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A state of motion in a dynamical system with two degrees of freedom
depends on two space and two velocity codrdinates, and thus may be represented
by means of a point in space of four dimensions. When only those motions are
considered which correspond to a given value of the energy constant, the points
lie in a certain three-dimensional manifold. The motions are given as curves in
this manifold. One such curve passes through each point.

Imagine these curves to be cut by a surface lying in the manifold. As the
time increases, a moving point of the manifold describes a half-curve and meets

the surface in successive points, P, P',.... In this manner a particular trans-
formation of the surface into itself — namely that which takes any point P into
the unique corresponding point P’ — is set up.

This fundamental reduction of the dynamical problem to a transformation
problem was first effected by Poixcar% and later, more generally, by myself.!
In order to take further advantage of it I consider such transformations at length
in the following paper, which appears here by the kind invitation of Professors
Mrrrac-LerrLER and NOrLUND. The dynamical applications are made briefly
in conclusion. These bear on the difficult questions of integrability, stability,
and the classification and interrelation of the various types of motions.

Chapter I. Formal Theory of Invariant Points.

§ 1. Hypotheses.
For the present we shall confine attention to the consideration of a one-
to-one, direct, analytic transformation 7T in the vicinity of an invariant point of

! Dynamical systems with two degrees of freedom. Tramsactions of the American Mathematical
Society, vol. 18, 1917,
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the surface S undergoing transformation. Hence, if u, v be properly taken
codrdinates with the invariant point at w =v=o0, the transformation may be
written

(1)

uy=au+bvo+---,

vy,=cu+dv+---,

where the right-hand members are real power series in u, v (i. e. with real
coefficients), where u,, v, are the codrdinates of the transformed point, and where

(2) ad —bec>o.

More generally, the notation (uz, vi) or Py (k=o0, + 1, £ 2,...) will stand
for the point obtained by applying the kth iterate (power) of T to (u, v) or P.

Furthermore it will be assumed that there exists a real analytic function
Q(u, v), not zero for 4 = v = o, such that the double integral

[fQ(u, v)du dv

has the same value when extended over any region as over its image under 7'.
Following a dynamical analogy such a transformation will be called conservative.
Also @ will be termed a guasi-invariant function of T.

An explicit form for the condition that a quasi-invariant function must
satisfy is well-known! and may be readily derived. 1f the double integral be
expressed in terms of the new variables #,, v,, it takes the form

i du dv 0dv du
fj Q(u’v)[a_u—; 0*’471'—5;[1 a—v:]du, dv,,

where the integration extends over the image of the given region under 7.
Since the given region is arbitrary, and since by hypothesis the last written

integral has the same value as f f Q(u,, v,)du, dv, taken over the same region,

we infer that the two integrands are equal. But the Jacobian of u, v as to
%, v, i8 the reciprocal of the Jacobian of u,, v, as to 4, v. Hence we obtain

o Juy, 8v,  dv, du,
(3) Q(u,v)=Q(u,, Ul)[m 7 iu 0’;]

L Cf. E. Goursar, Sur les transformations ponctuelles qui conservent les volumes. Bullelin des
Sciences Mathématiques, vol. 52, 1917.
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Conversely, if @Q(u,v) is a real analytic function, not zero for u=v=o,
and if (3) is true, it follows at once that @ is a quasi-invariant function.

If there exists a second quasi-invariant function @' not a constant multiple
!
of @, it is clear that the ratio = is an analytic invariant function of T, not

Q

zero for u=v=o. Moreover, if any quasi-invariant function be multiplied by
such an invariant fanction, the product is clearly a quasi-invariant function.

When a conservative transformation 7' has an analytic invariant function
(not a constant), the transformation will be said to be integrable.!

A transformation T’ remains conservative under a change of variables, say
from u, v to u, ¥. The quasi-invariant function @ is thereby modified to a
function @ obtained by multiplying @ by the Jacobian of %, v as to %, v.

§ 2. Preliminary Classification of Invariant Points.

We first make an evident and well-known preliminary classification of in-
variant points which is wholly based on the nature of the linear terms in the
power series for u,, v,. Under real linear change of variables these first degree
terms are transformed among themselves without reference to terms of higher
degree. Consequently the theory of linear transformations applies to these terms.
According to this theory the classification depends largely upon the nature of
the roots of the quadratic equation in g,

o’ —(a+d)e+ad—bc=o0.
In the case at hand this equation is a reciprocal quadratic equation, i. e.
(4) ad —bc=1.
For, if u=wv=0, we have @ = ¢, # 0 and also

Ouy _ Oy v O

du % G =" Gu c,%—=d.

Thus from (3) the stated equation (4) follows. The roots of this reciprocal

equation will be designated as ¢ and 3

1 It should be observed that the definition refers to the vicinity of an invariant point.
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There are the following three cases to consider. First, o may be real with
a numerical value not unity; 7' can then be taken in the normal form

=gt X 4, 40" (e~ £1),

m+n=2

l v, = £v-l~ 2 Yo umon,
{ ¢ m+ne=2

We subdivide this case according as ¢ is positive (case I') or negative (case I").

Secondly, ¢ may be complex and so of modulus 1. With this case we group

that case ¢= 4 1 in which the two elementary divisors are distinct. Here 7'
may be taken in the normal form

V=104
I

mtn=2

l U, =1u cos  —v sin0+2(pm”u’"'v", (o=ce
IT.
l v, =u sin 6 + v cos 6 + Zl,bmnumv”.

m+n=2

It is convenient to subdivide case II into the irrational case II' when e is

irrational, and the rational cases II' when 6 =0, and II"" when ;07‘ =§ with g

not an integer. Case II" yields the case ¢=1; and II', the case g=—1.
Thirdly, we have that case in which the two elementary divisors are not distinct;
here T may be taken in the normal form

U= U+ D P, V", (e=x1),
mEn=2
I11.
v, = ;{:v+d’u+2wm”u”‘v", (d o).
m+nm2
We subdivide this case according as ¢ =1 (case III') or ¢=—1 (case III").

If only linear terms are present in u,, », we obtain the linear transforma-
tions:

I. Uy =Qu, Y =€I71)1 (Q’é :t I)'

IL %, =wucosfl—wvsin 0, v, =usin 6+ v cos @,

I11. U, =4 u, v, = + v+du, (d » o).
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These may be regarded as furnishing a first approximation to the corresponding
general types. According to our definition all three linear transformations are
conservative with @ =1 a quasi-invariant function since areas are left invariant.
Furthermore these cases are integrable with invariant functions uwwv, u®+v?, u?
respectively.

In the first case a point P will move on a hyperbola uv = const. upon
successive application of 7' or 7_y (u, v being taken as rectangular coérdinates);
in the third case P will move along a pair of parallel lines u® = const. Unless
the point P lies on the degenerate hyperbola uv = o in the first case, or on the
pair of coincident straight lines u?=o0 in the third, P will recede to infinity
upon successive application of 7 or 7_1. When P lies on the degenerate hyper-
bola in the first case, it will approach the invariant point (o, o) upon successive
application of T or else of 7_;, and recede to infinity upon application of the
inverse transformation. In the third case all points of the line u = o are invariant
or are reflected into points of the same line on the other side of (0, o), according
as the + or — sign is used.

"On the other hand, in the second case the transformation is a rotfation
about (o, o) through an angle @, and every point P remains at a fixed distance
from (o, o) upon successive application of 7' or T_;.

The essence of the distinction here existing is brought out clearly by means
of the following fundamental definition: if a neighborhood of an invariant point
can be so taken that points arbitrarily near the invariant point leave this neigh-
borhood upon successive application of 7' (or of 7—;), the invariant point is
unstable,; in the contrary case the invariant point is stable.!

Thus the linear transformations I, III are unstable in this sense, while
those of type II are stable.

§ 3. An auxiliary Lemma.

Before proceeding to the cousideration of formal series for uz, v; (K=o,
+ 1, + 2,...), we will establish the following obvious but useful lemma:
Lemma. The linear difference equation of the first order in y(k),

yk+1)—oy(k) = ci*km,

1 See T. Levi-Civira, Sopra aleuni criteri di instabilita. Annali di Matematica, Ser. III
vol. 5, 1gor1.
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(o, ¢, A real, and u a positive integer or zero) admits a solution
A¥ (real polynomial in k£ of degree u)

if 4 o, and otherwise a solution
A% (real polynomial in k of degree w + 1).

Suppose first that 4=o6. Let us make the substitution y = 4*w, when the
difference equation takes the form

w(k+1>_‘;_w(k)=;’—ku.

If we write

w==wO kr + M Er—1 4 ... f o,

we find that w will be a solution if the following conditions are satisfied

g c
— w0 ==
(I }')w T

[
‘uw(O) + (I—' z.) wh =9 ,

w(0)+w(1)+...+(I_%) W = .

On account of the assumption made, we see at once that these equations determine
real quantities w®, w®,..., w® in succession, and lead to a solution of the kind
specified.
If A=0 a slightly modified argument applies. Here we write y = 1*w as
before, and then
w = w® kLl gl s - gD,

The conditions on the coefficients take the form

(M+I)w(0)=%)

(‘M__I)‘[_me) + ‘uw(l) =0,
I.2

...........

w0 4 oM ... 4 ) =0,

These equations determine real quantities w©@, w®,..., w in succession but
leave w“+) undetermined, although it is to be taken real.



Surface transformations and their dynamical applications. 7

§ 4. Formal Series for uz, vi. Case 1.

By iteration one can obtain convergent series for ug, vz in terms of u, v.
In case I the linear terms of these series are evidently ¢*u, ¢—*v respectively.
This fact suggests that higher degree terms may be similarly given an explicit
form in %, and we shall show this to be the fact.

If w;, v, are real series of the form I with ¢>o (case I'), uz, vi may be
represented for all integral values of k in the form

e o}
up = ¢* u + X ¢, umon,
. M-
1. .
up=0"%v +2 Yo ymyn,

m+n=2

where @B . Yy® are real polynomials in ¢*, ¢=*, k of degree at most m +n in these
variables.

Let us consider first the quadratic terms in the series for ug, vy.

If in ug, vz we replace u, v by u,, v, respectively, we obtain wuy.1, vz41 by
definition. By comparison of coefficients in I';, above, this leads to the equations

Pl = o*g,,+ 9B, ¢ED=gkp, + ¥, @l =okep,,+o"2¢H,

YD = gk, + @Y, YR = Y, Y, YD — R+ Y.

The first three of these equations are obtained by comparing the coefficients of
u®, uv, v? respectively in wugyi{%,v) and wux(u,,v,); the second three are found by
a like comparison of vy (u, v) and ve(u,,v,).

By considering ¢ , ¥® with m +n =2 as undetermined functions of the
index k, it is clear that these six equations constitute six difference equations
of the type treated in the lemma of § 3.

Moreover these equations suffice to determine these six functions fully for
all integral values of k if their value is known for any particular k. In the case
at hand we have of course g%, = Y@ —o for all m and », since u,=1u, v,=v.

According to the lemma we can find explicit solutions of these difference
equations of a very simple type, namely constant multiples of ¢* for the first
three equations, and of ¢—* for the second three equations. Also the six reduced
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homogeneous equations obtained by removing the first term on the right in the
six equations admit the following respective particular solutions:

927‘: 1, Q_Zk; 92:’:’ I, 9—27:.

By adding real constant multiples of these solutions to the respective
solutions of the non-homogeneous equations, we find a new set of particular
solutions vanishing for & = o as desired.

In this way we obtain the explicit values of ¢ , Y& for m +n =2:

P — fpso(gk_"(’?k) P = @, (e*—1) @ — Pos (¢*—o—2k)

39

3 3 (93 P ]
(s) 0—¢ " e—1 7 e—o¢*
5
@) — PaoleTF—0%) o Yulet—1) o Veloi—e )
17020_ 1 2 b 1p(11_ 1 H 'Pn —_7 —9 .
o' —e ¢ —r ¢ —o?

We proceed to show that explicit expressions for ¢® , Y# of the type
stated exist also for m+n =3, m+n=4,... in succession.

To begin with, we write the equations obtained by a comparison of the
coefficients of w™v" in wpy(u, v), ui(u,,v,) and vy (u, v), vg{u,,v,) in the
respective abbreviated forms:

PV =okg +om ¥ + P, .,

Yo =g kY, +omnyl +Q ..

The expansions of g*u, and ¢=*v, in us(u,, v,) and v (u,, v,) respectively yield
the first terms on the right in these equations. The second terms arise from the
expansion of g® umy? and Y% ymy? in the same functions. The last terms arise
from the expansion of ¢® uce! and Y u2vf respectively, with a + 8 <m +n;
thus Pp, and @n,. are linear and homogeneous in q3$4, l[l;"é respectively, with
real coefficients, polynomial in g, ¢=!, @ur, Vi (i + <o+ B).

Suppose now that we take m +7n =3 and assume that the explicit expres-
sions for (pgg (@ + 8 = 2) are substituted in Ppyp, @ua. The above equations become
linear difference equations in ¢® , ¥® . Furthermore, it is clear that these
equations, together with the fact that @ , YO vanish, determine these variables
completely for all integral values of k.

By a similar process to that employed in the case m +n =2 we may arrive
now at explicit expressions for @ , ¥ in the case m + n=3.
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In this new case we have a non-homogeneous part composed of more than
one term. But each term is of the form ¢A*k# occurring on the right-hand side
of the equation of the lemma (§ 3), since the non-homogeneous part is a polynomial
in g%, ¢—% of degree at most 2.

If we add together the various particular solutions corresponding to each
of these terms, as given by the lemma, we obtain a solution of each difference
equation for m +n =3 in the form of a real polynomial in ¢*, ¢~%, k, of at most
the third degree in these variables.

The corresponding homogeneous reduced equation has a solution gim=—n%,
If a suitable real constant multiple of this solution is added to the above parti-
cular solution of the non-homogeneous equation, a new particular solution is
obtained which vanishes for £=o0. Solutions of this type are real polynomials
in gk, o=%, k of degree at most 3 in these variables, and form the desired
expressions. .

Proceeding indefinitely in this way we establish the truth of the italicized
statement for m+n=3, m+n=4,....

It is obvious that the coefficients in the polynomials ¢ , Y& are them-
selves real polynomials in the coefficients of the series u,, v, save for divisors
of the form ¢ — ¢f where « and # are unequal integers.

In the later discussion it is convenient to bring back the case I” (p< o) to
the case T' by means of the following remark:

If w,, v, are real series of the form I with ¢ <o (case I"), then u,, v, are of
the form I' treated above.

§ 5. Formal series for uy, vx. Case IL.
Next let us consider series of type II in the general case when 6 is incom-
mensurable with 2.

If u,, v, are real series of the form II with zi;tirmtional (case I1'}, ux, vi may

be represented for all integral values of k in the form

bl
ug = u cos k6 — v sin k6 +2 @B um o,
+n=2
1. e

(=" sin k6 + v cos k0 + X, Y® umn,

mi+n=2

where ¢\ , Y& are real polynomials in cos k0, sin k@, k of degree at most m +n in
these variables.
Acto mathematica. 43. Tmprimé le 17 mars 1920. 2
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Let us introduce new variables %, v, namely
U=u+VY—1v, v=u—y—10.

The equations II give series for u,, v, in terms of %, v, which are of the form I
with ¢ —=eV-10,

Now the lemma of § 3 can evidently be extended to the case when o, ¢, 1
are complex constants. Here of course the polynomial factors in the solutions
are no longer real in general. Hence the same formal treatment of ux, v is
posssible as was made in case I' for uz, v; in fact for the case at hand none of
the divisors ¢%*—f are o so that the solutions are precisely of the same form.
Thus wux, vx can be expressed as power series in wu, v with coefficients fp_gﬁ’n,
Y®  of ymyn respectively, polynomial in ¢*, o—*, k of degree not more than m +n.

Recalling the simple relation between u, v and u, v, and utilizing the
trigonometric form of ¢*, g—* we arrive at series ux, v; of the desired type, save
that the reality of the polynomials ¢ , Y% is not established.

Although an inspection of the actual formulas employed would establish this
reality, it suffices to note that, since u;, vi are real power series, the real parts
of ¢® , Y constitute real polynomials of the type required.

In the rational case II, # —=o0, series of type II are also of type I with
¢=1. Consequently the method of § 4 leads at once to the conclusion:

If u,, v, are real series of the form II with 8 =o (case II"), ux, vi may be
represented for all integral values of k in the form

[
u=u+ 2 g0 umv,
m-n=2

11",

@®
ve= v+ Y® umon,

m-n=2

where g | Y\ are real polynomials in k of degree at most m+n—1.!
The rational case 6 = o can be brought back to the case § =o:

If u,, v, are real series of the form II with 507—5=§ (case II'), then uq, vq
are of the form II'".

There are series similar to II'; in the general rational case, but we do not
need to use them.

1 This fact has been noted by C. L. Bouvrox, Bulletin of the American Mathematical Society,
vol. 23, 1916, p. 73. See also A. A. Benxerr, 4 case of iteration in several variables, Annals of
Mathematics, vol. 17, 1915—1916.
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§ 6. Formal series for u;, v4. Case IIL

Finally we have to consider case III:
If u,, v, are real series of the form III with ¢ =1 (case III'), ux, vy may be
represented for all integral values of k in the form

@
uk=u+2 PR umyn,
minm2

111,
v =v+kdu +2¢£’,§’”u’"vn,

MA- N2

where ¢\B | Y8 qre real polynomials in k of degree at most 2m-+n —1.
We propose to deal with this case by reducing it to the case II" as follows.
Write
U=uv, V=719,

and let us make this change of variables in the given transformation. We obtain

@
Uy Dy = U+ ) P, UmTH,

Mmen=2

o
=0 +duv+ NP, um o,
m+ne2

Now the right-hand member of each of these equations contains v as a factor.
Hence, dividing the first equation, member for member, by the second, we find
the equivalent equations

el
U= U+ X @, T,
minm2

L]
O =0+ P, umo,
mn=2

which is formally of the type II". Hence by our result in § 5 we may write
for all integral values of %
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o
up =+ Y ¢, U,
m+n=2

@
v =¥+ X Y& um g,
m+n=2

where ¢{¥) , ¥/¥ are real polynomials in % of degree at most m +n—1.

Multiplying these two equations together, member for member, we get

e ]
Uk oy = v+ 3 28 umn,
m+ne2

where »*) is a real polynomial in % of degree at most m +n—z2. Compare this
equation with that for u; as a power series in , v, and so in %, v. The two
series must be identical so that the exponent of » must be at least as great as
that of w in every term. Hence %% vanishes identically for » <m. Consequently,
if we write
(pg:)n = ;g:z m+n’

we have u; expressed in the stated form.

Likewise, if we compare the series for 7; with that for vz, we are led to

see that &) vanishes identically for n <m and to write

k) — ik
lp£n)n lpin), m-+n?

80 that vz is of the stated form.

It may be observed that all of the series employed converge for %, v suf-
ficiently small in absolute value. This fact justifies the method of formal com-
parison employed.

The case IIT with g=—1 is taken care of by the following remark:

If u,, v, are real series of the form 111 with o = —1 (case 111"}, u,, v, are of
the form II".

§ 7. Uniqueness of series for uz, v:.

The following is easily proved:
Lemma. Unless ¢ is a root of unity, a polynomial in g%, o=%, k, ¢!, 0=%, 1, ...
cannot vanish for all integral values of %, [, ..., without vanishing identically.
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If possible, suppose that the lemma is not true when there is a single
variable k, i. e. suppose that there exists a polynomial in ¢*, ¢—%, k& which
vanishes for all integral values of ¥ without vanishing identically, although ¢ is
not a root of unity.

In the first place we cannot have |g|>1. For in this case divide the
hypothetical polynomial by the highest power of ¢* which appears explicitly.
Let k take on larger and larger integral values. All of the terms of the modified
polynomial tend to zero save the term formed by the coefficient of this highest
power, inasmuch as ¢* becomes infinite more rapidly than any power of . This
coefficient is itself a polynomial in k. which is not identically o. Hence it cannot
approach o as k% becomes positively infinite. But, since the hypothetical poly-
nomial vanishes for all integral %, this is absurd. '

The possibility |e| <1 is disposed of similarly by dividing through by the
highest power of ¢—* which appears.

Hence we have [¢] =1 and may write ¢ —=eV—16 where 6 is real. Here we
fix upon the coefficient of the highest power of & which appears in the hypo-
thetical polynomial. An argument like that made above shows that this coef-
ficient must approach o as k becomes infinite through integral values. However,

this coefficient is a polynomial in cos k@, sin k60; and zi;v is irrational since g is

not a root of unity. Hence k6 can be made to differ from an integral multiple
of 2z by nearly any assigned quantity ¢ for large integral k. Thus the coefficient
polynomial must vanish when k6 is replaced by the arbitrary real variable ¢.
This is impossible.

A similar proof disposes of the case when two or more variables enter.

An application of the lemma shows at once:

The polynomials @ , Y& of §§ 4, 5, 6 are unique.

In fact it is clear that the difference of two such polynomials with the
same subscripts m, n vanishes for all integral k. But these polynomials are of
the type dealt with in the lemma, and must therefore coincide.

§ 8. The formal group for 7'.

The various integral powers of the transformation 7' combine according to
the rule 7% T; = T41, where k and [ are any integers whatever.

In the preceding sections we have been led to real formal series giving T%
for all integral values of k in the cases I', II', IT", TIT', to which all other cases
were reduced.
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The formulas

(6) ur (w1, v) = ugga(u, v), v(uz, vi) = vgsr(u, v)

hold for all real values of k and 1.

The content of this statement is wholly formal of course.

In the cases II", IIT' its truth is at once obvious. The equations (6) stand
for an infinite number of ordinary polynomial relations between the coefficients
g, v Ll W, p&td yEtlh which are known to hold for all integral values
of k and I. Since these coefficients are themselves ordinary polynomialsin %, ,
these relations hold identically. Similar reasoning, based on the lemma of § 7,
shows that the statement is also true in cases I', IT'.

From the italicized statement thus established it appears that we have to
deal with a one-parameter continuous group of formal transformations and that
k is an additive parameter for the group.! In treating of its properties we need
a few of the general formal ideas for such groups.

We shall write formally

__(3u,, _ﬁvk
7 6u—W|k=o’6t’_W,k=o’

so that we have the following table:

((I'): 5u==ulogg+--\, 6v=——v]oge+...,
(I1), du=—0v+---, dv=0u+---,
(8) (IIH), 6u=q)nu2+...’ 6v=wmuz+ e,

]
(IIT'), du = fpzo—g% +%¢oz wt -, dv=du+---.

The series du, dv are real formal power series in u, v.
The series ui, vr satisfy the formal differential equations

du dv
(9) Eﬁk = 0u(ux, %), d—kk=(5v(uk,vk),
and the initial conditions u,=u, v, =v; conversely ux, vi are formally determined
by these equations and conditions.

t C. L. Bourox observed these facts in case II”, loc. cit.
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To begin with, by differentiating the first equation (6) formally as to &
and noting symmetry, we find

d
(%cuk(uz, ) = gz ter (u, v) = d%uz(uk, Vk).

Putting /=10 and recalling the definition of du we obtain the first of the diffe-
rential equations (g). The second equation may be deduced in like manner.

The initial conditions u,=u, v,=v are clearly satisfied.

Conversely, if we write u;, vz as power series in u, v without constant term
and with coefficients which are undetermined functions of %k, and substitute in
the differential equations, we get at each step linear differential equations of
the first order in these coefficients. When joined with the condition that all
of these eoefficients are o for k=o, save the coefficients of w in u, and of »
in v, which are 1, these equations successively determine the coefficients.

These facts explain the complete analogy between the classification of trans-
formations 7 near an invariant point and the classification of differential equa-
tions of type (g) at a point du =J0v=o0. This analogy was noted by POINCARE.*

§ 9. The invariant operator L(w).
We shall now define the invariant operator L(w):

(x0) L(w)=——6ug—:§+6v3—:}0-2
It is clear the L(w(u, v)) is the formal derivative of w(ux, vz) as to k for k=o.
Consequently L(w) is unaltered (formally) by a change of variables. The fund-
amental property of this operator is expressed in the following statement:

The necessary and sufficient condition that a formal series F be tnvariant under
T is that L(F)=o.

First, this condition is necessary. In fact, if F is an invariant series we
have F(uz, vx) = F(u,v) for all integral values of k. Hence, by the lemma of

* Sur les courbes définies par les équations différentielles, Journal de mathématiques, ser. 3,
vols. 7—8, 1881—1882 and ser. 4, vols. 1—2, 1885—1886. The analogy was explained partially by
means of a limiting process by 8. Larvts, Sur les équations fonctionelles qui définissent une courbe
ou une surface invariante par une transformation, Annali di Matematica, ser. 3, vol. 13, 1907.

* This is the »symbol of the infinitesimal transformation» in the terminology of Liz.
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§ 7, this relation holds for all values of k. Differentiating as to k£ and taking
k=o, we find L(F)=o.
Secondly, this condition is sufficient. For if L(F)= o we find, using (9),

OF (ug, vi)duy | OF (ug, vg) doy

d
ap T (e, v) = — = dvn dk

= L(F(uz, vs)) = 0.

Hence we infer that F(ug,vz) is a power series with coefficients independent
of k. Putting k=0 we get F(uz, vx) = F(u, v), and in particular F(«u,, v,) =
F(u,v). That is, F is invariant under T.

§ 10. Existence of invariant series.

In §§ 2—9g the fact that 7' was assumed conservative did not enter, save
that we made use of the equation (4). We shall now prove the following:

Any conservalive transformation T of the form I', II', II" or III' leaves in-
variant a real formal series F* defined by the equations

aF* JF*
(x1) W=Q6u, Wz—de

By multiplying together the equation (3) for u, v, for u=wu,,v=9, ...,
for u = uz—1, v = vx—1, we obtain

auk Ouk
du  dv
(3%) Q(u, v) = Q(ur, vi)
Vi (7’0]‘
Ju  dv

for any positive integral value of k. We employ the familiar rule for the
combination of Jacobians in obtaining this result. Likewise (3z) holds for
k= o0 and also for negative integral values of k, as is easily seen.

Hence this relation (3;) will hold identically when the formal series for
ux, vx are substituted. This follows from the lemma of § 7.

Differentiating with respect to % and setting & = o, we find

{12) o———%‘(Qdu) + %(Qév).
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Here we have employed the definitions (7) of du, dv and we have made use of
the fact that the Jacobian determinant reduces to

IIO
o 1

for k=o0. Now consider the terms of a particular degree in Qdu and — Qdv.
These homogeneous polynomials p and ¢ have the property

D

p

U

QJ]Q:
[ ELNY

bl

<

deduced from (12). Hence there exists a homogeneous polynomial r of degree
one higher such that

_O0r _0r
=55 97§y

The sum of the polynomials r of all degrees (>2) is the formal series F*
required.

From the equations (xx) we have immediately L(F*)= o, so that by § 9
the series F* is formally invariant under 7.

If a change of variables from %, v to U, V be made, the series F* for the
new variables can be obtained by direct substitution. For, from the equations
(11) we find

AF¥oU JF*aV du du
TU G0 Tav v = 9 [ﬁ"““‘”’]’

Vv
OF*0U O0F*aV dv Jdov
Tu‘rﬂa—m—ﬁ‘g[ﬁ*“a‘v‘”’]'

Multiplying the first of these equations by aa—;., and the second by g%, and
adding, we find

JF* [0u dv Ju dv
Uy 0ViU

W:Q ————— ]aU.

But the quasi-invariant function for the new variables is the product of Q(u, v)
and the Jacobian of u, v as to U, ¥V (§ 1). Hence the equation last written
shows that F*(u,v), regarded as a formal series in U, V, satisfies the first
equation (1r) for the new variables. Similarly the second equation (11) is seen
to hold in these variables.

Acta mathematica. 43. Imprimé le 18 mars 1920, 3
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From the equations (8) and (11) the explicit forms of the series F* are
immediately evident:
(I), F*r=wuvloge+ -,
(I1), F*=—~g(u‘ Tt e

(13) I
(II")’ F*=—§lp20us + -y

), Fr——Lur g

It is apparent that any formal power series in F* furnishes an invariant
series.

In order to determine to what extent the existence of formally invariant
series for a transformation I', II', 11", III' is characteristic of conservative trans-
formations we need to make a digression.

§ 11. Faectorization of formal series.!

We consider formal series without constant terms. Such a series will be
called prime when it cannot be expressed as the product of two others. Since
the lowest degree of any term in a product is the sum of the lowest degrees
for any terms in the factors, any formal series can be decomposed into prime
factors in at least one way, and the number of such factors cannot exceed the
degree of the initial terms of that series.

Two factors, either of which can be obtained from the other by multipli-
cation by a formal series with constant term, are regarded as essentially equi-
valent. Since products and quotients of formal series with constant terms yield
series of the same type, the propriety of this convention is obvious.

By a linear change of variables any series G(u, v) can be given the form
cv® + -, ¢ 0, where the indicated terms are of degree at least n. Any pos-
sible factor of G is readily seen to have the same prepared form. Also WEIER-
STRASS’s factorization theorem holds formally, i. e., we may write G = E H where
E is a power series with constant term ¢ and H is a power series, v* + ---, in
which » does not occur with an exponent as large as n after the first term.

1 1
Now let us determine the formal series S(u") in powers of u* which satisfy
the equation H =0, and let us proceed at each step of this determination pre-

' Cf. W. ¥. Oscoov, Factorization of analytic functions of several variables, Annals of Mathe-
matics, vol. 19, 1917—1918.
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cisely as though H(u,v) were a polynomial in u,». The well-known method
for doing so yields higher and higher terms of such series, with Sa =mn.

At first sight it might seem conceivable that this process breaks down at
some point so that it is not possible to proceed further. But, since the process
used involves only a finite set of terms of H at each stage, the same difficulty
would necessarily arise if H were broken off at some advanced term. This is
absurd since then we are dealing with a polynomial. Thus we obtain a contra-

diction. Consequently we can obtain formal series of the stated type in u%‘
which, when substituted for v, reduce H to 6. The initial terms in these power
series are at least of the first degree in wu.

Let w be any oth root of 1 and consider

l;[ [Iw[ (v —8 (wu'_ll»:l .

This product is precisely H, at least if H is a polynomial in » as well as in v.
By breaking off H at an advanced term and employing a limiting process, we
infer that the same is always true.

The bracketed products involve only integral powers of u as well as of v,
and are prime factors of . Indeed, if such a product P is not prime, its
component factors are of prepared form and may be decomposed as G has
been. But any new series S so obtained must fail to reduce P to o when we
write v=8. This is absurd.

For a similar reason it appears that, if a prime series divides a product,
the series must divide one of the factors.

It follows that, as far as the fundamental theorems of decomposition are con-
cerned, the sttuation for convergent series carries over directly to divergent series.

§ 12. Condition for conservativeness.

We are now in a position to prove the following:

A necessary and sufficient condition that o transformation T given by real
series I', II', II”, III' (but otherwise unrestricied) be conservative is (x) that there
exists a real invariant series F of lowest terms one degree higher than those of
du, dv and containing each common prime faclor of du, dv to precisely one power
higher than it appears as a common factor in du, dv, and (2) that the formal
power series given by the equal ratios
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oF  oF
G ou
Ju’ ov

converges.

Before entering upon the proof, it may be observed that an inspection of
du, dv as given by (8) shows that, in the cases I', II', du and dv have no
common factor. In these cases the condition (1) reduces to the condition merely
that there exists a formal series F with lowest terms of the second degree. It
will appear later that du and dv admit of a common factor only in the extra-
ordinarily special cases II", III' when there exist curves through (o, o) made up
of invariant points.

We first prove the conditions necessary.

We take F = F*. The equations (11) show that this invariant series has
lowest terms of degree one higher than the terms in du, dv of least degree,
inasmuch as ¢ possesses a constant term.

From the equations (11) it follows also that the ratio series of the italic-
ized statement converges to . It remains to show that F* contains the
common prime factors of du, dv to a power one higher than these occur as
common factors of du, dv.

Let P* be the highest power of any such prime P occurring in du, dv.
By (11) we have

* %
OF* _ prg, 7F* _ pry
du dv

where either a or b is prime to P.
. . dF* aF* .

If F* contains P to higher than the (k4 1)th power, Tu and T will
contain P to higher than the kth power. This is in manifest contradiction with
the equations last written.

If F* contains P to a power m with o<m<k+1, and if we write
F¥* = pPm@, we find
P
du

mG P . p9C _ perromp,
dv do

mG 4+ P Z_G. — Pk+l-ma,
u

Hence, since G is prime to P, both Z_f and g—f are divisible by P. At least



Surface transformations and their dynamical applications. 21

one of these partial derivatives is possessed of initial terms of lower degree than
P, so that this possibility is likewise excluded.

The statement under consideration is certainly true then unless, perchance,
F* is not divisible by the prime factor P. We have merely to eliminate this
possibility.

It was seen in the preceding section that we can write

P=gllGw—s(wuw),

when K is a formal power series with constant term, where S in an ascending
power series in its argument, and where w stands for any nth root of 1.

1
Now introduce the variable { = u* instead of w. We have

ipe_ 0T
g — " du

I

* ; * JdF* . .
while aaiv is unaltered. Hence the partial derivatives Q;Z;_ and —8%— are divis-

ible by v—8(f). Let us effect a further change of variables from v, ? to w, z
where w—=v—8(t), z=1¢. Evidently one has

OF* 9F* aF*_aF*+aF*@
dw  dv  dz 8t dv dt’

* *
so that (?_F_ and oF* are divisible by w.
dw dz

%
The fact that %g— is divisible by w shows that F* contains no terms in z

alone and is divisible by w.
Passing back to the variables v, {, we infer that F'* expressed as a power
series in #, ¢ is divisible by v—8(f). It follows that F*(u, v) is divisible by

v—S(ui) and by P of course. This completes the proof that the conditions
stated are necessary.

It remains to prove them sufficient.

We may assume that an invariant series F* exists for which (11) holds in
which @ is a convergent power series with constant term 1. These equations
follow at once from the second part of the italicized statement under considera-
tion. Our aim is to show that 7' is conservative.
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By direct differentiation and use of the formal differential equations (g)
we obtain

Ouy, T
d duw dv
Ik Q (uz, vz) =
d vy i@
du dv
Jur Gug
J du 0v
= (7Q(/uk, o) du (ug, ve) + AL Q(L’ vk)&v(uk, vg) +
Ty, dvr dv, G
FI D)
dou(ug, vr) dulug, vi) dug Ou
du dv du dv
+ Q(ux, vz) +
dvp 6_'u_k ddv{us, vz) 00v{ux, vi)
ou dv du dv

But the first determinant in the final brace is the Jacobian of duf{uz, vx), vx
with respect to u,v. This determinant may be broken up into the product of

the Jacobian of du(uz, vz), vr as to ug, vy (Which is @yguTkk’vi) and the Jacobian

of uz, vz as to u,v. Likewise the second determinant in the same brace may

be expressed as the product of @v—g:"—wi) and the Jacobian of wuz, v; as to u, v.
%

Hence we find that the right-hand member of the above equations reduces to

Qup Jus
du dv

a a
{7 10w, w ol + 7L 1@, wdual} %1
du dv
The first factor vanishes identically by (rx). Hence the left-hand member of
the above equation vanishes identically in k. Integrating formally we obtain
(3x). For k=1 this becomes (3), which is precisely the condition that 7' be
conservative with a quasi-invariant function Q.

It is natural to call a transformation 7' of types I', I, II", III' formally
conservative if there exists a formal series F satisfying the conditions in part (1)
of the italicized statement.

We may inquire precisely what condition the existence of formally in-
variant series lays upon transformations 7’ of these types. The ratio @ of the
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italicized statement may or may not be convergent. If it is convergent,

then f f Q(u, v)dudv is invariant under T'. If the ratio is not convergent, the

double integral is only formally invariant.
These considerations bring out the vitally close connection between conserv-
ativeness and formally invariant series.

§ 13. The formal vanishing of the Jacobian.

To complete our treatment of formally invariant series we need to establish
the formal extension of a well-known property of Jacobians:

The Jacobian of two formal series in wu,v without constant lerms vanishes
identically <f and only if either can be expressed as a power series in the other or
in fractional powers of the other.*

It is immediately apparent that, if two functions 4, B are so expressible
one in terms of the other, their Jacobian will vanish identically.

Suppose, conversely, that 4 and B are power series in «, » with vanishing
Jacobian:

dAdB dAdB

Both 4 and B are exact powers of base series for which it suffices to establish
the functional relation. But the Jacobian for the bases also vanishes. Conse-
quently we may confine attention to the case in which neither 4 nor B is an
exact power other than the first.

We begin by showing that 4 and B have the same prime factors.

If this is not the case, suppose that A4 is divisible by a prime series P,
while B is not. After a suitable preliminary change of variables, P is expres-

sible as a produet of series v—S(u;‘) (§ 11). Now take new variables

w='v——S(ui), t=u"1‘.

The series 4 and B are power series in these variables without constant terms,
and their Jacobian as to w, ¢ is o by direct reckoning:

! The presence of fractional powers means that the root indicated is to be formally
extracted.
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JAIB @#A0B

But 4 is divisible by w, and %‘;‘1 is divisible by w to a power at least as high.

Also —z—g is divisible by w to a power at least one lower than A. Hence %It_i

is divisible by w. From this it follows that B is divisible by w.

Proceeding to the original variables we infer that B is divisible by the
prime factor P, contrary to hypothesis.

Suppose that a prime factor P is contained p times in 4 and g times in B,

and choose that factor for which —g# o is as small as possible, and thus smaller

than for some other factor unless g is the same throughout. Except in this

q
case, g—p will yield a power series without constant term and not containing P.

But the Jacobian of this series and A is easily verified to be o also. This is

e
not possible by the argument used above, since 42 has not the prime factor P

Br
which 4 admits.

¢
We are thus forced to the conclusion that the power series % starts off

with a constant term. But 4 and B are not exact powers so that we must
have p=¢. Consequently the prime factors of 4 and B occur with the same
multiplicity in 4 and B.

Now consider
A=B(c+0), (e 0),

where C is a power series without constant term. It is readily inferred that
1

the Jacobian of C, B is o, and thence that, if C' is an exact gth power, %q is

a power series with constant term. Hence we may write
C = Bi1(d + D), (d »0),

where D is a power series without constant term. Proceeding in this way in-
definitely we find
A=¢B+dB7+ ---.

This establishes the statement.
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§ 14. The totality of invariant series.

We may now prove the following:
If F* is a gth power the most general invariant series is an arbitrary power

series in F*é. The integer q is 1 unless all the prime factors of F* are common
to du, 0v.

The results of § 13 assure us that the most general invariant series can be
represented as stated if the Jacobian of F* and any invariant series F vanishes.
But we have L(F*)=o0, L(F)=o0, whence it appears that the Jacobian does
vanish.

If ¢ =1 we may write F*=@Q¢, and (11) gives

qu—1:3—§= Qou, qG’q“lgg= — 0w,

so that all of the factors of @ (and hence of F*) are common to du and dv.

§ 15. Conditions for Formal Conservativeness.

At the very outset of the paper the condition (4) was obtained as a conse-
quence of the fact that 7' was assumed to be conservative. There exist an in-
finite set of similar conditions on the coefficients of higher degree terms in the
power series u, and v,. These conditions may be found by use of the existence
of invariant formal series. We illustrate the method in case I'.

Since F* begins with a term wvlog ¢ in this case, an invariant series F,
also with first degree term wuvloge, can be written down without any other
terms having equal exponents in u, v:

F=uvlogo+ D Fpaumvr, (m = n).
ge

m—+n=-3

This series F may be obtained by writing F = F* + cF**+ -.., and choosing
the arbitrary coefficients so as to eliminate terms with equal exponents.

Moreover, it is easy to see that there is only one such series, since any
invariant series can be expressed as in a power series in F* (§ 14).

Now, when coefficients of u™v» are compared, the formal relation F(u,, v,) =
F(u, v) gives a series of equations

Acta mathematica. 43. Imprimé le 18 mars 1920. 4
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an(em—"—l)=Pmn, (m+ni3)-

Here Py, is a linear expression in the quantities Fo3 with @ + §<m +n. Thus
we determine F,,, for m + n=3, m + n=4, ..., as polynomials in the coeffi-
cients @mn, Ymy of the series for u,,v,. For m =n we have P,,,=o.

In the case I' the polynomials Ppp 10 @ap, Yup (« + B < 2n) vanish for n=
2,3 cenn

Conversely, if these vanish we have a formally invariant series F, and
formal conservativeness of 7' in consequence.

Similar conditions for formal conservativeness can be found in the other cases.

§ 16. Imvariant formal curves.

Let f and ¢ be two formal power series in a parameter ¢, without constant
terms and not both identically 0. Then we shall regard the equations

u=i(t)’ ’U=g(t),

as furnishing a formal curve through the point (o, o). If the series f, g converge
for |¢]| small we have an analytic curve.

Two curves of this sort will be regarded as identical if one can be obtained
from the other by change of parameter ¢=1I(v) where ! is a formal power series
in 7 or a fractional power thereof.

A formal curve is regarded as real if the coefficients in f and g can be
taken real.

By means of T a formal curve of this sort is regarded as carried over into
the formal curve

u=u(f(t), g(1)), v=w.(f(2), g(2)).

If this transformed curve is identical with the given curve u = f(¢), v=g(f) then
the given curve is said to be formally invariant under T.

The determination of the formally invariant curves is essential for our
purpose. A fundamental division of types of invariant points will be made
according as there do or do not exist curves of this sort given by real series.
In cases I, IT', IT", IIT' the transformation 7 will be called hyperbolic if
real formally invariant curves exist, and elliptic in the contrary case. In cases
II" or III", T is hyperbolic or elliptic according as T, or T, (of type I1")
is one or the other.
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If ¢, denotes the power series in ¢ or a fractional power thereof along the
transformed invariant curve which relates its parameter and ¢, we have

f(tl) = ul(f(t), g(t))’ g(tl) =7 (f(t)’ g(t))'

In virtue of the fact that the determinant of the coefficients of the first degree
terms in u,, v, is not o (see (4)) we can show that the power series ¢, starts off
with a first degree term in ¢. For suppose it commences with a term of higher
degree. The initial term of one of the two right-hand members above will be «,
where o« is the lowest degree of any term in f or g. But the left-hand members
will start off with higher degree terms, which is impossible. Similarly we may
rule out the possibility that the initial term in ¢ is of lower degree than the
first, by making use of the inverse equations

F(#) = ua(f(t), (), g(t) =v(f(8,), g(4)).

Hence ¢, is a power series in ¢ or a fractional power thereof beginning with a
term of the first degree.

If ¢ is the degree of the lowest term in f or g (say in f), then from the
corresponding equation (the first) we obtain on the left a series in ¢, at® + ---,
and on the right a similar series in ¢ commencing with a term of degree not
less than « and therefore of degree precisely « by the above. Extracting oth
roots we conclude finally that #, can be expressed as an ordinary power series
in ¢ with first degree term:

tl — 9* t 4o,

Having this explicit form of ¢ in mind, let us compare anew the two
members of each of the pair of equations first written. We write

f(t)=pta+ oy gty =gqt* + -,
so that |p|+ |¢|#= 0, and obtain
pe**=ap +bg, go**=cp+dq.

It follows at once that ¢*: is a root of the characteristic equation, i. e. that
Q*a = 9.
If (o0, 0) is an ’ordinary point’ of the formal curve we have « =1, ¢ = g*.
By successive transformation of the invariant curve by 7', we obtain not
only ¢, but parameters ¢,,7,,.... Likewise by the inverse transformation we
obtain parameters f_;, {3, .... These can all be obtained from the series for i,
by iteration.
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§ 17. The formal series for ¢; and the formal group.

Since the constant o* is an «th root of g, it is clear that, if we write
7,(%) = t4(v), then we have 7, =gz +---. By iteration 7; may be defined for all
integral values of k. Moreover, the methods used in § 4 serve at once to show
that

= ¢b v+ X o

me=2

where ¢ is a polynomial in ¢* of degree at most m if ¢~ 1, and a polynomial
in k of degree at most m—1 if g==1.
For all integral values of ¥ and ! we have obviously

73 (71) = Tret.

Therefore, by the lemma of § 7, this holds formally for all real values of £ and /.
We write

and can then show (compare with § 8) that the formal differential equation

dvy
7’; 6’[(’[’]‘)

is satisfied, and, together with the initial condition 7,= v, wholly determines
the series for vz.

§ 18. The invariant operator L(u, v).

We shall define a second invariant differential operator:
(x4) L(u, v)=dudv—dvdu.

It can be immediately verified that, if the variables u, v are changed to
w, v, then L(u, v) becomes L(u, v) multiplied by the Jacobian of u, v as to u, v.
It is also obvious that, if u=f(t), v=g(t) is a formal curve, then L(u, v) is
independent of the particular parameter chosen for the curve.

The necessary and sufficient condition for the invariance of a formal curve
u=7f(t), v=g(t) under T is L(u,v)=o.
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By definition of invariance we have for such an invariant curve

]‘(tx) = ul(f(t)s g(t)): g(tl) =Y (f(t)’ g(t)):

and thence for integral values of k
Fte) = ua((8), 9(0), gte)=ve(f(¥), 9(2)).

If we take k as an integral multiple ¥« of « (§ 17) and write t =17, 7, =14(7)
(§ 17), we have in particular

H(ow) = upo(f(2), 9(7), g(mr) =vwalf(2), g()),

for integral values of &'

Let the general series for upq, v24, 7w, be substituted in the last equations.
All the coefficients are either polynomials in ¢¥, ¢=*, k' (case I'), or in cos k'6,
sin k'6, k' (case II'), or in &' (cases IT", IIT'). Hence, by the lemma of § 7, these
equations are identically true from a formal standpoint.

Differentiating formally as to %' and setting ¥ = o0, we get

d d
W oo matulf, g, Wor=asolf,g),

whence at once L(u, v) =o.

Conversely, let us assume that L(u,v) is o for a formal curve u = f(¢),
v == g(t), and let us show that the curve is invariant under 7.

In this case we have

«0H = su(t, g), %03 =800, 9),

. T I .
where » is the sum of a polynomial in 7 and a power series in {. Now, since

du, 0v begin with terms of the first degree or of higher degree, both right-hand
members have initial terms of degree at least as high as f or g. On the other

hand % and g% are of degree one less than f and g respectively. Hence x(f)

cannot contain negative powers of ¢ or even a constant term. Thus x(¢) is an
ordinary power series in ¢ without constant term.
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Define #; by the differential equation

di
37::=K(tk),

and the initial condition ¢, =¢. Thus #; is formally determined as a power series
in ¢ with coefficients analytic in %.
For example in case I, Ju and Jv are given by (see (8))

5u=ulog9+..., av=__vlogg+....

Hence an inspection of the above equations introducing x(¢) shows that this

function possesses a first degree term in ¢, !(%) t, ¢ an integer.
Write then

by = E plm, x(1) “%ﬁt+2 #lm) gm

mm] mm=2

and the differential equation gives

dgl® loge )
dk ~ a 71
dy _
ak

lo
198 0 0 | sorgivP,

on comparison of terms in ¢, ¢*,.. . Remembering the initial conditions ¢!? =1,
oW =o,..., we find

K(z)a ( 2k k

k
) — ga . *) == @ — e
P = 9 = o0t €

%
Thus the successive coefficients are polynomials of increasing degree in g°.

Likewise in case II' these coefficients are polynomials of increasing degrees
in cos ]%0, sin Ifaf; and in cases II”, IIT, polynomials in % only, since here x(f)

starts out with a term of the second degree or higher.
Consider now the formal series f(f) and g(&x). Differentiating and using
the definition of #, we find
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d{z(]tck) _ d—ft%)"(t") = dulf(t), g(t)),

T = T ) = 0001, g,

These series f(#) and g(t;) reduce to f(¢) and g¢(t) for k=o.
Consider next the formal series ur(f(t), g(¢)), vx(f(t), g(¢)). Differentiating
and using (9) we find

c—ldjc[uk(f(l), g()]=dulur(f(2), g(®), vxlf(2), g(£))],
J%—c[vk(f(t), g(0)] = dv[ux(/(t), g(8)), w(f(t), g(¥))]-

Also these series reduce to f(f), g{t} for k=o.
Hence, if either pair of series in ¢ be denoted by px(t), ¢x(t), the differential
equations

d d
.%:6’“(?)]‘, Qk), ﬁ= 6”(pk; qk)a

and the initial conditions p, = f(t), ¢, = g(¢) will be satisfied.
But, just as in an analogous situation earlier, these equations and conditions
uniquely determine the series. Hence the two solutions coincide:

f(t) = us(f(2), 9(8), g(f) =vilf(2), 9(2)).

Taking k=1, we conclade that the given formal curve is invariant under 7'.

§ 19. Existence of invariant formal curves.

When a formal power series in u, v without constant term is resolved into
its prime factors in the sense of § 11, each such factor evidently corresponds to
a formal curve u=1i", v=S(f) where S is a power series in {. When the
cobrdinates of this curve are substituted in the given formal series in u, v, it
vanishes identically. Conversely, if the codrdinates of a formal curve render
such a series equal to o, then it renders one and only one of the prime factors
equal to o, and this formal curve must be the one corresponding to the factor.

With these facts in mind we may prove:

The totality of formally invariant curves for a conservative transformation T is
given by the equation F =o, where F is any invariant series under T.
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First, let us take any curve for which ¥ =o0. Now we have F(uz, vi) =
F(u, v), and thence, by formal differentiation as to k and taking k=o,

aF oF
ﬁ6u+—a—;60=o.

But we have also

oF or
%du+%dv=o.

Combining these equations we find L(u, v)=o. By the preceding paragraph
the formal curve is invariant.
Conversely, for any invariant formal curve u==f(f), v==g(f) we have

f@) =ur(f(2), g(), g(te) = v (f(t), g(£)),
as we have seen. Hence it follows that
F(f(t), 9 (0)) = Fluz(f(2), g(1)), w(}(®), g)]=TF (f(2), 9(2)).

Now, taking k=1%'a, t, =7, we may regard this equation as holding for all &'
(§ 17). Differentiating as to k' and taking ¥ =o, we find

dFdf  0Fdg), _
[E 5;4'% aj[]d'[—o.

Unless 7 =o0 we infer that %’= o. But F(f(#), ¢(?)) is a power series in ¢

without constant term. Hence except in this case we have F(f(t), g(t)) = o, as we
desire to prove.

However, if we take the equations which state that u=f, v=g, and its
iterates under 7 coincide (as written above), and differentiate as to ¥' (k= k'a),
we find for k' = o

3—161 = dul(f, 9), 3—331=5U(f, 9)-

Hence d¢ vanishes formally if and omly if du(f, g), dv(f, ¢) vanish. In other
words the given curve corresponds to a common factor of du, dv. But it has
been proved (§ 12) that such factors occur to a one higher power in F. Hence
we have F(f(t), g(t)) = o in this case also.
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Applying the above condition to F* (see (13)), we perceive that in case I'
we have two real formally invariant curves so that 7' is hyperbolic, while in
case IT' we have a pair of conjugate imaginary formally invariant curves so that
T is elliptic.

§ 20. Invariant point curves.

In an extremely special case the invariant point (o, o) may not be isolated
but may lie on one or more analytic curves of invariant points passing through
(0, 0). These curves can be determined as the solutions of the ordinary equations

u (U, v) =1u, v,(u,v)=r.
By iteration we get

up(u, v) =u, vp(u,v)=v,

which holds along these curves. Differentiating as to k, as we have often done,
and setting k=o, we find

along the invariant point curve. In other words the invariant point curves
correspond to common factors of Ju, dv. According to § 12 this means that
the curve corresponds to a multiple factor of F*.

Conversely, let us agssume that F* has a multiple factor corresponding to a
formal curve w = f(t), v=g(¢), so that du =Jv =0 along the curve. By formal
integration we get wui(f, 9) =f, vx(f, 9) =g, and the formal curve is an invariant
point curve,

There exist formally invariant point curves if and only if F* has a multiple

factor, and these curves are then analytic curves given by the equations u, = u,
v, =v.

§ 21. Normal form. Case I'.

Under a formal change of variables from %, v to U, V such as

(15) U=u+2 U um™o®, V=v+2 | T

m4n=2 m+n=2

transformations of the type I', IT', II", IIT' evidently maintain their type, and
also remain formally conservative if they are so at the outset.
Acta mathematica. 43. Tmprimé le 1 mars 1920. 5
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We propose to develop a normal form for the transformation 7' in the
cases I, II'. In the other cases there appear to be an infinite number of invariants,
and a similar normal form does not exist.

By a formal change of variables (r5), a formally conservative transformation of
type I' may be given either the normal form

(16) Ul=gUe°UlVl, V,=§Ve—°UlVl, (c = 0),
or the form
(16) U,=oU, V,=§V.

We propose first to choose U, V so that
SU=Ul1+f(UV)]loge, SV=—V[1+g(UV)]logo,

where f and ¢ are power series in their argument UV. More explicitly written,
these equations take the form

U au

~d—udu + a—v6v= Ult+f(UV)]log o,
7 Jav ov

ﬁdu +% dv=—V{1+g(UV)]loge;

recall the equations

éU——W oo’ Ur = Ul(ux, vr),

and similar equations in V.
By the first equation (8) the first degree terms on both sides of the above
equations are the same.
Equating coefficient of u™o® in these equations, we find
(m‘—n—'l) Umnn= P, (m#n'*']:):
(m—n+1)Vime=0mnas, (n#=m+1),

o= Pm}-l,n +i2n+1;

0=Qr, n+1 + J2n+1,
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where Pppn, Q@mn are polynomials in Ugg, Vag, fy, 9, Withe+8<m+n, y<m+n,
and where fors1, gor+1 are the coefficients of (U V)¥ in f and g respectively. These
equations are manifest as soon as the explicit series for U, V are substituted
in (17).

Let us compare second degree terms, so that m+n=2. The first two
equations determine U,,,, V. for m + n =2 uniquely.

Next let us compare third degree terms so that m +mn—=3. Here the
quantities Umn, Vima, excepting U,,, V,,, are determined by the first two equa-
tions while f,, g, are determined by the second two equations.

Continuing in this way we determine in succession Umyu, Viun, fp, gp, save
for U,,, V,;, Uy, V,5,... which can be taken arbitrarily.

Therefore it is possible to determine formal series U, ¥ so that (17) holds.
In order to avoid complexity in our notation let us call these new variables
u,v. It may be observed that the set of changes of variables (15) form a
group. Accordingly, in accomplishing the desired normalization, we can compound

any number of such changes of variables. With this understanding we may
write

du=wul[r+fluv)]loge, dv=—wv[1+g(uv)]log .

If @ denotes the formal quasi-invariant function, we have by (12)

2 1Qu+ 1= S [Qu(r+ )]

on substituting in the above values of du, dv. Here f and g are series in the
product uw.

It follows from the equation just written that @ must also be a series in
the product uw. Suppose if possible that this is not the case, and let dumv»
be a term in @ of minimum degree for which m > n. A term (m +1)dum v will
then appear on the left of the equation written. But no other term of equal
or lower degree in which the exponents of u, v are unequal can occur on the
left inasmuch as terms with unequal exponents are not present in f. A similar
term (n +1)dum™v® will occur on the right. If then the above identity holds we
must have d =o, contrary to hypothesis.

Thus if we write z=wuwv, and use accents to denote differentiation with
respect to z we have easily

[Qz(z+ )] =[Qz(x+9)]
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By formal integration we get then f=g=~h, where % a formal power series
in z without constant term. Consequently we have

du=ul[1+h(uv)]loge, dv=—v[1+h(uv)]logoe.

When use is made of this fact, the formal differential equations (g) for wu,
vy take the form

d d
ﬁ = we[1+ h(urvi)] log o, 7”,5’5 — — v [1+ hlurvr)] log o.
Hence, if we consider the product series wu;wv;, we have (&g‘kv—k) =o. Noting that

we have u, = u, v,=v, we conclude u; vz =uv.
If we substitute this value for uzv; in the differential equations, these
become

dug

-dT——uk[I—I-h(uv)] log o =0, dos

% + w1+ A(uv)] log o =o.

If we multiply these two equations by

Q—(l+h(uv))k’ Q(l+h(uv))k
respectively, the left-hand members become exact formal derivatives. Integrating
formally we find
o~ (W+htuolk o — const., gtk 4 — const.,
where the constants are power series in u, v with coefficients independent of %.

Employing the initial conditions u,=u, v,=v, we get the following explicit
formulas

Uy == Qk ueh(uv)k, Vg = g—"ve‘»"‘"")",

for the given transformation after the change of variables determined earlier.

If % vanishes identically, a reduction to the normal form (16') has been
effected.

In the contrary case we may write

hluv) =cuwbvP+---.
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Dividing by ¢ = o and extracting I/th root, we find

[
Vh—(gv)=uvp(uv)

when p(uv) is a power series in uv with constant term 1. If we define a further
change of variables (15)

U=uvpluv), V=vypuv),

we obtain immediately the first normal form (16).
The normal forms are clearly of integrable type with UV invariant.

It is apparent that, if 7' is given by real series, the normalizing series U, V
can aléo be taken real.

§ 22. Generality of normal form, Case I'.

The normalizing series U, ¥V were not uniquely determined. The most
general set U*, V* of such series is related to any particular set U, V as follows:
The most general normalizing variables U*, V* in case I' have the explicit form

(18) U¥=UeHUN), P*=TVe-2UN,

where A is an arbitrary power series in UV without constant term, and U, V are any
particular set of normalizing series.

Clearly we can pass directly from U, V to U*, V* by a change of variables
(15). Since the invariant curves U =0, V =o0 are carried into U* =o, V* =0,
we infer further

U¥=U(r+-), V*=V(+).

Now the products UV, U*V* are invariant under 7. Hence (§ 14) U*V*
is given by a power series in UV, whose initial term is UV of course. By the
aid of this result we may conclude that in the series for U¥*, V* only terms in
UV occur in the parentheses.

In fact, if we replace U,V, U*, V* by U,, V,, U*, V. * respectively, the
first of these equations gives

eU*ec UV VF — o eeU V! (1 4.,
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On the left the exponential factor is a power series in UV with constant term 1
inasmuch as U*V* is given by a power series in UV without constant term.
Suppose if possible that a term dUm+! V7 (m s n) occurs in the series for U* and
let this term be of the minimum degree. On the left of the equation last written
the corresponding term of this type is od U™*! V", whereas on the right it is
gntl—ndUm+1 Pr. The two terms to be compared cannot be equal so that a
contradiction results. In this way the parenthesis in the series for U*, and
likewise that in the series for V*, are seen to only contain terms in UV.
We may now write

U¥=U(+4(UV), V*=VEa+i(UV)),

where 1', 1" are power series without constant terms.
Replacing U, V, U*, V* by U,,V,, U* V,* respectively here, we get

oUkec UV T = o Uec UV 1 2/(UV)],

and also a companion equation. Bearing in mind the form of U*, we conclude
at once c¢c*=c¢, I*=1 and then U*V*=UV. This yields the relation stated
between U* V* and U, V, as well as the additional result:

The integer 1 and constant ¢ are independent of the normalizing series employed.

Thus I and ¢ are the only invariants. In the case of the normal form (16')
we write [ = o, ¢= o for convenience.

Conversely, it is at once shown that any change of variables from U, V to
U*, V* yields normalizing variables.

§ 23. Normal form. Case ITI'.

It has appeared earlier that cases I' and IT' are of the same formal character
in the complex domain. This is evident if variables

U=u+VY—1v, D=u—Vy—1v

are introduced in case II', when we have

Up=QU+-y, D=0+, (e:el/:ﬂi)‘

Moreover in case II' we have gk=1 for any integer ks o. Consequently the
same formal manipulation of the variables u,v is possible as for u, v. Moreover



Surface transformations and their dynamical applications. 39

changes of variables (15) of u, v yield changes of variables (15) of w, v. Keeping
these facts in mind, we deduce without difficulty the following important result:

By a formal change of variables (15), a formally conservative transformation of
type II' may be given either the normal form

U,=Ucos (0+¢c(U2+V2))—V sin (0 + c(U2 + V3,

(19)

V,=U sin (0 +¢c(U2+V2)?) + V cos (0 + c(Ut+ V2,
or the form
(19") U=Ucos@—Vsin8, V,=Usin6+V cosb.

Also, on account of the possibility of preserving the conjugate relation of
the series %, v employed at every step of the formal work (so that u, v are real
series), we conclude that, if 7' is given by real series, the normalizing series U, ¥V
can also be taken real. /

§ 24. Generality of normal form. Case II'.

Likewise in analogy with § 22 for case I' we find:
The most general normalizing variables U*, V* in case 11' have the explicit form

U¥=Ucos (U2 + V2)— Vsin (U® + V?),
V* = Usin (U2 + V) + Veos A(U? + V?),

(20)

where X is an arbitrary power series in U? + V2 without constant term, and U, V are
any particular set of normalizing series. ‘

§ 25. The integrable case.

The . formal series uz, vx used in the preceding part of the paper may con-
verge. Suppose that these series converge uniformly for |u], |v|, | k| sufficiently
small. By the definition of du, dv as derivatives of uz, vy respectively as to %
for k= o0, we see that in this case dw, dv are given as convergent series. Conse-
quently the formal differential equations (g) are of the ordinary type with du,
dv analytic functions of %, v vanishing for v =v=o0. It follows that uz, vz
converge uniformly for |k]< K, an arbitrary positive quantity, if u], |v]| are
sufficiently small. It is then that we speak of uz, vy as convergent series.
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A necessary and sufficient condition for the convergence of the series uy, vy
(as specified) is that the corresponding comservative transformation T be integrable.

The fact that the integrability of 7' is necessary is proved at once. In
the convergent case the formal differential equations are of the ordinary type
as noted above. Consequently the formally invariant function F* defined by
means of the equations (r1) is an actual invariant function. That is, 7 is
integrable.

To prove the sufficiency is not such an easy task. Let F' be the given
invariant analytic function. Every invariant series can be expressed as a power
series in F' or in fractional powers thereof (§ 14). In the latter case F' is an
exact formal gth power if the gth root is to be extracted. And furthermore
this root is of course also given by a convergent invariant series. Hence, without
loss of real generality, we may assume that the invariant formal series F* is a
formal power series in F' i. e. F* = ¢(F").

Now write

duy _0F'(uy, o)

dv's OF (u'y, v'y)
f ! _——_— 77 "
Q(uk, vk) dk = a’l]’h

' !
s Qu'r, V') dk s

2

where @ is a quasi-invariant function belonging to the conservative transforma-
tion 7. The differential equations so defined, joined with the initial conditions
uwy=u', vy =1' determine convergent power series u'x, vy which converge uni-
formly for [k|< K (K arbitrary) if [u'[, [v'| are sufficiently small. These func-
tions define a conservative, integrable transformation 7".

Furthermore, 7' will be of the same type I', II', I1” or III' as T, except
possibly that when T is of type II", 7' may be of types I', II' or III'. For
example, if 7 is of type I' then F* has an initial term uvlog ¢ (see (8)) of the
second degree. Hence F' begins with terms of at most the second degree. But
the initial terms cannot be of the first degree because of the relation F* = ¢ (F').
Hence we have F' =cuv + ---, and, by introducing a constant factor in F', we may
take c=1log ¢. An inspection of the initial terms of the transformation 7" shows

then that u', =gu'+ - -, ¢/, =——£~v’ + ---, as desired. An entirely similar argument

holds in the cases II', III'.
In all cases it is clear that either we can take the initial terms of F* to
coincide exactly with those of F', or these terms are of higher degree in F*

than in #'. In the first case %,:1 for F'=o0, while in the second case

dp _ -
JF=° for F' =o.
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Consider the formal series
wp(u, o), Vi, o),

p 29

where k' = TF" It is necessary to elaborate further what is meant.

Take case I' for example. Here w'z, ¢'; are power series in %/, ¢ with coef-
ficients polynomial in ¢¥, ¢=%, k. Since

%=I +alF +

we have

=g¥(x +aF'kloge+ --).

That is, ¢¥ can be written as ¢* multiplied by a power series in %', v’ with co-
efficients polynomial in 2. A similar remark is true of ¢—* and ¥. When these
series are substituted in u'y(u', ¢'), V% (¥, ¢'), and the finite number of terms of
any particalar degree in u', v are collected, new power series in ', ¢' with
coefficients polynomial in ¢*, ¢=% &k are formed. It is these series which we
designate by w'w (v, v'), vk (4, ¢').

Similarly in all of the other cases the new series u'y, v'» are of the same
form as the series for g, vz.

Now we have evidently

du’kv du d_(p

dk Ic dF
by a rule of formal differentiation which evidently applies to each constituent
element of u'm» and thus to the entire series. A similar result holds for v'y.

Making use of these results, and also of the defining differential equations for
w'y, vy we find

d’urkv _F_ d d’l}kv JIF d(p
' dupd b’

QErE —

where the arguments in @, F' are understood to be u'w, v». But, from the
relation F* = ¢@(F'), it is clear that these differential equations for 'y, v's are
the same as those for uz, vz. Also these two pairs of functions reduce to u', v'
and u, v respectively for k=o.
Since such formal differential equations and conditions determine a unique
power series in %, v with coefficients functions of k of the stated type, we obtain
Acta mathematica. 43. Imprimé le 19 mars 1920. 6
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the formal identities
ww(u, v)=ur(u, v), vi(y, v)=v(u,v).
In particular, the above relation holds for £ =1 and gives

wp(u, v) =u,(u,v), ve(u, v)=v,(u,v),

a9
dF

The noteworthy feature of these equations is that the only possible diver-
gent element appearing is &'

dg ﬁ(,(,)) + k". Then u'x(u,v), vw(u, v) become convergent

where now k' =

Now write % =

power series in u, v, k' for sufficiently small values of these variables. A formal

power series in u, v without constant term satisfying the two equations above
do(F') _de(o)

is &' =~iF — dF - Since these equations are of the ordinary analytic type,
A . d(p(F!) . .
k" is a convergent power series. Consequently —gF 18 @ convergent series,

de(z) . L
— i3 a convergent power series in z.

and, since F' is also, it follows that da

Finally then ¢ is a convergent series.

It follows that F* is given by a convergent series in the integrable case
and thus, by the differential equations (g), that the series u:, vz are convergent.

The simplicity of the integrable case is sufficiently evident from the fol-
lowing fact:

In the integrable case explicit formulas for ux, vi are at hand, namely

ug, vk g, o
Qdu Qdv
(21) F*(ux, vg) = F*(u, v), k= T = | e
% v 717 %wo  Jy

where the integrals are taken along the curve F* = const.

The normal forms (16), (16') and (19), (1¢), for cases I' and I’ respectively,
are integrable. If these normal forms can be obtained by means of a change
of variables (15) in which the series U, V are convergent, the given trans-
formation 7' is integrable.

Conversely, suppose T to be integrable and of type I'. The series F*
converges and by (8) can be written UV log ¢, where U, V are convergent series
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of the form (15). If we introduce these new variables, which we call u, » for
brevity, then v is an invariant function.

For the integrable transformation 7' in these variables, the convergent
series du, v must be of the forms up log ¢ and —vp log ¢, where p is a con-
vergent series with constant term 1. In fact vdu + udv vanishes and the initial
terms of du and dv are u log ¢ and — v log ¢ respectively.

If a further actual change of variables (15) can be made which gives T'
the form

U,=oUet UM, V,=17ehUnN,
4

then an additional actual change of variables as in § 21 yields the desired
normal form. But U,, ¥, have this form if and only if

SU=U(logo+h(UV)), 6V=—V(oge+h(UV)),

i. e. if
oU U
(um——v%)plogg= U (loge+ A(UV)),
v av
(um———v—a;)ploge=~—l7(logg+h(UV))-

We have then to find convergent series U, V, b which satisfy this pair of equa-
tions, in order to establish the proposition under consideration.
It is sufficient to satisfy the equations

v aU
(u@_~v%)p loge= U (log ¢ + @(uv)),

A4
(um ~v%) p log ¢ =—V{(log ¢ + @(uv)),

with convergent series U, V, ¢, provided that U and V have initial terms » and
v respectively. For, multiplying the first equation by V, the second by U,
adding and integrating, we conclude that UV is a function of the product uv
alone. Hence we have UV =wuwv + -.-. Therefore uv can be expressed inversely
as a power series in UV, and ¢(uv)=Ah(UV) where % is convergent.

But, by the same equations, U and ¥V contain no terms in » and u alone
respectively, since » has a constant term 1. Consequently we may write
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U=wueM, V=uveVN,

where M and N are convergent power series in u, v without constant terms.
The equations above take the form

.—v._.-—_

oM oM I( +(p(uv))_

“u dv  p log ¢ ’
du dv p log ¢

If convergent power series solutions M, N and ¢ without constant terms can
be found our proof will be complete.

We observe in the first place that there are no terms in u, » with equal
powers of w and v on the left. Hence, for any conceivable solution, the series
development of

1 p(uv
o =

contains no similar terms. But this property of a series is not modified if it is
multiplied by a series in w» only but having a constant term. Hence

1 log o

p logo+g(uv)
is a similar series. The second term must consist precisely of those terms p'(uv)

. X
in v alone found in ’ and we have

I — i
P= p'}’) Iog("

Thus the only possible formal series ¢ is conwvergent.
When this particular ¢ is substituted, the right-band members above be-
come power series in u, v without terms having equal exponents. Write then

M=N=2Pm,,umv", {m = n}.

m+n=l

The equations for the formal determination of the coefficients P,,, show
that these are uniquely determined and not greater numerically than the cor-
responding coefficients in the right-band members. Thus the desired convergent
solution M, N, ¢ is obtained.
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An entirely similar discussion can be made in case II'

In the integrable cases I', I1', and then only, the normal forms (16), (16') and
(19), (19') can be obtained by a change of variables (15), where U, V are convergent
series.

§ 26. The non-integrable case and the integrable case.

Let two transformations 7' and 7' be said to osculate to the uth order if
u,—u', and v,—¢';, are given by series beginning with terms of at least the
(3¢ + 1)th degree; T and 7", will also osculate to the uth order for any integral
value of k. It is clear that the formal series for du, dv and du/, 6v' agree to
terms of the (u + r)th degree. Conversely, if du, dv and du/, dv' agree out to
terms of the (u + 1)th degree, then 7' and 7' osculate to the uth order.

Let T be a given conservative transformation of types I', II', 1I" or III'
with a gquasi-invariant function Q and a formally invariant series F*. If Q
and F* are convergent series agreeing with Q and F* to terms of the (1 + 1)th and
(u + 2)th degrees respectively, then there will exist a corresponding integrable trans-
formation T with a quasi-invariant function Q and an invariant function F*, which
T osculates to the uth order.

The transformation 7' is evidently that defined by the equations

d d Jd F¥*
Quk 0’0’ka -

with initial conditions u,=u, v,=v.

Chapter II. Hyperbolic invariant points.

§ 27. The analytic invariant curves in ecase I'.

In the non-integrable as well as in the integrable case I' the two real
formally given invariant curves correspond to actual curves. A proof of this
fact was first given by PoIiNcark (loc. cit.) and later by Hapamarp.! Our
proof will be of a different character, and involves the hypothesis that 7' is
conservative. A similar method will be used later by us in treating more general
cases.

2 Sur litération et les solutions asymplotiques des équations différentielles, Bulletin de la So-
ciété Mathématique de France, vol. 29, 1901
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The two formally invariant curves in case I' may either be obtained from
the equation F*=o0 or from the equations U =0, V=0 where U, V are the
normalizing variables of § 21. In fact, when the transformation is in the normal
form, these equations yield the formally invariant curves.

In case I' the two real formally invariant curves give two analytic invariant
curves through the invariant point.

We commence our proof by choosing variables which osculate the normal-
izing variables U, V to the uth order (1 >2). According to § 21 we have then

1
u, = gue‘“’”l + wl{u, v), v,= Eve—c"l"l + n(u, v),

where w, 7 are convergent power series beginning with terms of the (x 4 1)th

degree or of higher degree.

Our proof will consist of the following three steps:

(x) the limits limp—our(o—%¢, 0), limg—ovi(¢—*¢, 0) exist as formal power series

_ u*(t), v*(¢), and yield a formally invariant curve;

(2) ux(o—*t, o), vr(¢0—*t, 0) are dominated by fixed convergent power series in ¢
for all k;

(3) and hence these series converge uniformly to limiting functions of ¢ for |#|
sufficiently small, namely to u*, v* respectively, which are thus the co-
ordinates of the invariant curve V =o.

A similar treatment of the invariant curve U = o can be based on the in-

verse transformation 7'_;.

Proof of (z).
We have directly

1,0 1,0
U = g uek v + w(u, v, k), vp=o *ve kv L y(u, v, k),

where w(u, v, k), n(u, v, k) are convergent power series beginning with terms of
the (u + 1)th or higher degree. Furthermore, the first term on the right-hand
side of either equation has evidently the property that when expanded in power
series in u, v the coefficient of a term of the mth degree is linear in ¢* or ¢—*
and polynomial in % of degree less than the degree of the term. But uz, v
have the property that the coefficient of uwmv" is a polynomial in ¢, ¢=%, k& of
degree at most m + n (§ 4). Therefore the same is true of w(u, v, k), n(u, v, k).
Thus we obtain at once

o

uk(g™*t, 0) =1t + X p™ (=%, k)tr, vi(e=*¢, 0) = Qg™ (e*, k)r,

nw=p+1 nwyt+l
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where p™, g are polynomials in ¢—%, k, and where every term involving % is
affected with a multiplier ¢—* raised to a positive power.

It is thus seen that, inasmuch as ¢> 1, each coefficient of the series for
uz(0—*¢, o) and wvi(p—*¢, o) approaches a limiting value as k¥ becomes infinite. In
other words there exist limiting formal series u*, v*. Clearly w* is given by a
series with first term ¢ and following terms of degree at least x + 1, while v*
begins with a term of degree not less than u + 1.

Now we have the formal identities symbolized by

T (ur(g~%t, 0), va(g™*t, 0)) = (ur+1(¢™*7¢, 0), va4a(e™*'7, 0)),

where ¢ stands for ¢t. By allowing k& to become infinite we obtain the identi-
ties symbolized by

T (u*(8), v* (1)) = (u*(et), v*(g?)).

This is precisely the condition that w = u*(f), v =v*(¢) be a formally invariant
curve under 7'. The parameter ¢ on the curve goes over into pf.

Proof of (2).

To establish (2) we begin by observing that, inasmuch as uz(u, v), vz(u, v)
are computed by successive substitutions, every coefficient in these series will
certainly become positive, and as large numerically as it is originally, if «,, v,
are replaced by any series in u, v with each coefficient positive or zero and as
large numerically as the like coefficient in u,, »,. Such series can be taken of
the form

K(u+v)? ,
1—L(u+v)

K(u + v)®

v+1———L(u+'o)’

eu +
provided that K and L are sufficiently large positive constants.?!

Hence when we compute uz{u, v), vx(u, v) for u =9~ *, v =0, taking u,, v,
to be these modified series, we obtain power series in ¢ which have positive
coefficients greater than originally and so dominate the earlier series. Again
these series will certainly be dominated by the sum

uz(0™%¢, o) + vi(e~*t, 0),

where u,, v, are the dominating series exhibited above.

! The linear terms taken are clearly large enough. The coefficients of umvn (m + n=.3)
in either series is at least as large as KLm+n—2 which evidently exceeds numerically the
coefficient of wmy, in w, or v, if K, L be chosen sufficiently large to begin with.
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The sum oj = ux + vi obeys the law of formation

Ko}
I—Lak

Ok41 == Q0% +

with 6,=d=u + v.
But the sequence o; is itself obtained by the method of successive substi-
tution. Therefore the dominating series o) is increased if we take

eo

g, = skl
' 1—Mo

provided we take M to be positive and as large as I;{ and L.

Under these circumstances we get the following general formula for o;:

o
—ME "1,
0o—1
The corresponding series in ¢ is then
t
ok’
1—Mi1TC¢
o0—I

Hence this same series dominates the original series ux(¢=*¢, o), v (¢™*¢, 0) for all
positive integral values of k. Q.E.D.

Proof of (3).

With the aid of (1) and (z), established above, we can at once show that
the power series uz(o—*t, o), vi(o—*¢, 0) must be approaching a limiting pair of
functions uniformly for |¢] sufficiently small.

To this end we choose k so large that all of the coefficients up to the mth
in both series (m arbitrary) differ by less than an arbitrarily assigned positive &
from their limiting values, which exist by our result (1). The sum of these m
terms never varies for greater k¥ by more than a fixed ¢ if |¢] be restricted.
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But the remaining terms cannot exceed the sum of the corresponding terms
of the fixed dominating series with ¢ replaced by |[¢{|. Hence the sum of these
terms is arbitrarily small if m is sufficiently large.

The fact of uniform convergence is evident.

Thus wu*(t), v*(f) are not only formal series but these series converge to
actual analytic functions which we denote by w*(f), v*(¢). Consequently we have
an analytic invariant curve u=u*({), v=0v%(f). Since u*(f) begins with a term
¢t while v*(f) begins with a term of degree at least w + 1, this invariant curve
has contact of order u at least with the wu-axis at the invariant point, and
corresponds to the invariant curve V =o0. The parameter change under 7
along the curve is ¢, ='ot.

Evidently the existence of these two analytic invariant curves U =0, V=0
establishes the fact that the invariant point is unstable in case I’

§ 28. A general property in case I'.
Introduce new variables of the type (15)
U=u—g@), V=o—yY(),

where u = ¢(v) and v=1(u) are the analytic invariant curves of the preceding

section. In the U V-plane the invariant curves are the axes. For the sake of

brevity of notation we will let u, v denote any set of variables which make the

axes and the invariant curves coincide.

_ When such variables have been selected it is clear that u, =o if u=o,
and that v, =o if v==0. Hence we have

wmulet -, m=ofts )

From this form of 7" we infer at once

ﬂ

—ec I_
0 e<u<g+£,g £<v

<Tte
0
for points near (o,0). Here & is an arbitrarily small positive quantity. Thus
u increases numerically and v decreases numerically upon iteration of 7', in
such wise that the following result is obvious.
If the invariant curves are taken as the axes in case I' by means of a prelim-
inary choice of variables (15), every point of the region u? + v*< 3% with uro s
Acta mathematica. 43. Imprimé le 20 mars 1920. 7
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carried out of the region by iteration of T, while every point v o s carried out of
the region by iteration of T_,. The excluded points of the axes approach (o, o)
under the same conditions.

These considerations show that there can exist no further invariant curves
through (o, o) besides the two analytic curves above obtained.

§ 29. On the invariant series in case I'.

The treatment of invariant points in case I' as given above is sufficient for
the later parts of the paper. Nevertheless, there remains open the question of
the actual existence of divergent formal series F* in case I'. Unfortunately I
have not been able to answer this question. In the present paragraph upper
limits for the coefficients of a particular invariant formal series are obtained.

If the invariant curves are taken as the axes in case I' by means of a prelim-
tnary choice of variables (15) and if F denotes the invariant formal series having no
terms with equal exponenis in u, v save uv log ¢, then the coefficient of u™v" in F
does not numerically exceed Cp, ™", where Cpmyn>o0 8 the coefficient of umv™ in a
convergent power series.

Before entering upon the proof of this statement, we note that in a series
F with coefficients so restricted the terms in any power of u or of v form a converg-
ent series.

There exists such an invariant series F, for, by forming ¢(F*) as a power
series in F* beginning with a term F*, we can eliminate the terms with equal
exponents in F. Since the most general invariant series is a power series in F*
in case I', it follows that this particular series F is uniquely determined by the
given condition.

In order to effect a proof of the italicized statement we first write the
equation F(u,, v,) = F(u, v) in the form

R R

obtained by replacing u, v by g, ov respectively. We have

u(E v)——up v(ﬂ v)=vq
19:9 ’ IQ:Q ’
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where p and ¢ are convergent power series in 4 and v with constant term 1.
The equation above may be written

F(7, o) = Flup, vo).
Likewise from the equation F(u_,, v_1) = F(u, v) we obtain an equation
v
F(gu, Z’) =F(ur, vs),

where r and s are convergent power series in %, v with constant term 1.
If Fpy denotes the coefficient of u” v in F so that F |, =log ¢, F,, = F,, = o,
there results, by a comparison of coefficients in these two equations,

an(en—m_x) = Ppn, an(gm_"'—l) = an’

where Ppn, Qmn are linear homogeneous expressions in F,s with e <m, §<n,
e+ B8<m+n. The coefficients of Fys in Py, are polynomials in the coefficients
of the series p, ¢ with positive integral coefficients, while the coefficients of F.p
in @, are similar polynomials in the coefficients of the series r, s. Combining
the above equations we obtain

an(gn—m + em—-n_z) = Pmn + an-

For m » n the coefficient of F,., is positive.
Suppose that p, g, r, s are replaced by a single dominating series, say

_r .
1— A(u+v)

Then Py, @mns takes a common form R,,, and the modified equations
an(@"_m + Qm—”_2)=2Rmm (m = n),

define new positive quantities F,., for m = n, at least as large as before in
absolute magnitude.
Along with these equations we consider the equations

Gmn(9m+n"‘1)=Rmn: (m+n_—>__3),
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in which the arguments F in R, are replaced by G. These equations determine
Gmn for m +n =3, m +n=4, ..., in succession, provided that we take G,;,=logo,
Gy = Gy =o0. These differ from the equations determining the modified values

Fopn only in that the divisors -;—(g”—"' + gm—n —2) are replaced by the larger

divisors ¢m*+» —1. Consequently we have

F " mi+n' ___

<1l ¢ - '
Imn I ) ey

5_(Qn m em— _2)

where the values m',n' written are for all the divisors explicitly entering into
some one term of the complete expression for F,,,.

Now take these divisors in order beginning with m'=m, n'=n. The next
divisor has m'<m, n'<n, m'+n' <m+n, and in genefal m', n' do not increase
while m' 4 n' decreases by at least unity at each stage.

For m' >n' we have

em’+n’ —1 _ Qm’+n' —T gzn' ,
en'—m’+em’—n’_2 Qm’—n’(I__em’—-n/)S (1_5)8
4

and there is a symmetrical inequality which holds for #'>m'. Let us replace
the factors above by these larger factors. If m >n a superior limit for the.
product II is therefore obtained by making m' diminish by unity successively
and keeping n' = n until we have m'=mn +1, and thereafter decreasing n’' and m'
alternately by 1. Hence the product of the factors is less than

2n(m — n) 92(n—1) 92(1:—2) cex

¢

2mn ( T )2(m+n)
S
¢

and thus less than

2m+n 92 nm

( 1\2m+n)’
I - —)
e

Thus we have

om+n Gmn

IF,,,,,I((—————I)—z(mmganm

1—=
¢

for m >n, with the same inequality holding for » > m.
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It is clear therefore that | .| is restricted by an inequality of the type
stated if the series
G=ZGppumvr,
converges.
The coefficients Gy, and Gy, are equal so that Gy, + By, is the coefficient
of um oy in either

% v v u |
G(I—A(u+v)’ I—A(u+v)) or G(’I—A(u+v)’ 1~——A(u+v))'

Moreover, it follows also from the equations of definition of G,,, that the
difference

Clow, ¢v) _E[G(I—Aq(tu +v)’ I—At(,u + v))+G(I—A1()u + ) I—AQ(LM + v))]’

considered as a formal series, has no terms in «™v* for m+n>3, and so
reduces to

(6?—1)uv log o.

Furthermore, G is determined formally by this property.
If we replace this last difference by

S =1+,

which dominates it, a modified G series is obtained, satisfying the equation

U

Glou, 9”)=§[G(I—A(u+0)’ I—A’()u+v))+G(I —A1()u +v)’ I—A?:“ + ”))] "

+ é(e’-——x) (u + v)2,

and certainly dominating the former G series. This functional equation wholly
determines the new series.
But the functional equation

1) =1(=5) + e~
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admits of an analytic solution, namely

Qs—-I 22 9——271
2 JEp—, 2"
20" 5 (I —»I—Q—Az)
p—I

It follows that G(u, v) = f(u + v) gives the solution of the modified equation
for G, and thus that the original @ series converges. Consequently the proposi-
tion under consideration is fully established.

§ 30. The case I".

This case is easily disposed of inasmuch as T, is of the type I' treated
above.
If we choose formal normalizing variables, 7', becomes precisely

7,1 I culed
U, = p*u eV, g, =" ve %",

This is possible by § 21.
We have u,v,=uv. In case u,v, = uv, write

u v, =uv+@(u, v)+---

where ¢ is a homogeneous polynomial in u, v of least the third degree in u, v.
This gives

Uy Uy = Uy Uy + P (U, ) + o = uv + p(u, v) +(p(9u; év)'*'"'-

Hence ¢(u, v) + (p(gu, -:;z) vanishes identically. This is impossible for any poly-

nomial not identically o since p= —1. Thus we conclude that u,v, =wuw, and
accordingly that «, and v, are divisible by » and v respectively.
We may now write

v

u, = oug(u, v), v, ~og(u,v)

Here g(u, v) is a power series in u, v with initial term 1.
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The first of these equations gives u, = o ug(u,v) g(u,, v,) whence, by com-
parison with the normal form,

g(u, v) g(ul, 'Ul) = eculuz.

Replacing u, v by u,,», in this equation, we have

g(u,, v,) g(u,, v,) = eculvl
so that, by a comparison, g(u,, v,) = g(u, v), i. e. g(u, v) is an invariant function

€ Lot
under 7T,, and must be a function of the product uv only (§ 14), namely ¢ *

The form of the transformation 7' is now fully determined.
In the case I' by the aid of a formal change of variables (15) the transforma-
tion T may be reduced to the form

I _luld

LI
U=oUe , V1=e Ve 2 ,

where we may have ¢ =0, I = o as in case I’

This same reduction shows that the formally invariant curves under 7' and
T, coincide.

In case I'" there is a formally invariant function F* and two analytic invariant
curves through the tnvariant point, these being the same as for T,.

We can at once infer that the same property holds in case I" as is given in
case I' by the italicized statement of § 28. Hence there are no further invariant
curves through (o, o).

In the integrable case these normal forms can be obtained by means of
ordinary changes of variables (§ 25).

§ 31. An example in the hyperbolic case II".

There are of course no real invariant formal curves in case II' inasmuch
as F* is of the form —-§0(u2+'02) by (13). Thus the case I' treated above may

be regarded as the general hyperbolic case, while II' is the general elliptic case.
The cases II", IIT' may be either hyperbolic or elliptic.

In the hyperbolic case II" we can set up an example showing that the
formal series F* may diverge and also illustrating other significant features.
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The transformation 7 is the following

y vy = (1 + u)(v + u?).

This is evidently of type II" at the invariant point (o, o). Moreover, since the
Jacobian of wu,,v, as to wu,v is 1, areas are preserved, and T is conservative
with quasi-invariant function @ =1.

By direct iteration we find

L
1+ ku

Ug = ) vk=(1+ku)9[v+u2(1+

ot ErE )

for all integral values of k. The expression for u; is of the type given in § 5.
dlogI'(2) 1

To express v in such a form we introduce the well-known function Y(2) = dz

We have, by means of the functional equation for I'(z)

Yle+1) =~ +v(),
so that

Yl tn) =2 + V@),

where Y stands for the third derivative of ¥ as to z. Hence we have

Pl s ) vl

whence, by addition,
" I+ku)_ . (£ _ kS ut ]
v ( u v u) o 6".2_0(1 + mu)*

Thus we may write for positive integral values of k, and likewise for &k a
negative integer or o,

S oy B e 41

! For a simple development of the properties of ¢(2) used here, see K. P. WiLrLiaus, The
asymptotic form of the function $(x). Bulletin of the American Mathematical Society, vol. 19, 1912
—1913.
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Now ¥(z) is given asymptotically by the series

I 3 (_“I)" Bn
log zwz—z +n§l oS

in the right half of the complex z-plane, in which B, denotes the nth Bernoullii
number. By differentiating three times! we infer that ¥'"'(z) is given by an
asymptotic series,

2 3 wx{—1menti)zn+2)B
Fta—2 JEns -
nw]

in the right half of the complex z-plane. This series satisfies formally the
functional equation for y'"'(z) given above, although the series diverges of course.

If replace ¥ by this divergent series in the expression for v; found above,
vx becomes a power series in u, » with coefficients polynomial in k. Moreover,
for k=1, 2, 3,... the series involved must converge. In fact v is then a function
analytic at « =0, and therefore its asymptotic series is its power series expansion.
Hence we have here the unique formal series for v, of the type considered
in § 5.

By direct formal differentiation of these series for u:, vz and setting k£ =o,
we obtain '

1 I
du=—u? =2uv— 5 P~
, dv=z2u 62:2219 u

Moreover, since @ =1, we have for the invariant series F* by formula (11)

o F* , OF* I 1
u2, 70 2uv + 6u’w (u)

whence we get immediately

F* =-—u”0——;—l[/'"( )

I
u

This of course is a divergent formal power series in u, v. But it was seen
in § 25 that the series for F'* converges in the integrable case.

t See J. F. Rirr, On the differentiability of asymptotic series. Bulletin of the American Mathe-
matical Society, vol. 24, 1917—1918, for a discussion of such differentiation.

Acta mathematica. 43, Tmprimé le 20 mars 1920. 8
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Thus T is of non-integrable type.

We note the very significant fact that if ¥/" be regarded as a function and
not as a formal series, we have here an actual invariant function, real and
analytic for u>o0, and asymptotically given by the formal series for F* for u
small, so that this function is continuous together with all of its derivatives
for v >o.

At first sight this seems to leave available no similar function for »<o.
Such a function is readily furnished as follows. The function ¥(1—2) satisfies
the same functional equation as ¥(z), is analytic in the left half of the complex
z-plane, and is given asymptotically by the same divergent series as . Hence
a similar invariant function F* can be obtained by replacing the function ¥"(z)
by the function — "' (1—2z).

If the invariant functions for the two halves of the uwv-plane are united we
obtain -a real invariant function, analytic save for u =0, continuous together
with its partial derivatives, and given asymptotically by F* at (o, o).

It is this general type of invariant function which probably exists in all
cases.

In the case I', T can prove the existence of a real invariant function,
continuous with all of its derivatives and asymptotically given by F* at (o, o).
But this discussion is omitted since the existence of an analytic invariant function
is highly probable in the general hyperbolic case.

We come now to the question of formally invariant curves. These are

obtained by factorization of F* (§ 19). Since w’”(%) has an initial term 23, the
curves are at once seen to be the curve u =o taken doubly, and the formal
curve v =——# Y (%) The latter curve also gives an invariant curve, analytic

for u o such that » is continuous together with its derivatives of all orders in
% at u=o0. Half of this curve (u>o0) is that arising when by ¥(z) we under-
stand the function ¥(z) introduced above. For u <o we get of course the other

half of the invariant curve » = Lg w”’(x——z)-
6u u

The analytic invariant curve u?=o corresponds to a multiple factor of F*,
and accordingly is au invariant point curve (§ z0). This is readily verified from
the explicit formulas for «,, v,.

It is also worthy of note that, for any point (v, v) not on either invariant
curve and with % > o0, u; increases for k= —1, —2,.... Also for k=1, 2,...,
we note that
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* Iy i) -
r u%[vk+6uitp (uk] ¢ 0.

Hence as wu; diminishes the expression in brackets increases. In other words
any such point (u, v) leaves the vicinity of (o, o), both upon indefinite iteration
of T_; and of 7. A similar argument shows that the same is true for a point
(%, v) with u<o.

§ 32. Preliminary normalization in the hyperbolic case II".

We will consider first what may be termed the non-specialized case II",
The characteristic feature of the case II" is that the invariant formal series for
F* Dbegins with terms of higher than the second degree. In general then we have

F* =g ud + ay 0 + a, uv? + @y 03+ -+,
where the roots of the cubic in s,
Oy + Gy 8 + 81582 +ap38° =0,

are distinct and at least one of these roots is real. To each such real root s
corresponds a real formally invariant curve v =su+---. In general therefore
case II" is of hyperbolic type. We consider any such real formally invariant
curve C.

By a linear change of variables C can be taken tangent to a new u-axis.
That is, we can make s=o in this way. The equation of C is now of the form
v=¢(u), where @(u)=au?+---. By a further formal change of variables (15),
U=u,V =v—¢(u), the formal curve C can be taken into the U-axis. It is to
be observed that any such linear change of variables as well as a change of
variables (15) leaves 7' of the same type II”. Since ¥V =o is the equation of the
invariant curve, both V, and F* are divisible by V.

If we do not make the above formal change of variables but make an
actual change to variables which are the same to arbitrarily high degree x + 1,
u,, v, are unaltered to terms of degree p -+ 1, @ to terms of degree u, and thus,
by (x1), F* is unaltered to terms of degree yu + 1. Consequently we may write

v, =o[1+-- ]+ owlu, v),

F*(u, v)=vl[a,u +a,uv+ a2+ --1+7(u, v),
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where the brackets are polynomials in %, v of degree at most u—1 and where
w, 7 are power series with initial terms of degree at least u + 1.

Under our hypotheses a,, is not o, for in that case s = o would be a double
root of the equation in s.

By direct iteration of the formal series in their original form (§ 2) we find

U =% + k(P u® + P, U0 + @ 0*) + -+,
vk =0 + k(YU + Yuv + P0f) + -

Hence we find, on differentiating as to % and taking ¥ =o,

Ou =@ u® + @ uv + @02 + -+,
00 = Yyou® + P, uv + Yo, v + -,
Using the equations (11) and bearing in mind the fact that @ commences with
a constant term 1, we see that
P20 = 315 Py =  2Qy3, Poz = 30s;
Y= 0, Yy ="—208y;, Yp;=""0,
These results may be summarized as follows:
Let T be a conservative transformation of type II" for which there are three
formally invariant curves with ordinary points and distinct tangents at (o0, o). If

variables u, v are properly chosen, any real formal curve of this sort can be made
to osculate the v-axis to any order u>2. Under these circumstances we have

Uy =1U + Gy UL + 28,0 + - -, (@, » o),
v, =v[I—28,Uu—a,v+ -]+ w(u, v),

F*(u, v) = v[a, u® + a,,uv + @02 + -]+ 5(u%, v),

where the bracketed expressions are polynomials of degree at most pn—1 and w, n
are power series with initial terms of degree at least p + 1.

§ 33. Some inequalities in the hyperbolic case II".

Let us take variables u, » as above. We will take u > 5 and also a; >o.
Furthermore u, v are taken to be complex, of small moduli, and such that



Surface transformations and their dynamical applications. 61
(22) R(u)>o0, |ol<]ul?,

where R(u) designates the ’real part of «’.
The series for u, gives us at once

(23) |u1——u-——a21u2|<Eu)|u|3,

where EW is a definite positive constant. If we introduce a new variable

z=i— , (23) can be given the essentially equivalent but more convenient form

(23,) Izl_z+a’21|<E(2)lz|—-l’

Suppose now that we take v —=o, R(z) > R, B a large positive quantity; in
this case the inequalities (22) are satisfied. By iteration of T we obtain (z,, v,),
(%, ©3), .... Let us assume for the present that R(z)> R, [v]|<|z|~2 for
l=0,1,...,n—1 with n>o0.

From the inequalities (23') for 2, 2,, z,, ..., z,—1 we infer

l21— 21y + a,, | < E@ R, (l=1,2,...,n).

These inequalities show that the real part of z; diminishes by approximately a,,
as [ increases by 1, while the imaginary component varies slowly. By combi-
nation we obtain

lz2—2 + (I —j)as | < (I—7) BOR, (0235 <),
and thence

[zl >z + (—1) @y | — (1 — ) EBD B,
But, since z; has a positive real part, we have

|z + (l—j)a2,|>(l—7')a,l,

whence
I—j < lu+ (I—j)ay.
a2
Replacing I —j > o by this greater value in the negative term of the inequality
for |z;] we find

E® R-1

21

Izi|>(1— )Izl+(l-j)a21|'
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The polynomial of degree w, F — F*—y, has the same terms as those of
the formal series F* out to terms of degree p + 1. Consequently if (z2) holds
we have

|F,— F| < E®|z]-+1.

Thus, under the above hypotheses, we have
'FI—F3_11<E(s)'ZI_ll_“_l, (l=1,2,...,m).

Moreover F'— o since F is divisible by ». By combination we therefore obtain
_ -1
| Fi] < E® 2 | 2 |—#1.
=0
Using the preceding inequality for |z;| we find
_ 1-1
le|<E(‘)2|21+ (I —7)ay |7

J=0

o0
<ED Rz +jay [+
j=1

But this sum is less than

a+l’

o0 o0
[ an I dt
|21+ na, o+ Jzip ) | =
‘0 zll I ‘0 I_z__ll + ta21

where we have written n =|z;|¢. The final integral which appears has evidently
as greatest value

-]

.

[V—x+ tay, !

0

inasmuch as z; has a positive real part. Thus finally we obtain
(24) | Fi| < E® |z, (l=1,2,...,n),

where E® is a definite positive constant which does not increase as R increases.
Furthermore, from the explicit form of F we have

[F. [z > B, ]
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so long as (22) holds for (z, v). Thus we obtain

Fz zz’
|m|<I 1!’(!5)—|’ (l=1,2,...,n).

Combining this inequality with (24) there results
E®
l”’|<'E(Ts)‘z"_“+2' I=1,2,...,m).

Since p—2 > 3 the second inequality (22) continues to hold until R(z;) < R.
Qur main result may be formulated as follows:

If u>s5,a,>o0, ER(%)>R>0, and if v=o0, then we have

(25) fol < ED w2 < | w2

forl=1,2,..., until 9‘2(—1—)§R.
Ui

It is evident that %(ulz) ultimately becomes less than E.

§ 34. Further inequalities in the hyperbolic case II".

The inequalities of § 33 are not sufficient for our purposes. It is necessary
to evaluate %; more precisely than we have done.
To this end we write

w=:—t+alogu+p’u+---+%u",

where k is arbitrarily large. Also let @ stand for the series formed by the terms
in u, which involve u only. We propose to determine real quantities «, 8, ..., %
so that

[w(@) —w(u) + a5 | < K|ulF+t.

This condition will be met if

[;'I;(%—I) +a2,] + alog%+ Bla—u) + -+ + n(uk — u¥)
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is of the (k+ 1)th order in #. The term in brackets is a convergent power
series in w without constant term. The following term is a similar series begin-
ning with a linear term «a, u; hence « can be so chosen that the first two
terms form a power series without constant or first degree term. The third
term is a similar series with leading term 2ga, u*; hence # can be so chosen
that the first three terms form a power series beginning with terms of the
third degree or higher. Continuing in this way we arrive at a determination of
«, B, ..., = which yields an expression w with the desired property.

Suppose now that we introduce the variable w instead of the similar var-
iable z=§ (§ 33), taking ER(:—‘) > R and choosing the principal value of log u
in the expression w. It is clear that R(w) is large when R(2) is large and that
the region R(z) > R corresponds to a region of similar character in the w-plane,
with nearly vertical tangent throughout and crossing the w-axis far to the right
of the origin in the w-plane. Hence, by DarBoUX's well-known theorem, the
correspondence between these regions in the w-plane and z-plane is one-to-one

and conformal. Moreover, in this part of the w-plane % is nearly 1.

From the definition of 4% it appears that

lu, — @] < E® |,

and thence from the explicit expression for F,

lu, — @) < E®|F| |u|?
when (22) holds. Further, we have

|u, — @) < B E® |ule-2,
when (25) holds, from which

[w(u,) —w(@) | < B0 ul—t.

If we recall the defining property of w(u) and take Z<u—s5, we get
finally

lw(ux)_w(u) + ay ' < E(wlulkﬂ-

Applying this inequality successively for the sequence of values (u, ») of
§ 34 (when (22), (25) hold), we obtain
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|lw,—w +a,|<E®|w |5,

|w, —w, + a, | < B |w, 5,

| wn —wna1 + a, | < E Jw, |51,

Thus in the complex w-plane each point w, w,, ..., w, in the region
R(w) > E' falls approximately at a distance a,, to the left of its predecessor.
By the method used in § 33 it is apparent that the sum

I I I
[P ¥ s P T T

and [w;—w + la,,| are of the order |w;|~*. Hence we have:

Assume y>5,k<u——5,a21>o,§ﬁ(%)>R, and v ==0. Write
w=%+a]ogu+ﬂu+ <o 4 onuk,

where a, 3, ..., % are suilably determined constants. Then we have

(26) lwi—w + la, | < EW® |w—la,, |*

for =1, 2, ..., until m(—l);R.

I
u

§ 35. The invariant curves in the hyperbolic case II".

With the facts deduced in §§ 33, 34 in mind, we can readily prove the
existence of an invariant curve.
Let us take w, » as our variables where w is restricted to the region of

the w-plane which corresponds to %t (-:;) >R.
Consider the two sequences of functions of w:
w, w, (w+ a,, 0), w, (w + 2a,,,0), ...,
0, v, (w+ a,, 0), v,(w+2a,,0), ...

According to the inequalities (26), (25), we have
Acta mathematics. 43, Tmprimé le 22 mars 1920, 9
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|wi (w + lay,, o) —w| < EW®|w|*,

Joi (w + la.,, 0)] < B9 fqp |rt2,

. w
inasmuch as ~ approaches 1.

Thus, for R(w) sufficiently large and positive, the sequences wy, »; remain
bounded and define a closed set 3 of limiting functions w*(w), v*(w) analytic
within the same w domain,! and restricted by the inequalities

Jw*(w) —w| < B |w|~*, |v¥(w)] < B |w|-u+2.
Now we have

T (wi(w + la,,, 0), vi(w + la,,, 0)) = (wi1(w + la,,, 0), vi+1(w + la,,, 0)).
Thus the transformed sequences of functions have as limiting functions
w*(w—a,,), v*(w—a,).

In other words the totality 3 is carried over itself by T, the change of para-
meter being w, =w—a,,.

Now let us suppose w and » to be real, with w sufficiently large and
positive. The transformation from (w, v) to (w,, »,) is then a real analytic trans-
formation, and the totality of curves specified above are analytic with the pos-
itive w-axis as asymptotes. In fact these curves = have contact of order u—2
at least with the w-axis at o.

Let us return now to the prepared real wuw-plane of § 32. The relation
between w and u shows that in the real wov-plane the curves 3 are defined for
u sufficiently small and positive, and are analytic curves with contact of order
tt—2 at least with the u-axis at (0, 0). On account of the mode of definition
of the curves in the complex domain the inequality |v|< E09|u}]*~2 holds uni-
formly for all of these curves.

It follows that the totality = consists of only one curve.

In fact, consider the region = >o bounded by these curves and the line
u=d. TIf there were more than a single such curve, such a region would ne-
cessarily arise and lie within the region

o<u<d, |v|<EW|y|—2,

! Cf. W. F. Oscoop, On the uniformisation of algebraic functions, Annals of Mathematics, vol.
14, 19121913, pp. 152—154.
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By the transformation T we have

Uy =1U+ Ay u® + ---.

We see at once that this region goes into another which includes it. For, the
upper and lower boundaries of the region bounded by the I curves are carried
into themselves (the totality I being invariaunt), while the line 4 =d is moved

to the right. This is impossible since f Qdudv is invariant under 7',

Passing back to the original uv-plane, we infer the existence of an analytic
invariant curve ending at the invariant point and having contact of order of
n—2 with the corresponding formally invariant curve. When the curve is
represented in the form v = ¢(u) say, ¢ is continuous together with its deriva-
tives of the first u— 2 orders for u=o.

Now u is an arbitrarily large integer. By increasing u we cannot obtain
further invariant curves, as is seen at once by a repetition of the above argu-
ment as applied to the region between such curves. Therefore, the invariant
curve when represented in the form » = ¢(u) say yields a function ¢ analytic
for u» o0, continuous together with its derivatives of all orders for u=o0, and
formally coinciding with the formally invariant curve.

All of the above only applies if a,, >0. But if a,, <o then the analogous
quantity for T'_; is —a,,. Hence we can arrive at the same conclusion if a,, <o
by considering T'_; instead of 7'.

Clearly we can deal with the case u <o by merely rotating the axes in the
prepared wo-plane through the angle .

Let us call a real function f(f) of a real variable ¢ hypercontinuous for t=t¢,
if f(t) is analytic for ¢»¢,, |{—¢,]<J>o0, and continuous together with all of
its derivatives for ¢=1¢,. Similarly a curve is Aypercontinuous at a point if its
codrdinates can be expressed as hypercontinuous functions of a parameter .
With these definitions we can summarize our results as follows:

In the case II" when there are three formally invariant curves with ordinary
points and distinct tangents, one or all three of these will be real. To each such
real formal curve corresponds a unique hypercontinuous curve through the invariant
point which is invariant under T and has the corresponding asymplotic representa-
tion at the invariant poini.

It is clear that the method above is not essentially limited to the discus-
sion of real invariant curves but these are all we need to consider.
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§ 36. Extension to the general hyperbolic case II", IT".

It is easy to see that the above work admits of an extension to the most
general case IT".

Suppose first we fix attention on any real formally invariant curve C in
the case II" which has an ordinary point at (o, o).

We can begin as before (§ 32) by taking a prepared wo-plane in which this
curve osculates the u-axis to order pu.

The series for u, can be taken to contain a term cuf of least degree p> 1,
where p does not increase indefinitely with u. Otherwise, when the w-axis is
made the invariant curve by a formal change of variables, it will be an invariant
point curve, and such a curve has previously been observed to be analytic.

The series in v, is divisible by v out to terms of degree u + 1 as before.

The formal series F* consists of a polynomial of degree at most u divisible
by v with a leading term cvu® and a formal series with initial terms of degree
at least w + 1.

Let us assume ¢ >0 and take

Ru) >o, |v]<]ul?.

Further let us introduce the variable z = «~?+!. We find easily that, for R(z) > R,

1
lz,—z+ (p—1)c|< E|z| 71,

where E is a suitable positive constant, and we can carry through a discussion
analogous to that contained in §§ 33, 34.
Introducing next a variable w,

I

w=ﬁ

+J(J‘—§+ o+ dlogu + - + guktip,

we can determine «, 8, ..., ¢ 80 that

Jw(a@) —w(w) + (p—1)c| < EB'|ufe+?

as in § 34, and can generalize the results there obtained.
The existence of a unique invariant curve can then be proved as in § 35.
When the real formally invariant curve has a ’cusp’ at (o, 0), this can be
reduced to an ’ordinary point’ by a succession of changes of variables of the
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type % =uv, v =, and then an argument may be made like that carried through
in §§ 33—35.

We will not stop to enter into details, but merely state the conclusion:

In any case II" to every real formally invariant curve corresponds a unique
hypercontinuous invariant curve with the corresponding asymplotic representation.

In the hyperbolic case II"', T, is of type II". Hence we infer:

In the hyperbolic case II', 0———M, the invariant curves under T, are

of type II" and their images are invariant as a set under T.

§ 37. A general property in case II".

In case II" under the restrictions of § 35 every point of the region u®+ v® < 42
not on one of the real invariant curves is carried out of the region by iteration of T'
or T—1, while every point on one of these curves approaches the invariant point
(0, 0) by dteration of T and 1is carried out of the region by iteration of T—1, or
vice versa.!

There may be either three real invariant curves, or a single such curve.

Let us consider the first of these subcases. Here the neighborhood of (o, o)
in the plane is divided into six parts, bounded by arcs of the invariant analytic
curves. These six regions evidently go over into themselves under T or 7_,.
Let us consider a particular one of these regions, and let us first take tangents
to the corresponding arcs of the two invariant curves at (o, o) as axes. The
hypercontinuous invariant curves have equations v = ¢(u), u=(v) referred to
these axes.

Make the further change of variables

U=u—yY{), V=v—¢pu).

The right-hand members of these equations are continuous together with their
partial derivatives of all orders in u, v, analytic except for u==0 or v =0. In
the new variables the invariant curves appear as the U- and V-axis, while the
region under consideration becomes the first quadrant in the U V-plane.

1 It is apparent from this result that no other invariant curves through the invariant
point can exist.

Levr-Crvira (10c. cit.) proved that certain nearly points are carried away from the invariant
point in this and other hyperbolic cases, showing that the point is unstable.

See also A. R. Cieara, Sopra un criterio di instabilita, Annali di Matematica, ser. 3, vol.
11, 1905.
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This further change of variables is formally of the type (15) so that we
have (see § 32)

Uy=Ulxi+a, U+2a,V+--], V,=V[1—2a,,U—qa,V+ -]

The factors in brackets are analytic for U>o0, V >0 of course. We can readily
show that these factors are continuous together with all of their partial derivatives
for U>o0, V>o.
In fact consider
lim % 4
as a point (u, v) approaches the invariant curve U =o0. By the ordinary rule
for the evaluation of an indeterminate form the limit will be given by

du dv, 0Ju

li (aul ay(v,) %

at the point in question. Hence the first bracket, and likewise the second bracket,
are continuous functions for U >0, V>o0. By successive steps of like nature
all of the partial derivatives of the brackets may be shown continuous.

In the subcase under consideration there is a third real invariant curve in
the second and fourth quadrants obtained by factoring formally

F*—UViay U+a,V+-1.

We see that a,, and a,, are of the same sign (say positive), for this third
invariant curve is given by

g, U+a,V+---=o.

Returning to the explicit form of U,, V, above, we infer that U(V) increases
and V(U) diminishes under iteration of 7'(7T—;) for any point in the first quadrant.
If (U, V) approaches a definite point (U, V) with U > o (V > o) within the region
U2 + V< d% this point is necessarily invariant under 7. But, inasmuch as there
are no multiple factors of F* and thus no invariant point curves in the case at
hand, there will be no invariant point in this region except (o, o). Thus the
first part of the italicized statement holds in this case.

The part of the statement which deals with the bebavior of points on the
invariant curves is obviously true in all cases. If it was not we should have
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isolated invariant points on these invariant curves lying arbitrarily near to (o, o),
and this is impossible.

We have next to discuss the subcase where there is a single real formally
invariant curve. Let us take this curve into the U-axis by a transformation like
that made above. We have then

U=U+a, U2 +2a, UV +3a,V+--,
Vi=V[i—2a,, U—a,V+--],

where the brackets stand for a type of functions similar to those in brackets
above.
Here one has

F*<=7V([a,Ul+a, UV +a,V2+--].

The quadratic form in brackets is definite since there are a pair of conjugate
formally invariant curves with distinct conjugate directions.
We find

UV —V,U=V[3an U +a, UV +ay V) + 1.

This equation renders it apparent that 7=tan—1—g varies continually in one

sense under indefinite iteration of 7' or of 7_; as long as a point and its iterates

U
U,, V, show that |U|] and | V| vary in opposite senses. In this case | U| increases
and the point cannot remain near (o, o).

Moreover the point cannot remain near (o, o) in the contrary case. If
limz =70, 7 the above equation shows that V approaches o; in fact the
variation in 7 is of the first order in V. The variable U must likewise tend to o.
But the geometry of the figure in the plane makes it clear that [V/:lx :I{; must

_ 1 4
approach tan 7 indefinitely often, at the same time. If we recall that T

approaches o, and the formulas for

remain near (0,0). If limzr=o0 or =,

approaches this value also and employ the formulas for U,, V,, we find readily

—2a,, tan7—a,, tan® 7
Oy +2a,, tan v + 3a,, tan® 7

=tanz

whence
3 tan 7 (@, + a,, tan 7 + a,, tan® 7) =o,

which is impossible.
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§ 38. Extension to a more general case II".

The same property holds in the most general hyperbolic case.

The kernel of the method of proof employed in § 37 depends on the use
of a function which increases or decreases upon iteration of 7. This method
can be applied to a somewhat more general case than has been treated above,
namely that in which all the real directions of formally invariant curves at (o, o)
are distinct. It is this case which we treat first. In dealing with the most
general case (§ 39), however, we are obliged to employ less direct means.

Suppose that the property fails to hold, so that there are real points not on
an invariant arc which remain in an arbitrarily small neighborhood of (o, 0)
under indefinite iteration of T (or of T—,, if not of 7).

There will then exist such points in some one of the regions into which the
invariant ares divide the vicinity of (o, o), and it is upon such a region that we
fix attention. For the present we assume there is more than a single real
invariant curve.

By a change of variables U=u—y(v), V=v—¢p(u) (§ 37), the region
between the invariant boundary arcs may be taken into the first quadrant, in
such wise that the invariant arcs become the U- and V-axes. The variables U, V
are analytic in u, v, save for u=o0 or v =0 when U, V are continuous together
with all of their partial derivatives. Furthermore we have

oH oH
U,=U[1+(H+Vﬁ)+---], V,=V[1—(H+Um)+---],

where UV H is the homogeneous polynomial of lowest degree m>3 in F*, and
where the brackets stand for functions analytic for U = o, ¥V 0, and continuous
together with all of their partial derivatives. The factors U, V in UV H correspond
to the invariant axes. The factors of H are either real linear factors c U+ 8V (¢ >0)
or complex linear factors, since there are no real invariant curves in the first
quadrant of the UV-plane. Hence H is of one sign, say positive, near (o, 0)
and of the order m —z in VU* + V2.
From the above equations and the facts stated we have

UV—V,U=UV[mH+---]>o0;

. 14 . . . . .
in consequence r=tan—lﬁ varies continually in one sense upon iteration of T

or of 7T_;, and must approach a limit.
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This limit must be o or —. In fact since there are no invariant points
2

near (o, o) (invariant point curves correspond to multiple factors of F*), the
corresponding point would necessarily approach (o, o) in the contrary case. If

r > o denotes the corresponding limZ the fraction

U
oH
V‘-_-‘V__V —-(H‘f‘VW)-l-
U,—-U U dH
! H+Ugzp +-

can be made nearly equal to r with negative denominator and numerator; this
is easily seen geometrically. Hence we have (compare § 37)

0H
lim Sl v I
o OHT
H + UW
along this direction, whence H ==o for g=" This direction will correspond to

a real formally invariant curve, which is absurd.
Also this limit is not o, for the formulas for U,, ¥V, show then that |U,]|,
| Vy| will vary in opposite senses and the point will recede from (o, o) along

the U-axis. Similarly the limit is not ::

This completes the discussion when there is more than one real invariant
curve, The argument is easily modified to meet the case of a single such curve
(compare § 37).

The property of § 37 holds therefore if the real tangent directions of the formally
invariant curves are all distinct.

§ 39. Extension to the general case II", II".

We propose to deal in outline with the general case TI". As before, we
assume the property not to hold, and show that a contradiction results.

The region under consideration is bounded by two invariant arcs which may
or may not have the same tangent direction. An argument like that used above
may be partially applied. If we form the difference u,v —v,u, it is given by a
series beginning with a constant multiple of the homogeneous polynomial of

Acta mathematica. 43. Imprimé le 23 mars 1920, 10
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lowest degree in F*. But for directions within the region making this polynomial
vanish there must be an even number of equal factors au + Sv, since if there
were an odd number there would be at least one corresponding real formally
invariant curve and thus an invariant curve within the region, contrary to
hypothesis. Hence wu,» —w,u preserves a constant sign save near these critical
directions.

Moreover, if, under iteration of 7, a point moves away from the vicinity
of such a critical direction, it rotates in a constant sense about (o, o) to the
vicinity of the next following critical direction (compare § 38).

Since there are only a finite number of such critical directions, there will
then be points remaining in the indefinitely small vicinity of one such direction
under indefinite iteration. It is upon such a critical direction and its neigh-
borhood within the region under consideration that we now fix attention.

Let us take this critical direction along the positive u-axis, and make the
change of variables,

U=14u4, v=4ur;

in the new variables the transformation 7' then is readily found to bhave the
form II"

u1=a+..., 51=v+....

The series F*(u, uv) is of course formally invariant, and in general the same
methods of formal reckoning apply as earlier.

The first distinction to be noted is that the invariant integral f f Qdudv

becomes f f #Qdudv; the new quasi-invariant function %@ is analytic but

vanishes at (0, 0). The second distinction is that the line i = o in the u7-plane
is evidently an invariant point curve corresponding to the invariant point (o, o)
in the uv-plane.

Also there are infinitely many points % >o in the uwv-plane which remain
near (o, o) under indefinite iteration of 7, and yet do not lie on an image of an
invariant curve in the wo-plane.

The formal differential equations (9) in iz, vz are clearly

dog __ OF% o 0,00 _OF*
dt = dop YAk T G

U Qr

b

where by F* is meant the series F*(u, uv).
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In the uw-plane there are also certain critical directions, finite in number,
along which the points above referred to cluster. In fact w,v—v,u has the

same initial terms as
if_JF* + _0F*
al“ 9@ TV 90 )

As before, the lowest terms here form a homogeneous polynomial in %, » of one
sign or zero for @ >o.

Repetition of the reasoning and further like changes of variables can now
be made. It may be observed that the invariant point curve 4 = o introduced
at any stage is either eliminated by a further change of variable, or corresponds
to the new #-axis. Consequently the extraneous invariant point curves are either
#==0 or 4==0 and ¥ =o0.

Since there are only a finite number of formally invariant curves and the
changes of variables used lower their order of contact, a stage must finally be
reached at which either (1) there is no formally invariant curve not of extraneous
type or (z) there is only one such curve. In case (z) it is clear that we may
assume this curve to have an ’ordinary point’ at (o, o) with tangent direction
distinct from that of an extraneous invariant curve; the changes of variables
employed separate formally distinct curves and eliminate a ’cusp’. One further
change of the same type will then make % =0 the only extraneous invariant
curve.

Let us begin with case (1) when % =o0 and v =o are extraneous.

Since f f Q (u,v)dudv is an invariant integral it is clear that points

Q(u,v)—o0 go into points Q(u,»)—=o0. Thus @ =o gives a set of real analytic
curves invariant under 7. Such curves are necessarily individually invariant
inasmuch as % =o0 is invariant. But there are no such curves save # =0 and
v=0. Hence we have

Q(u,v)=u'o"R(u,v), (I>o0,m>0),
where R{o, o) # o.
Also F* =0 yields formally invariant curves so that

F* =y?rv2G(u,v), (p>l+1,9>m+1),

where G is a formal power series with constant term.
Now by the formal differential equations (9) for this case we have
d il _ dvy

e J _ _ _ Jd . _
u,’cv,""RW=—m[u?,;ng], uiv,’:‘RE=—m[uzv%G].
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Thus the series for u,, v, have the form
@+ @p—tpe—m=1[gc + 4], v+ @wp~=1ve ™ [— pc + B]

respectively, where A4 and B are power series without constant terms. Under
iteration of 7' or 7, either |%| increases and |v| decreases, or vice versa. Con-
sequently a point which remains in the vicinity of (o, o) will approach a limiting
point on the 4- or 9-axis, distinet from (o, o).

For definiteness suppose the point to lie in the first quadrant with ¢>o.
Such a point will then approach a point of the positive w-axis near (o, o) under
iteration of 7. But the series above show that for such a point

——=>—2Kv, (K >o).

when by integration we find »=ce—X%. Hence % cannot approach a limit as v
approaches o but must increase indefinitely.

The case when only @ = o is extraneous admits of similar discussion.

Case (1) is now disposed of. Let us consider case (2).

By a formal change of variables of the type employed in § 37 we may take
#=o0 as the invariant point curve and v=o0 as the other invariant curve.
Formally then we are essentially in case (1), above disposed of. Indeed if the
invariant curve is analytic no modification is required.

If the hypercontinuous invariant curve is not analytic there can be no
corresponding factor of @, i.e. after the new change of variables we have

Q(ﬁ, 5)=77’IR(5’ 5): (l>0):

where R (o, o) = o.
Moreover, after this change of variables, » only occurs once as a factor of

F*, For a multiple factor gives an analytic invariant point curve (§ 20). Thus
we have

F¥=wury Gu,v), (p>1+1),

where G (0, 0) # 0.
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Consequently we have here
Iy =#[1 + cwp~1 4+ -], T =v[1—cpar14 ...],

where ¢=o. The brackets stand for functions continuous together with all of
their partial derivatives (see § 37), and with the asymptotic representation in-
dicated at (o, o).

But the points remaining near (o, o) under indefinite iteration of 7' or T lie
approximately in the direction of the #-axis; otherwise, before the above non-
analytic change of variables was made, we might have removed the invariant
curve by another change of variables, and thus have arrived at case (1).

As a result |u| increases and |v| decreases. The above formulas demon-
strate this fact. This possibility is excluded since there are no invariant points
near {0, o) not on #=o.

Thus case (2) is also disposed of.

Since in case II", T, is of type II" we may state:

The property of § 37 holds in the most general hyperbolic cases 11", I1".

§ 40. The hyperbolic case IIT', II1".

The non-specialized case III' is of hyperbolic type as appears from an
inspection of (13). If we assume that the coefficient of +® in F* is not zero,
we obtain a real formally invariant curve with cusp at (o, 0).

Now by the change of variables (see § 6)

U=uv, v="0,

T takes the form II". By the use of the methods of § 32—39 we can infer.

In the hyperbolic case I11' to each real formally invariant curve corresponds a
unique hypercontinuous curve which is invariant under T and has the corresponding
asymptotic representation at the invariant point.

In the hyperbolic case 111" the invariant curves under T, are of type II' and
their images are invariant as a set under T'.

The property of § 37 holds in the hyperbolic case I11.

§ 41. Invariant curves and the hyperbolic case.

We aim finally to show that a certain kind of converse to the above can
be found:



78 George D. Birkhoff.

If T 1is a conservative transformation I', II', 11", III' for which (o, o) is an
tnvariant point, and if there exists an invariant continuous arc ending at (o, o) for

which tan—lg remains finite, then the invariant point i8 hyperbolic and the invariant

arc is an arc of a hypercontinuous invariant curve obtained above.

If the invariant point can be proved hyperbolic the remainder of the state-
ment can be demonstrated at once. In fact all points not on one of these hyper-
continuous arcs leave a definite vicinity of (o, o) under both 7' and 7_,, ac-
cording to the general property developed above. But the invariant arc is
carried into part of itself either by 7 or T—;. Therefore it must consist of
points on one of the hypercontinuous arcs.

Let us take first the general case when 7 is of type I' or II' at the in-
variant point (o, o) and let us suppose if possible that 7' is elliptic at that point.

Let «, 8 be the upper and lower limits of tan"‘% along the curve. These

are invariant under T of course. Hence the lines through (o, o) in these direct-
ions are carried into curves tangent to these respective lines at (o, 0). Thus
we have the phenomenon of invariant directions, which is absurd in case IT'.
Hence 7T is of type I, and (o, o) is a hyperbolic point.

If T is of type II" every direction through the invariant point is invariant.
It is necessary here to have recourse to a more elaborate argument to show that
T is hyperbolic.

For definiteness we assume that 7 carries the invariant arc into part of
itself. Define « and # as above. If «»p3 we can find a line v=cu which
intersects the invariant arc infinitely often near (o, o). But the image of this
line lies on one side or the other of the line near o, at least near (o, o), since
T is analytic. Thus it is apparent that the total area between the line and in-
variant arc on the same side of the line is carried over into part of itself by 7T,
which is absurd. Hence there is only a single limiting direction, i. e. a =8,
and the invariant arc does not meet the corresponding line v = cu near the
invariant point.

This direction corresponds to the real tangent direction of a formally in-
variant curve. Indeed the arguments employed in § 38 show that points not
approximately in such a real invariant direction from the invariant point are
rotated into such a direction under iteration of T, provided that the point re-
mains near (o, o) as is the case for a point of the invariant are.

This formally invariant curve which has a real tangent direction will cor-
respond to a real formally invariant curve in general so that we have the hyper-
bolic case II".
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There remains the possibility, however, that we have an even number of
formally invariant curves with real tangent directions but not with all coef-
ficients real. Here further consideration is required.

Take the straight line from (o, o) in the limiting tangent direction as the
u-axis and write

U=, V=uv

as in § 39. The v-axis in the uv-plane is a line of invariant points under 7,
and the invariant arc approaches (o, o) in this new plane. But this invariant
arc does not cross the line of invariant points of course.

Repeating the argument above we infer that this arc approaches (o, o) in
a definite limiting direction in the wv-plane. But it was established in § 39 that
such a limiting direction can only be along a real tangent direction to a for-
mally invariant curve. Hence again we argue that the invariant arc has the
direction tangent to @ ==0 or to a formally invariant curve, when another change
of variables as above is in order.

At each stage these changes of variables diminish the number of real co-
efficients in the series for the formally invariant curve, until at last the first
coefficient is not real and there is no invariant direction. This is impossible
by our argument for case (1), § 39.

Similarly the case IIT' is disposed of.

Chapter III. Elliptic invariant points. Stable case.

§ 42. Existence of closed invariant curves in the stable case.

In the integrable elliptic case there is a family of closed analytic curves
F* = const. about the invariant point, each invariant under 7' but not of the
type above considered since these curves do not pass through the invariant
point. Such an invariant point is stable of course.

A somewhat analogous property can be established in the non-integrable
stable case. Let us understand by a closed curve the boundary of a simply con-
nected open continuum in the finite plane, while regarding that plane as com-
pleted by the adjunction of a ’point at infinity’.

In the stable case there exist an infinile number of invariant closed curves sur-
rounding the invariant point and lying within any prescribed neighborhood of it.!

1 Compare the method of proof with a proof given by H. Poixcarg, Les methodes nouvelles
de la mécanique céleste, vol. 3, Paris, 1899, pp. 140—151.
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Choose any arbitrarily small neighborhood of the invariant point. It is
then possible to find a second neighborhood r<dJ<d such that any point of
this latter neighborhood remains within the first under indefinite iteration of 7'.
This is the direct statement of the property of stability.

Now the open region »<d and all of its images under 7 inelude (o0, o) as
an inner point and overlap. Let us speak of a point P.as occluded by this set
of regions if it is possible to draw a regular closed curve lying entirely within
the set and enclosing P and (o, 0). The set of occluded points = is etidently
an open simply connected continuum containing all of the set of regions.

The image continuum I, is also made up of points =; the curve enclosing
P and (o, o) is carried into a curve enclosing P, and (0, o), lying within the set
of regions, and so P, is occluded, i. e. is a point of X.

Now X cannot contain points not in 3, since then f (‘ Qdudv would be
J

larger over I then over X,. Hence 3, coincides with . The boundary of =
is therefore an invariant curve lying in the arbitrary neighborhood 6 <r<d and
surrounding (o, o). Since d is arbitrary there is clearly an infinitude of such
curves, invariant under both 7' and 7_;.

Conversely, if there is an infinitude of such invariant curves about (o, o), that
invariant point s clearly stable.

§ 43. Some fundamental properties in the case II', /=1x.

The cases I', IT', I =1, may be regarded as constituting the non-specialized
case of an invariant point. In the second of these cases we have the first pos-
sibility of stability. The discussion of this elliptic case II', I =1 which we shall
make (both in the stable and unstable case) will be based on certain properties
established in the present paragraph.

Let us choose variables u, » which osculate the normalizing variables U, V
of § 22, formula (19), to the order w(u>2). We will then have

(27) %, =u cos [0 + c(u? + v?)] —v sin [0 + c(u® + v*)] + P(u, v),
7 v, =usin [8 + c{u? + o¥)] + v cos [6 + c{u? + v5)] + Q(u, ),

in which P, @ are given by convergent power series which begin with terms
of the (1 + x)th or higher degree.

We shall assume ¢ > o for definiteness. It is clear that in the contrary case
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T—1 will be of this same form with — ¢ replacing ¢, so that our assumption is
no essential restriction.

The particularly simple integrable case P = @ = o affords a clear insight as
to the character of 7'. Circles with (o0, o) as center are rotated into themselves
through an angle 6 + ¢7%, increasing with or decreasing with the radial distance
r according as ¢>o0 or ¢<o.

This special case shows clearly the wortical nature of the transformation 7'
in the neighborhood of the invariant point.

It will be convenient for us to introduce polar coérdinates 7, ¢. In these
variables the equations above take an equivalent form

(28) ro=r+R(r,¢), py=9 +0+cr*+ 8(r, ¢),

where

R=Vy2 +2r(Pcos(p + 6 + cr?) + @sin (p + 0 + c1?)) + P2 + @Q*—r,

(29) —Psin(p+ 0 + ¢r®) + Q cos (p + 0 + ¢r?)

= —1 )
8§ = tan r+ Pcos(p + 6+ cr®) + Qsin(p + 0 + cr?)

Since P, @ are analytic power series in r beginning with terms of degree u + 1
or higher, and with coefficients analytic in ¢ with period zm, it is apparent
that R, S are continuous functions of r, ¢ for r>o, expansible as power series
in r with coefficients analytic in ¢ of period zzv. The first of these will begin
with terms of at least the (ux + 1)th degree in r, while the second will begin
with terms of at least the uth degree.

These same considerations show that R, S admit continuous partial deri-
vatives in r, ¢ of all orders.

The codrdinates r, ¢ will be regarded constantly as rectangular codrdinates
in an rg-plane, so that the r-axis corresponds to the invariant point, and the
half plane r>o to the uw-plane. Two points for which the codrdinates r are
the same, but for which the codrdinates ¢ differ by a multiple of 27, are
called congruent. Two congruent points represent the same point of the uv-plane.

Suppose now that we have a point in the r¢-plane and a direction at the

point given by %TQ, which is the reciprocal of the slope. The corresponding
reciprocal slope at the transformed point under 7' is then given by g—?ﬁ This
1

quantity may be computed by means of (28) and has the value
Acta mathematica. 43. Imprimé le 23 mars 1920, 1
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de ds
{i}ﬂ:d +zcr+d
dr, dR~’
I+E_‘

where the indicated differentiation is directional in character.
From this equation there results

s _ ( +d(p)dR
dg, _d9 _ dr 4
dr, “dr —2orT iR
I+ —5—
dr

If we evaluate the directional derivatives on the right in terms of the partial
derivatives of R, S, we perceive at once that

dR R  9Rdg . dol\
ar |~ |or Tapar <’"‘{I+ dr I[
Jar] <= e+ [
d
and thence
dg, _dg ! i1 (‘_z_"_’)s
dr, 5——201‘ <h'r1lr 4 ar },
as long as dg < erl~# say
dr ’

That is, we may write

de, dg

_ — dg)\*
(30) E—W—zcr+xr 1{I+(dr)}’

do

where | x| <?' as long as ‘ﬁl is restricted as stated.

Let us term the small sheaf of slopes g—% at any point in the rg-plane

for which

&_
<Lp
=&

dr

(31) dg

the barred angle. When (31) is not satisfied, the left-hand side of (30) is positive.
Our conclusion may be formulated as follows:
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In the rp-plane the transformation T leaves r unaltered to terms of order 1« + 1 in
r, increases ¢ by 0+ cr? to terms of order u, and rotates any direction not in the
barred angle in a negative sense.

An entirely analogous discussion of 7_; shows that, if ¢ be taken small
enough in defining the barred angle, we have

In the ro-plane T_; rotates any direction not in the barred angle in a posi-
tive semse.

A quantitative discussion of the amount of rotation of directions can be

based on (30) and a similar equation for gf‘l .
1

In particular we note that

Under dteration of T (T—.) any direclion at a point is ultimately rotated into
or past a barred angle negatively (positively) if r remains small.

If possible assume this statement not to be true.

In the first place we must have lim r =o0. For in the contrary case there
is a rotation of definite negative amount occurring indefinitely often, and the
statement must hold.

If we let ¢'=g-% the inequality (30) gives

A¢' > zar,, (@> o),

as long as » remains small and ¢’ does not lie in the barred angle. At the same
time the formula (28) for r, shows that

|dr| < brptl, (6> 0).
Consequently we have

<t
20

ar
4¢'

Hence r diminishes as ¢' increases not more rapidly_than if

ar __ b .
do' PY
But a direct solution of this differential equation establishes the fact that ¢'
must increase indefinitely and be of order at least r'—# if r is to approach zero.
This is in contradiction with the hypothesis that the direction is not rotated
into or past the barred angle.
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Thus we see that the stated property holds for 7. In the same way it
may be proved for 7.

The following property is also useful:

Given an arbitrary positive K, then for any point (r, @) with o <r<d (d suf-
ficiently small) we have

pn>p+n0+ K

for n> N until r, >d.

From the equations (28) we get the inequalities

lro—ri<c'r®, @,—@>0 4", (¢'>o0,c" >0).

From the second of these inequalities there results

n—1
Pn>p+n0+c" X}
=0

as long as r, 7, ..., 7, are less than d. It suffices to prove that the sum on

the right exceeds g before r,>d, provided that r is sufficiently small. Now

from the first inequality we deduce

p—1
7o — 7ql <c'2r§‘.
J=q

If 7, and 7, are the maximum M and minimum m of r;, this yields for >3
p—1
M—m<c'M’zr},
=g
whence

<y I m
3> g (=)

j=q

Consequently, if r is sufficiently small and varies to a relatively much larger

(but still small) value or to a relatively much smaller value, the corresponding
=1

sum Zr} is very large and exceeds EIT{,
i=q
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§ 44. Nature of the invariant curves.

Let us define a regular neighborhood of an elliptic invariant point (o, o) as
a neighborhood such that any radial direction in the rg-plane is rotated through
a negative angle by 7', and through a positive angle by 7-;.

Probably a hyperbolic point cannot lie in a neighborhood of this kind.

The reasoning of § 43 shows a regular neighborhood of this type to exist
in case I1', [ =1.

The elliptic case does not arise in the general case II" or III'. But a
direct computation shows that, in case II', ! finite, and in what may be termed
the general elliptic subcases II" and IIT', a regular neighborhood exists.

Throughout such a neighborhood we can evidently construct a barred angle
through each point of the neighborhood such that directions outside the barred
angle are rotated negatively by 7' and positively by 7', and ultimately are
rotated into or past the barred angle.

In a regular neighborhood of an elliptic invariant point of type II', =1,
any invariant curve enclosing the invariant point meets every radius vector through
the invariant point in only one point. If the barred angle in the plane be drawn
at the corresponding point the curve lies entirely within it on either side in the vi-
cinity of the point.

In order to demonstrate this fundamental property of the invariant curves
we make use of the rg-plane employed above. '

Let us suppose first that the invariant curve L under consideration is de-
fined by means of an inner simply connected open continuum I' containing
(0, 0) in the wv-plane. :

If the first italicized statement is not true consider the continuum of points
accessible from r == o0 along a perpendicular line ¢ = const. in the r¢-plane without
passing a point of the invariant curve itself.
This open continuum I'* forms all or part of
the open continuum I" bounded by the in-
variant curve L and r=o0 (see figure). The
boundary of I'* is evidently a closed curve
made up of points of L and open segments
of lines @ = const.

If ' and I'* coincide then either the
first property is true or there exist one or
more boundary segments ¢ = const. of I" and
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r*. Now either I'* lies to the right or to the left of such a segment. In the
first case the tangent to the boundary makes an angle ;—E with the g-axis. An
application of 7_, will carry this segment into another with tangent argument

greater than 72_v But, on account of the form of the boundary, any tangent

argument must be intermediate between —g and g, so that this is not possible.

In the same way it may be concluded that I', I'* cannot lie to the left of such
a segment ¢ — const. Hence there is no such segment, if I' and I'’* coincide.
In this case of coincidence every radial line must meet I only once, as we
wished to prove.
Let us now turn to the case when the two continua I and I'* are distinct.
Consider the part I' of I" accessible from r =0 along a regular simple curve

in I' (such as MN in figure above) with tangent argument never less than 72_v

This part of I' evidently includes I'*, but can only coincide with I'* if there
are no bounding segments ¢ = const. of I'* which have a part (see region ¢ of
figure above) of I' on the right. By the transformation 7_; which increases

every tangent argument which is equal to %r and does not diminish to ;—t any

greater argument, the points of I' are carried into points of I which are still
accessible from r — o along an auxiliary regular simple curve in I' with tangent

argument greater than g, namely along the image of the auxiliary curve. Thus

the continuum I', forms part of I'. Hence I', coincides with I', since T is
conservative.

Consequently I'* has no boundary segments ¢ = const. with part of I" on
the right. Similarly we can exclude the possibility of boundary segments ¢ —
const. of I'* with part of I' to the left. Hence I'* coincides with I". The
first italicized statement has previously been demonstrated in this case.

It is now easy to show that the invariant curve lies within the barred
angle in the vicinity of any one of its points.

Suppose for example it lies partially above the upper right arm of this
angle. By sufficient iteration of 7_, the direction of this arm rotates positively
past the vertical, and it is intuitively clear that the radial line ¢ — const. through
this point will meet the invariant curve more than once, contrary to what has
been proved above.

If the invariant curve is defined by means of an outer continuum, essentially
the same argument leads us to the same conclusion.
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§ 45. Rotation numbers.

Consider any closed set of points defined by an angular codrdinate » of
period 27. Let us suppose a transformation given which takes each point of
the set into a definite point 7,, in such wise that if P precedes @ (i. e. the z of
P is less than the v of Q) then P, precedes or coincides with ¢,, and also such
that z, varies continuously with z. In particular if P and @ are the same point,
represented by angular coordinates =, ¢’ differing by 2l=, then z,, 7, differ by
2ln also.

Consider now the difference 7z — = for all points P. If r increases through
all the values of the set by 27 so does 7zz. It follows that we have

a® < gy —7z < bW, (B® < a® + 271)

In fact suppose vz — v is a minimum for = =* and let = vary by 2« from this

minimum. Since 7; increases but only by 2s altogether we have at the
maximum of 7z —<
T, —rt<ty—1¥+2m,

which establishes the statement.
There is a number « such that for every &

al® b(k>) (am 30
H

For, if this is not the case, two intervals (—k—» =1 7 —l—) will fail to have a

common point so that for instance

p® g
T
whence
6™ < ka®.
But, since 7, — 7 <b® for any 7, we have successively

T — TSP, r— 7 B, g — T S W,

whence by addition
Tzk—’[_f:lb(k).
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Also since 7;—7 > a¥ for any 7 we get similarly
rn,.—rz:ka(”.

These two inequalities and the inequality written above are contradictory.

The number o will be called the rotation number of the transformation
7,=f(z).! Evidently « measures what may be regarded as the mean angular
advance of the points under this transformation, inasmuch as we have for any

v and k
vk —1—ka|<z2m.

Since ko lies on the interval (a®, b®) some points advance more than ke,
and some by less than ka.

When 7, = f(r) is a one-to-one transformation, then its inverse has evidently
the negative rotation number — ¢.

It —2% is rational, say :ﬂn=%, p, q relatively prime integers, then we have

(@) (@)
a® _2pm b9
q9 " 9 9
and hence
a,(Q)izpn*ib(q).

Consequently z,— 7 is exactly equal to zpsw for some z. It follows that,

if 2—n=%, there is at least one point P for which = increases by precisely 2pn

upon ¢ iterations of the transformation.

§ 46. Rotation numbers along invariant curves.

Returning now to the invariant curves about an invariant point in the
elliptic case II', =1, it appears that for each such curve there is a definite
rotation number, for T yields a one-to-one, continuous transformation of each
such curve into itself which preserves order.

If such an invariant curve has a rotation number commensurable with 27, say

qu’—, 1t s made up of a finite number of analytic arcs ending at hypercontinuous

points, invariant under T,.

! Introduced by Poixcari (loc. cit. § 8).
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For mark off the invariant points under 7, on this curve about (o, o).
There exists at least one such point by the remark proved in § 45. The invariant
curve near these invariant points forms then invariant curves in the sense
of § 41. These points are thus hyperbolic and the invariant curves are
hypercontinuous at the invariant points. But, by indefinite iteration of 7'y or
T_q, the part of the arc is carried into all of itself, since there are no invariant
points on the arc save at its end points.

There are only a finite number of isolated invariant points on the invariant
curve under 7', or else the limit invariant point would bave a non-analytic
invariant curve of the type excluded in § 41.

Thus the statement is proved.

If two such tnvariant curves have one or more points in common, the rotation

numbers of the two curves are the same and of the form 2P These common points

and ares are finite in number and invariant under Tg.

If two invariant curves have points in common, but nevertheless are not
coincident, there will be one or more continua included between them. Since
the invariant curves are each cut only once by a radial line ¢ = const. in the
rg-plane, these continua are of the form

Hy)<r<g(y), Loy

where f, g are continuous functions of ¢ with f<g for ¢' <@ < ¢" and f=g for
<;O=§0! or §0=§0H.

Evidently the transformation 7' carries any continuum of this type into
another of the same type, included between the same two invariant curves. By
further repetition of 7' this continuum is carried into others which cannot all be

distinct inasmuch as f f Qdudv has the same value for any of them, and the

total value of this integral taken over the complete neighborhood of the invariant
point is finite. Thus after ¢ iterations the original continuum is carried into
itself, and its two boundary arcs are carried into themselves. The end points
of these arcs are therefore invariant under 7,.

If these invariant points are rotated p times around the invariant point
by Tg, clearly the rotation number belonging to either invariant curve is z—’q)it

This demonstrates the first part of our statement.
Moreover it has been seen above that on such an arc there are a finite

number of invariant points and invariant point arcs of the specified type under
Acta mathematica. 43. Imprimé le 22 mars 1920, 12
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T,. Any point of an invariant arc terminated by invariant points will approach
one end or the other under indefinite iteration of T, or of T_,.

If two such invariant curves are entirely distinct from one another, the rotation
number of the one further removed from ithe invariant point is the greater, and both
rolation numbers exceed 0.

Consider the two curves in the r¢-plane. Since T carries a line ¢ = const.
in a regular neighborhood into a curve cut by any line ¢ = const. at most once
we see that ¢, for the outer curve exceeds ¢, for the inner curve, and both are
greater than the initial ¢ by more than #. Hence we can affirm that ¢, along
the outer curve exceeds ¢, along the inner curve by a definite amount d, and
that this ¢,, in turn, exceeds the initial ¢ by at least 6 + 4.

This fact shows at once that the rotation nnmber of the outer curve is at
least as great as that of the inner curve. For, points initially with the same ¢
on the two curves are taken into points such that the ¢ of the outer curve
exceeds that of the inner curve by at least J under indefinite iteration of T'.

To establish our statement that the outer curve has the greater rotation
number it is thus only needful to exclude the possibility that their rotation
numbers are the same.

If the two rotation numbers are the same and rationally related to z,
then for some ¢ the transformation T, will have a rotation number zpz (p an
integer), so that there will exist points on both curves which are carried into
themselves by this transformation, ¢ being increased by precisely 2pz.

Suppose now that we follow the transformation 7'y by a rotation in the
uv-plane through 2p complete negative revolutions. The resultant transformation
will evidently be conservative with the same invariant area integral as before,
and the two curves will appear as invariant curves with the rotation number o.
It is also evident that by this resultant transformation points on the outer curve
have their codrdinate ¢ increased by at least ¢ more than the increase in the
like codrdinate of the corresponding point on the inner curve.

Construct a curvilinear quadrilateral in the rg-plane as follows. One vertex
will be an invariant point of the inner curve under the resultant transformation
and a second vertex the corresponding point on the outer curve. A third vertex
will be the first invariant point on the outer curve with greater ¢, and a fourth
the corresponding point of the inner curve. The quadrilateral will then consist
of the two radial segments ¢ = const. through the two pairs of corresponding
points, and the two arcs of the invariant curves included between them.

! The assumption ¢ > o is still made. This entails no specialization of course.
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Consider the image of this quadrilateral under the resultant transformation.
The invariant points remain fixed, but the two sides ¢ = const. are carried into

curves with tangent argument which is everywhere less than 725, the argument

before the transformation. In the image quadrilateral then, the curvilinear side
through the invariant point on the inner curve lies to the right of the point,
while the opposite side through the other invariant point on the outer curve
lies to the left of this second invariant point. Consequently the quadrilateral
has been taken into part of itself, the two sides formed of arcs of the invariant
curves being carried over into part of themselves. This is impossible of course
with a conservative transformation.

It is still easier to dispose of the case when both rotation numbers # are
assumed to be equal but not rationally related to 27z. Here again if a point on
the outer invariant curve has a cotrdinate ¢ not less than that of a point on
the inner invariant curve, then, under indefinite iteration of 7', it will always be
true that the codrdinate of any image of the first point will be greater by at
least 6 than the codrdinate ¢ of the like image of the second point.

Choose now a positive integer ¢ such that ¢f' is less than some integral
multiple of 27, say 2pm, by a quantity less than d. It is always possible to do
this precisely because ¢ is incommensurable with 27z. Every point on the inner
invariant curve will then be advanced by less than 2psw under T,. On the
other hand, since the transformation 7', has a rotation number ¢@, it is always
possible to choose a point of the inner curve which has its ¢ codrdinate increased
by at least ¢g¢' under 7,. The corresponding point of the outer curve then has
its ¢ cobrdinate increased by at least as much as ¢6' + d i. e. by more than
2p. Hence the rotation number of the outer curve under 7', is at least as

great as 3%7—': . This is impossible.

§ 47. On rings of instability.

If €, and C, are invariant curves in a regular neighborhood of an invariant
point in the stable case IT', there may either be further invariant curves on the
ring C,C, or not. If there are, the ring C,C, may be subdivided further into
similar rings. Thus the neighborhood of the invariant point is divided into an
infinite succession of rings of instability (reducing to single invariant curves in
the integrable case). Each ring of this sort is bounded by two invariant curves
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C' C" and has no invariant curve upon it other than C' and C'. We shall only
prove:

Let C', C" be entirely distinct invariant curves forming the boundary curves
of a ring of instability. Then for any &>o0 an integer N can be assigned such
that a point P' exists within a distance ¢ of any gpoint P of C' (or C") which
goes info a point Q' within distance ¢ of any point Q@ of C" (or C') in n< N
steration of T (or T—)).

In the contrary case points P and @ exist for which no point P’ can be
found for some Q' and any N. Consider a small circle with P as center and of
radius ¢ in this case. By iteration of 7' this region is carried into others, all lying
partly within the ring, but not extending to C". Consider the open continuum
lying outside of C' and occluded by all of these regions. This continuum is
carried into all or part of itself by 7. But it cannot be carried into part of
itself. Hence the boundary curve is invariant under 7. But this curve is distinct
from (" as well,as C', since it does not approach within distance ¢ of the point L.
Such an invariant curve does not exist in C'C" by bhypothesis.

§ 48. The other stable elliptic cases.

In the case II', I =1 but finite, the fundamental equalities (28) may be
replaced by
"1=T+R(T, q)): P, = ¢+0+C1‘21+S(1’, (P))

where R, S have the same character as before. Hence we see that a regular
neighborhood of (o0, o) exists in this case. Here the arguments made above for
the case II', I =1, apply without modification.

This is also true in the general elliptic subcases II", I1I' (see § 45).

In the case II', 1 finite, in the general elliptic subcases 11", III', and, more
generally, whenever there exists a regular neighborhood of an elliptic invariant point,
all of the properties of invariant closed curves established in case II', l = 1, continue
to hold.

It is highly probable that an integer analogous to ! in the case II' can be
defined in all elliptic cases and that, if the notion of regular neighborhood be
generalized appropriately, such a neighborhood exists when [ is finite. When
l= o it appears possible that an invariant linear family of series G + cH
exists.

The formal and analytical questions to be answered here are extremely
important and interesting.
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§49. Invariant curves and the fanction F*.

In case IT', =1, the invariant closed curves investigated above are closely
like the curves F == const. where F' is a polynomial in %, » obtained by breaking
off F* at terms of high degree p.

To see this let us employ the variables u, v osculating the normalizing
variables of § 22 to high order. The formulas (28) and (31) show that the tangent
directions along the invariant curve in the r¢-plane have a slope less than

b
Erﬂ " If the slope exceeds this magnitude the invariant curve will not lie
within the barred angle at the corresponding point of the invariant curve.

On the other hand F* is given by ——20(@4,2 + »?) out to terms of degree u+ 1.

Combining these results and observing that u is arbitrary, we find:
In the stable case II', 1 =1, if F stands for the polynomial in wu, v formed by

the terms of degree less than u in F¥*, then | F' — F"| < k|F' |g at any points P, P"
of an invariant curve.

Evidently similar results hold in any case II', 11", III', II11" when a regular
neighborhood exists.

§ 50. Remark on the integrable elliptic case.

In the integrable elliptic case there is a family of closed analytic invariant
curves F* = const. about the invariant point.

Since an area integral f f Q (u, v)dudv is invariant under 7', an integral

ffP(o, v)dodr

remains invariant, where o is a parameter varying from curve to curve, and 7
an angular parameter varying from o to 27 as each curve is described. But T
has the form

of the form

0,=0, T1=f(7’ 0‘)
so that

P(o,, 'c,)g—i-———P(o, 7).
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Consequently along any particular curve

B B
fP(a,r)dr =fP(a,,rl)dr,.
Ay

A

Thus, if f P(o,7)dr be taken as proportional to a modified parameter, the

equations for 7' take the form
o,=0, 1,=1+g(0),

where ¢ is an analytic function of ¢ for o= o.
A noteworthy special feature of this case now appears:
In the integrable elliptic case if any invariant closed curve of the analytic family

F* = const. has a rotation number —Z—ZE, then T, leaves every point of the curve

invariant.

It is obvious that the integrable case is not the general case, inasmuch as
such an invariant point curve will not exist in general.

It would be a vital advance to be able to determine the distribution of the
invariant curves in the non-integrable case by analytic tests. This appears to
be possible only in the case of a rotation number commeunsurable with 27v, when
the invariant curve is hypercontinuous.

Chapter IV. Elliptic invariant points. Unstable case.

§ 51. Existence of « and » points. General case.

In the unstable case a neighborhood of the invariant point (o, o), of the
form r <d say, can be so taken that, under indefinite iteration of T' or of T_,,
points arbitrarily near (o, o) leave this neighborhood. It has previously been
pointed out that this property holds for both 7' and 7_, if it holds for either
(§ 42). We restrict attention to such a neighborhood D.

Let us fix attention upon « points which remain in D under indefinite
iteration of T and upon « points which remain in D under indefinite iteration
of T_;. The two sets of points are clearly closed sets.
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An o point is evidently carried into an w point by 7', and also by 7, if its
image under T, lies in D. Similar results hold for « points.

For an unsiable elliptic point the point set of a{w) points has a connected subset
A(R) extending from r= o0 to the boundary of D.1

Take a very small neighborhood r<d of {0, 0). Under iteration of 7_; N
times (N large), some point of the image extends out to r=d, by virtue of the
instability. Within this image we can draw a curve from r =0 to r =d which
remains within D under N iterations of T of course. This curve cuts any closed
curve about (o, 0) in at least one point. By a limiting process, in which N
becomes larger and larger, we see that at least one w point lies on any such
curve. Similarly an « point lies upon it.

It is then intuitively evident that the italicized statement holds, inasmuch
as a point « lies upon every such closed curve in D which encloses the invariant
point.

The following is evident:

The connected sets A(£2) are carried into parts of themselves by T_, (T') and
into all of themselves together with a part outside of D by T (T—).

Let us term an unstable invariant point regular if there do not exist closed
invariant curves in D of which it is a boundary point.

The regular case embraces the general unstable elliptic case for ! finite
and indeed any case in which the invariant point is surrounded by a regular
neighborhood. Consider for simplicity the general case I, I=1, Here r=o0
functions as an invariant curve in the rg-plane of polar codrdinates. If another
invariant curve has a point in common with this invariant curve (i. e. with
r=0) the rotation number is 6 of course and commensurable with 27z (§ 46),
and this is impossible in case II' by definition.

In the regular case the set A(S2) connected with r=o0 tends wuniformly to
r==0 under iteration of T, (T). .

Suppose if possible that this does not hold for the set 2. There existg
then a quantity J > o such that for n indefinitely large the set 7',(£2) does not
lie entirely within » <d. Now any point of 7,(R) is an w point which remains
in D under n iterations of 7'_; also. Therefore, recalling that £ and its images
are connected with r=o0, we see that any curve within r <J and surrounding
r=o0 has on it at least one point P which remains in D under indefinite iter-
ation of 7' and = fold iteration of 7, (n arbitrarily large). Hence, by a lim-
iting process, we conclude the existence of a point of type w and & on this curve.

1 That is, a chain of a (or w) points, each point arbitrarily near its successor, extending ’
from r =0 to r=d, can be found.
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Thus we arrive at a set of points A2 common to 4 and £, and connected
with r =0, which reaches out at least to r=24. This set is clearly carried into
itself by 7' and forms the inner boundary of an open continuum. Thus the set
AR forms a closed invariant curve within the scope of the definition.

However, in the regular case for a sufficiently restricted region D such an
invariant curve does not exist. Thus we have reached an absurdity, so that
the italicized statement under consideration must be true.

An obvious consequence of this property is that the content of the set of
A (£) points connected with r=o0 is o.

We easily infer the following fact to be true:

In the irregular case there exists a connected set of points A reaching to
r=o0 from r=06>0 if & is small enough. The set A () tend uniformly toward
the set AQ under indefinite iteration of T (T).

Although the introduction of « and w points was not necessary in the study
of the unstable hyperbolic points, it is instructive to note that the above de-
finitions hold there (and even in the stable elliptic case). In particular the
w points are the points on the analytic invariant curves tending toward (o, o)
or at least not away from (o, o) under iteration of 7'. Similarly the « points
lie on the invariant analytic curves which tend toward (o, o) on iteration of
T or at least do not tend away from it. Thus the sets 4 and £ are analytic
curves.

In general these two sets have only a finite set of points in common and
the points A4 () tend uniformly toward (o, o) under iteration of 7_; (7). This
is the regular case. The irregular case arises when invariant point curves are
present. These constitute the points AR.

Thus our methods in the hyperbolic case have revealed the precise nature
of the « and w points — these fall along certain analytic branches ending at
the invariant point. In the following paragraphs we shall extend the idea of
branches to the unstable elliptic case.

§ 52. Further study of the regular case II', [ finite.

Let us confine attention to the rg-plane of polar cosrdinates and let us
fix attention upon any point @ which belongs to the set A4(£2) of points «(w)
connected with »=o0. At least one such point @ lies upon r =d. Let = denote
the set of a¢(w) points connected with @ for » > d >0, where J is an arbitrarily
small quantity depending on the point of X to be obtained.
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If a continuum abutting on r—=4d has the property that all of its points
are accessible from r=4d along regular curves without double points and with

tangent argument greater (less) than -—g, its boundary will be said to be left-

handedly (right-handedly) accessible. Thus the curve of the figure below ending
at @ is right-handedly accessible with M N an auxiliary curve with tangent

argument less than —-;—v. With this definition we have the following:

In the case II', 1 finite, the continuum of points accessible from r=d along
a regular curve to the left (right) of the set = of alw) points is right-handedly (left-
handedly) accessible, and its boundary extends below r =d indefinitely far to the
left (right) (see figure).

r=d
M Q

r=0

Take first I=1. The proof of the first part of this statement follows the
line of argument already employed in § 44. If it is not true, there will exist
above X and on its left regions inaccessible from r=d along regular curves

without double points and with tangent argument less than —;—t. Since T,

rotates vertical lines positively such regions will be carried into similar regions
toward r =0 by iteration of 7_;. This fact stands in contradiction with the
existence of an invariant area integral.

In particular the point @ is the point furthest to the right of the con-
tinuum so defined.

If now the second part of the statement fails to hold, the set = does not
extend indefinitely far to the left. Thus we have a connected set 3 extending
from r==0 to r=d for which ¢ is limited. But it has been shown that under
iteration of 7_; the range of variation of ¢ along such a set increases indefinitely
(§ 43). Hence an image exists which will cross = from left to right. Here we
allow the use of congruent images. But this shows that 3 must be extended
further to the left, since it contains all connected & points. This is absurd.

The properties stated in § 43 extends at once to the general case IT', [
Acta mathematica. 43. Imprimé le 23 mars 1920. 13
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finite, so that our statement is true in this case also. It is probably true when-
ever a regular neighborhood surrounds the invariant point.

Definition. An unstable invariant point is branched of o(w) type if a con-
tinuos curve C from r=d to r=o0 can be drawn in the uv-plane with no «(w)
points on C which are connected to the invariant point by «(w) points. In
the contrary case it is unbranched.

For the elliptic unstable case II', I finite, of o(w) branched type, the sels
A () fall into a set of closed connected branches extending indefinitely far to
the left (right) with limr=o0 for lim ¢ = — 0 (4 ), but only a finite distance to
the right (left).

Consider first the set 3 and its congruent sets in the branched case. These
divide the region r<d into component continua and their limit points. The
continuous curve from r=d to r = o0 in the uv-plane which exists in the branched
case becomes a continuous curve lying in one of these continua and approaching
the line r=o0. Since each of these continua lies to the right of an initial point
such as @ this auxiliary curve extends only a finite distance to the right and
infinitely far to the left, approaching r=o0. The analysis situs of the figure
now renders it clear that each lower boundary curve of one of these continua
tends uniformly toward r =o0 as ¢ becomes negatively infinite.

But the set I cannot cross the auxiliary curve and its congruent jmages.
Hence 3 forms a closed connected set of « points having the properties specified
for the branches.

Two o points 4 and B connected with r =0 through « points will be said
to belong to the same o« branch if no auxiliary curve C can be drawn between
these points to r=o. Otherwise two such points belong to different branches.
If B lies to the right of C and A to the left then we will say that the B branch
lies to the right of the 4 branch.

4 branch clearly includes all @ points connected with one of its points for
r>d>o.

It is apparent that if the 4 branch lies to the left of the B branch and
the B branch to the left of another branch, then the 4 branch lies to the left
of this branch also. Thus there is a cyclic ordering of the branches.

The existence of a single auxiliary curve O ensures the existence of an
infinitude of distinct branches, occurring in congruent sets. Such branches bave
clearly the form specified, inasmuch as these lie between congruent curves C.

By the transformation 7' any « branch is carried into a part within r<d
and certain other portions outside. However, there is clearly an « branch of
the image wholly within r<d. If there were more than one, these branches
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together with the parts outside of »<d would enclose an area, and this area
would tend toward r=o0 upon iteration of 7'. There must then be only one
image branch under 7.

By the transformation 7'_; an ¢ branch is evidently carried into a part of
such a branch or all of it.

Similar remarks hold for the w branches.

In the branched elliptic unstable type II', | finite, the transformation T (T_;)
carries an o(w) branch into such a branch (as specified). The cyclic order of the
branches is preserved.

The last part of the statement is obvious and the first part has just been
proved.

It is clear that we have associated with a branched point an « and w
rotation number, say 6, and 6, indicating the rotation of the branches.

The identity of the branches in no way depends on d. Upon iteration by
T each branch is carried into r <J where ¢ is arbitrarily small.

Thus 6, and 6, in no wise depend upon d.

For a branched invariant point in the unstable elliptic case 1I', 1 finite, the rotation
number of the o (w) branches is at least (at most) 0.

First, we shall prove that if 6 is positive the rotation number 8, is positive
or zero. In fact if # >0 the branch I with terminal point @ on r =d goes into
a branch 3_; entirely to the left of @. Now 3_; cannot lie below I for then
the region made up of points below = and to the left of @ is carried by 7,
into a region lying under I and thus forming only part of the region below =
and to the left of Q. In the wv-plane we have a corresponding area which is
carried into part of itself, which is not possible. Thus 3 is taken into a branch
to its left and above it, which shows that 6, is positive or zero in this case.

Consider now the general case and suppose if possible 6,<6. Find an
integer m such that for an integer %

mb, < 2km<mb.

Consider the transformation 7" obtained by following T'n by a shift of the plane
2kn to the left. For 7" the rotation number of the invariant point is ' =
mf —2kn and is positive, while 6, ==ml, — 2k is the rotation number of the
branches and is negative. But 7" satisfies all the conditions imposed on T' for
d sufficiently small. Hence we are brought back to the case proved impossible
in the first place.

In the branchless case greater complexity exists. A discussion of this case
is much to be desired.
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§ 53. Iuterrelation of « and » points.

Consider the « and « points of D which are connected with r=o0. The
first set 4 forms a closed connected set reaching from r=d to r=o0. The
second £ has the same properties. In the r¢-plane it appears at once that the
two sets must intersect infinitely often.

Let us develop briefly the proof of this fundamental fact. The basic reason
which permits this conclusion is that if we have « and w curves of the type
2 specified in § 52, one to the left of a point @ of r=d and the other to the
right of a point P of r=d, and if P is taken to the left of @, there lies
between P and @ a continuum with boundary points all of type « or w.
Thus there are points of this closed boundary of both types, i. e. belonging to
the boundaries of both regions.

In the branched elliptic unstable case I1I', 1 finite, every o branch intersects
every w branch infinitely often.

In the unbranched case also the A and 2 sets have infinitely many points in
common.

In the branched case then we have what may be described as a network
of « and w branches. In the general case it is clear that the 4 and 2 sets
together separate r —=o from r=4d' > o for d' sufficiently small.

The lack of definiteness in our general conclusion for the elliptic case isin
startling contrast with that found in the hyperbolic case. I believe, however,
that this corresponds to the extremely general character of the situation. A
fundamental distinction between the two cases is this: the natural domain in
the hyperbolic case is the complex variable; in the elliptic case, the real.

Chapter V. Recurrent point groups.

§ 54. Point groups.

Consider an analytic closed surface S of any genus and for the present let
T denote any one-to-one, direct, analytic transformation of this surface into
itself. The problem which we attack is that of determining the behavior of
various classes of points of § under indefinite iteration of 7' and T'_;. Hitherto
we have only considered points in the vicinity of an invariant point.
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Let P be any point of 8 and consider the infinite sequence of points

oo To(P), T(P), P, T(P), T,(P),...,

which will be termed the point group of P. If two members of this sequence
are the same, say if 7' =T, « <8, then we have Ts_,(P)= P. Here the point
P will periodically iterate through a set of #—« distinct points under 7. Thus
by considering T's—, instead of T we may apply our earlier results to the study
of the points near this set of points under iteration of 7.

The existence of infinitely many point sets of this particular type and of
special properties may be considered as established by general theorems con-
cerning the invariant points of such surfaces.! A set of points of this type
forms a periodic point group.

Every limit point of the set P, T(P), T,(P), ..., will be termed an w limit
point of P, and every limit point of the set P, T_i(P), T—s(P), ..., will be
termed an « limit point. A point is counted as often as it appears. In the
periodic case the finite set of points are all « and w limit poeints, and there are
no others.

In all cases the limit points of either class form a closed point set.

The set of « (w) limit points of P form a set of complete point groups. The
distance of Ti(P) from this limit set approaches o for lim k=— o (+ ).

Let @ be an « limit point which 7'%(P) approaches for k=k,, k,, .
Evidently 7T%41(P) will approach 7(Q) at the same time. That is to say 7(Q),
and likewise T'_;(Q), are « limit points if @ is. By repetition of this argument
we infer that all points of the point group of @ are o limit points.

To establish the second part of the theorem we employ an indirect argu-
ment. If T%(P) did not approach the set of « limit points uniformly for
lim k¥ = — w0 it would be possible to select an infinite set of negative values of
k such that Tx(P) would be distant from any limit point of P by at least a
definite positive quantity d. There would then be at least one limit point L
of this set, and this point would be at least d distant from any o« limit point.
By definition however L is an o limit point, so that a contradiction results.

§ 55. Recurrent Point Groups.

Consider now an arbitrary closed set 3 of complete point groups. It was
observed above that the « or w limit points form such a set of point groups.

! See my paper first cited.
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More generally, if we take any set of complete point groups and adjoin to it
the limit points, we obtain an enlarged set =.

If a set I contains no proper closed subset Z' of the same type we shall
say that = is a minimal set. In this case if P is any point of 3 its a (or w)
limit points form a closed set which must therefore coincide with =.

Any complete point group in a minimal set forms a recurrent point group.

The simplest type of recurrent point group is the periodic type referred
to above.

In all cases but this simplest one, in which = has only a finite number
of points, a minimal set I consists of a perfect point set. For suppose
a closed minimal set to have an isolated point. This point is its own limit point
under 7' or T_;. Hence this point is a member of a periodic point group, which
must constitute the minimal set.

In order that a point group generated by P be recurrent it is necessary and
sufficient that for any positive quantity ¢, however small, there exists a positive integer
k so large that any k successive points in the point group of P,

Twn(P), Tmar(P), ..., Tmsr-1(P),

have representatives within distance & of every limit point of P.

This condition is necessary.

If not there is a recurrent point group generated by P, and a positive &
such that sequences of k points (k arbitrarily large) can be found no point of
which comes with distance ¢ of some limit point @ of P. As k increases the
point @ has at least one limit point @' and thus it is clear that for a properly

taken set of sequences no point lies within distance g of @'. Take k odd and

=

consider the middle point L of such a sequence. It and its f——x iterates under

T and T_, lie at a distance at least 2 from @'. Consequently for a limiting
position L' of L we infer that every point of the complete point group of L is
at distance at least 2 from @Q'. Hence L' defines a closed set of point groups

lying within the closed minimal set defining the given recurrent motion, but
forming only part of it, and in particular not containing ¢'. This is absurd.

To prove the condition sufficient we note f{irst that the set of « and w
limit points of a point group satisfying this condition must coincide. We need
only to take m > o in the arbitrary set to see the truth of this fact. Call the
set of these common « and w limit points 3.
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If the set = is not minimal it would contain a proper subset 3' of the same
sort to which some point @ of 3 would not belong. Now, when one of the set
of points P, T(P), T,(P), ..., approaches sufficiently near to a point of 3' it
will remain very near to this closed set for an arbitrarily large number of iter-
ations under 7', and so will not approach @Q; it is to be kept in mind that X'is
a closed set of complete point groups. Thus the assumed condition would not
be satisfied by the point group generated by P.

Hence = is minimal and the point group of P is recurrent.

§ 56. The general point group and reecurrent point groups.

The importance of the complete point groups of recurrent type for the
consideration of the general point group is evidenced by the following result:

There exists at least one recurrent point group in the o (w) limit point group
of any given point P.

Let 3 denote the closed set of « limit points. We need to prove that the
set = contains a minimal subset.

Divide the surface of 8 into a large number of small regions of maximum
span not greater than d, an assigned positive constant. Among the points of
> there will be one which enters a least set §' of regions of S under indefinite
iteration of 7' and T_;. Let 3' be the corresponding closed set of complete limit
point groups. This set is part of 3 and lies wholly in the same regions §'.

Divide §' into regions of maximum span g Among the points of ' there will

be one which enters a least set S” of regions of S’ under indefinite iteration of
T and T_;. Define 3" as the closed set of complete limit point groups, which
is part of X'

Proceeding in this way we determine an infinite sequence 3', 3", ... of closed
sets of complete point groups lying wholly upon §', 8", ... respectively. Now let
P be any point whatever of S on §™ and let P denote a limit point of the

set P, P',... The point P belongs to 3 of course since it is a limit point of
points of 3. Furthermore, since P is contained in =, 3, 3" ..., the limit
point P lies on all of the regions §, 8, 8", .... Likewise all of its images under

T or T_, lie on these regions. Thus the complete point group generated by P,
and its ¢« and o limit points, do the same.

Moreover, every point lying in every region §, §",... is an « and o limit
point of P. Otherwise for large positive (or large negative) k, T'x(P) does not
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approach some point @ in §', 8",.... Hence it is apparent that the set of points
P, T (F), ... will not enter into some one of the regions S%, namely the
particular one containing @. But this set of points has a set of w limit point
groups, each with a representative in every one of the minimum set of subregions
which make up 8®. Thus a contradiction results.

The same argument shows that any point P lying in every region §', 8", . ..
has this complete set as its set of @ or w limit points. In other words the set
of points common to &, §”, ... form the desired minimal set.

The following further result shows that either a point P generates a recurrent
point group under 7T or else that it successively approaches and recedes from
such recurrent point groups:

For any & > o there exists a k so large that any sequence of k points P, T(P), ...,
Tw(P) contains at least one point within distance & of a recurrent point group.

The proof is immediate.

If the theorem is not true it is possible to obtain points of this type not
coming within distance ¢ of any recurrent point group for k arbitrarily large.
Let then @ denote the middle point of such a set (k being taken odd). If Q
is a limit point of points Q for lim k= = evidently the complete point group
generated by @ has none of its points within distance & of any recurrent point
group. But the set of ¢ and w limit points of @ contains a minimal set. Thus
a contradiction appears, since every point group in a minimal set is by
definition recurrent.

§ 57. Continuous recurrent point groups.

Recurrent point groups = may be classified as follows: if a point P of =
exists such that all sufficiently near points of X are connected to P through
2 then P is of continuous type; in the contrary case = is of discontinuous type.

From every standpoint the first type is the simpler.

There are two extreme types of continuous recurrent point groups, namely
the zero-dimensional or periodic type in which = consists of a finite set of isolated
points, and the two-dimensional type in which = fills an area. But this area
has no boundary since these boundaries would form a closed subset of point
groups of the minimal set 3. Hence this area comprises all of S. Consequently
8§ has no invariant points under 7', and so has the connectivity of a torus, at
least if 7' can be generated by a deformation.!

* See my paper first cited.
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If ¢, ¥ are angular codrdinates on a torus and if ¢, 8 are incommensurable
with 27z and with each other, a transformation 7' of this type is defined by

(P1=q)+a, w\=w+ﬂ

Thus the two-dimensional type exists. The precise structure of this type is not
here determined further.

The remaining one-dimensional continuous type arises when some but not
all of the points of § near P belong to =, and are connected with it through
nearby points of =,

Thos = falls into a set of connected subsets, which undergo some sort of
permutation under 7 or 7_;. Since P is carried into its own immediate neigh-
borhood on sufficient iteration of 7, the connected set containing P is carried
into itself after a finite set of iterations.

It appears then that = consists of a set 3, containing P, and of its distinct
successive images 3',, 3',, ..., 3—1, while 3'; coincides with 3',. Let us consider
then 7', which carries 3', into itself, and for which 3, is also a recurrent point
group.

Now 3', is either a simply or multiply connected point set. By using a
known theorem due to BROUWER! we will prove that it must be multiply con-
nected. For, if not, 3, forms a simply connected set on a part of § which can
be represented in the plane, and is invariant under 7. Moreover this set has
no inner point, for the boundaries would then constitute a smaller closed set of
complete point groups. Consequently by the theorem referred to there exists
an invariant point of 3';, which is absurd.

Hence the set ='; is multiply connected.

If 8 has the connectivity of the sphere then ='; divides the surface of § into
two or more parts. But in one of these there is a point invariant under T' by
another theorem also due to BrRouwEer.! Consequently its boundary is invariant
under 7' and must constitute all of 3',. Here then 3 consists of a finite set of
closed two-sided curves, all outside of one another.

More generally, consider the neighborhood of a point near 3 but not on it
and follow along near 3 until a complete circuit is made. The boundary so
outlined is carried into itself or into one of a finite number of similar boundaries

L Continuous one-one tramsformations of surfaces in themselves, Proceedings of the Section of
Sciences, Koninklijke Academie van Wetenschappen te Amsterdam, vols. 11—15 (1908 —1912). In the
last part of this paper Brouwer develops the notion of class of a transformation, given later by
myself in the paper first cited without knowledge of his work.

Acta mathematica. 43. Tmprimé le 23 mars 1920. 14
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under T';. Hence Ty; carries this boundary and similarly its images under T3z,
Tsx, ..., Tg—yz into themselves. Each boundary is thus recurrent under T,
and if two boundaries have any points in common all of their points are in
common. Since all of the boundaries form a set which hangs together the images
can consist only in the boundary of a single closed two-sided curve.

Thus continuous recurrent point groups lie in minimal sets which are either
made up (1) of a finite set of points, (2) of a finite set of closed two-sided
curves on S, or (3) of all the points of S.

In the one-dimensional case a single angular variable and a definite rota-
tion number arise. A fundamental question is whether a similar representation
in the two-dimensional case, by means of two angular variables and two
characteristic rotation numbers, is possible.

§ 58. Discontinuous recurrent point groups.

An immediate division of the types of discontinuous recurrent point groups
is possible. In the first case no point P of the minimal set 3 is connected with
any other point through 3; this is the totelly discontinuous type. In the second
this is not the case; here we have the partially discontinuous type.

For the second case = falls into connected sets which are permuted among
themselves by 7T just as the points are in the first case. The existence of this
second category of recurrent point groups is doubtful when T has the properties
which we have assumed. On the other hand the totally discontinuous type of
recurrent point groups exists in important cases.

Inasmuch as analytic weapons are lacking we content ourselves merely
with some examples and with making an attempt at classification in the totally
discontinuous type.

Let f(¢) be a continuous increasing function of such that f(¢) —¢ is periodic
of period 27z. Then ¢, = f(t) defines a one-to-one continuous direct transformation
of a circle (on which ¢ is an angular codrdinate) into itself. This is associated
with a definite rotation number 6 and defines at least one recurrent poiht group
on the circle, which need not coincide with the whole circle. Its minimal set is
represented by a perfect nowhere dense point set on the circle. We limit
attention to the corresponding values of f.

! See G. D. BirkHOFF, Quelgues théoremes sur le mouvement des systemes dynamiques, Bulletin
de la Société Mathématique de France, vol. 40, 1912.

The reader will observe the complete analogy between the recurrent motions of that
paper and recurrent point groups.
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It may now be possible to represent the given recurrent point group
in the form

u=gp(t), v=y(); u,=0q), v,=y{),

where ¢, ¥ are continuous functions, where %, are ordinary surface codrdinates
for 8, and where t ranges over the values specified. We shall say that the
recurrent point group is of rank 1 in this case.

Or it may be possible to write

u==(p(t, w): 1J=1/J(t, UJ); ulz(P(tnwl)s ?71='P(l‘m wl):

where w has properties analogous to {. We then say that the recurrent point
group is discontinuous of rank z.
This definition obviously extends to any rank and is applicable to partially
as well as totally discontinuous point groups. ‘
It would be interesting to know whether or not the rank is finite in al
cases which actually arise in applications.

§ 59. Unstable recurrent point groups.

Let us term a recurrent point group and its minimal set X unstable if, for
&> o sufficiently small, it is impossible to find ¢ such that points P within
distance d of = remain within distance ¢ of under indefinite iteration of 7' and
T_,. In the contrary case let us call the point group and the set X stable.
This agrees with our earlier definition of stability in the case of an invariant
point.

Let I be an unstable minimal set and P a point group such that the
sequence of points P, T(P), T,(P), ... has 3 as the only minimal set in the set
of w limit points. Then the point group of P will be said to be positively asymp-
totic to X. Similarly if the sequence P, T_;(P), T—2(P), ... has a single minimal
set I in its set of o limit points then the point group of P will be said to be
negatively asymptotic to =.

It is apparent that we cannot have the phenomenon of asymptotic point
groups save when I is unstable. For, if P is any point at distance more than
¢ from a stable set I, its iterates cannot approach to within some distance d
of = by the definition of stability. Moreover our earlier work shows that for
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hyperbolic periodic point groups! such asymptotic point groups lie along hyper-
continuous branches, while for regular elliptic periodic point groups other types
of asymptotic point groups are present. In both of these cases the point P
tends toward 3 asymptotically, under T or 7—i, although such a state of affairs
is not required by our definition.

In the regular case an unstable periodic point group possesses positively and
negatively asymplotic point groups forming connected sets of the kinds earlier
specified.

Moreover even in the irregular case the work of § 51 shows that we will
have connected ¢ and w sets. These furnish asymptotic point groups unless
there are other recurrent point groups in these sets. This follows by the last
result of § 56.

In the irregular case an unstable periodic point grouy possesses such asymplotic
sets unless there are infinitely many recurrent point groups in its infinitesimal
vicinity.

Tt is this possibility which arises for a hyperbolic invariant point through
which passes an invariant point curve. The nearby invariant points are the
recurrent point groups in the vicinity.

Our initial conclusion for recurrent non-periodic point groups is the
following:

An unstable minimal set (not periodic) possesses positively and negatively
asymptotic point groups forming a connected set, at least unless there are other
recurrent point growps in s infinitesimal vicinity,

In fact, if possible choose ¢ so small that there are no other recurrent point
groups within distance ¢ of 3. Now choose d extremely small and consider the
iterates of points within distance J of 3 under 7. Because of the instability
of 3 these iterates reach out in a connected set to distance ¢ in N iterations
(N large). By a limiting process like that employed in § 51 we infer the existence
of a closed set of points connected with 3, reaching out to the boundary of this
¢ vicinity, and remaining within this neighborhood under indefinite iteration of
T_;. But each point of this set has only the minimal set = in its & point group.
Hence these points approach X uniformly often under iteration, by the last result
of § 56, and are negatively asymptotic to =. The existence of a positively
asymptotic set may be similarly established.

To advance further we introduce the notion of isomorphic recurrent point
groups: Two recurrent point groups with minimal sets 3, 3' are isomorphic if it

1 A periodic point group of ¢ points P, T(P), ..., Tg—1(P) is called hyperbolic if P is
hyperbolic under Tg. A similar terminology is employed in general.
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is possible to establish a correspondence of closed point sets of = to closed point
sets of I’ which is maintained under T'. It is assumed that there is more than
a single set unless I or 3’ consists of a single point. Thus two periodic point
groups of k and 7 points are isomorphic only if ¥ and [ have a common prime
factor. Similarly two one-dimensional continuous recurrent point groups are
isomorphic only if their rotation numbers are the same or if they fall into %
and [ curves, where ¥ and ! have a common prime factor.

If there are mot an infinitude of recurrent point groups in the neighborhood of
I and tsomorphic with tt, there will exist such connecled asymptotic sels.

The existence of infinitely many near by recurrent point groups is an
evident necessary condition for the non-existence of asymptotic sets of this
description. To show that infinitely many of these are isomorphic with X,
we note that the earlier argument for existence of such positively asymptotic
point groups only fails if the connected w set obtained contains other minimal
sets besides I. Let I' be such a set. By operating with 7' indefinitely often
upon the set connecting = and 3’ we infer that there exist point sets connecting
S and =, and remaining in the ¢ neighborhood of =, 3’ under indefinite itera-
tion of T and of T_;. Let us establish a correspondence between the sets of
points of 3 and 3' so connected. :

Now if all the points of 3 and 3' are so connected we have a connected
invariant set under 7', and included by it an invariant point of course. If
invariant points exist in every vicinity of =, there exists an invariant point
on =, which must coincide with =. Hence in all cases the sets I and 3’
are isomorphic. If there are a finite number of connected sets we are led to
isomorphic periodic point groups near =.

By letting ¢ approach o we arrive at infinitely many periodic or other
recurrent point groups having minimal sets isomorphic with = and lying in its
immediate vicinity. This is under the hypothesis that there are no asymptotic
sets of the type described.

It is to be hoped that a more complete analysis of the notion of isomor-
phism will be made.

Let us say that a point is positively (negatively) asymptotic to a set of iso-
morphic recurrent point groups if these and these alone form the recurrent
point groups among its w («) limit points.

The above argument then enables us to state the following:

For a given recurrent point group in any continuum D there exist connected
sels positively and negatively asymptotic to a set of isomorphic recurrent point groups
containing the given point group unless there is such an isomorphic point group with
a point on the boundary of D.
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§ 60. Stable recurrent point groups.

The simplest type of continuous recurrent point groups is the periodic type.
If this is stable each of the k points of the group is clearly surrounded by
infinitely many neighboring curves which are permuted by 7. These curves are
invariant under 7 and their form bhas been partially determined (§§ 44-—47).

The two-dimensional continuous type is stable by definition since its points
fill 8.

Suppose finally that we have a stable continuous one-dimensional recurrent
point group with minimal set 3. On either side of the curve X it is readily
inferred (see § 42) that we have an infinite succession of nearby invariant curves.
If the rate of rotation of nearby points exceeds that along the curve (as in the
case of a regular neighborhood of an invariant point) the nature of these curves
can be discussed more fully, but we will not attempt such a discussion.

Thus a stable one-dimensional continuous recurrent point group is sur-
rounded by infinitely many neighboring invariant ourves on either side.

In the case of a discontinuous recurrent point group with minimal set =
we are led similarly to a set of nearby invariant sets of continua containing

the set I as inner points and lying within distance ¢ of =. Clearly f Qdudv

taken over any of these continua is the same, so their number is finite, and
they are carried into themselves by 7':. Thus there is an invariant point under
T within each of them. Such a point P lying near a point of = and in the
same continuum clearly remains nearby under iteration of 7 or 7_,. By letting
¢ decrease the number of these continua increases indefinitely. At each stage &
is unaltered or changes to a multiple of itself.

A stable periodic point group of k poinis has in its neighborhood infinitely
many invariant sets of k enclosing curves as specified.

A stable one dimensional recurrent point group has in ils neighborhood infin-
ttely many invariant rings within which it lies.

A stable discontinuous recurrent point group has in its neighborhood infinitely
many periodic point groups and invariant sels of enclosing curves. A point of a
periodic point group approximates uniformly to any nearby point P of the given
group under all ilerations of T and T—_,.
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Chapter VI. The general point group.

§ 61. Classification of transformations 7.

Before entering upon further discussion of the behavior of points under 7',
we shall effect a classification which is fundamental.

A transformation 7' will be called ¢ransitive if, for any pair of points P
and @ on 8§ nearby points P' and @' respectively can be found such that
Q' =Ta(P).

A transformation 7 is infransitive in the contrary case.

It seems highly probable that the transitive case is to be regarded as the
general case.

§ 62. The transitive ease.

We commence with the transitive case.

In the transitive case all of the recurrent point groups are unstable.!

In fact it has been observed earlier that a stable recurrent point group
leads to continua forming part of §, which are invariant as a set under 7' and
lie near the point group. Hence if we take a point P outside of these continua
and a point @ within one of them, the condition given in the definition of transi-
tivity cannot be fulfilled.

We note that invariant sets of continua cannot exist in the transitive case
for the same reason.

In the transitive case the asymptotic « or w point groups connected with any
recurrent point group and its isomorphic recurrent point groups, together with these
recurrent groups, are everywhere dense throughout the surface S.

For suppose that there is no such asymptotic point in some small region o
for a recurrent point group with minimal set X.

Take then a small vicinity of = and consider the regions into which it goes
by 7. Evidently this set of region must ultimately overlap part of ¢ or we
shall be led to invariant continua, such as can not exist in the transitive case.

Applying then precisely the same considerations that we have used earlier,
i. e. considering smaller and smaller neighborhoods of =, we derive the existence

! The exceptional case in which there is a single recurrent point group whose minimal
set fills S is left out of comnsideration.
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of a connected « set reaching from I to the boundary of ¢ at P. Either P
belongs to a point group isomorphic with X, or its point group is positively
asymptotic to =, or to a set of isomorphie recurrent point groups, by the pre-
ceding paragraph.

In the tramsitive case any positively asympiotic connected set of points has in-
finitely many points in common with any negatively asymplotic set, at least if there
exists a single elliptic periodic point group II' with 1 finite.

This follows at once from the immediately preceding propositions and from
the structure of the network of asymptotic sets 4 and 2 about such an in-
variant point (§ 53).

For, consider the transformation 7, which leaves such a point P of an
elliptic periodic point group unchanged.

The given connected asymptotic o set reaches into this network indefinitely
near to the invariant point P without meeting the 4 set. The negatively con-
nected asymptotic « set reaches into this network without meeting the £ set.
Consequently the two sets have infinitely many points in common.

Thus there exist point groups positively and negatively asymptotic to as-
signed periodic point groups.

Suppose now that we designate any point whose « or w limit points do not
form all of S as a special point. All of the points belonging to recurrent point
groups or points asymptotic to such point groups are of this type.

Points which are not special evidently pass into the neighborhood of all
points of 8’ under iteration of 7 or 7_;. Such points we term general.

In the transitive case the general poinis are everywhere dense in S.

To see this we divide S into a large number of regions §' of small diameter
d, and consider the set of points P whose iterates do not enter within all of
the regions §'. Such points P evidently form a closed set of points, M say.

This set M is nowhere dense in S. In the contrary case suppose M to
fill a small region o’. Now there are only a finite set of regions §' and thus
only a finite number of combinations of less than all of them. Divide the points
of ¢' into the finite number of closed sets according to the regions §' which the
points enter. Thus ¢ is divided into a finite number of closed sets, at least
one of which therefore fills some neighborhood ¢" of ¢' densely. We recall
that a finite or denumerably infinite set of nowhere dense closed sets cannot
fill a complete neighborhood. But the existence of such a region ¢ contradicts
the condition that 7' is transitive. Thus M is nowhere dense.

Again choose a set of subregions 8" of the regions &' of diameter less than
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(—Zl— leading to a set M' which includes M by a similar process. The set M' is

nowhere dense.

By continuing in this fashion we get an infinite set of closed sets M, M', ...,
each containing its predecessor. Every point P which has not all of § for its
set of limit points evidently belongs to some one of these sets.

But by the theorem quoted above the set of all points belonging to
some M® nowhere fills a complete neighborhood. Hence the stated pro-
perty holds.

It would appear to be a very important and difficult question to determine
the relative measure of the special points and general points. The above argu-
ment renders it clear that both of these sets are measurable in the sense of
Lesbesgue, but sheds no light on their relative measures. One naturally con-
jectures that the special points are of measure o.

§ 63. The intransitive case.

In the intransitive case there exists at least one pair of points P, @ such
that no point very near to P goes into a point very near to @ under iteration
of T' or T—;. Obviously this state of affairs implies the existence of invariant
sets of two-sided curves forming the boundaries of open continua on opposite
sides of which P and @ lie. '

We term a transformation 7T for which there exist only a finite number
k> o of such curves finitely intransitive; otherwise, infinitely iniransitive.

Within one of the invariant sets of continua bounded by these curves in
such a finitely transitive case, the condition for transitivity is satisfied i. e. for
any pair of points P, @ within, nearby points P', @' respectively can be found
such that @' = 7, (P') for some n.

In the finitely intransitive case the theorems stated for the transitive case hold
“within each invariant set of continua.

The infinitely intransitive case obviously includes the integrable case when
the points move along analytic curves. More generally, it includes the case
when there is at least one stable recurrent point group. Indeed it seems pos-
sible that the existence of such a stable recurrent point group is a necessary as
well as a sufficient condition for infinite intransitivity. But we have not been
able to establish this conjecture.

Acta mathematica. 43. Imprimé le 24 mars 1920. 15
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In order to satisfactorily describe the point groups and their interrelations
in the intransitive case it is essential to know the possible types of invariant
sets of curves. Lacking such information save for the neighborhood of a peri-
odic point group of elliptic type I, { finite, we do not attempt to go further.

Chapter VII. Dynamical applications.

§ 64. The equations of motion.

For definiteness we consider a dynamical system with equations of the
form

(32) d40L_IL a9L oL _
3 didd 9z O dtdy  dy

when L is a function of the two codrdinates z, y and their time derivatives
2', 3. This differential system is of the fourth order. If then we regard z, y,
«, y' as the codrdinates of a point in four-dimensional space the motions of the
dynamical system are represented by a set of curves, one through each point
of the space.

Now we have the well-known integral relation

dL JdL
! ! —_
(33) z Ty 7y = const.

Hence these curves lie on oo! three-dimensional manifolds. We fix attention on
any one of these.

We assume this three-dimensional manifold to lie in the finite part of the
four-dimensional space and to be without singularity.

§ 65. Periodic motions.

To periodic motions correspond closed curves of the three-dimensional spread
above obtained.

Suppose we take a point P of such a stream line and consider a small
element of an analytic surface containing P and cutting the closed curve at an
angle not o. If we take any point 4 on this element near to P, and follow
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along the unique curve through it in the sense of increasing time ¢, the element
will be crossed again later at a point Q. The transformation of the element
which takes P into @ is the transformation 7' which we shall consider.

The conservative transformation 7'! thus defined is clearly essentially in-
dependent of the particular surface element employed, since any other trans-
formation so obtained can be derived from 7T by a proper change of variables.

We classify the periodic motions into types I, 17, II', II", IT", IIT', I11"
according as 7T is of such a type (§ 2). We define a periodic motion to be
elliptic or hyperbolic according as the transformation 7 is elliptic or hyperbolic;
and the integer I is similarly defined. The periodic motion is siable if nearby
motions remain nearby for all {. This means that 7T is stable. In the contrary
case the periodic motion and 7' are unstable.

Finally we will term the dynamical problem ¢ntegrable if T is integrable.

§ 66. The integrable case.

In the integrable case T leaves a family of curves F* = const. invariant.
Thus in the three-dimensional representing space there is a one-parameter ana-
lytic family of surfaces in the vicinity of the closed curve representing the
periodic motion, each surface being made up of curves of motion. If this mo-
tion is of elliptic type there is a family of closed annular surfaces of which the
curve of motion forms a degenerate member. If this motion is of hyperbolic
type these surfaces are open and the curve lies on one or more of them. This
much is obvious.

The necessary and sufficient condition for integrabilily of the dynamical problem
18 the existence of an integral relation G(x,y, ', y') = o0 where G is analytic in ils
indicated arguments, and where G =o0 1is nol an identity in virtue of the known
integral relation.

The condition is evidently sufficient. This relation yields an invariant
family of surfaces in the three-dimensional representing space and these cut the
surface elements used to define 7' in a family of invariant analytic curves in the
vicinity of the invariant point under 7. Consequently 7' is integrable.

Conversely, if T is integrable we obtain an analytic family of surfaces
on which the curves of motion lie. These may be represented in the form
H(u, v, p)=o0, where u,v are coordinates for the surface elements and g is
an angular codrdinate. Also H is analytic in its three variables. On account
of the fact that the four-dimensional manifold under consideration consists of a

1 See my paper first cited.
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one-parameter analytic family of the three-dimensional manifolds which we have
under consideration, it is apparent that these variables u, v, ¢ may be expressed
as analytic functions of x, y, #, ¥'. By this means a relation of the desired type
is obtained.

In the hyperbolic integrable subcase there exist k> o one-parameter analytic
families of motions asymptotic to the given periodic motions for lim t= + o (or
else periodic) whose analytic represeniation we will not specify.t AIl other nearby
motions first approach and then recede from the periodic orbit.

This conclusion is an immediate consequence of the form of 7' near a hyper-
bolic invariant point.

In the elliptic integrable subcase mnearby motions have codrdinates x,y re-
presentable as analylic functions of variables eV=1¢7, e¥=18% while t = ¢t + another
function of this type.

The curve of motion lies on a torus and a point on such of curve increases
its angular coordinates by a fixed amount as a single circuit of the torus is
made (§ 50). Evidently an analytic distortion takes this torus into an ordinary
right circular cylinder on which the curves of motion are the spirals making a
fixed angle with the generators. Now z, y can be expressed as periodic ana-
lytic functions of the angular coordinates p, ¢ on this torus. But this estab-

lishes the stated form of representation for z,y. Also ((% is a similar func-

tion of p, ¢, whence the form of the expression for ¢ in terms of 7.

§ 6. Formal series in the non-integrable case.

Evidently the results of the first part of the present paper may be inter-
preted as results for the formal series representing the motion in the dynamical
problem. The asymptotic validity of such series can be readily established.
We will only remark upon the following fact: Inasmuch as there exists a for-
mally invariant series F* in the non-integrable case (§ 10), there exists always
a formally invariant integral relation of the type G — o considered above. Thus
the dynamical problem is ’formally integrable’ in the vicinity of an elliptic or
hyperbolic periodic motion. In the elliptic case this means that periodic power
series in two periods may be employed to represent nearby motions.

If I am not mistaken it has never yet been demonstrated that integrability

1 In the simplest and general case I', #, y may be expressed as convergent power series

in pi’ while we have {= ¢t + another power series of the same sort.
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in the above sense cannot always prevail, although such a possibility appears
remote. PoINCARE has merely shown that integrability does not exist uniformly
throughout certain domains with variation of a parameter pu.! The particular
example of § 31 yields a non-integrable conservative transformation, but it is
not yet established that such a transformation arises in a dynamical problem.

§ 68. Periodic motions in the non-integrable case.

The results of Chapter II when interpreted in the general hyperbolic case
show at once:

The results stated above for the integrable hyperbolic case hold also in the non-
integrable case, the analytic families of asympiotic motions being represeniable by
means of hypercontinuous functions.

Interpreting the results of Chapter III for the stable elliptic case II, I fi-
nite, we conclude:

In the non-integrable stable elliptic case II', 1 finite, there exist an infinile
number of continuous closed one parameter families of nearby motions, representable
by means of continuous biperiodic functions of limited variation, and which are in-
variant as a family upon a circuit of the periodic motion.

In the unstable elliptic case I1I', 1 finite, there exist connected families of asymp-
totic motions for both lim t= — o and lim t = + », each coniaining the given peri-
odic motion. The family of the one type has infinitely many doubly asymptotic
motions in common with any family of the other type. The motions not in any
such family are everywhere dense near the periodic motion.

As before we omit details.

§ 69. Surfaces of section.

In very many if not in all cases an analytic surface of section S in the
three-dimensional spread representing the motions may be found with the pro-
perty that it is cut by every curve of motion in one and the same sense and
has boundaries formed by closed curves representing periodic motion.

By following along a curve of motion from a point P of such a surface
to the next point @, in the sense of increasing time a transformation 7' for
which @ =7(P) is defined. This transformation is one-to-one, analytic and
conservative.

We consider the totality of motions by the aid of such a surface S.

1 H. Poincarg, Les méthodes nouvelles de la mécanique céleste, vol. 1, Paris 1892, Chap. 5.
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§ 70. Recurrent motions.

A recurrent motion may be defined as one which comes arbitrarily near all
its phases during any sufficiently large interval of time (from f=—cw to
t= + o). Evidently such a motion corresponds to a recurrent point group
on 8. Hence we find:

Every motion has at least one recurrent limit motion for lim t = + » (and for
lim t =—w). It recurs uniformly often arbitrarily near some one of these limit
recurrent motions (not necessarily the same one).!

Recurrent motions may either be periodic, biperiodic (representable on a
square or torus) or triperiodic (representable in a cube), or discontinuous.* We
will not follow out the classification suggested by §§ 57, 58 further.

§ 71. Asymptotic motions.

A motion will be said to be positively (negatively) asympiotic to a recurrent
motion if it has only this recurrent motion as a limiting recurrent motion for
limét=+ oo (lim¢{=—o0). Furthermore we will say that two recurrent motions
are isomorphic if the corresponding point groups are isomorphic. The direct
application of the results of § 59 gives then:

Unless there are infinitely many nearby isomorphic recurrent motions, any
recurrent motion has connected families of motions asymptotic to it for lim t = + o
and for limt=— co.

§ 72. Transitive and intransitive systems.

If a motion can be found passing from nearly one prescribed phase to any
second prescribed phase the dynamical system is transitive. Here T is transitive
also, and conversely (§ 62). Otherwise the dynamical system is intransitive.

In the transitive case the molions asymptotic in either sense to a given recurrent
motion or set of isomorphic recurrent motions, logether with these motions, are every-
where dense.

Infinitely many motions exist doubly asymptotic to any two prescribed recurrent
motions (or isomorphic sets of such motions) for lim t = + o, at least if there exists

! See my paper last cited.

? The existence of recurrent motions of discontinuous type has been established by H.
C. M. Morse, Certain types of geodesic motion on a surfuce of negative curvature, Harvard Dis-
sertation, 1917.
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a single periodic motion of the elliptic type II', | finite. There exist also a dense
set of general motions which approach every possible phase arbitrarily closely for both
limt=+ o and for imt=— . k

The intransitive case includes the integrable case. The simplest possibility
is the finitely intransitive case when the curves of motion fall into k> o types
filling out regions in the three-dimensional manifold. This corresponds exactly
to the finitely intransitive type of transformation 7.

In the finitely intransitive case each type of motions has the same properties
stated above for the intransitive type.

We do not consider the infinitely intransitive type of dynamical system
except as covered in the general results stated above. Here we have infinitely
many types of motion, and, in default of a knowledge of the types which may
exist, the results to be obtained are necessarily vague.

§ 73. Conclusion.

The varying degree of definiteness of the results above obtained for dynam-
ical systems is striking. The catalogue of types of motion according to their
degree of simplicity appears to run as follows: ordinary periodic motions, bi-
periodic motions representable analytically by convergent trigonometric series
in two arguments, triperiodic motions representable by three arguments; motions
asymptotic to periodic motions of hyperbolic type, motions asymptotic to peri-
odic motions of elliptic type and of the other types just referred to; recurrent
motions of biperiodic or triperiodic type (not representable by convergent
trigonometric series); recurrent motions of discontinuous type; motions asymptotic
to recurrent motions of these new types (or to sets of isomorphic recurrent
motions); special motions (i. e. not passing near all phases for both lim = + «
and lim { = — ) not of above types; general motions.

The degree of definiteness attained has varied with the analytic instruments
at hand, and will probably be found to correspond to the nature of the case,
at least unless entirely new analytic instruments are discovered.

The remarkable diversity and complexity of structure possible in dynamical
systems with two degrees of freedom is likely to stand permanently in the way
of approach to any definitive form for the theory of such systems. As has
appeared above, many of the most vital questions are still without an answer.
Progress with these questions and progress with the theory of the conservative
transformations 7' which we have studied will go hand in hand.



