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When one deals with problems of differential geometry having to do with
the existence of specified properties of a space one is invariably confronted with
the integration of a system of differential equations. It is sometimes possible
to reduce this system — frequently the defining equations of the property in
question — %o an equivalent system of differential equations exhibiting greater
simplicity in certain respects. When this has been done the reduced system is
usually said to furnish a solution of the problem although in no fundamental
sense is this correct since these latter conditions are likewise of differential

character. Now it can be shown under very general conditions that the question
22—36122. Acta mathematica. 67, Imprimé le 26 aott 1936,
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of the existence of a solution of a system of differential équations can be reduced
to the question of the existence of a solution of a system of algebraic equations
to which can be applied the highly developed theory of algebraic elimination.!
This procedure of algebraic elimination will lead to a set of conditions involving
polynomials in the fundamental structural functions of the space and their deri-
vatives, necessary and sufficient for the existence of the property under considera-
tion. We embody precise types of such conditions which are of especial interest
in the following definition of the algebraic characterization.

In a recent paper entitled Algebraic characterizations itn complex differential
geometry® 1 have considered the question of expressing necessary and sufficient
conditions for the existence of a property P of a generalized complex space by
conditions of the form

Fi=o0, F,#o0,

where I’ and I, represent sets of definite polynomials in the structural functions
of the space and their derivatives to a certain order, and the nonequality sign >
is interpretated to apply to at least one of the polynomials of the set I, If
such conditions exist they are said to give an algebraic characterization of the
property P. When dealing with a real space it is evident that we must augment
the above signs = and # by the sign > and even by the combination sign =.

Thus we shall say that the conditions
Fi=o, Fy,#0, Fy>o0, Fy=zo0

constitute an algebraic characterization of a property P of a real space, where
the I"'s have the above specified significance, provided that these conditions are
necessary and sufficient for the existence of the property P. A simple example
of an algebraic characterization is afforded by the equations expressing the
vanishing of the curvature tensor of one of the various spaces for which such
tensors have been found, these equations giving in fact necessary and sufficient
conditions for the space in question to be flat. Other examples only slightly
more complicated have been given in a paper by J. Levize and the present
author.® On the other hand it can be shown that certain spatial properties do

! See, T. Y. THOMAS, Un corollaire du théoréme de Riquier, Bull. des Sci. Math. 59, 1935, p. 134.

® Trans. Am. Math. Soc., 38, 1935, p. 50I.

2 On a class of existence theorems in differential geomeiry, Bull. Am. Math. Soc. 35, 1934,
p. 721.
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not admit an algebraic characterization.! It is therefore of significance to inquire
concerning the existence or non-existence of an algebraic characterization for any
specified property P of a space and this question gives rise to a host of in-
teresting and difficult problems in differential geometry.

The following paper deals with the algebraic characterizations of (real) Ris-
MANN gpaces as spaces of class one. In a recent paper by Wrise? there are to
be found a number of interesting equations expressing necessary conditions for
a Riemany space to be of class one and some of these have been used in the
present paper; but he has not arrived at a true algebraic characterization of
such spaces as above defined. In connection with the solution of this problem
we have defined an integer invariant of a RiemanNN space which we have called
the type number of the space (§ 5). If the type number is one the space is flat
and hence fails to be of class one. We have excluded those Rirmanxy spaces
of type number two inasmuch as the discussion of such spaces requires essenti-
ally different methods than those of higher type number and it has therefore
been thought best to make these spaces the occasion of a separate investigation.
For all other cases the algebraic characterizations have been constructed.?

The first three sections of the following paper are of an introductory cha-
racter and as such afford an easy approach to the problem under consideration.’
They have been added primarily, however, since the precise formulations which
they contain are desirable from the standpoint of the later treatment.

1. Fundamental Forms of a Hypersurface.

Let 4%, ..., y"*' be the coordinates of a rectangular cartesian coordinate
system of an (n+1)dimensional Buclidean space E. Define in F a hypersurface
S by the equations

(1. 1) v =g (", ..., a2V, (t=1,..., n+1),

! Trans. loc. cif. and T. Y. THoMAS, On the melric representations of affinely connected
spaces, Bull, Am. Math. Soc., 42, 1936, p. 77. These papers contain a proof of the non-existence of
an algebraic characterization of the metric spaces in the class of all complex affinely connected spaces.

* Beitrage zum Klassenproblem der quadratischen Differentialformen, Math. Annalen, I1o,
1935, p. 522.

2 The conditions defining the algebraic characterization are considered to be known if they
are definitely obtainable by the recognized procedures of algebraic elimination.

* Cf. DuscHER-MAYER, Lehrbuch der Differentialgeomeirie, 11, Riemannsche Geometrie, Teub-
ner, 1930. EISENHART, Riemannian Geometry, Princeton University Press, 1926, LEVI-CIVITA,
The Absolule Differential Calculus, Blackie and Somn, 1929,
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where the @'s are continuous and differentiable functions of the variables z¢ of
any (open and simply connected) neighborhood U of a point z¢ of the real
n-dimensional number space; for the requirements of the following discussion we
assume that the functions ¢ possess continuous partial derivatives in U to the
order three inclusive. The condition that S be a hypersurface (regular n-dimen-
sional locus) is expressed analytically by the requirement that the functional

matrix
og' gt
0 x! 0!
f}¢l. é;wn+1
T

be of rank % in U.
We define the element of distance ds in the Euclidian space Z by the

quadratic differential form
n+1

ds*= 3 (dy')’;

i=1

when we restrict ourselves to displacements in the hypersurface § this form
becomes

n+1 n oo :
Jdy dy
2 __ N y oy @ B
ds Z D G 5 dzx
i=1 ¢ =1
with reference to arbitrary (differential) displacements dx®in S. Or we may write
n
(1.2) ds®= ¥ gp(2) dz" dxf,

a, =1

where the coefficients g.; have the values

(1.3) Jap= D) 7%
=1

The differential form (r1.2) is called the first fundamental form of the hypersur-
face § and its coefficients g.s are continuous functions of the variables x* with
continuous first and second derivatives in U.

A vector § of the space E with components & is said to be normal to a
vector { of F having components = dy’ if
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n+1

D &dyt=o.

i=1
If the vector § is associated with a point of the hypersurface S-and if the above
condition is satisfied for every set of values dy’ given by (I.1) the vector § is
said to be normal to § at the point in question; hence, owing to the arbitrariness
of the da®, the condition of normality becomes

n+1 n n+l1

S S a0 o NEy, =0, (=1,

i=1 a=1 =1

where the partial derivatives dy"/0x“ have been denoted by y’,. The quantities
¢ are said to be the direction cosines of the vector § if they satisfy the last set
of equations and are further more so chosen that the sum of their squares is

equal to unity, i.e. if
n+1

(1.4) Zoiy/f‘x:o, l@=1,..., n),
i1
n+1

(1.5) Qod=1.
i=1

Since the functional determinant of (1.1) is of rank » the equations (1.4) will
have but one solution in their fundamental system and hence the solution of (1. 4)
and (I.3) will be determined uniquely to within algebraic sign corresponding to
the ambignity in the direction of the normal vector § to the hypersurface S.
On account of the above hypothesis of differentiability the direction cosines ¢
will be continuous functions of the variables % with continuous partial derivatives
to the second order.
Now consider a second hypersurface §, defined by the equations

v = @' () + e o (x),

where the o(x) are the above direction cosines of the normal vectors § to the
hypersurface S and ¢ is an infinitesimal; the surfaces § and S, are said to be
parallel in the sense that S, may be thought of as being generated by laying
off a distance of constant length ¢ along the normals § to S. The above equa-
tions defining S, specify at the same time a one to one continuous correspon-
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dance between the points of S and S,. By differentiation of these equations we
easily deduce the relation

n+1 n+1
dsy=ds*+ D zedy'do’ + ) & (dd'),
=1 =1
where ds and ds, are the differential elements of distance between corresponding
points. Or
dsy — ds®*= — 2¢1y, where

n+1

(1.6) Y= — 3 dy'dd,

i=1

neglecting terms of order higher than the first in the infinitesimal ¢. The dif-
ferential form ¢ is called the second fundamental form of the hypersurface S. It
can be expressed as a quadratic differential form in the arbitrary quantities da%;
in fact we have

n n
dyt= Z Yy dat, do' = Z o, dx

a=1 a=1

so that substituting into (1. 6) we obtain

.
(1. 7) Y= D bapdadxf, where
a, =1
n+1
(1-8) bap=bga = = 3 3 [V 05 + ']

=1

It follows from (1.8) and the preceding observations regarding continuity and
differentiability that the coefficients b.p of the second fundamental form are
continuous functions of the variables a® possessing continuous first partial deri-
vatives in U.
We shall now derive another expression for ¥ which will have application

later. Differentiation of (1.4) gives

n+1

Z[afﬁyfa——ofyfaﬂ]———o, (@, 86=1, ..., n),

=1

where the yfa'{,j, denote the second partial derivatives of the functions . Hence



Riemann Spaces of Class one and their Characterization. 175

I1fa+1 n+1
520t 0= 20,
7 =1 i=1

and since the left member of this equation is the same as the right member of

(1.8) we obtain
71

(1.9) bag= D o' -
i=1
Now it is evident that the guantities 3° and o° can be regarded as scalars
with respect to transformations of the independent variables x* or coordinates
of the hypersurface S. Adopting this point of view the quantities y’, and o,

are the components of covariant vectors and the g,z as defined by (1. 3) are the
components of a covariant tensor which is called the fundamental metric tensor
of the hypersurface S. Likewise the b.g defined by (1.8) are the components of
a covariant tensor and in fact we easily see the tensor character of all preceding
equations. Also it follows readily’ that the determinant |g.s| does not vanish
and indeed is positive in' U so that the form (r1.2) serves as the basis of the
process of covariant differentiation in the hypersurface S. Taking the ecovariant
derivative instead of the partial derivative of (1.4) the above process by which
the equations (1.9) were deduced will lead to the equations

n+1

(1. 10) bep= D\ 'Y, 4,

=1

where the ¥, g are the components of the second covariant derivatives of the

scalars 9 and these components are symmetric in their lower indices.
Still another expression for the b, can be obtained by covariant differentia-
tion of (1.4); this gives
nt+1

Z [ofﬁyfa + a"yfq,ﬁ] =0,

i=1

! Tn fact ds® must be posilive whenever all the dx® are not equal to zero; for suppose that
2-%{3 da®daf = 3 yfayfﬁdm“dacﬁ =2[Z yfa da®][2 yfﬁdxﬁ] =o.

But this implies the vanishing of the bracket expressions and hence all dx* =0 since the rank of
the functional matrix ”y’all is #. Hence the above form is positive definite and it follows from

a theorem in algebra that the determinant |ga (3| is everywhere greater than zero.
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and from these equations and (1. 10) we have

n+1

(1.11) bap=—2 LV

i=1

2. Generalized Gauss and Codazzi Equations.

We shall now derive further necessary equations connected with the hyper-
surface S. Starting with the equations

n+1
gesg = ¥ Y g
=1
which define the coefficients of the first fundamental form of S we obtain by

covariant differentiation the following equations

n+1

Z [?/fayj:ﬁ,y + y.ia,y?/.i(’)'] =0

i=1

n+1

S WVt Vpal] =0

=1

n+1

2’ [yfvy,la,{)‘ + yfy.ﬁyfa] =0,

i=1
the second and third of which result by cyclic permutation of the indices in the
first equation. By adding the second and third and subtracting the first of these

equations we obtain
ntl

(2.1) nya’[gyf7=o.

=1

If we keep « and g fixed in (2. 1) we have » equations in the # + 1 unknowns
Y. s and since the matrix ||#¢,|| of this system has the rank » the equations

have but one independent solution. But it follows from (1.4) that ¢ is a solu-
tion of (2. 1). Hence the most general solution of (2. 1) is given by

(2‘ 2} .7/,1.“,(32 a[)’giy

where the quantities b,p are arbitrary functions of the coordinates x* symmetric
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in the indices ¢ and 8. However if we multiply (2.2) by ¢ and sum on the

index ¢ we see from (I.5) and (1. 10) that the b.p in the above equations must

actually be the coefficients of the second fundamental form of the hypersurface S.
By covariant differentiation of (2.2) we obtain

(2. 3) ooy = bap g0 + 0,500,

To determine the quantities o’ ,in these equations we consider the system composed

of (1. 11) and the equations resulting from covariant differentiation of (1.3) i.e.

n+1

S od,=o
i=1
n+1

2 yf(foniv: o b{i’r'

i=1

The determinant of this system, considered as a system of linear equations for

the determination of the unknowns ¢* . is
¢l ... g*t1
1 ... m+1
USBAE AN B
b
1 ... gl
y n y,n

and this determinant is different from zero since its square is the determinant
lgop| in consequence of (1.3), (r.4) and (1.5). Hence (2. 4) has a unique solution
0:'7 which is in fact easily seen to be given by

ki3
(2.5) o, == Db, 9y,
w, v=1
Substituting these values of ofy into (2. 3) we have
n
(2.6) Yieps = bagr® ~bap 20 b, 9" Yl
u, v==1

23—36122. Acta mathematica. 67. Imprimé le 26 act 1936.
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We now express the fact that the left members of (2. 6) satisfy the identity®

n

n
Yiwpr Y™ —nyvBZcﬁvz - Z yfngBMﬁv’
y=]1

1w, r=1

where the B’s are the components of the curvature tensor of the hypersurface S.
Thus

(2.7) (g y — ba, ) o+ D Buy g = buplyu + Buog,l 979, = 0.

=1
If we multiply these equations by ¢’ and make use of (1.4) and (1. 5) we obtain
(2.8} bap,y = bay,p; also

(2.9) Bapyo = basbsy — bay bps,

i. e. the bracket expression in (2. 7) vanishes in consequence of (2. 8) and the fact that
the matrices |[g#*|| and |}y’ || ave each of rank ». The equations (2. 9) generalize
the equation obtained by Gauss and (2.8) those obtained by Copazzi for the
special case of two dimensional surfaces. In their generalized form these equa-
tions were first obtained by Voss; in the following we shall refer to them simply
as the Gauss and Copazzi equations of the hypersurface S.

3. (auss and Codazzi Equations as Conditions for a Riemann
Space to be of Class one.

Let us now consider an n-dimensional Riemanwy space with element of

distance defined by a positive definite quadratic differential form

(3. 1) ds® =

o

gaﬂdx“dxf”, (ga{i:‘ gﬁa)1

1

Thas

where the ¢'s are continunous functions possessing continuous first and second
derivatives in a neighborhood U of a point z% of the n-dimensional number space.
We ask under what conditions this space can be regarded as a hypersurface S
in a Euclidean space £ of n+1 dimensions, i. e. under what conditions will there

! See, for example, T. Y. THoMASs, The Differential Invariants of Generalized Spaces,
Cambridge University Press, 1934, p. 44, Eq. (13.8). Attention is called to the fact that the above
components of the curvature tensor are the negatives of those used by some writers.
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exist a set of equations (1. 1) defining a hypersurface S in Z such that the in-
trinsic element of distance of § is given precisely by the above form (3.1). If
this hypersurface S exists and is not an n-dimensional plane the Rizmany space
is said to be of class one.
The above problem is equivalent to the problem of finding conditions for
the form (3. 1) and another form
n

Y = Z bopda~dal, (bap = bpa),

@, f=1

where the b's are continuous functions with continuous first derivatives in U, to
be the first and second fundamental forms of a hypersurface S defined by equa-
tions of the type (1.1). Approaching the problem from this standpoint we con-
sider the system

o _

Jx® y*i“’
0?1' n
A v o i
(3 2) 0‘%(3 Z/l Faﬁ?/,fv + ba(ggy
oo 2 )
b = 2 b9,
g, v=1

The first set of these equations was previously introduced as the equations defining
the quantities yfa, the second set in which the I, are CrrisTORFEL symbols
based on the given form (3. 1) is the expanded form of (2.2); and the last set is
identical with (2.5). We now regard (3.2) as a system of equations in the un-
knowns ¢, ¥, and o’ and as such this system gives necessary conditions on the
quantities g.s and b.g for them to be the coefficients of the first and second
fundamental forms of a hypersurface S. Calculation and simplification of the
integrability conditions of (3.2) leads to the equations

(b{iy,d - bﬂﬂ,y) o' + Z [Bu(iyd + buy b(id — ba(fb{iylgawyfv =0,

o, v=1

n

2 (Bop, = by Jg™ Y, =0,

o, v=1
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which are satisfied identically in consequence of (2. 8) and (2.9). Hence (3.2) is
completely integrable and by the existence theorem for such systems admits a
solution y'(x), y',(x), o'(x) defined in the neighborhood U, this solution being
uniquely determined by the arbitrary initial values y(x,), ¥, (), o°(xo) of these
functions.! On account of the above hypothesis of differentiability of the func-
tions gop and bug it is evident that the functions y(z) and o' (x) will be continuous
with continuous derivatives to the third and second orders respectively in U.
It remains to show that the equations

-+l ;
Ay* Oy
[@6] = gap ~ ox* Ox2 ©
n+1 Ry
_N Y _
(3 3) [a]=20(7)—xu—07
£=1
n+1
[o]= D oo —1=0,
i=1

are satisfied in U. For this purpose let us choose the arbitrary initial values of
the unknowns which uniquely determine the solution of (3.2) so that at the
initial point z, < U the system (3. 3) is satisfied; this is evidently possible.® Then
the above bracket expressions will be uniquely determined functions of the z® in
U, continuous and with continuous first and second derivatives in this neigh-
borhood, and equal to zero at x,, To show that these expressions vanish iden-
tically in U we differentiate the equations (3. 3) and thereby obtain, after making

certain rearrangements by way of simpliciation, the following equations

(9 n
Gl = 3 o 13l by ),
7] N i
(3.4) ‘ %o;}] = > b9 ler) + 3 10 + b,500],

t, v=1 p=1
0 n
@fﬁl] =—2 3 buag* bl

w, v=1

! See, for example, T. Y. THOMAS, Systems of total differential equations defined over simply
connected domains, Annals of Math., 35, 1934, p. 730.
2 For example, if we make a linear transformation of the coordinates x® so that at the ini-

tial point we have g, 8 =a(‘§‘ with respect to the new coordinate system the equations (3. 3) will be
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Calculation of the conditions of integrability of (3. 4) shows that they are satisfied
identically on account of the Gauss and Copazz1 equations. Hence (3. 4) possesses
a solution [afl, [e], [0] uniquely determined in U by the assignment of the
arbitrary initial values of these expressions at x%= x%; it follows that the above
functions [ef], [e], [o] which are defined in U and which vanish at 2% = 2% must
vanish identically in U.

Since the form (3. 1) is positive definite in U by hypothesis it follows from
the first set of equations (3.3) that the functional matrix ||y’  («)]| will be of
rank n in U. Hence the equations

(3.5) Y =y (x), (@< U),

will define a hypersurface S of the Euclidean space E. By the first set of
equations (3. 3) the form (3. 1) will be the first fundamental form of S. Also the
second set of equations (3.2) can be solved for the quantities b.p by making use
of the last equation in (3.3) and the equations so obtained are identical with
(1. 10); bence the above form ¥ appears as the second fundamental form of the
hypersurface §. We may therefore state the following result:

Two quadratic differential forms

D Gapdatda?, D) bapdaduf

o, f=1 a, f=1

the coefficients of which are continmous functions of the variables x® with continuous
partial derivatives to the orders two and one vespectively in a neighborhood U of a
point a2 of the n-dimensional nwmber space, the first form being positive definite,
will be the first and second fundamental forms of a hyj)ersmface S of the Euclidean
space E of n+1 dimensions, the surface S being defined by equations of the type
{3.8) weth right members which are continuous functions of the variables x* and
which possess continuous partial derivatives to the third order in U, if, and only if,
the Gauss and Copazzi equations are satisfied in the nerghborhood U.

With regard to the original question as to the determination of conditions
for a Rimmanw space to be of class one the following modification of the above
italicized statement can evidently be made: A Rizmanw space with element. of

satisfied by taking o'=: . =0"=o0, ¢"T' =1 and 0y/9x" = .. Transforming back to the

original coordinates the transformed values of the quantities 93’/0a” and the above values of the

scalars ¢ will satisfy the system (3.3) as required.
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distance defined by the positive definite quadratic differential form (3. 1) the coefficients
dep of which are continuous functions of the variables x* possessing continuous first
and second partial derivatives in the neighborhood U will be- of class one, ¢f, and
only if, the curvature tensor B does not vanish identically wn U and there exists a
set of functions b,g(= bga) continuous with continuous first partial derivatives in U

such that the Gavuss and Covazzi equations are satisfied in U.

4. Motions of Hypersurfaces in Euclidean Space.

Let us subject the Buclidean space I to a motion, i. e. a point transforma-

tion defined by the equations

n+1

(4. 1) Yo =D\ iy’ + ¢,
k=1

where the a's are constants forming an orthogonal matrix ||af|| and the ¢'s are
arbitrary constants. The condition that the matrix ||a}|| be orthogonal may

conveniently be expressed by equations of the form

n+1 n+l
(4. 2) Za};a;nzdj;, Zafa;“zdf;t, (ky m=1,..., n+1),

=1 =1

the second set of these equations being in fact an algebraic consequence of the
first set. As a result of the motion of I the hypersurface S becomes a hyper-

surface S, given by the equations

n+1

(4. 3) yh =D dlyt(x) + ¢, @< ),
k=1

identical values of the parameters x® thus defining a one to one correspondance
between § and S,. It is easily seen that the two hypersurfaces § and S, have
the same first and second fundamental forms, namely

D aplx)dadaf, D) boglx) da dx?.

a, =1 a, =1

That the first fundamental forms are the same follows immediately from (1. 3),
the corresponding equations for the hypersurface S, and the condition of ortho-
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gonality (4.2). Also it follows readily from equations of the type (1. 4) and (1. 3)
that the direction cosines ¢) of the normal vectors to S, are related to the

direction cosines ¢ at corresponding points of § and S, by the equations
(4. 4 oi=+ 3 do"

We can of course choose the o) so that the + sign in (4. 4) applies without loss
of generality; then it results from (4.2), (4. 3), (4.4) and equations of the type
(1. 8) that the second fundamental forms are likewise identical for § and S,.
Now consider two hypersurfaces S and S, having the same first and second
fundamental forms; by this is meant that the coefficients of these forms are
either identical functions of the coordinates x* in a neighborhood U or that
they can be made so by a coordinate transformation in one of the hypersurfaces.
Assuming this condition to hold we know from the results of § 3 that the hyper-
surfaces S and S, are defined by equations of the type (1.1) the right members
of which are given as solutions of the same system of equations (3.2) and are
uniquely determined by the values of the quantities 4, 4’,, and o chosen so as

to satisfy (3.3) at a point x, < U. TFor simplicity let us suppose a linear trans-
formation of the coordinates x* of § and S, to be made so that at the point

x, the g,, have the values dg. Then if we put: y’, =&, and o' =&, the con-
ditions (3. 3) at 2%=x¢ can be written in the abbreviated form

n+1
(4-5) Z g & = 0o, (b, m=1, ..., n+1).

i=1

Now it can readily be shown' that if & = ui and &, =, are two solations of

(4. 5) they are related by equations of the form

! We have
ko1 k 3 L

D o =Bty =0 ZoP o =S, =4

Hence
A L
Multiplying by [,ti and summing on the index [ gives
W= Sap v, ap =Xy
But
i i ) i 3 &
Y, “2 =X (Z !‘; v;”) (E ""11’ vj) = ’{;n = dp

which is the condition that the matrix ”azm” be orthogonal.
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n+1
wo= D\ al vr, (¢, k=1, ..., n+1),
m=1
where the a’s are the elements of an orthogonal matrix |[{a? ||. Hence if the
g m ’

functions #’(x) and % (x) which define the hypersurfaces S and S, are such that

TR S
Y= G—vnHl
at % = xf

Y .= 0, =, ]
we must have the identical relations

n+1 n+1 n+1

yolo)= gyt ) + ¢ g (@)= aiy, (), oifx)=2 afc*(x)
k=1 k=1 k=1

where the constant ¢* are chosen so that the first set of these relations holds at
z%=x% This follows from the above existence theorem and the fact that the
left and right members of the above equations each constitute a solution of
(3. 2) assuming at the point x, the same initial values.

We have thus proved the following result: Two hypersurfaces S and S,
of the Euclidean space E have the same first and second fundamental forms if, and
only if, they are transformable by a motion in E.

5. Types of Hypersurfaces. Intrinsic Rigidity.

A hypersurface S will be said to be of type one if the rank of the matrix
[185(x)]| is zero or one for z < U. It will be said to be of type = where 7 is
an integer of the set 2, ..., » if the rank of the above matrix is = for x < U.
We shall now prove the interesting result that the type number of a hypersur-
Jace S s determined by its intrinsic properties, i.e. by the first fundamental form.

First consider the special case of a flat hypersurface S which is characte-
rized by the fact that the curvature tensor vanishes for x << I/. Then by (2.9)

we have
(5.1) bes bgy — bay bps = o.
Now the left members of these equations are the second order minors of the

matrix ||b.p]]. It follows from (5.1) therefore that || b.4|| has rank zero or one
at points z < U. Conversely if || bag]| is of rank zero or one at points « < U
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then (5.1) 18 satisfied and hence by (2.9) the curvature tensor vanishes in U.
Hence, a hypersurface S is flat of, and only if, 2t 4s of type one.
Now consider the following two systems of equations

(52) ZbaﬁAﬁ:‘—‘O,
f=1

(5. 3) > Bepyedd=o.
d=1

Suppose S is of type n. Then if the matrix || Bj] of the system (5. 3) is of rank
< n at a point x < U this system will have a non-trivial solution A% and it will
result from (2.9) that

n

(5.4) 2 (basbgy — buybpa) A° = 0.

d=1

But since det. [bg, | 0 at @ by hypothesis it follows from (5. 4) by multiplying
by 57 and summing on rvepeated indices that A?= 0; hence the rank of the
matrix || B|| is » for points x < U. Conversely if the rank of || B|| is » for a
point @, < U it follows that ||bes|| has rank » at z, since otherwise (5. 2) would
have a non-trivial solution A’ satisfying (5. 3) in contradiction to the hypothesis
on the rank of the matrix || B||. Hence, a hypersurface S is of type n if, and
only f, the matriz || B|| has rank n for all points x < U.

Agssume finally that S is of type = where = is an integer of the set 2, ...,
n—1. If the matrix [| B|| has the rank ¢ at a point x, < U then ¢ < 7 since
every solution of (5.2) is likewise a solution of (5.3). Now transform the
coordinates of U so that ||bss|| has the form

by - bre

bzl bzz

o] o}

at the point x;. Let 4% be a non-trivial solution of (5. 3); then A4 satisfies (5. 4)
in consequence of the relations (2.9). Tt then follows from (5.4) in which the
indices «, 8, ¥, 0 have the values 1,..., 7 that A'= - = A =0, also we know
that one of the quantities A’ for d > ¢z is different from zero since the above

solution is non-trivial. Hence these A’s satisfy the system (5.2), i.e. any solu-
24—36122. Acta mathematica. 67. Imprimé le 26 aott 1936,
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tion of (5.3) is a solution of (5.2). Hence o6 =7 and it therefore follows that
6=t or in other words the matrix || B|| has the rank 7 at all points x < U.
Conversely if the rank of || B|| is 7 at a point @, < U the rank of || b.s|| must
also be v at this point since otherweise we would have a contradiction with the
results above established. Hence, a hypersurface S is of type v where © is an
integer of the set 2, ..., n—1 if, and only if, the matriz || B|| has rank © for all
points x < U.

It follows from the above italicized statements that the type number of a
hypersurface S is completely determined by its intrinsic metric character; ¢t is
an intrinsic integer tnvariant of S. A Riemanw space will therefore be said to
be of type one if the curvature tensor vanishes identically and of type z where
7 is an integer of the set 2,...,n if the above matrix || B|| has rank ¢ for
x < U regardless of whether or not this space can be considered as a hyper-
surface of the Kuclidean space F.

A hypersurface S (or Riemann space .of class one) will be said to be in-
trinsteally rigid provided that the second fundamental form is uniquely deter-
mined (to within algebraic sign) by the first fundamental form and the equations
of Gauss and Copazzr. As so defined it is clear that intrinsic rigidity is a local
property. From the result of § 4 we know that the position of a hypersurface
in the Euclidean space E is determined by its first and second fundamental
forms to within a motion in E; also it is well known that if two hypersurfaces
S and S, in FE are related by such a motion either can be obtained from the
other by a rigid displacement in F or else by a rigid displacement combined
with a reflection in a plane. [t follows that an intrinsically rigid hypersurface
S can not be subjected to a continuous deformation in £ in such a way that
its internal metric properties will be left unaltered throughout the deformation.
We proceed to develop certain relations between the type number of a hyper-
surface and the property of intrinsic rigidity.

Consider the system

(5 5) bad'bﬂy_baybﬁd“:wad‘w[jy—wayw(ed‘

as equations to be solved for the symmetric quantities w.g. Assume det. [bog| # 0
at a point 2, < U. It then follows readily from (5. 5) that also the det. | wepg] # 0
at ;. In fact if we multiply these equations by 1*’ and sum on the repeated
indices «, d we find
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n n n
(n—1)bgy= D, [( > b‘“’wm;) J - b’”ww] wgy;
v=1 a, 0=1 a=1
and by taking the determinant of both members of these equations we establish
the above result. Now put wesp=bos + 4.s and use this substitution to elimi-

nate the w's from (5.3) so as to abtain

(5.6) bashgy + bgy oo — bayﬂ.{gd‘ — b(ga‘lm/ + lmylﬁy — lu},l‘gd‘ = 0.

1°. Suppose det. |Aep| # 0 at z, and multiply (5.6) by Af? summing on
repeated indices:

(5.7) (n—2)bag + (n+b—1)dag=0, b= D ¥bg,
B, 7=1

Again multiplying these latter equations by A*® we find that b = — »/2 and when
this value of b is substituted into (5.7) the resulting equations gi\%e Aog=—2bgg
for » = 3; hence w,p= — b.p.

2°. Suppose det. |4.5] =0 at x, < U. Let AP be a non-trivial solution of
the equations Z 1.5 4f =o0. Multiply (5.6) by 5*% and sum on repeated indices:

n n
(58) (n-}—l'—Z)lﬁy-I-lb{gy-— Z b"‘"la,.l(sa:o, A= Z 529 Ae 5.

a,d=1 a,0=1

Multiplying (5.8) by A7 and summing on the repeated index y then gives

(2‘ bﬁ'y A')’) A= o,

=1

hence A =0 since the coefficients of A can not all vanish in these equations as
this would be in contradiction to the assumption that det. |b.s]# 0 at x,. The
equations (5. 8) therefore become

n
(n —2)dgy = 2 b*?dayhso; hence
a, d=1

n

(n — 2) [w{gy — bﬁy] == 2 b9 [way — bay [w(gd‘ — bl

a,d=1

and these equations reduce finally to
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n

(5.9) nwgy=(n — 1)bgy + D} b*9 waywpy; hence
o, d=1

(5. 10) nbmz(n— I)w[g7+ Z w“"bayb(ga
a,d=1

since the quantities wg, and bg, in (5.9) are obviously interchangable. It now
follows from (5.9) and (3. 10) that

" n v -
nawgy=(n—1)bg, + X b*? [;ﬁ-l bay — nw_ . b,wwa wg4

o, d=1 w,v=1

and on reduction these equations become wgy, = bg, for n = 3.

We can now state the following result: If det. |bag| % 0 at a point 2, < U
then at x, the equations (5.5) have w.g= % b,s as their only solution (r = 3).
To extend this result assume that ||b.g|| has rank r > 2 at #, < U. Transform
the coordinates of U so that at the point x;, the matrix || bas|| has the form

by o by

e e o

brl e brr

o ‘ o

Then equations (5.5) give weg= * bag (@, =1, ...,7) in consequence of the
above result. Also we must have
(5.11) Wad Wy — WayWgg = O
if one of the indices in these equations has a value > r. Taking «, 8, y=1,...,7
and 0 >» we can then construct the quantities wf? by which (5. 11) can be
multiplied so as to obtain w.,s=o0 for e =1, ..., 7 and ¢ > ». Now take 8, y=1,
c.nrand e, d=r-+1,..., % in (5. 11); these equations then reduce to weswgy =0

from which w.g==0 follows immediately. Hence we have that w,g= * bep for
all values of the indices, i.e. if the matrix ||b.5]] has rank > 2 at a point
#; < U the equations (5.5) at x, have w.,g= 1 b.p as their only symmetric
solutions.

The above results establish the following theorem: A hypersurface S of type

= 3 4s entrinsically rigid.t

! This theorem has been proved by KrLrine, Nicht Euklidische Raumformen, Leipzig (1885),
p. 237 and by later writers; see, for example, L. P. EISENHART, Riemannian Geometry, Princeton,
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6. The Codazzi Equations as Consequences of the Equations of Gauss.

Consider a Rremann space with element of distance defined by the quadratic
differential form (3. 1) the coefficients gug(x) of which are continuous functions
of the variables a® in the neighborhood U with continuous first and second
derivatives. Let b.g(x) be a set of symmetric quantities likewise defined in U
with continuous first derivatives in this neighborhood. “We agsume that the
functions gag(xz) and b.s(x) satisfy the equations of Gauss (2.9) for x < U. It
will now be shown that in general the above functions will also satisfy the equa-
tions of Copazzr (2.8) in U.

By covariant differentiation of (2.9) we obtain

Bopgys, e == bad, e bgy + bpy, e bas — buy, e bgs — bgd, e bay,
(6. 1) Bogde,y = bae,ybgs + bgd, ybae — bas, ybge — bge, y bes,

Bogey, 6 = bay, abge + bge, 0 bay — bae, s bgy — by, 8 bae,
the second and third set of equations being obtained from the first by ecyclic
permutation of the indices. Adding corresponding members of the above equa-
tions we obtain a set of equations the left members of which vanish on account
of the Brancur identities so that we have

(6 2) bay a)ﬂed' + bas (Dﬁys + bae Q){Sd‘y + bﬂy @5 + b{id‘ (Dasy + bﬂs a)ayd’: 0,

where
Dapy = bagy — buy,p-

Now assume det. |b.g| # 0 at a point @, < U. We can then construct the
quantities $*? at 2, and multiplying (6.2) by these and summing on the repeated
indices we obtain

n n
(6. 3) (%*3)@ﬁsd+b(3£ Z b @yys — bgs Z b Qpye =0,
a, =1 a, =1
account being taken of the skew-symmetry of the @'s in their last two indices.

Similarly multiplying (6. 3) by b%¢ we have

(6. 4) (n— 2) anl b @yys = 0.

&, y=1

(1926), p. 201. The proof which we have given of this theorem although somewhat more lengthy
than the proofs of the above authors has the advantage of greater formal simplicity.
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Hence if n = 4 it follows from (6. 3) and (6. 4) that ®.g, is equal to zero. That
is, if the above functions g.p(x) and b.g(x) satisfy the equations of Gauss and
if det. |beg| =0 for x < U then the equations of Copazzr are also satisfied in
Uln=24)

To extend the above result let us assume that the matrix ||b.4|| has rank
r = 4 at a point &, < U and that a coordinate transformation has been made in
U so that at x, the matrix ||b.4|| has the form

b11 < by

At x; we then know that @.s,=o0 ifa, §,y =1, ..., 7 by the above result. Now
take @, 8,7, 0 =1,...,7 and ¢ > 7 in (6. 2); multiply these equations by b,, and
sum to obtain

(6 5) ("“2) wﬂed—ﬂﬂd Z b“'Y(DaYE—_:O.

a, =1

Again multiply the last set of equations by bss giving

n
(r—1) D) b7 @ay.=o0.

o 7=1

Hence from (6.5) we have @g.s=o0 for 8,d=1,...,r and ¢ >r. Next take
B 7,06, e=1,...,r and a >r in (6. 2}, then multiply these equations by %% and
sum on repeated indices; this gives @,3.=0. We have now shown that the
quantities @,g, vanish at the point x, if two of the indices are in the range
I, ..., and the other index is > r.

Take «, 8,y =1,...,7 and d, ¢ >7. Then multiply (6.2) by b°?; we deduce
®g.s=o0. Take «,y,e=1,...,7 and 8, J > r and multiply (6. 2) by 5*7 to obtain
again @g.s =0 but for the last range of indices. Hence the @'s also vanish if
ong of the indices has a value 1,...,7 and the other two indices are > r.

Finally take o«,y=1,...,7 and 8, d,e>7r in (6.2), multiply by %7 and
obtain @g.s=o0, i.e. the @'s are equal to zero at x, for all indices >r. We
have now shown that for all values of the indices the quantities @.4, vanish in
the neighborhood U.
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As the above requirement that the form (3. 1) be positive definite can evid-
ently be replaced in this discussion by the weaker condition that the det. | gap| >0
for x < U we have in fact proved the following

Theorem. Let

n

D Gupl)dadaf, N boplx) dasduaf

e, =1 o, =1

be two quadratic differential forms the coefficients of which are continuous functions
of the variables x* of the neighborhood U with continuous partial derivatives to the
orders two and one respectively; furthermore let the matriz || g.sl|| have rank n and
the matriz ||bagll have rank =z 4 for « < U. Then, if the coefficients of these
Jorms satisfy the equations of Gavss for x < U, the equations of Copazzr will
automatically be satisfied in the neighborhood U.

7. Reality Conditions.

We shall now investigate the solutions b.p of the Gauss equations (2. 9)
considered as a system of algebraic equations, the left members of which are
the components of the curvature tensor of a Riemanw space (n = 3) of type
=3 (§ 5) defined in U. In general a solution of these equations will have
the complex form

(7 I) baﬁzpaﬂ’i' V:—iQa{?,
and as a first step in this investigation we shall determine necessary and suf-
ficlent conditions for the solution (7. 1), if such exists, to be real, i.e. for the

above quantities g.g to vanish.
By a well known theorem in Algebra we have

2 —

bal bay, bas b Zu,,u Zaw
bos bpw bo | = | Baa bpu B |
bya byu bys ZM T’w i’w

where the b,; ete. demote the cofactors of the corresponding elements of the
determinant in the left member of this equation. But these cofactors are directly
expressible in terms of the components of the curvature tensor on account of

the equations (2.9); making these substitutions we have
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bal Z(Z[.L bow Bﬂywy, Bf}'ylv —B{S‘ Tui
(7 2) Zﬂl Zﬂ[/, Zﬁ’v = -Bay,uv Baywl Bayl(.l,
Z’yl Zyp, Zyv Ba(:’vy, Ba(Slv Baﬁy,l

It therefore follows that

ba}. bay, bav 2 -Bf}'yv‘u Bﬁy}.v Bﬁ'yy.l I;a{a’l‘u Ba(a’,uv Ba(Sw}.
(7 3) ?)(3}, b(ju, bﬁv = -Ba'yy'u Bzx*{vl Baylu = B(?VM‘- Bﬁ”ll“’ Bﬁ)’”‘ :
b'y}. b’yy, byv Baﬁv,u, Baﬂ}.'v Ba(}y,l B’yalu -B7a/tv Byowl

Hence, the nequalities
Ba{i‘ly Baﬁpw Baﬁvl

(7 4) - Bﬁyly. Bﬂyyv Bﬂyvl =0
Byalu Byayv —B'ya'vl

constrtute mnecessary conditions for the solution bag of the Gauss equations (2.9) to
be real.

Now we know from the considerations of § 5 that the (real or complex)
solution matrix ||b.s(x)]| of the Gauss equations must have rank 7 at points
2z < U. Consider this solution at a particular point z; < U where it may have
the complex form (7. 1). The following cases may then arise:

Case I.  Rank of ||gugl| is = 3,
Case II. Rank of ||g.s|| is 2,
Case III. Rank of ||g.p|| is 1,
Case IV. Rank of ||g.g]| is o.

N

Before proceeding to the discussion of these cases we shall state a number of
simple lemmas which will have direct application.

Supposing the above solution b.s at x; to be pure imaginary it follows
from (7. 3) that

Qe Qap Gaw 2 Ba[ﬁ.,u Baﬂ/m: Baﬁvl
— | @82 pe Gpv | = — | Bgvaw Bpyuv Bsyra
Qri Qyp Iy Byuip Byawvr Byava

at «;. But since ||b.s(x;)|| bas rank = 3 it must be possible to find indices
o, 3,7, %, u, v so that one of the determinants in the left members of these equations
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is different from zero; for this selection of indices the left member will then be
negative while the right member will be =0 by (7.4). This gives

Lemma 1. The solution b.g of the Gavuss equations can not be pure imaginary
under the conditions (7. 4).

If we substitute (7. 1) into the right members of the Gavss equations and

equate to zero the imaginary parts we obtain

(7. 5) Padqpy + PpyQas — Pay 483 — Pgd qay = O.

Assume the matrix ||g.s|| has rank » and give this matrix the form

Gy " Qur
e e e (o]
gr1 Qv

o | o |

by a linear coordinate transformation in U. If r =% we can construct the
quantities ¢f? by which we can multiply (7. 5) and sum on the repeated indices;
this gives

(7.6) (n—2)pas + pgas =0, p= 2, ¢ pg,.
(3:7:1

Similarly multiplying these equations by ¢*¢ and summing we obtain p = o;
hence p,g=0 since n = 3 by hypothesis. Now suppose » < un. Take 8,y=1,...,7
and @, d > 7 in (7.5). Then (7. 5) becomes

Padqpy =0

from which it follows that po.g=o0 if @, d > . Next take ¢,8,y=1,...,7 and
0 >r in (7. 5); then from these equations we have

Desdpy — Ppdday=0O.

Multiply the latter equations by ¢®7 and sum to obtain

(r — 1) pas=o.
Hence pog==0 for e=1,...,7 and 0 > if » > 1. TFinally if » > 2 it follows
from the equations (7.6) for n=r that peg=o0 if ¢, d=1,..., 7. This gives

the following lemmas:
25—36122. Acta mathematica. 67. TImprimé le 26 aolit 1936.
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Lemma II. If ||qepll has rank = 3 then pog=—o for all indices.

Lemma III. If |lqupll has rank two then Pap==0 for e, 8>z and for
a=1,2; 8> 2.

Lemma IV. If ||qupll has rank one then p.g=o for e, 8> 1.

Returning now to the above cases we see by Lemma II that if Case I holds
the solution b, must be pure imaginary which is in contradiction with Lemma I.

If Case II is assumed to hold then by Lemma ITI the matrix || bqg|| must bave

the form

(par + V—1 Z21) (pag + V—1 Gs9)
| o o |
in contradiction with the fact that this matrix has rank 7= 3. Similarly under
Case 1II the matrix ||bap|| would have the form

(Pu +V—1 Qu) (Pn +V—1 le) o i

(pu + V=1 .(111)

Piy Pin

Pa
: ‘ 0

Prna

with a maximum rank of two. Hence the remaining Case IV must hold which
means that the solution b.s of the Gauss equations is real under the above

hypotheses.

Theorem. If the left members of the Gavuss epuations (2.9) are the compo-
nents of the curvature tensor of a RIEMANN space (n = 3) of type = 3 with element
of distance (3. 1) defined in a neighborhood U and if these equations have a solution
baglx) for x < U, then this solution will be real at all points x < U if, and only
if, the conditions (7. 4) are satisfied.

8. Algebraic Resultants and the Equations of Gauss.

‘We have seen in the preceding section that if a RremMaNN space is of class
one the reality conditions (7.4) must be satisfied. If now the Riemanw space is
of class one and type = 3 we know from § 5 that at any point x, < U one of
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the determinants in the left members of (7. 3), the elements of this determinant
being the coefficients of the second fundamental form of the corresponding
hypersurface, must be different from zero. Hence one of the left members of
(7. 4) must actually be > 0 and we can therefore state the following result: 4
necessary condition for a Riemanw space (n = 3) of type v = 3 to be of class one

s that the inequality
Ba{%l;c Baﬁpw Ba{%vl

(8. 1) 2| Bavap Boyur Bagwa | >0 (@< U),
Byaz?.y, Bya(u’ B’yavl

be satisfied, where the summation s to be extended over all possible values of the
indices appearing wn the above determinant. Further necessary conditions in the
form of a system of linear homogeneous equations can be derived as follows.
Multiplying both members of the Gauvss equations (2.9) by b., we obtain

buv Bogys = buybas bgy — buy bay bps; also

bua Bvgys = buabrsbgy — buabuy bgs.
Subtracting corresponding members of these equations we have

bpw Baﬂyd‘ + bp,a B[i’vyd‘ + bﬂy(bya bys — b/m» bud‘) + [7{30(})(41) bzzy - b;/,a bvy) =0,

and when use is made of the substitution (2.9) the latter equations become

(8 2) b[,“; Baﬁy(" -+ Z)MqBﬁq-vd‘ + bﬁy BMJ"’“ + b{gd‘BMya'v = 0.

Let us now write the Gauss equations (2.9) in their homogeneous form
namely
(8. 3) Bepgyst* = basbgy — bay bp s.

Consider the equations (8.2) and (8. 3) as a system for the determination of the
unknowns ¢ and b,g. Since the B's appearing in this system are the components
of the curvature tensor of a Riemanx space of type v = 3 the system must admit
a solution such that the matrix ||b.s|| bas rank v at any point @ < U if the
Riemany space is to be of class one; hence in particular the system composed
of (8.2) and (8. 3) must admit & non-trivial solution (¢, bup) at any point o < U.
Now we know from the theory of systems of homogenekous algebraic equations
that the above equations (8.2) and (8.3) must admit a resultant system, i.e. a
set of polynomials in the components B such that the vanishing of these poly-
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nomials is necessary and sufficient for the existence of a non-trivial solution.!
Representing the resultant system of (8.2) and (8.3) by R,(B) it follows that

(8. 4) R.(B)=o, (x < U),

is a necessary condition for the above Rieman~ space to be a hypersurface of
the Euclidean space E.

Assuming (8.4) to be satisfied let (£, bag) be a non-trivial solution of (8. 2)
and (8. 3) at a particular point x, < U. Suppose t =0 in this solution. Then

(8 5) bad"bﬂy_ bayb(id———o.

Now multiply (8. 2) by b;,, interchange { and u and subtract; when use is made
of the conditions (8.5) and the identities satisfied by the components of the

curvature tensor we then obtain
(8.6) beybgy Bavsy + bunbpy Bavis + biybps Bavuy + buybgs Bawyg = 0.
Putting y = u in (8.6) we have

b§11 bﬁy Bavd‘u + byn bﬂd'BavuZ + bunbﬂ[c Bav:d': o,
(8 7) b;n b{?u -B'qu‘u + b/t'q b{?d’vau‘g + b.u,n bﬂ‘u. va’gd’ = 0!
b‘:’? bﬂ# Bwad‘y, + by,q b(Sd']gwaMQ + bun bﬂ//, BwaCd': O,

the second and third of these sets of equations being obtained from the first
by replacing the indices (¢») by (vw) and (w«) respectively. The determinant
of the above system is

Bevsy Bavu: Basis
(8. 8) B,wsu Bsou: Brwis |

Buaip Boap: Boatd

By (8. 1) one of determinants (8.8) must be different from zero. Let the indices

e, v, w, 0,1, be chosen so that the above determinant (8.8) is not equal to
zero; then from (8.7) we have

ben bgu = buybgs = bunbpu =0,

where d, u, { are determined and B, n are arbitrary. Putting n =8 we see from

! See B. L. VAN DER ‘WAERDEN, Moderne Algebra, II, Berlin, Springer, 1931, p. I4.
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the above equations that b,4bs, =0 from which it follows that b,3= o0 for g8
arbitrary. Making use of this fact and replacing the free index y in (8.2) by
the determined index { these equations yield the system

bﬁCBavd‘u + b(ed‘Bazvy'; =0,
(8 9) bﬁ;va(f(L + b(fd‘.vay,’;:O,
bfjc Bwad‘y/ + bﬁJBmaM'g - O,

with matrix

Baafd'y, BavMC
vad'y, vay,C
Bwaé“u wa;

The rank of this matrix must be two since otherwise the determinant (8. 8) would
be equal to zero contrary to hypothesis. Hence (8.9) gives bgr =0 and bgs=o0
for {,d determined and g arbitrary. It now follows from equations (8.2) that

bﬁ'y Bafyd'[,l, = O,
bﬁy B,,wd‘ﬂ' =0,

bf}y Bmad‘y, = 0,

where the indices § and y are arbitrary. Now one of the B's in these equations
must be different from zero since otherwise the determinant (8. 8) would be equal
to zero. Hence bgy =0 for arbitrary values of the indices #, y and since we have
assumed that ¢=o it follows that the solution (¢, bap) of the system (8. 2) and
(8.3) is trivial contrary to hypothesis. Hence we must have ¢ 0 so that the
quantities by g/t can be defined and these constitute a solution of the Gauss
equations (2.9). We thus arrive at the following

Theorem. If the left members of the Gavss equations (2.9) are the compo-
nents of the curvature tensor of a Riemanw space (n = 3) of type v = 3 with element
of distance (3.1) defined in a neighborhood U then these equations have a solution
beplx) for « < U if, and only if, the inequality (8. 1) and the equations (8. 4) are
satisfied.

When the conditions (7. 4) are likewise imposed it follows from the theorem
at the end of § 7 that the above solution bupg(z) will be real. In this case the
polynomial inequality (8. 1) can be replaced by the polynomial inequality
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Baﬂlp, Ba(j’(uz Ba/:’w}t
(8 IO) _ 2 B{Syly B[-}y‘uv Bﬂ'y’yl > 0, (x < [})
-B-yaly ByaMw Byavl

of lower degree, the summation in this inequality and in (8. 1) having the same
significance. Hence we have the

Theorem. If the left members of the Gavuss equations (2. 9) are the components
of the curvature tensor of a RIEMANN space (n = 3) of type v = 3 with element of
distance (3.1) defined in a neighborhood U then these equations will have a real
solution bug for x < U 4f, and only if, the inequalities (7. 4) and (8. 10) and the
equations (8. 4) are satisfied.

It follows from the results of § 5 that the solution b.s(x) of the Gauss
equations which exists in accordance with the above theorem will be determined

uniquely to within algebraic sign at each point « < U.

9. Explicit Determination of the Solutions of the Gauss Equations.
Continuity and Differentiability Properties.

Since the real solution b.s(x) of the Gauss equations is determined to
within algebraic sign at each point z << U under the conditions of the last theo-
rem in the preceding section we are now faced with the problem of showing
how these algebraic signs can be selected at the various points of U so that the
functions b.pg(x) will be continuous and differentiable in U. We shall first derive
a set of equations which will have application in the discussion of this problem
after which it will be treated in detail under a number of special cases.

Consider the determinant

bal bau bav
(9. I) d(ap’ylyv): b/u bm,, b[gw ,
byn byu byo

and also its adjoint, i.e. the determinant

zal ’_)QM ba'v

(9 2) d(aﬁ?/}'nu'”)z [_)ﬂ), b{m b{gv y
Zy}. Zy,u, b“yv
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wher Zaﬁ is the cofactor of the corresponding element in /. By a theorem in
Algebra® any element of the determinant o, multiplied by «, is equal to the

cofactor of the corresponding element of the adjoint determinant 7. Hence by
(7. 2) we have

Baz L) Ba 3
9.3 AlaBylun)ba=| T"

—Ba(el'v Ba(igz}.

B, By
, AlaBydur) by, = v '

y e

Baﬁgx,}u . Ba'[:’v,u

Case I. »=17=3. In this special case the determinant 7 (123123) does
not vanish in U; let us therefore choose the above algebraic signs so that at
any point © << U the determinant (123123) is positive. Now the determinant
A can be expressed in terms of the B's on account of (7. 3); when this substitu-
tion is made for « (123123) the equations {(g. 3} give

B B ] Bisis Bises Bion
_ 1331 Dig12
buy B B — | Bosiz Bagsy Bossy |»
1218 O1ag1

B3112 B3123 B3131

(9. 4) Biys Bisss ] Bigis Bisss Bias

b= B B — | Bastz Bogos Bagar |»
1921 Digse
Byy,s Byiss By

Since the coefficients of the form (3. 1) are assumed to be continuous with con-
tinuous first and second derivatives in U and also since the above equations
(9.4) are valid thronghout U it follows immediately that the functions bag(x)
are continuous in U. If furthermore the coefficients of the form (3. 1) are such
that the B’s possess continuous partial derivatives the functions be.g(x) will have
continuous partial derivatives to the corresponding order.

Before proceeding to the next case we shall make some general remarks
which will have application whenever the rank z of the matrix || bop(x)|| is < n.
By hypothesis then the matrix ||b.5(x)|| has rank ¢ < in U. Consider an
arbitrary, point z, << U. By a theorem in Algebra there must be a diagonal
determinant of |[|&ap(x,)|| of order = which is different from zero since ¢ is the
rank of the matrix ||b.s{x)||; for definiteness we suppose this non-vanishing
determinant to be situated in the upper left hand corner of || bag(z,)]], i.e. we
suppose the determinant

! Bee M. BocHER, Introduction to Higher Algebra, MacMillan, 1929, p. 33.
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bn webie
(9.5) C e
b11 e b‘m
to be different from zero at x,. Then at x; there must exist identical relations
of the form

i d=1 T
(9.6) b(l=2b Ac, ( 3 v ey ),
* =1 ¢ u=tT+1i,..,n

T T
(9. 7) buv =N ber AS = D b, AL A, (w,v=T+1,..., )
c=1 ¢, d=1

Now multiply (9.6) by b.; interchange the indices ¢ and d in these equations
and subtract. When use is made of the Gauss equations (2.9) we then obtain

the consistent system
(9. 8) Bdefy = 2 Bdejc A;: (
c=1

with matrix

de,f=1,...,1
pu=tt+1,...,n ’

Byerr - Baese
(9.9)

Now consider that set of the Gauss equations which contains in its left members
the elements of the above matrix, i.e. the equations

(9. IO) Bdejc = bge bef"‘ bdfbec, (d, C,f, c=1, ... 't).

Since 7= 3 and the determinant (9. 5) is different from zero at x, we know from
the consideration of the system equivalent to (9. 10) in § 5 that at x, the matrix
(9.9) has rank ¢, the maximum possible rank of this matrix in U. Hence the
equations (9. 8) give a determination of the quantities A as rational expressions
in the components of the curvature tensor B, these expressions being valid in
a neighborhood ¥V such that o, < V < U.

Case II. n >3, t=3. At an arbitrary point z, < U the matrix || bap(2}||
will have rank three and hence will contain a non-vanishing diagonal determi-
nant of order three; without loss of generality we may suppose this to be the
above determinant  (123123) and we may furthermore suppose the algebraic
sign of the functions bug(x) at x ==, to be selected so that & (123123) is posi-
tive. As we have already mentioned it then follows from § 5 that the corre-
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sponding matrix (9. 9) will have rank three at xz,. Let R(B) denote a third order
determinant in (9. 9) which does not vanish at z;; then the equations (9. 8) cor-
responding to this determinant will give a unique determination of the quantities
A Dby rational expressions in the B's valid in a neighborhood ¥V such that
2, < V< U. Now the square of o (123123) is equal to the expression under-
neath the radical in (9. 4) which is = o0 by (7.4). But since # (123123) is posi-
tive at x; the above expression underneath the radical will also be positive at
x; and hence positive in a neighborhood W < V of z,. Hence 4 (123123) will
be different from zero in W and we can therefore choose the algebraic signs of
the functions be.g{x) for « < W so that the determinant - (123123) is positive
in W. Then bsp(x) for x < W and «, =1, 2, 3 will be given by (9. 4). Denote
the polynomial in the B's which appears underneath the radical in the denomi-
nators of (9.4) by Q(B). Then substituting (9. 4) for the b.s and also the above
rational expression for the A into the right members of (9. 6) and (9. 7) we have

the b.g given, for all values of the indices, by expressions of the form

P(B) P(B)

o1 QB " [QBI" R (B

where P(B) denotes any polynomial in the B's, and these expressions are valid
in the neighborhood W.

bl

Case III. #n >3, ©> 3. The matrix ||.s|| has a fixed rank = at points
2 < U and hence at any point z there will be a diagonal determinant of order
z which does not vanish. At a particular point x, << U let us suppose for de-
finjiteness that the determinant
by - bie
(9.12) Ce
b'tl e bm
is different from zero. As we have seen above we may now determine the 43
by (9.8) as rational éxpressions in the B’s, these expressions being valid in a
neighborhood ¥V < [J of the point x;. 1t remains to be shown that expressions
can be found for the elements b.q of the above determinant (9. 12) corresponding
to the first expression in (9. 11) after which the equations (9. 6) and. (9. 7) can be
applied as in the preceding case. In this connection we shall make use of the
following lemma which we shall state without proof since it obviously admits a

simple formal demonstration.
26—236122. Acta mathematica. 67. Tmprimé le 29 acit 1936,
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Lemma. Let @ be a quadratic form with matric M of rank 6= 3. It is
then possible by means of a non-singular transformation of the variables to trans-
form Q into a form Q such that in the matrix M’ of the coefficients of Q' every
minor determinant of order three will be different from zero.

By this lemma it is possible to make a linear transformation x —y of the
coordinates. of U in consequence of which the matrix ||b.4|| at »; will have
the form

bll b”
[P o
b‘zl"' bzz

I o o

at the corresponding point y, and all of the third order minors 4 {afyiuv) in
the determinant (9. 12) appearing in the upper left hand corner of the above
matrix will be different from zero. Now by (7. 3) these third order minors are
given by

-Ba(ily Bu(?gw Ba{i"yl
(9 13) J(aﬂylyv) =t —_ B{j'y}.[l. Bﬁy/m' —Bﬂ-,"vl
Bya).,u Bya;cv Byavl

Since all the expressions underneath the radical will be positive at y, they will
therefore be positive in a certain neighborhood D of y,. Hence in D all third
order minors of (9.12) will be different from zero. Now choose the algebraic
signs of the functions b.s at points of D so that the determinant o (123123)
will be positive in D. Then « (123123) is given in D by the corresponding
equation (9. 13) in the right member of which the + sign is to be taken; hence
the functions bes for &, §=1, 2, 3 will be given by (9. 4) in D and will therefore
be continuous in this neighborhood. Now consider a third order minor of (9. 12)
containing one of the rows or columns of . (123123), for example, the determinant

b21 b22 b23
A4 (234123) = | by byy by
b41 b42 b43
Suppose that the equation (9.13) which contains this determinant in its left

member involves in its right member the — sign at y, and the + sign at some
other point y, < D. Join y, and y, by a continuous curve C in D. Then since
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the function  (234123) does not vanish on C and has opposite algebraic signs
at the end points of C it must be discontinuous at some point P of C. At P
one of the elements in the first row of the determinant . (234123) must be
different from zero since this determinant does not vanish at P; for definiteness
suppose by, 7% 0 at P. Then by (9.3) we have

B B
A (234123) :‘ B2431 B2412 I/bgl-
2813 2321

Hence the left member of this equation is continuous at P since by # o at P
and is continuous in D. Tt follows that the equation (9. 13) which gives #(234123)
in D must involve only the — sign in its right member if this sign is valid at
the point y;. From (9. 3) we can now obtain expressions analogous to (9. 4) for
the functions in the last row of # (234123) and these expressions will be valid
throughout D. Continuing we can thus show that the functions bep for a, f=1,
..., 7 are given in D by definite expressions in the B’s of the general form of
the first expression in (9. 11); from these and the rational expressions for the AS,

it follows by (9.6) and (9.7) that the functions b.s are given, for all values of
the indices, by definite expressions in the B’s of the general form (9. 11) valid
throughout D. Hence all b.s are continuous in D and are likewise differentiable
in this neighborhood in accordance with the differentiability properties of the
components of the curvature tensor B. If, now, we make the linear transforma-
tion y—x to the original coordinates of U the above properties of continuity
and differentiability of the functions b.p will persist in a neighborhood W < U
of the point «;.

Under Case II and Case III we have now shown that corresponding to
any point x, < U there exists a neighborhood W << U containing x; such that
in W the algebraic signs of the functions b.z(x) can be chosen so that these
functions are continuous. To indicate the association of the above neighborhood
W with the point x; we shall henceforth employ the notation W (x,). Now the
algebraic signs of the functions beg(x) in W (z,) are uniquely determined by the
selection of sign at an arbitrary point ¥ < Wi(z,) and the requirement that the
Junctions beg(x) be continuous ¢n W(z,). In fact we saw from the preceding
considerations that the continuous functions byg(zx) were determined uniquely in
W(x,) by a selection of algebraic sign at x,; and it was also clear that if the
other selection of sign were made at x, the functions b.g(x) so determined would
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be the negatives of those previously found. Hence there are only the two pos-
sibilities * b.g(x) and from this fact the above statement follows immediately.

We must now show that we can choose the algebraic signs of the functions
bep(x) in the various neighborhoods W(x,) < U so that these functions will be
continuous throughout U. For this purpose we assume b, 4(x) continuous in W (x,)
where @, is any point of U. Let z' be any other point of U not in W(x,).
Join z, to 2’ by a continuous curve (. We may now suppose for simplicity that
the neighborhoods W (x) are spherical neighborhoods in U in the definition of
which the Euclidean measure of distance in U may be adopted. We can now
cover the points of C by a finite number of spherical neighborhoods W (z,),
Wiz, ..., Wi(xs), W(z’) which can be taken so that two consecutive neighbor-
hoods alone have points in common. By taking the algebraie signs of the func-
tions b.g(x) for x < Wi(x,) so that at a point 2’ of the intersection W (z,) N W (x,)
the values of the above functions are identical with the values of the functions
bap(x) for < W(x,) we secure the identity of bag(x) for z < W(z,) and x < W (x,)
at all points of the intersection; this follows from the above italicized statement,.
Then be.g(x) is continuous for x < W(x) + W(x,). Proceeding we define the
ba ,g(x) as continuous functions for x < N where

N= W)+ - + Wix.) + W(x).

If, now, we join x, to =’ by another continuous curve (" and proceed as for the
curve C the values of the functions b.s(x) at x = 2" will be the same for this
second determination. In fact since U is simply connected by hypothesis we can
pass from C’ to C by a continuous deformation in U thus sweeping out a sur-
face ¥. Now it is possible to pass from C to € by a finite number of continuous
curves C, Cy, ..., Cn, C' on the surface ¥ possessing the property.that any curve
of the set lies wholly within the spherical neighborhoods W by which the preceding
curve is covered; as this construction is evidently possible the details will be
omitted. Proceeding along the neighborhoods by which C, is covered we define
the continuous functions beg(x) for x < Ny, ..., and finally the continuous func-
tions bop(x) for o < N'. Thus we arrive at the continuous functions bug(x) for
xz < N* where
N*=N+ N, + -+ Np+ N’

and hence the determination of the values of b.s(x) at =« is independent of
the curve C as above stated. It is therefore possible to choose the algebraic
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signs so that the functions b.s(x) will be continuous for < I7 and in fact
uniquely determined by the selection of algebraic sign at an arbitrary point
x, < U.

For brevity in the statement of our results let us denote by R, a Rigmann
space with element of distance defined by the (positive definite) quadratic dif-
ferential form

n
ds*= 3 gople)dadat,

e, f=1

having coefficients g.p(x) which are continuous and possessing continuous first
and second derivatives in an open simply connected neighborhood U of a point
of the n(= 2) dimensional (real) number space. If furthermore the components
of the curvature tensor B possess continuous first derivatives in U the space
will be denoted by R;. We may now state the following

Theorem. Let the left members of the Gauss equations (2. 9) be the components
of the curvature tensor B of a space Ry and denote by by s (x) the real solution of these
equations which is determined to within algebraze sign at the various points x < U
under the conditions stated in the Theorem at the end of § 8. Then it is posstble
to select these algebraic signs so that the functions beg(x) are continuous ¢n U being
uniquely determined by the selection of algebraic sign at an arbitrary point z; < U
and having the general form * bag(x) in U. If the space R, is also an R then
the continuous functions bep(x) will have continuous first partial dertvatives ¢n U.

10. Algebraic Characterizations.

By the result of § 5 we know that the space R, will be of type = = 2, if,
and only if, the matrix
Bagyr =+ Bagyn
Biyvi - Biywn

has rank ¢ at all points & << U. To state this in the form of an algebraic
characterization as defined in the introduction to this paper let us denote by
H®, H®, ... the minor determinants of order z+1 and by GU, G?, ... the
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minor determinants of order z of the above matrix. Then the algebraic cha-

racterization of Rieman~ spaces R, of type ¢ is given by the following!®

Theorem. A space R, is of type v = 2 1f, and only of, the following conditions

Hil)ZH(f): =0, Z [G(ci)lz#o

are satisfied at all points x < U.

Let us now consider the algebraic characterization of spaces R; for which
n Z 3, v==3 as spaces of class one. We assume first of all that the conditions
of the Theorem at the end of the preceding section are satisfied so that the
Gauss equations admit a real solution b.p(x) continuous and differentiable in U.
If » = 3 the conditions that the Copazzi equations (2. 8) be satisfied are obtained
immediately by substituting into these equations the values of the b.g giveh by
(9.4). Denoting the polynomial in the B's which appears underneath the radical
in (9.4) by Q(B) the equations resulting from the above substitution will involve
terms of the form

P(Br P(B,B) PBUF

QB QB [Q B

where P(B) is used to denote any polynomial in the B's and P(B, B’) to denote
any polynomial in the B’s and their first partial derivatives B’; also it is observed

that those terms of the first of the above types contain the CrHrIsTOFFEL sym-
bols I';,. Multiplying the above equations by [Q(B)]”* and transposing all terms
to the left members these become polynomials in the quantities I, B and the
first partial derivatives of the B’s which are denoted by B’. Let us represent
this set of polynomials by F,(B, B, I').

If » >3 the proceedure while analogous to the above is somewhat more
complicated. Select any third order determinant R (B) from the matrix (9. g)
with 7= 3 and use the corresponding equations (9. 8) to determine the A; . Sub-
stitute these A¢ and the ba given by (9. 4) into (9. 6) and (9. 7) to determine the

remaining b,s. We shall then have the b.g given by expressions of the form

! Although we have previously defined the algebraic characterization in terms of conditions
involving a set of polynomials in the structural functions 9ug of the RIEMANN space and their

derivatives there is no objection to stating these conditions in terms of polynomials in the com-
ponents of the curvature tensor B since we can immediately pass from these latter conditions to
the former. Analogous remarks apply to the algebraic characterizations given by the following
theorems.
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(to.1 P(B) __PB

' [Q(B)*  [Q(B)"R(B)
Substituting these expressions for the b.p into the Copazzr equations (2. 8) the
resulting equations will involve a sum of terms of the form

P(BIr __P(BIT _ P(B,B) P(BF

QB [QBI"RB) [QBI* [QBI*
P(B, B) P(B) P(B\B

[@BI*R(B) [QB)]* (V{mmwwmm

Multiply these equations by [@Q(B)}”* [R(B)]* and transpose all terms to the left
members; then these left members will be polynomials in the I's the B’s and
the first partial derivatives B’ of the B's. Denote the set of these polynomials
by FU(B, B, I).

Now for the case under discussion it is possible for @ (B) or R (B) to vanish
at some point z; < U. But if Q(B)=o0 at z, the expressions (10.1) at », will
be indeterminate, i.e. the numerators P (B) will likewise vanish at this point;
similarly if R(B)=o0 at x, the second set of terms (10. 1) must be indeterminate.
This follows from the above assumption that the Gauss equations have a solu-
tion b, in U and the fact that without this indeterminacy we would have a
contradiction with this assumption. Hence if either @(B) or R(B) is equal to
zero at x; we see that at this point the polynomials of the set ') must likewise
vanish. In the contrary case, i.e. if neither @(B) nor R (B) is equal to zero at
x; then Fll = 0 express necessary conditions on the space Rj.

Owing to the possibility that Q(B) or R(B) may vanish at some point
z, < U with the consequence that the equations F(!) = o will fail to express the
condition that the Copazz1 equations are satisfied at x; we must repeat the above
process by which the expressions ¥ were determined for all selections of third

order determinants of the matrix (9.9) and for all sets of equations analogous
0 (9.4). In this connection it may be observed that the selection of algebraic
sign before the denominators in (9. 4), or the analogous equations, is immaterial
since a reversal of sign at this place will merely reverse the sign of all quantities
b.s which are thereby determined. We thus arrive at a finite set of polynomial
expressions F(, F® . which for brevity we shall denote by F,(B, B, T).

From what we have said above we now see that the equations
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(10. 2) F,(B, B, I')=o, (z < U),

give necessary conditions for R; to be of class one. Moreover Fy, = 0 is sufficient
for the Copazzi equations to be satisfied; this follows from the fact that F, = o
must contain one set of equations F® =0 in the construction of which the de-
terminant selected from the matrix (9. 9) as well as the determinant which appears
in the denominators of the equations of the type (9.4) will be different from
zero at the point < U. This result in conjunction with the result of § 3 and
the Theorems at the end of § 8 and § 9 now gives us the following theorem.

Theorem. A space R of dimensionality n = 3 and type v == 3 4s tymmersible
in a Euclidean space E of n + 1 dimensions i.e. it is of class one if, and only if,
the conditions (7. 4), (8. 4), (8. 10) and (10. 2) are satisfied.

If the space R; is of type = > 3 the Copazz1 equations are satisfied auto-
matically under the conditions stated in the Theorem at the end of § 6. The
following theorem results immediately.

Theorem. A space R, of dimensionality n = 4 and type v = 4 is tmmersible
tn a Euclidean space E of m + 1 dimensions ¢.e. it is of class one if, and only if,
the conditions (7. 4), (8. 4) and (8. 10) are satisfied.

By combining the conditions of the first Theorem of this section with those
of the following Theorems we obtain directly the algebraic characterization of
the space R; as a space of type 7= 3 and class one.

11. Extension to Topological Spaces.

Consider a space in which neighborhoods are defined satisfying the four
axioms of HausporFr (topological space) the neighborhoods N of the space being
homeomorphic to the above neighborhood /. In consequence of this homeo-
morphism the space is covered by one or more systems of coordinates 2* and we
shall assume for our present requirements that the coordinate transformation
which is thereby defined in the intersection N, N\ N, of any two intersecting
neighborhoods N, and N, is continuous and possesses continuous partial deriva-
tives to the order three inclusive. A topological space of this character will be
denoted by H,. The extension of the preceding discussion to closed spaces H, is
of particular interest from a geometrical standpoint. In the following we state
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certain results concerning topological spaces H, which can be obtained from thLe
foregoing developments without the necessity of additional caleulations.

Let %'(x), ..., 4"*'(x) be a set of » + 1 scalar functions defined over H,
these functions being continuous and having continuous partial derivatives to the
third order; it is to be observed that these properties of continuity and diffe-
rentiability of the functions y(x) will be retained in the transition from one
neighborhood N; of H; to an other neighborhood N, owing to the corresponding
properties of continuity and differentiability of the coordinate relationships between
the coordinates of intersecting neighborhoods of H,. We assume that the func-
tional matrix ||y (x)/0 2%|| has rank % at any point of Hj so that the equations

(11.1) y' =y (), (< U),

taken over H, define a hypersurface § of the n + 1 dimensional Euclidean space F.
Now let (3. 1) be a positive definite quadratic differential form defined over H,;
that is more specifically (3. 1) is defined in the coordinate neighborhoods U by
which Hj is covered in such a way that the coefficients g.z(x) of this form enjoy
the tensor law of transformation under transformations of coordinates in H;. We
shall say that a Riemaxx space R, is defined over H, if the above coefficients
ge3(x) are continuous and possess continuous first and second partial derivatives
in the coordinate neighborhoods U; the space R, will be called a Rreman~ space
R; over H, if the components of the curvature tensor B possess continuous first
partial derivatives throughout H,. In a corresponding manner we may extend
the definition of the type number ¢ defined in § 5 to a Riemanxy space R,
over Hy;. Now it is evident that the discussion in § 1 to § g inclusive extends
immediately to spaces R, or R; of type = defined over H; owing to the invariant
character of the underlying equations of these sections provided that the topo-
logical space H, is simply connected, the property of simple connectivity being
necessary since use was made of this property of the neighborhoods U on several
occasions, We can therefore state immediately the following

Theorem. A Rismann space R, of dimensionality n =3 defined over a
simply connected topological space Hy is of class one and type three if, and only if,
the condetions (7. 4), (8.4), (8.10), (10.2) and

HY = HP = =0, 3 (6] o, < 1),

27—-36122. Acta mathematica. 67. Imprimé le 27 septembre 1936.
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are satisfied over Hy. Similarly the space R, s of class one and-type © = 4 1f,
and only if, the conditions (7. 4), (8. 4), (8. 10) and

HW =H® = ... =, Z[ [G(;)P # 0, (x < U),
are satisfied over H,.

We shall say that the Riemanw space R, is of variable type if the rank of
the matrix || B|| defined in § 5 is not constant over H,; in particular R, will
be said to be of variable type 7 = ¢ if the rank of the matrix || B|| is not less
than ¢ over H,. If a space R, is of variable type = 3 over Hj it follows from
the Theorem at the end of § 8 that under the (necessary) conditions (7. 4), (8. 4)
and (8. 10) the Gauss equations admit a real solution b,z over Hj this solution
being determined to within algebraic sign at the points of H, (subject of course
to the indeterminacy due to coordinate transformations). To prove that these
algebraic signs can be chosen so that functions b43(x) are continuous over a
simply connected space Hy we select any point p < Hy at which the matrix || b.4]|
has rank = 3 and by the Lemma of § 9 transform the coordinates of the neigh-
borhood U = p so that at this point, with respect to the coordinates introduced,
all third order minors of || bas|| are different from zero. We first choose the
algebraic signs so that the functions b,s{x) are. continuous in some neighborhood
of the point p using the method of § 9, which was there however applied only
to those elements of the matrix ||b.s|| appearing in the determinant (9. 12), for
this purpose.! We then extend this selection of algebraic signs throughout the
simply connected space H; by the process employed in § 9 with reference to the
coordinate neighborhood . We thus arrive at the conclusion that the algebraic
signs can be selected so that the functions.b.s(x) for a space Ry of variable type
= 3 are continuous in Hy and in fact that these functions possess continuous first
partial derivatives in case we are dealing with a space R of variable type = 3
over Hg. Since the continuous functions b.(x) for a space R} of variable type
>3 over H, necessarily satisfy the Copazzi equations by the Theorem at the
end of § 6 the following theorem has now been proved.

! It is here to be noted that we have avoided the use of the equations (9. 6) and (9. 7) which
are applicable only when the space R, is of definite type ¢ over H,. The method of § 9 involving
the nse of the above equations (9.6) and (9.7) enables us however to avoid the transformation of
coordinates in the Lemma of § ¢ in the rigorous derivation of the continuity and differentiability
properties of the solutions baﬁ of the GAUsS equations for spaces R} of type three; also the above

equations are clearly necessary in the derivation of the conditions (10. 2).
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Theorem. A Riemann space R} of demensionality n > 3 defined over a simply
connected topological space Hy vs of class one and variable type v > 3 if, and only
uf, the conditions (7. 4), (8. 4), (8. 10) and

2, HEE A~ o, (< U),
are satisfied over H,.

If the conditions of any one of the above theorems are satisfied so that
the Rremann space R} over H, can be regarded as a hypersurface S in the
Euclidean space F then, since the second fundamental form 1 of the hyper-
surface S is (to within algebraic sign) determined uniquely, we know from the
result of § 4 that § is determined in E to within a motion of this latter space.

September 13, 1935.



