expressed as a define form in (u i -  ui), since both flows are subsonic in G. Therefore, 

qP~M in (7, a contradiction. 

In  case the flow ~b is not uniformly subsonic it is conceivable that  P is a sonic 

point for both flows. In  this case the use of a lemma of Gilbarg and Shiffman [8], 

under an additional hypothesis on the behavior of the velocity near P, leads to a 

contradiction with the assumption that  O Op/On = 0 on B. The discussion that  can be 

made quite rigorous, follows exactly that  given in Section 6.1 of [6] and we therefore 

limit ourselves to a statement of the result. 

(1) W e  shal l  p rove  in  Sect ion 12 t h a t  bo th  e x t r e m e  v a l u e s  are  a t t a i n e d  on  B, b u t  we do no t  need  

th i s  fac t  for  t he  p re sen t  discussion.  
(2) See, e.g., COURA~CT-HILBERT, Mathematische Physik  I I ,  J u l i u s  Spr inger  (1937), pp.  274-277.  

T he  coefficients  a~i are those  of (3) a n d  co r re spond  to t he  (subsonic)  so lu t ion  ~o (x). 

(a) T he  technica l  difficult ies a r i s i ng  f rom possible  i r regular i t ies  of 1 ~ are  easi ly c i r c u m v e n t e d ,  cf. 

L e m m a  4 in [SJ. 
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T H E 0 R E M 3. A uni/ormly subsonic /low past B is unique among all (possibly 

mixed) /lows with the same velocity at intinity. 

T H ~ 0 R ~ M 4. In  the class o/ /lows past B /or which the velocity vectors have 

bounded derivatives up to B, a subsonic ~low is unique among all {possibly mixed)/lows 

with the same velocity at infinity.(1) 

8 .  D ' A l e m b e r t ' s  P a r a d o x  

The classical expression for the  xj componen t  of the  force exer ted  b y  the  f luid 

on a b o d y  B immersed  in an  i r ro ta t iona l  flow is 

Xs = - f [pvj+Qu~(u,v~)]dS, (11) 
s 

where ~ is the  dens i ty ,  S denotes  a surface enclosing B, and  p is the  pressure  in the  

fluid, p = c o n s t . -  f ~q d q. F r o m  the  po in t  of view of the  formal  deve lopmen t  of th is  

paper ,  we m a y  t a k e  ( l l )  as def ini t ion.  

T ~ E  O Rv.M 5. The /orce exerted by the fluid on B vanishes /or any flow past B 

with subsonic limiting velocity at in/inity. 

W e  r e m a r k  t h a t  th is  resul t  is t rue  even in the  case t h a t  supersonic regions ap-  

pear  in the  flow. 

Proo/ o/ Theorem 5 :  W e  m a y  assume t h a t  the  l imi t ing  ve loc i ty  vec tor  w 0 has  

the  form w 0 = (u0, 0, 0). B y  the  mean  va lue  theorem,  we have  

e=eo + O (]w-wol) ,  

p = const .  - ~ u (u  - % )  + 0 (] w - w 0 ]2) 

as [w-w0[ - ->0  , where we have  set  u = u  1. If  ~ = 1 ,  we wr i te  (11) in the  form 

X 1 =  f [ ~ u ( u - u 0 ) ~ l - ~ ( u - ~ 0 )  ( u i y i ) - ~ U o ( U i Y i ) +  0 ( ] w - w  0 [ 2 ) ] d S  
Sr 

where we have  chosen for S a sphere Sr of r ad ius  r. Thus,  

xl= -Uo f y O(Iw-wol')dS. 
Sr Sr 

(1) We assume here t h a t  evel~r point  P of B can be contacted by a sphere S such t ha t  S -  P 
lies exterior to B. 

1 8 -  573805. Acta mathematica. 98. Imprim5 le 27 d6cembrc 1957. 
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The first integral vanishes since it equals - U o f  ~ u, r, d S and the normal component 
B 

o f  velocity must  vanish on B. By Theorem l, [W-Wo] <~Cr -r, y > l .  Hence the second 

integral tends to zero as r tends to infinity and we conclude X 1 = 0. 

Similarly, for j =  2, we find 

X2 = ~0 u0 f (ul ~ - us ~'1) d,~ + 0 (r ~ 2r). 
,% 

Since ~ U l / ~ X  2 = ~U2/~Xl, a simple application of t h e  divergence theorem shows tha t  

the first integral vanishes, and again the second integral tends to zero. Thus X~=0 ,  

and a parallel argument shows X 3 = 0. 

9. The  E x i s t e n c e  o f  S l o w  F l o w s  

The methods of this paper, in conjunction with the fixed point theorem of Leray 

and Schauder [11] and Classical results on linear elliptic equations, suffice to prove 

the existence of compressible flows past a prescribed obstacle provided the maximum 

speed in the flow is sufficiently small. As we have pointed out in the Introduction,  a 

result of this type can also be obtained by other methods; however the proof we 

present leads to an explicit estimate of the permissible maximum speed. 

THEOREM 6. Let ~=p+2~ 'q  2, ~'=d~/dq2<O, Q ( 0 ) = I .  Let qm denote a posi- 

tive number so small that for O<~q<~qm, (~>3/ /2(1+ ~/2). Then for any given obstacle 

B(1), there is a unique flow past B which at infinity is uniform and has prescribed di- 

rection, and for which the maximum speed (achieved on B) is q,~. 

We remark tha t  for a polytropie gas with ? = 1.5, Theorem 6 ensures the exi- 

stence of flows for which the Mach number  does not exceed 0.53. 

Proof of Theorem 6: We shall show tha t  the problem can be formulated in terms 

of a functional equation 

w - ~ ( w , k ) = O ,  0~<k~<l, (12) 

for which the hypotheses of Leray and Schauder [11] are satisfied. 

As function space S we choose the linear manifold of all vectors w =  (Ul, u2, us) 

for which u2, u3-->0 at  infinity(2) and such tha t  w satisfies, in the closure /~ of the 

.(~) W e  shal l  here  require  B to be of class B h .  (For def in i t ion  see LICHTENSTEIN [12].) 

(2) A n y  prescr ibed d i rec t ion  a t  in f in i ty  can  be c h a n g e d  to a di rect ion (u 1, 0, 0) by  a r o t a t i o n  of 
coord ina tes  wh ich  leaves  t he  p rob lem inva r i an t .  
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exterior E of B, a suitable Hblder  condition. Precisely, let a be chosen so t h a t  for 

q<~q,,, 0 < ~ <  min [1, 2 ~ / 2 ~ / ( 3 - 2 ( ~ ) - 1 ] ;  a vector  funct ion w will be said to belong 

to $ if there is a constant  C such tha t  for any  two points x', x" of the closure 

of E,  the  inequalities 

Iw(x')-w(x")l<CR-~-~r ~/2, Iw(x')-w(x")]<CR 1-~12, 

where r = Ix '  - x" [, R = rain {[ x' [, Ix"  [}, are bo th  satisfied.(1) As norm of w we choose 

I lwt l=  inf C +  max  Iw(x) l .  

To define the t ransformat ion :~ (w, k), we first regularize the differential equat ion 

in a manner  suggested by  M. Shiffman [I9]. 

We observe first t ha t  (1) can be obtained as the Euler  equat ion of a variat ional  

problem 

(~ f .F (q2) d V = O, 

q~ 

where F(q2)=f~(q~)dq~. For  values of q larger t han  q~, we m a y  modify  F ( q  2) so 

tha t  the resulting Euler  equat ion remains uniformly elliptic for all values of w, i.e. 

so t h a t  the eigenvalues of the quadrat ic  form a~i~ ~j are positive and bounded  from 

zero. For  details we refer the reader to Shiffman [19]. Since we shall deal only with 

solutions for which q<~q,n, these solutions will appear  also as solutions of the original 

equation. Accordingly,  we shall refer to the  coefficients a~j of (1) wi thout  change of 

notat ion.  

Consider now the linear elliptic equation,  for prescribed w (x), 

a 2 
a ~ j ( w ) - - -  = 0 .  (13) 

ax~ 0xj 

If  w is in S there will be a unique solution (I)(x) of (13) such t h a t  (i) the vector  

V (I) is directed parallel to  the xl-axis at  infinity, (ii) ~ d)/~ n = 0 on B, and (iii) ] V q) [ 

has a prescribed m a x i m um  in E.(~) We define :~ (w, k) to be the gradient  of t ha t  

(1) The oligin of coordinates is assumed interior to B. 
(2) Precisely: if B is of class Bh and if the coefficients of (13) satisfy both the conditions 

I~ a,j(w(x"l)l<cR Io j(w(x'/) 1 

in E, then there is a unique solution (I) (x) of (13) satisfying conditions (i), (ii), (iii), such that the 
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solution (I)(x) for  which 

max IVr 

I .  :~ (w, k) is complete ly  continuous for each k. For  V(I) is in $, and  H V(I) o 

is bounded in t e rms  of I[wll. (We use here the  uniform ell ipticity of the  modif ied 

equat ion  (1).) 

2. I f  k = 0  there  is only  the  single solution w ~ 0  of (12). Since :~(w, 0 ) - -0 ,  the  

index of this solution is obviously  one. 

3. For  0~<k~<l,  all solutions of (1) are bounded  in $. This  result  requires an  

a priori  es t imate  on the  gradient  of a solution of (1) which we proceed to obta in  

b y  the  methods  of this paper .  

3 a.  A p r i o r i  e s t i m a t i o n  o n  t h e  b o u n d a r y  

I t  is sufficient to show t h a t  a suitable HSlder  es t imate  can be obta ined  in a 

(sufficiently small) neighborhood in E of a given point  ~ of B, since an  open set  

containing B can be covered b y  a finite n u m b e r  of such neighborhoods.  Le t  e be a 

prescribed posit ive number .  Then  there  is an  ~ (e)>  0, a sphere S~ of radius ~ abou t  

~, and  a 1 - 1  t rans format ion  ~ = T ( x )  defined in S~ such t h a t  (i) the  image B of 

B 0 S~ is a plane, (ii) on B the  t r ans fo rmat ion  is conformal,  and  (iii) a t  a~ the  Ja -  

cobian ma t r ix  J (x) of the  t rans format ion  is the iden t i ty  I ;  th roughou t  S~, I J (x) - I I < e. 

To see this, we m a y  choose as pa ramet r ic  lines on B the  image of a sui table  conformal  

net.  We m a y  then introduce as a th i rd  set  of coordinate  lines the  set of normals  to 

the surface, met r ized  so t h a t  the differential  of arc length a t  each point  on B is 

equal  to t h a t  induced by  the  conformal  net. A scale t r ans format ion  ensures t h a t  

J (~)=  I ,  and by  cont inui ty  of J (x), I J ( x ) -  I I < e if ~ is sufficiently small. 

I n  the  original space, equat ion  (1) appears  as Euler  equat ion  for the  var ia t ional  
qS 

problem 5fF(q~)dx=O, F ( q ~ ) =  f @dq ~. This problem t rans forms  to 6f.P(~,,~,~,)x 
Jd~---O, where a,=aC/a~, and ~ , = a j j  on the  image /Y of B. For  simplici ty of 

no ta t ion  we have  wri t ten  J ins tead of det  I J I- We m a y  assume t h a t  B is a plane 

through the  origin and  or thogonal  to the  ~s axis. Equa t ion  (1) thus  t ransforms to 

a ~j (J"  F '  (a~ j ~ ~j).  a~j ~ )  = 0 

vector V r is in S, and such that [IV r ]] depends only on C, ct and on the ellipticity constant of 
(13). The second derivatives of tI) remain bounded up to B. A proof of this result will appear in a 
forthcoming work by these authors. 
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with 8 r ~a = ua = 0 on /]. Differentiating with respect to ~t, we obtain 

(14) 

where 

_ 8 r  

b~ = ~ (J ~;). ~' ~ + F '  J a .  ~ ~ ~ ~ .  

Note that  dg~=5~s=0 on /~ if i - -3 ,  and that  b~=0 on /] if 1 - 3 .  

We now extend g to a solution of (14) on both sides of /~. Specifically, we set 

a .  (#1, ~ ,  - ~3) = $= 33~ a .  (~,, ~=, #~), 

b~ (~ ,  ~=, - ~ )  = 3= 3s~ b~ ( ~ ,  ~ ,  ~,), 

where 3~j=2(O,s - �89  1, i = j  
- 1, i*? ' .  

In analogy with the procedure of Section 3, we form the identity 

~ +  ' 
s, 

(15) 

for a sphere ~qr of radius r about the origin. (The integrals over the surface B are 

easily seen to vanish.) 

By the choice of the transformation, 5ij = at j+  ei j, where the l e~jl can be made 

arbitrarily small if 171 is chosen sufficiently small. For an equation of the form (1), 

we have a~j(~2z, ~,, ~a)=c$~j~+2Q'~i~ij. For this choice of a~i, it is not hard to prove 

that  the quadratic form a~j~ ~j has only two eigenvalues, of which the larger is ~, 

the smaller is 0 + 2 Q' q~. Thus, 

(e + 20'  q~ - e) \8 ~=/ 

for any prescribed e > 0 in a neighborhood of each point of /~. Further,  

8 ~, 2 k bf + 2~ \8 ~,! 
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for any positive k. I f  k is chosen sufficiently large, we may  write, for a suitable 

constant C and sufficiently small r, 

C D ( r ) = C  \O~,/ 

[_ o oq sI'+ f 
s, sr s r 

where we have used Schwarz's inquality on the right side of (15). Thus there is a 

constant C such tha t  

D(r)-Cr*<~ Cr k dr  ] �9 

We may  clearly suppose r < l .  If  for r=ro, D ( r ) ) C  then by monotonicity 

D (r) >~ C for all r >/r 0. Thus, 

[D (r) - C] * < C* r 2 D '  (r), 

the integration of which yields a bound on D (r) which depends only on the pre- 

scribed bound for the speed and on r. A suitable covering of B by a finite number  

of spheres with center on B suffices to show the boundedness of the Dirichlet in- 

tegral of u in a neighborhood of B, the bound depending only on B and on qm. 

Using the inequality 2 a b~a*+ b 2, we obtain from (15) 

(<jrn_e) D ( r ) < ~ 2  f ~ 2 d S +  r f (0~'~ ~ ~ r ] ~ \On] d S  + 
G G 

f dS+ dV. (16) 
+ ~ ( a ~ j - 5 . ) 0 ~ j  

Sr Sr 

where Om = rain (~ + 2 0' q2). If  2 is an eigcnvalue of the quadratic form gt j ~ ~t, then 

1 - ~  is an eigenvalue of the form (~ij'-gi~)~t~j. I f  Q = I  a t  the origin then in a 

suitable neighborhood of the origin, ]d~j-aiJ l  < e for any prescribed e > 0, thus 

I f  ~ *  1 at  the origin then there is a neighborhood in which the eigenvalues of 

5 t j ~ j  do not exceed unity, hence in which (d~s-gij)~i St is non-negative, and we find 

c~'~ 13 _ O~ 
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Thus, in any  case we will have 

[(a,f--~i/)~t'Pt ] ~<(1--~m-}-s 

for some e > 0 which ->0 with r. Hence, 

8r Sr St 

We may  assume, as in Section 4, tha t  f ~ d S = 0 .  Applying the inequality (6a), we 
sr 

obtain from (16), 

,-r f lVal dS+ (Ore - e) D (r) < ~ - ~  - -  ] V 

"~r St 

<~ ( 3 -  25m + e) r D, (r)+ Gr~ 

al ds+ f ab'v'ds+k f 
Sr 

for some constant C. Thus, for suitable C and e, 

D'  ( r ) - a D  ( r )+  Ur~>0, 
r 

2 V2 - where a - 

Thus, [r-~D (r)]' + Crl -a~O,  

D (r) ~< [rl  ~ D (rl) ] r a + C r a f r 1-a dr, 
r 

r < r  1. 

TI 

Case 1: 1 ~<a~<2. Set r l - a = r - l r  2-a. Then fr l-~dr<~r~ -~ log ra/r, and using the 

known boundness of D (rl), we find D ( r ) < C r  ~ log r l /r  for a suitable constant C. 

Case 2: a > 2 .  In  this ease f r l -~dr<~r  2-~ log (rJr) ,  from which follows D ( r ) <  

Cr ~ log (rl/r). 

Thus we have found an estimate for the growth of the Dirichlet integral of u 

a t  the boundary. The same method evidently leads to a corresponding estimate at  
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points in a sufficiently small neighborhood of B. Applying Lemma 3.2, we find tha t  

the solution w = (ut, u2, ua) satisfies in such a neighborhood a H61der condition with 

exponent larger than 1 ~ for any  a < min [1, 2 ~/2 (5m/(3- 2 (~m)- 1], with a constant 

depending only on qm and on B. This completes the a priori estimate of w at  the 

boundary.  

3 1~. A p r i o r i  e s t i m a t i o n  at  inf in i ty  

As in Section 4, we use the identity 

f OuOUdv=A+ f ou Q (r)= atJox ~ Ox 1 ua, i ~xlr,  d S  (5) 
~ R- Er sr 

where we shall now permit SR to denote an arbi t rary closed surface containing B. 

The reasoning of Section 4 shows directly tha t  Q(r)<.Cr as r-+oo.  Using the 

estimates of part  3 a on the quadratic form a~j~ ~s we find tha t  if Q (r) exceeds A, then 

Q _ A < ~ 3 - 2 ( ~ m  dQ 

from which follows Q >1 Cr y, ~ = 2 V2 (5m/(3 -- 2 (}m). By hypothesis, ~ > 1, hence Q (r) 

tends to a finite limit. As in Section 4, we then find 

A - Q < ~ ( A - Q i ) r ~ r  -r, r > r  1. 

In  order to use this result we shall need an a priori bound for A. We have 

f A =  ua~j ~ t d S ,  

sR 

~oxj/ dS 
sR 

for some constant C, by  Sehwarz's inequality. In  3 a we have proved the boundedness 

of the Dirichlet integral of u in a neighbourhood of B, the size of the neighbourhood 

depending only on B. Hence there is a t  least one surface SR lying in this neigh- 

borhood for which \Ox~/ d S  is bounded. This observation provides the needed 

SR 

estimate. 
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3 c. A pr ior i  e s t i m a t i o n  at in ter ior  p o i n t s  

We find, as above, if Q (r) denotes now an integral over a solid sphere Sr e of 

radius r about  a point P of distance 2 R from the origin, 

~< Q (R) 
Q (r) .~ ~ r r. 

By the estimate of 3 b, Q ( R ) ~ C R  -r. Hence 

Q (r) <~ C R-er  r r 

from which we find by Lemma 3.2, 

lu (x')  - u (x")  [ < C R  -1 - ' r -a )  r~ (r- l )  

with r = I x ' - x " l ,  R =  min {Ix'I, ]x"[}; by Lemmas 3.4 and 3.5, there is a u o such 

tha t  [u ( x ) -  u01< C R  -~-�89 hence ]u ( x ' ) -  u (x") ] < 2 C R  -a-i'r-a) 

This completes the necessary a priori estimate on the solutions of (1). All hypo- 

theses of the Leray-Schauder theorem [ l l ]  are now satisfied, and Theorem 6 follows. 

THE O R E M  7. For any prescribed obstacle B there is a positive number qM such 

that i/ 0 < qo < qM there is a unique /low past B /or which the velocity has prescribed 

direction and magnitude qo at in/inity. 

Proo/: The theorem of Leray-Sehauder establishes the existence of a continuum 

of solutions corresponding to the segment 0 ~</r 1. The speed a t  infinity is a con- 

tinuous function of k on any branch of the continuum. I t  is zero for k = 0 and non- 

zero for /c = 1, since the solution for given velocity a t  infinity is unique (Theorem 2). 

Let  qM be the upper bound of limiting speeds for 0 ~< k ~< 1 and all permissible values 

of q~ (Theorem 6). Evidently qM has the property required by Theorem 7. 

10. A m a x i m u m  Principle for the  Speed 

I t  is an immediate consequence of the maximum principle for the solutions of 

second order elliptic equations tha t  the speed of a subsonic compressible flow admits  

no maximum interior to the flow region. This result has been extended to include 

the point at  infinity in a two-dimensional flow, first by Bers [1], later with a simpler 

proof under less restrictive hypotheses by the authors [6]. We present in this section 

two results of this type which are valid for three-dimensional flows. 

19 -- 573805. Acta mathemr 98. I m p r i m ~  le 27 d~cembre  1957. 
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THEOREM 8: I /  a subsonic flow is defined in a region E which includes the 

exterior o/ a sphere, and i/ the velocity o/ the flow tends to a subsonic limit at in/inity, 

then the speed admits no max imum interior to the region or at in/inity.  

From Theorem 1 we conclude tha t  the velocity vector (and hence the speed) 

tends to its limit as o ( l / r ) .  I t  is thus sufficient to show tha t  this estimate implies 

the validity of the maximum principle at  infinity. Such a result is best formulated 

as a general theorem on elliptic equations; we present it in this context as Theorem 12 

in Section 12. 

THEOREM 9: I [  a /low is de/ined in a neighborhood E o/ in/ ini ty  and i/ the 

speed in E is everywhere so small that (t~ - e)/(3 - 2 (~) > 1/2 V2, ~ = Q + 2 ~' q~, ~ > 0, 

then the velocity o/ the [low tends to a limit at inf ini ty  (and hence Theorem 8 applies). 

By the discussion in Section 9 we see that  the Dirichlet integral of the velocity 

vector is finite in a neighborhood of infinity and tends to its limit as r -v, ~,= 

2 V2 (~z - e)/(3 - 2 ~m) > 1, (~m =lower  bound for (~ in E. A corresponding estimate holds 

in a neighborhood of each finite point. Theorem 9 then follows from Lemma 3.4. 

11. Asymptotic Behavior of Solutions of  Elliptic Equations 

The considerations of this section differ from those of Section 4 in tha t  the 

outflow integral is not assumed to vanish. We consider again a function u (x) which 

satisfies in a region including the closure of a neighbourhood E of infinity an equa- 

tion of the form 

i , ] = l  . . . . .  n. 

We suppose tha t  the aij (x) are continuously differentiable functions which tend to 

limits a~ at  infinity, and that  the eigenvalues of the quadratic form a~ ~j are all 

positive. 

LE~H)_  l l .1.  Let u < ~ n - l - ~ ( n - 2 ) , n > 2 .  I /  u (x )  is a solution o/ (4) in E 

and if l u (x) l <~ C r ~ as r-+ oo, then the Dirichlet integral D (~) = f IV u l s d V is bounded 

E - ~  e 
in ~. Here E~ denotes the exterior of a sphere Sq of radius Q about  the origin. 

Proo/. Suppose D(~)-+oo.  The reasoning of Section 4 leads to the inequality 

(Q-A) <C fu dS, 
s, 
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f o u o u  d where A denotes a fixed contour integral and Q ( r ) =  a~J~xt0x ~ V. Using the 

E-E r 

hypotheses on u (x) and on the a,j (x), we find, as in Section 4, 

Q (r) < Cr  "+~-2. (6) 

On the other hand, we may write (5) in the form 

Q ( 0 ) - A =  f ( u - ~ ) a ,  t 0 ~ / v , d ~ + C , , ( O ) ,  (17) 

so 

where C = s f a, 1 ~-~/O u ~, d 

s~ 

is independent of ~ and ~(~) is the average of u (x) on S e. We may assume that  

a suitable linear transformation has been made, so that  

Ou Ou 
a,,-~xj~',=~-~n+ e (e) lV ul, 

where e(~)-->0 as 0-->oo. Thus, setting A+C4(o)=B(o)  and applying the estimate 

introduced in Section 4, we find 

Q ( , ) - B ( o ) ~ < 2  n ~ _ l ( l + e ( ~ ) ) d Q .  (18) 

Suppose first that  u (x) is bounded. Then ~ (~) is bounded, hence B (~)~< B <  

for all Q > R. This implies 

( O t2 ~V~---1/(l+e) 
Q(e) -B>~[Q(eI ) -B] \~ /  ' e>el, 

where e is an upper bound for e (~) in Eq. This contradicts (6). 

Suppose u(x) is unbounded. We are given that  I B ( ~ ) l < c ~  as ~-->oo. Set 

v = [2 V n ~ / ( 1  + e)] [ (5 -  c)/5] and choose 5 and el so large that  ~ > u. If  for some 

~0>01, Q (Q0) > 5 ~  then there is an interval I of values Q >~0 in which this inequality 

is satisfied. We assert that  I extends to infinity. For if not, let ~ denote the upper 

end point of I.  We will have Q ( ~ ) = 5 ~ .  But  by (18) and the choice of 5, 

( l + e )  d o  
Q (Q) ~ -c- c < Q (e) - B (e) ~< 2 ]/~ZI_ 1 d Q 
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1 dQ>v.  
Q(~) d~ 

Q (Qo) ~ '  

_ ~-~  
Q (~) > @~-~b~= ~ ~=; ~', 

Q (~) > ~ ~', 

Thus, either Q(Q)>g~x for all Q>Q1 or else Q ( o ) ~ < ~  x for all ~>~1. The former  

ease contradicts (6), hence we conclude 

Q(~)<.c~ ~, D(e)<~c~ ~. (19) 

A simple modification of Lemma 3.1 shows the existence of a radial line joining 

Sr to S2r on which 

r 2 - n  
] u ( 2 r ) - u ( r ) ] 2 < D ( 2 r )  - 2  ~<Cr~+2-n" 

(.on n 

For a sphere S v lying interior to E we find by  (17) tha t  

0 u  
f a t j ~ - - v ~ d S = O ,  

j oxj  
s'p 

since in (17) the inner sphere can be contracted to a point in E. Repeating the 

reasoning which led to (18) we find tha t  in this case B ( ~ ) = 0  and hence 

Q (r/2)Q (~) /> ( ~ )  2V'-'-~/(l+e). 

But  Q(r /2)~<cr  ~ by (19). Thus. in the notation of Lemma 3.2, 

D (~) <~ cr (~-21/~:i+2~) ~ ~'n~rff---1 . 

By Lemma 3.3, the oscillation of u(x )  on Sr is bounded by Cr �89 Now 

x - n + 2 < ~ [~ /n-  1 - 23- (n - 2)] < 0, hence if r is sufficiently large, e can be chosen 

small enough tha t  ~ (~ - n + 2) + e < - zr < 0. We have therefore proved the existence 
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of a constant C such tha t  if r is sufficiently large, no value of u (x) on Sr differs 

from any value of u (x) on S~r by  more than  Cr -~. The corresponding estimate for 

the spheres S, and S2N r becomes, by  repeated use of the triangle inequality, 

Cr -~ [1 + 2 -~ + ... + 2-Na]. Thus, on the sphere S2Nr, u (x) remains uniformly bounded 

for all h r. But  a solution of an equation (4)admits  no interior maximum or minimum 

[10]. Hence u (x) is bounded, and by  the reasoning we have already presented for 

this case, u (x) has a finite I)irichlet integral. 

THEOREM 10. Let ~ < V n - l - ~ ( n - 2 ) ,  n > 2 .  I !  u(x)  is asolution o] (4) in E 

and i/  [u(x)[<<.Cr ~ as r-->cr then u(x)  tends to a limit u o at infinity. Further, 

[U-Uo[<Cr  -a+~ /or any prescribed e > 0 ,  where 2 =  min [ ( n - 2 ) ,  2 J / n -  1].(~) 

Proo] We have already shown the existence of a limit u 0 (for n > 6  this is 

obvious), and we have proved [ u ( x ) - U o [ < C r  -~ for some a > 0 .  We may  therefore 

write (17) in the form 

from which 

f Ou Q ( q ) - A =  ( u - ~ ) a t ~ x U ~ d S + C U o + C ( ~ - U o ) ,  
sQ 

B-Q(q) -Cq-~<~ ~ -  (1 +e)d-?Q=~-Q ' (~), 

where 
B = A + C % ,  ~: l + e  

Thus [o ' (Q-B)] '  +vCq'-~-a>~O. 

Suppose v > ~ .  Then, since by  Lemma (11.1) Q is bounded, 

O < B - Q < . C Q  -~, 

from which we conclude tha t  the Dirichlet integral tends to its limit as 9 -~. Similarly, 

for a neighborhood of a finite point 

_< Q (el) v .(  Q(e) 

Applying Lemma 3.1, 3.2, 3.3, we obtain 

[ u (x) - %1 <~ C rl-t("+') = C r - t  ("-~+'). 

(1) The hypothesis tha t  the a~ t (x)  tend to limits at  infinity can be weakened, cf. Theorem 9. 
Theorem 10 overlaps a similar limit theorem, first proved by L. Nirenberg (to appear). 
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I f  n > 2  this is a bet ter  estimate than  the one we s tar ted with, and  implies the 

correspondingly bet ter  relation 

B -  Q <  C r  -�89 

provided ( n -  2 + ~) /2  < v. This in t u rn  implies 

[u- %1 <<- Vr-t(~-2)-t<.-~+r 

Thus,  after  a finite number  of iterations, we find lU-Uol<~Cr-r  for any  pre- 

scribed e > 0, or else [ u - % I ~ C r-~, q.e.d. 

12. An Extension of the Saxlmum Principle 

Let  u (x) be a solution of 

Ox-~t aij = 0 ,  a~j=a~, (4) 

in a neighborhood E of infinity. I t  is known tha t  if all eigenvalues of the form 

a~i~ ~j are positive, u (x) admits  no max imum or min imum interior to  its domain  of 

definition [10]. I n  this section we present an extension of this result to  include the 

point  a t  infinity. 

T H E O R E M  12: Let u(x )  tend to a limit u o as x - ->~ and suppose l u ( x ) - u o ] =  

o (r2-n), n >~ 3. Suppose /urther that a~ ~, ~ t> ~t (x) ~2, ~t > 0, and that l a ,  [ < M < oo in. 
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dependent of x. Then in every neiffhbourhood o[ infinity there are points where u (x) > u o 

and points where u (x) < %. 

Remark 1. I t  is not assumed tha t  (4) is uniformly elliptic in a neighborhood 

of infinity, i .e ,  there may  be sequences (x} of points along which 2 (X)->0. 

Remark 2. Theorem 12 is sharp, even for Laplace's equation Au=~2u /ax~=O.  

For this equation admits the solution u (x) = 1 - r 2-n with u 0 = 1, u (x) < u 0 for all x :~ 0. 

Remark 3. In  conjunction with Theorem 1, Theorem 12 implies tha t  the maxi- 

mum speed in a subsonic flow past an obstacle B, with subsonic limiting velocity, 

occurs on B. 

Remark 4. I f  n ~  2 a much stronger result is true, cf. [6]. 

Proof o/ Theorem 12: Suppose u(x)<~u o in E. The maximum principle of E. 

Hopf [10] shows tha t  u (x)< u 0 in E. Let 5: denote a sphere about  the origin whose 

surface lies in E and let ~ be the maximum of u on the surface ~.  Corresponding 

to a sequence of numbers ~ < u I < u 2 < .,. < u~ < ... < Uo, u~-~Uo, there is a sequence of 

regions Gxj in E, defined by  the inequalities u l < u ( x ) < u  ~, and bounded by level 

surfaces Z 1 and Zi on which U=Ul, u=u~ respectively. We have(1) 

0 u ~ j d S ~  aij ai~ ax-- ~ ~ g S = K 1  

A l s o ,  

f O u O u  Q1 m = a~j ~ x~ 
Gl m 

Let L = (u 0 - ul) K 1. Then 

f a u  f ~ u  
d V =  Urna~J ~ x V J d S -  ul aiJ ~x iV~dS=(um-Ul)  K t. 

~m ZI 

Qlm - L = (urn - %) K1. (20) 

Let  R be the smallest number  such tha t  the sphere SR of radius R about  the 

origin contains Zm. By (20) and by  the definition of Qlm we see tha t  as m-->oo, 

Qlm-->L in increasing. Hence the left side of (20) is decreased in magnitude if the 

region of integration is enlarged. Thus, if 

f O u O u  d Q (R)= a,j ~ ~ V, 

oR 

where Ga is the region bounded by  Z 1 and SR, 

(1) See foo tno te  (a), p. 278. 



294 ROBERT FINN AND DAVID GILBARG 

L - Q ( R ) ~ < ] ( u  0 - u ~ ) K  1] 

But  since Sa contacts Zm we have by hypothesis l uo -um I = e (R) R 2-n where e (R)->0 

as R- ->~ .  Thus, 

L -  Q (R) =o (R~-'), (21) 

tha t  is, the quadratic functional Q (R) is bounded and tends to a limit as fast as 

does u (x). 

On the other hand, we may  write 

Q ( R ) =  f (U-Ul)ais~xtvsdS,  
aR 

~ U  

SR SR 

The eigenvalues of a~jus us are by  assumption positive and 9. us = 1. Thus lass us )'i] is 

certainly bounded by  the sum of its eigenvalues. An orthogonal transformation which 

carries this form into diagonal form with the elements on the principle diagonal equal 

to the eigenvalues leaves invariant  the trace. Thus l al~),sujl <~a~i<~M, and we obtain 

Q2 (R) <<. C R n-1 d Q 
d R  

for some constant C. Integrating, we have 

1 1 

Q(R) Q(RI) 
- -  >1 C [R 2-" - R~-"] ,  R1 > R.  

Letting R 1 -> c~, 1 1 >/C R 2- ' .  
Q(R) L ~ 

Thus, L -  Q (R) >i C L Q  (R). R 2- ~ 

which contradicts (21) since Q (R) is an increasing function of R. A similar discussion 

disposes of the case u ( x ) > u  0 in E and completes the proof of Theorem 12. 

Added in proo/ I :  The limit theorem of section 11 can be improved to the 

essentially sharp result, lU-Uol <<.Cr ~ - ~ ,  by means of the following inequality 

recently proved by  Payne and Weinberger (see the next  article, [21]) : Let  u be any  func- 
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tion having a bounded Diriehlet integral in E. Then the average value of u over 

concentric spheres of radius r has a limit ~ as r--> oo, and 

A(r)= f lvui dv> n-2 f 
Er Sr 

where Er is the region exterior to the sphere St. This can now be applied to a result 

of Nirenberg(1) which states tha t  if u is a bounded solution of (4) in E, then the 

Dirichlet integral of u is bounded in E and the hypotheses of Lemma  3.2 are satis- 

fied. I t  follows simply tha t  for any  e ~ 0 ,  A(r)<~Kr ~-n+2~, and hence, by  Lemma 3.4, 

one concludes tha t  lU-Uol<~Cr~-n+~. This result remains valid, for fixed e, if the 

coefficients in (4) are allowed some oscillation a t  infinity (depending on e). 

Added in proo/ II: In  a note, "Parabolic  Equat ions",  Proc. Nat. Acad. Sci., U.S.A., 

vol. 43 (1957), pp. 754-758, J .  Nash states tha t  if u (x) is a solution of an elliptic 

equation (4) in a region R and if [ u [ < M ,  then 

I u (x) - u (~)1 < C.M rain {d (x), d (~)} (*) 

where d (x) denotes distance to the boundary of R, and the constants C and e de- 

pend only on n and on upper and lower bounds for the eigenvalues of the assoeiated 

quadratie form. No assumption is made on the eigenvalues except tha t  they should 

be positive and bounded from zero and from infinity. The authors believe tha t  this 

result, in conjunction with the methods of the present paper, will lead to a proof 

of the existence of a subsonie flow past  an obstacle B for any  preseribed max imum 

speed q~ smaller than  the sonic speed qc- New estimates on linear equations, to be 

published elsewhere by  these authors, show tha t  if the space $ of section 9 is suitably 

enlarged, (*) is sulfleient to p ro~de  an a-priori estimate at  interior points and at  

infinity. The only remaining difficulty is a discussion of the boundary beha~or  of 

a solution. This may  require a slight extension of the result of Nash to inelude 

equations of more general structure. 
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