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1. Introduction

E. Lucas [22] has proved that the diophantine equation
124224 .. L nP=m?

has only the two solutions n=m=1; n=24, m=70 (cf. [19]). In this paper we
consider the more general equation

8, (n) =17+ 27+ oo 4 0® =m? (L1)

where p and ¢ are given positive integers, and positive integral solutions are required.
Some cases of this equation have been discussed before (see [7], Ch. 1, 23) and a
very few simple ones solved, but no general solution has, to our knowledge, been
attempted.

A few algebraic properties of §,(n), some of them new, are reviewed in Sec-
tion 2. Section 3 deals with certain numerical properties of §,(n) required sub-
sequently.

The study of equation (1.1) is divided into two parts. In Section 4 it is con-
sidered from a general point of view, and it is proved that, for any given choice of
p, ¢, the number of solutions is finite, unless one of the following is the case:
g=1; p=3, ¢q=2 (trivial cases); p=1, ¢=2; p=3, ¢g=4; p=5, ¢=2 (Theorem 1).
Also a result concerning the number of solutions is obtained.

In Sections 5 (cases with ¢ odd) and 6 (¢ even), the complete determination of
the solutions is obtained in several cases by means of theorems concerning algebraic
diophantine equations of several kinds. The cases in which the number of solutions

is infinite reduce to “Pellian” equations and can be solved completely. For the rest,
11— 563801. Acta mathematica. 95. Imprimé le 2 mai 1956.
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cases were considered with p ranging from 1 through 11, and with ¢ in several
classes of numbers. The bulk of the proofs in these sections consists of numerical
computations, which are only briefly sketched. The results of these sections are
collected in Section 7 (Theorem 2), and give weight to the conjecture that the case
p=¢=2, mentioned at the beginning of this introduction, is the only case with a
finite number of solutions that has a solution other than the trivial n=m=1.
Most of the research was carried out at the Instituto de Matematica y Esta-
distica, Universidad de la Republica, Montevideo, Uruguay. Some of the results were
obtained in the course of a seminar at that University (1951). The author is indebted
to J. F. Forteza, who originally suggested this topic, and to Prof. R. Laguardia for his
guidance and numerous helpful suggestions; he also wishes to thank Profs. Th. Skolem
and E. Selmer for the suggestions which have led to the final form of this paper.

2. Algebraic properties of Sp(n)

8, (n) may be expressed in terms of Bernoulli polynomials as

1

Sp(n)=p—ﬁ(Bp+1(n+ 1) - B,.1(0)). (2.1)

(Our notation for Bernoulli polynomials will be that of Nérlund’s paper [25] through-
out.)

We now apply some well-known facts concerning Bernoulli polynomials, ([25],
pp. 127-130), and obtain the following results:

Lemma 1. Sl(n)=n(n%l)/2; for p=1 we have:

(i S, (n)=—1— ‘n(n+1)y(2n+1)-P,(n)
k(p) 2.2)

(ii) S;(n) -n?(n+1)%- Py (n)

k(p)
according as p ts (i) even, or (ii) odd; k(p) is an tnteger selected in such a way that
P,(x) be a polynomial with integral coefficients having no common factor. This poly-
nomial satisfies the following conditions :

a) 0, —1/2, —1 are not roots of P,(x) for any p.
b) P,(x)=P,(—1-—x).
c) P,(x)=Q,(x(x+1)) where Q,(y) ts a polynomial with integral coefficients,

which have mo common factor.
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- ProoF: A trivial consequence of the properties of Bernoulli polynomials. We
merely point out that @,(y) has integral coefficients since the leading coefficient of
z{zx+1) is 1.

We are not concerned with the particular algebraic form of P,(x), except in

two cases which we shall presently consider (Lemmas 2 and 5).

Lemma 2. For ‘odd p>1, we cannot have Q,(y)=(T(y))* (T (y) a polynomial)
unless p=3 (@;(y)=1).

Proor: By Gauss’s Theorem, we may always assume that 7 (y) has integral
coefficients. From (2.2) (ii) we should then have »
8y ()= - [n (n-+1)- T ()] 23
= - T (n)]% .
P k(p)
Since 8,(1)=1 it follows that k(p)=(2-T(1))®. Substituting this value in (2.3) and
setting » =2, we obtain

Sp(2)=1+2°=(3-T(2)/T(1))® =2

where x obviously must be an integer. However, the equation 1-+2?=2? has ob-

viously the unique solution p=3, since it implies 2" —2°=2, r+s=p.
£
LeEMMA 3. Let P be a prime, n an arbitrary positive integer, and set n= Y n; P',
[

where 0=<n, <P —1. (The n; are the digits of n written to the base P, and are therefore

uniquely determined.) Then ( )EO (mod P) for all integers m such that

n

m(P—1)
t

O<m(P—-1)<n if and only if > n,<P-1.
0

LeMMA 4. Let n be a positive integer such that n=2 (mod 4). If P is any odd
tH(P)y
prime, set n= z():ni p P, where 0<np<P-1. If both the following conditions are

satisfied
£(3)
a) Either n=2 (mod 3) or > n;3<2
[
t(P)
b) For all odd primes P>3, > mp<P-1,
[
then n must be one of the numbers 2, 6, 10, 30.
Since the proofs of these lemmas would seriously interrupt our main line of

reasoning, they are omitted here and given in full in Appendix I.

Lemwma 5. For odd p>1, we cannot have Q,(y)=(Ay+ B) (T(y))}* (4+0, T(y)
a polynomial) unless p=>5. (Qs(y)=2y—1). s
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Proor: By (2.1) and Lemma 1,c), the degree of Q,(y) is (p—3)/2. The
degree of T'(y) would therefore be (p—5)/4. Since this must be an integer, we have
p=1 (mod 4). Setting 2r=p+1 we have

2r=2 (mod 4). (2.4)

The assumption, together with (2.1), (2.2) (ii) and condition ¢) of Lemma 1now
imply
By, (2) — Byr=2 (x—1)* (a2’ —az +b) (2" ° + - + ¢, 5)° (2.5)

where a, b, ¢; (¢=0, 1,...,7—3) are rational numbers.
2r

On the other hand we have from [25], p. 123: B, (z)= > (2;) -B;-2*"’. Since
0
by assumption p>1, we have By,_;=B,=0, and hence

7222y .
By, () — By, = > (j)-B,-xZ"'. (2.6)
0
Let P be an arbitrary odd prime. By the Staudt-Clausen Theorem ([28], Ch. IX),

P B; is an integer modulo P, and if j=0,

PB;=0 (mod P) if j=0 (mod P—1),

2.7)
PBj=—1 (mod P) if j=0 (mod P—1).

Consequently all the coefficients of
2r~2 /9

P (By,(x)— By,)= zo (‘7’) (PBj) 2?7

are integers modulo P. Using (2.5) and applying a trivial extension of Gauss’s
Theorem to integers modulo P we have

252(2;) (PB)z* T=a?(x—1)*(@2>—ax+b) (Gz" >+ ---+6_3)? (2.8)
o

where G, b, & (¢=0,1,...,7—3) are integers modulo P. We equate coefficients and

obtain PBy=P=a-ci. Since @ and ¢, are integers modulo P we must have
=0 (mod P) ¢,%0 (mod P). (2.9)

Further equating of coefficients yields

2
(;) PB,=Pr(2r—1)/6=a(3cs+ & +28 & — 6¢y6,)+ b+ .

But from (2-9) it then follows that b.&=Pr(2r—1)/6 (mod P).
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If either P=3, or P=3 but r+1 (mod 3), it is clear that &-62=0 (mod P),
and on account of (2.9) this implies

5=0 (mod P). (2.10)

Together with the fact that the & are integers modulo P, (2.9) and (2.10) imply
that all the coefficients of the left-hand member of (2.8) vanish modulo P, i.e.

(2;) (PB;)=0 (mod P), (=0,1,--.,2r—2). By virtue of (2.7) this is equivalent to
2r 5y ;
(f(P 1))50 (mod P) for all f such that 0<f(P—1)<2r—2. If we set 2r= > 7, P,
- Q0
where 0<7;,<P—1, we must have, by Lemma 3,

t(P)

S rp<P-1. (2.11)
0

Formula (2.11) holds whenever (2.10) holds, i.e. for all odd primes P, P =3 being
excepted when r=1 (mod 3), which means 2r=2 (mod 3). Therefore, taking into
account (2.4), the assumptions of Lemma 4 are satisfied for 2r, and therefore 2r
must be one of the numbers 2, 6, 10, 30.

The case 2r=2 is excluded by the assumption p>1. For 2r=10, a simple
computation yields Q,(y)=(y—1)(2y*—3y+3) which is not of the required form.
The case 2r=30 could be settled in the same way, but to avoid tedious computa-
tion the following indirect method is used.

Since =15, (2;) PB;=0 (mod P) for all odd primes P including 3. This im-

plies that (2;) -2 B; is an integer for every §. From (2.5) and (2.6) we obtain

2r-2 2 . , o,

> ( jr) 2B =2t (1) (@22 —a' 2+ b ) (o P+ Horg)? (2.12)
0

where we may assume that o', b, ¢{ (¢=0,1,...,7—3) are integers. Equating coeffi-

cients, 2 B,=2=a'cy’, and therefore
=2 2=l (2.13)

It is clear from Lemma 1, a), that ¢;_s=0. Comparing the next-to-last coefficients
of (2.12) we obtain, after use of (2.13) and division by ¢,_s, ¢/_s=b'(c,_s—Cr_3)-
This implies that b’ is a factor of ¢,_s. Considering the last coefficient in (2.12),
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2 ’ . . e 4
(2ri 2) (2B, 3) =b"c/25, we see that all its prime factors divide it more than once.

30
However, ( 28

This eliminates the case 2r=30.

) *2Bys= —7:3392780 147 and the second factor is not divisible by 7.

The only remaining case is 27 =6, i.e. p=>5, and indeed Q;(y)=2y—1.

3. Numerical properties of S,(n)

Lemma 6. Let P(x) be a polynomial with integral coefficients, and let Q (x)=ax + b,
with a and b relatively prime integers, be algebraically prime to P(x). There exists an
integer D(a, b, P(x)) such that the following properties are satisfied :

a) For any integer n, every common factor of the numbers P(n), @ (n) is a factor
of D.
b) There exists ny such that D divides both P (n,), Q(n,).

Proor: We perform the algebraic division of P(x) by @(x) and obtain
P(x)=(azx+b) - T(x)+r. (3.1)

If we apply Ruffini’s Rule for the determination of r and of the coefficients of 7' (),
we find that on multiplying (3.1) through by a* (s the degree of P(x)) we obtain

a*-P(x)=(azx+b)-T' (x)+7r

where 7" and the coefficients of 7" (x) are now integers.

Let D be the largest factor of ' that is relatively prime to a. Then
a’-P(x)=(ax+b)-T (x)+r"-D. 3.2)

We now substitute an arbitrary integer n for the variable in (3.2). Any common
factor 2 of P{(n) and an+b will be a factor of +'-D. Since h divides an+b, and
(a,b)=1 by assumption, we must have (a,h)=1. By the definition of D, b must
then divide D. Property a) of D is thus proved.

Let n, be a root of the congruence an-+b=0 (mod D), which is soluble since
(@, D)=1. On substitution of ny in (3.2), -both terms in the right-hand member be-
come divisible by D. Therefore D divides a’- P(n,), but since (¢, D)=1, D must
also divide P (n,). This completes the proof.
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The number D (a,b, P(x)) is thus uniquely defined except for the sign, which we
shall assume positive always. It is a kind of “numerical GCF” of P(x) and @(x)

We now apply Lemma 6 to the study of §,(n).

LEMMA 7. The numbers D (1,0, P,(x)), D(1,1, P,(x), D(2,1, P,(x)) are -well-
defined for all p>1, and furthermore, D(1,0, P,(x))=D (1,1, P,(x))=D(1,0, @, (y)).

Proor: The first part follows from Lemma 1, a) and Lemma 6. The equalities
follow from Lemma 1, b) and ¢), and in fact the common value of the three num.-
bers is the constant term of P, (x) or @, (v).

We shall henceforth invariably use the notation
D,=D(1,0,Q,(y)) Dp=D(2,1,Py()).

The following result is useful for the study of particular cases of the diophantine

equation.

LeEmMMA 8. Let n be an arbitrary integer, and let h be a common factor of P,(n)
and 2n+1. Then the GOF of h and P,(n)/h is a factor of D,/h.

We omit the proof, which proceeds by considering the even polynomial P’(z)
obtained as P’ 22+ 1)=P,(2).

COROLLARY. If D, is squarefree, then for any integer n and any common factor
h of P,(n) and 2n+1, we have (P,(n)/h, h)=1.

4. The Equation Sp(n)=md. Number of Solutions
The purpose of this section is the investigation of the equation
Sp(r)=174+27+ .. + 0P =m? 4.1)

and the determination of the cases in which the number of solutions is either finite
or infinite. The answer to this question is given, with a more precise statement
about the number of solutions, in Theorem 1 below.

We shall first make a few remarks of a trivial nature, which will, however, be

quoted repeatedly in the sequel.

ReEmark I. If g=1, the equation is obviously satisfied for any » and a matching
m. ‘This case will be spoken of as a trivial one.

Remark II. For any given p, if ¢ is a factor of ¢,, the values of n corre-
sponding to solutions of (4.1) for ¢=g, will be among those corresponding to solu-
tions for ¢=g,.
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ReMArK III. For any values of p, g, the set n=m=1 is a solution of the

equation. It will be referred to as the trivial solution.

RemMARK IV. Since S,(n)=(S;(n))* for all n, the following statement holds:
If ¢, is odd [even], and n=n, m=m, is a solution of (4.1) for
p=1g¢=g [p=1 ¢=9/2]
then
n=n, m=my [n=n, m=m]
is a solution of (4.1) for p=3, ¢=g¢,; and in this way all the solutions of this case
may be obtained. In particular, if p=3, ¢=2 we have, by Remark I, a trivial case
for p=1, ¢=1, and hence this case shall be called trivial for p=3 also.

We shall require the following theorems:
TreorEM A. (Nagell, Ljunggren, Domar). The equation
|A2?—By®|=1

has al most two solutions in positive integers x, y for ¢=3. If q=3, 4 there is at most
one solution.

This special case of the Thue-Siegel Theorem is proved for ¢=3 by Nagell [24]
and for g=4 by Ljunggren [16]. For ¢>5 it is proved by Domar [9].

TusorEiEM B. (Landau-Ostrowski-Thue). Let a, b, ¢, d, be integers such that
a(b®~4ac)=0. If r=38, the equation
ar’*+br+c=dy
has only a finite number of solutions in integers z, y. ([8], Th. 118, [11], Satz 695).

TueorEM C. Let f(x) be a polynomial of degree =3 with integral coefficients,
and assume that all its roots are distinct. Then, if ¢ is any integer, the equation

@) =cy®
has only a finite number of solutions in integers z, y. ([31]).

The main result of this section is the following:

THEOREM 1. For given values of p and q, the number of solutions of (4.1) is
infinite only in the trivial cases q=1 and p=3, ¢=2, and in the cases p=1, g=2;
p=3, g=4; p=>5, g=2. In all other cases the number of solutions N (p, q) is finile
and N (p, q) < Ny(p), where Ny(p) is a function of p alome.

ProoF: We shall consider separately the cases p=1, p even, and p odd
and =>3.
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1. p=1. By Lemma I, equation (4.1) becomes n(n+1)/2=m? Splitting into
relatively prime factors we have, according to the parity of =, either n=2a",

n+1=y® or n=2° n+1=2y" Therefore one of the equations
yi—2a7=1 29-24°=—1 4.2)

must hold. If g=2, these are “Pellian” equations and have an infinite number of
solutions. We shall give the formula for them in Section 6. If ¢=>3, Theorem A
implies that equations (4.2) have between them at most two solutions, and so the
theorem is proved in this case with N,(1)=2.

2. p even. According to Lemma 1, (4.1) has the form

]‘ Q
’;(«ZT)-n(n+1)(2n+l)-P,,(n)=m. (4.3)

Since the left-hand member is an integer for every integral value of =, there exist,
for a given =, the integers k,, k,, ky, k, (not necessarily uniquely defined), such that
ky by kyky =k (p), and such that n/k,, (n+1)/k,, (2n+1)/k;, P,(n)/k, are all integers.

The three first of these are obviously relatively prime in pairs. We now set

dy=(n/ky, Py(n)/k))  dy=((n+1)/kp, Py(n)/ky)
ds=(2n+1)/ks, Py (n)/k,).

By Lemmas 6 and 7 it is clear that d,, d, are factors of D, and d; is a factor of D;,.
Furthermore, d,, d,, d; are also obviously relatively prime in pairs. It follows that

n/kydy  (n+1)/kydy (2n+1)/kydy  Py(n)/kydydydy
are integers relatively prime in pairs. If we substitute these numbers in (4.3) we obtain

n n+l 2+l P,(n)

$a2.dz—. . . = m?. 4.4
U S . Toydy kel Kkydydgdy (44)
We shall first consider ¢ odd and >3. We may set

di=aibcie;, dy=afbyce, dy=albycses (4.5)

in such a way that:

a) byc e, bycye,, bycye, are gth-power-free.
b) all prime factors of b, are factors of n/k,d,; all prime factors of b, are
factors of (n+1)/k,d,; all prime factors of by are factors of (2n+1)/kyd,.
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¢) All prime factors of ¢, c,c, are factors of P,(n)/k,d,d,d,.
d) (ejepes, n/kyd))=(e ese5 (n+1)/kydy)=1(e,e5€5 (2n+1)/kyds)
=(ey €55 Pp(n)/kydydyds)=1.

The decomposition thus defined is clearly unique. The b, ¢;, ¢ (i=1,2,3) are
all relatively prime in pairs. (Remark: For the purposes of this proof, d; need not
have been factored. However, the complete factoring is the appropriate background
for the study of particular cases (Scction 5)).

We now substitute (4.5) into (4.4) and regroup the factors in such way that all
except the first will certainly be relatively prime in pairs:

@tatod (o075 ) (85 n) (35 2 )- (2 cg-h—z‘;——g:)da) B d=mt. (46)
We may divide through by a gth power and thus eliminate the first factor. All the
remaining factors, being relatively prime in pairs, must be perfect gth-powers. From
condition a) of their definition, and since ¢ is odd, it follows that e, e;e;=1. If the

first two remaining factors are z% »° we obtain on division by b;, b, respectively
brn=k ¢ (a,2)° by (n+1)=kycy(a,y) (4.7)

The numbers k,, ky, b, by, ¢;, ¢, are factors of either k(p) or D,. The number of
possible sets of values of these is therefore bounded by a bound N’ (p) which depends,
through k(p) and D,, on p alone.

Let f,=(by, ky), fo=(by, ks). Let hy, h, be the least integers such that b,/f;, by/f,
divide A, h¢ respectively. Since (b;,c,)=(by, ¢;) =1, it is clear that if (4.7) is to hold
we may set a,z=h X, ayy=h, Y. Thus

n=(kl/f1) ¢ (B /l/bl) .X9=4X9
n+ 1=(k2/f2)62 (hg i2/b2)' Yq =B Yq

and therefore (4.7) implies
BY' —AX%=1. (4.8)

The number of sets of values of A4, B is still <N’(p). For each set, (4.8) has, by
Theorem A, at most 2 solutions. Equation (4.3) has therefore at most 2N’ (p) solu-
tions in this case.

We now consider the case ¢=2. In (4.4) we may divide through by squares,
and since the last four factors in the left-hand member are relatively prime in pairs
they must be perfect squares. In particular
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n=kd-2® n+l=kydy,-y® 2n+1=kyd, 2
and combining these we have
4k, kyd, dy- (y)?+ 1 =(kyd,)?- 2%

The coefficients of this equation can only take a finite number of sets of values,
and for each such set the equation has, according to Theorem B, only a finite
number of solutions; and so has therefore (4.3). This is for ¢=2, but according to
Remark II, this result holds for any even ¢, and N(p,2¢)< N{p,2). Combining
this result with the previous one, the theorem is proved for p even and we may set
Ny (p)=max {2 (p), N (p, 2)}.

3. p=3, odd. By Lemma 1, (4.1) has now the form

__1~. 2 2, —ma 4.9
() n*(n+1)% Py (n) =m?. (4.9)

Consider in the first place the case ¢ odd and >3. In a way quite similar to
that followed for p even, there exist, for every integer =, integers k,, k,, k;, such
that k, k, k,=k(p) and such that n®/k,, (n+1)*/k,, P,(n)/k, are integers. We then set

dy=(n*/ky, Pp(n)/ky)  dy=((n+1)*/ky, Py (n)/ks)

and by Lemmas 6 and 7, d,, d, are factors of D3. We now factor d, and d, in a
way completely similar to that established in (4.5). Substitution in (4.9) yields

2 2
220, (p2. ™). 2.(”+1)).(2 2._1)_9_@). 2. 02— e
(ay az) (1 K, dl) (bz ey dg c1cz by d, dg ey-ez=m

where e;e,=1 as before, and all factors except the first are certainly relatively

prime. Therefore
bi-n’=kyd,-a® b3 (n+1)P=kydy, y° (4.10)

Since the left-hand members are perfect squares, and since ¢g=2¢'+1 is odd, we

must have k d, x=2"% k,d,y=y'?. (4.10) implies
by (kyd)V n=2"% by(kyd,)? - (n+1)=y"% (4.11)

As above, the number of sets of values of k,, k,, d;, d,, b,, b, (factors of either k(p)
or D?) is bounded by a number which we shall also denote by N’(p) and which
depends on p alone.
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Let hy, h, be the last integers such that b, (k;d,)?, b,(k,d,)* divide A3, kS, and
let 4, B be the quotients of these divisions. If (4.11) is to hold, we may set ' =h, X,
y' =h,Y. Then n=4X% n+1=BY? and we again obtain equation (4.8). The num-
ber of sets of values of A, B being < N'(p), the number of solutions of (4.9) is
again at most 2N’ (p) in this case.

Consider now ¢=2. Set k(p)=KZ®-k', with %’ squarefree. Equation (4.9) then

reduces to
Py(n)=Q,(n(n+1)) =k u® (4.12)

Set @, (y)==(Q’ (¥))*- R(y) where R(y) has only simple roots. We may assume Q'(y)
and R (y) to have integral coefficients (Gauss). Equation (4.12) then reduces to

R(n(n+1))=k'»% (4.13)

If the degree of R(y) is >3, then the diophantine equation R (w)=%v* has only a
finite number of solutions in integers w, v, since R (y) has only simple roots (Theo-
rem C). The same holds a fortiori for (4.13). If the degree of R(y)is 2, we examine
R(x(x+1)) as a polynomial in x. It is easy to verify that there is a multiple root
if and only if either: (i} R(y) has a multiple root, which is excluded by construc-
tion, or: (ii) x= ~1/2 is a root of R(z(x+ 1)), which is excluded by Lemma 1, a),
It follows that R(x(x+1)) (which is of degree 4) has no multiple root, and therefore
(4.13) has only a finite number of solutions {Theorem C). We conclude that, if the
degree of R(y) is =2, N (p,2) is finite, and by Remark II, N (p,2¢ )< N (p, 2), so0

that for these values of p the theorem is proved and we may set
Ny (p) =Max {2N'(p), N(p,2)}.

It remains to examine the cases for which the degree of R(y) is 0 or 1. By
Lemmas 2 and 5, this is the case only for p=3, p=5 respectively. Case p=3 is
disposed of by Remark IV, which yields the result required by the statement of the
theorem, again with N (3)=2. As for p=5, @;(y)=2y~1, ¥’ =3, and (4.13) may

be written
2n+1)2—-642=3 (4.14)

which has an infinite number of solutions, each one providing a solution of (4.9).
We shall give these solutions in Section 6. Consider now p=5, ¢=4. Since D, =1

and since every fourth power is also a square we must have

(2n+1)2+3=60
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and this equation has only a finite number of solutions by Theorem B. (In Section 6
we shall prove that there is none but the trivial solution). The theorem is thus
proved also for p=35, with N, (5)=max {2N'(5), N (5,4)}, since any even number
other than 2 is a multiple of 4 or of an odd number other than 1; the conclusion

follows from Remark II. The proof of Thecrem 1 is thus complete.

REMARK:. A referee pointed out that, as far as finiteness of the number of
solutions is concerned, Theorem 1 could be deduced from Siegel’s theorem ([27]): If
f(x,y) is a polynomial with rational coefficients which is irreducible in the field of all
algebraic numbers (or in the field of complex numbers) and if the genus of the Riemann
surface of f(x,y)=0 is positive, then there are only finitely many pairs of numbers a, b
{a an integer, b rational), such that f{a, b)=0.

We note that y?—S8,(x) is reducible if p=3 and ¢ is even, but by Lemmas 1
and 2 is irreducible otherwise. The reducible case is disposed of by Remark IV. In
the irreducible case we refer to the genus calculations in [2], pp. 231-239. From
the results there obtained it follows that y®—8,(x)=0 has a Riemann surface the
genus of which is 0 if and only if ¢=1 or if S, (z) is of one of the forms (R (z))? (x—a)"
or (R(x)){(x—a) (x—b)*" where 0<r<gq and R(z) is some polynomial. Thus by
Lemmas 1, 2 and 5 it follows that in the irreducible cases the genus is 0 if ¢g=1
or if p=1, ¢=2 or if p=5, ¢g=2 but is otherwise positive. Application of the
above-mentioned theorem then yields Theorem 1 as far as the finiteness of the num-
ber of solutions is concerned.

In concluding, it may be noted that, just as 2 N’ (p) could be explicitly computed
from p, a similar bound can be given for N (p,24¢’), by an appropriate use of Theo-
rem A, except if ¢'=1 or if p is odd and ¢'=2.

5. The Equation S,(n)=m4d. 0dd Values of g

5.1. Methods and theorems. In this section we shall give methods to find
odd primes ¢ for which the equation has none but the trivial solution. Apart from
the trivial application of Remark II of Section 4, we point out that the same me-
thods apply to certain composite odd numbers while failing for all their prime factors;
but we shall not pursue this remark further.

The first method we shall describe is essentially one of congruences. The applica-
tion to be made is similar to the method used by Dénes [5], to Fermat’s Theorem.

Less general theorems have been proved by Vandiver [30] and Ankeny and Er-
dos {11
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For any positive integer A, let I', denote the set consisting of 0 and of the
2hth roots of unity. Let Z,, (z) denote the cyclotomic polynomial of order 2% (its
degree is @ (2h).) Let N(5) denote the norm of the algebraic number 7.

Consider a set of polynomials in s variables with integral coefficients
P={Py(x), xg,..., %) 1 k=1,...,t}. (5.1)

Let % be a positive integer. For every set {y, y,,...,7s} of s elements chosen in

I',, consider the set of numbers
{N(Pi(y1, Yoo ¥s)) 1 k=1, ..., 1} (5.2)

The sets (5.2) form a class S(P, h).
LemMMA 9. Let P be a class of polynomials as defined by (5.1), and let q be an

odd prime. If there exists a positive integer h such that r=2hq+1 is a prime and
such that r does not simultaneously divide all the numbers of any one of the sets in
S{P, k), then the set of equations

Py(uf,ud,...,ud)=0 k=1,...,¢ (5.3)

kas no solution in tntegers u, s, ..., Us.

Proor: It will be sufficient to prove the lemma for the case of two variables,
the proof being entirely similar in the general case.

With the exception of 0, the gth power residues modulo r form a cyclic sub-
group of order (r—1)/qg=2%k of the multiplicative group of non-zero residues. Let g

be a generator of this subgroup; this statement is equivalent to- .
Zisn (9)=0 (mod r). (5.4)

We now consider the set of equations (5.3) modulo r and substitute u{, u§ by

their residues modulo r. We obtain one of the following sets of congruences:

Pe(0,0)=0 (modr) k=1,....¢ (i)

Pe(g", 0)=0 (modr) k=1,...¢ (i) .
Pe(0, g =0 (modr) k=1,...,t (i)
Py(g", ¢)=0 (modr) k=1,...,t (iv)

where 0<7,,j,<2h. If (5.3) is to have solutions, one at least of (5.5), must hold.
Assume for instance that a set of type (iv) holds for some choice of j,, j,. In order

that it may hold simultaneously with (5.4), the algebraic resultants
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R(Py (2", 27), Zon (), k=1,...,t

must all vanish modulo r.
Let £ be a primitive 2hth root of unity, i.e. a root of Z,,(x). Using a well-
known relation ([29], Sect. 28), the result just mentioned may be restated as

N(P, (&, &)=0 (mod r) k=1,...,¢

Applying this method to all choices of j,, j,, as well as to the sets of congruences
of types (i), (ii), (iii) in (5.5), we obtain precisely the sets in S (P, %), and the proof
of the lemma is eomplete.

We now define L, to be the class of all odd primes ¢ such that 2hq+1 is a
prime. (Note that every ¢ belongs at least t0 one, and in fact to an infinite number,
of these classes). Since the class of sets S(P, k) depends on %, but not on ¢, we

obtain the following alternative formulation of Lemma 9.

CorOLLARY. Let P be defined as in Lemma 9. Let h be a given positive in-
teger. If among the sets in S(P, k) there is none such that all its elements vanish, then
the set of equations (5.3) has solutions for at most a finite number of primes q in L,,

namely for those for whith r=2hq+1 divides all the elements of some one set of S(p, h).

REMARK 1. Since in our applications one of the polynomials in P is often of
the form ax, +bx,+1, it is often useful to apply the following result which we state
without proof (for the method, see [1]; there is, however, no restriction on % such
as in that paper): If P(x,, @y, ...,2)=a,2,+ - +asz,+k, k=0, then if for some h
and some choice of y;, Yy, ..., s tn 'y we have P(yy, ys,...,vs) =0 this same equality
must already hold for some choice of the y; in T'; (i.e. either 0 or+1).

REMARK 2. In both Lemma 9 and its Corollary the fact that ¢ is a prime is
irrelevant' Although this remark may extend the field of application of this method,
it was not followed up in numerical computation; neither was the simple relation

N(Pr(yy, Y95 .. ¥5)) <0%t®™, where o, is the sum of the absolute values of the
coefficients of Pj.

REMARK 3. In applying the Corollary of Lemma 9 to any particular set of
equations, it may be possible to prove impossibility for all ¢ in a given L;, if the
exceptional values of ¢ for which » divides all the elements of some set in S (P, k)

also belong to some other L., in which they are not exceptional. This remark is

widely used in the applications.
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We shall now require some definitions and notations. R will denote the class
of all regular primes (in the sense of Kummer). Let s be any prime. We shall say
that a prime ¢=>7 belongs to the class A, if s belongs to an even exponent modulo
g; and that ¢ belongs to the class B; if s belongs to either an even exponent or
the exponent (g—1)/2 modulo ¢. Finally, ¢ shall belong to the class C; if s '=1
(mod ¢?).

In terms of these notations the following lemma is a restatement of some results
of Dénes [6].

Leuma 10. The equation x°+y?=cz? (c an integer prime to q) has no solution
in integers =, y,z except the trivial omes (i.e. |xyz|=0,1, if z, y, z are assumed fo

have no common factor), in the following cases :

a) ¢=2" and geRn B,n C,
b) ¢=2%.3% and geRnA,n A,n (C,U C,)
c) c=2%.5% and geRN A, nA4,n (CU Cy)

d) ¢=2%.3%.5% and geRNA,NA,0A;n(C,uC,uC).

ProoFr: Case a) is a restatement (and a trivial extension if w,= 1) of [6], Th. 9.
Cases b), ¢), d) follow immediately from [6], Th. 7, under the additional assumptions
qg—-3 1 1< q—3 1 1 1 qg—3

Il Salp i SN, | S S Tl - S
°) f2+.f5 2(g—-1) )f2+f3+f5<2(q—1)

(5.6)

respectively, where f; denotes the exponent to which s belongs modulo ¢q. A straight-
forward computation shows that (5.6) b) is satisfied for all ¢ except 7, which does
not belong to A, (only ¢=7 are considered); (5.6) ¢) holds for all ¢ except 7, 31,
neither of which belongs to A,; (5.6) d) holds for all ¢ except 7, 11, 13, 31, of
which 7, 31 do not belong to 4, and 11, 13 do not belong to A4;. The lemma is
therefore proved.

Regularity and irregularity of primes are now known for primes up to 2000 ([14]).
In Appendix II we have collected the data relevant to Lemmas 9 and 10 for all
regular primes less than 1000, note being taken of the fact that in the applications
the Corollary of Lemma 9 was applied for h=1,...,6. It is known that the only
primes less than 16000 which do not belong to C, are 1093 and 3511 ([3]).

We shall also require some results concerning equations of degrees 3 and 5.
Concerning the former, we have the following restatement of part of the compre-

hensive results of Selmer ([26]).
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TreEoREM D. If a, b, ¢ are cubefree integers, the equation ax®+by®+c2*>=0
has no solutions but the irivial ones (i.e. with xyz=0) if |abc| is one of the numbers
contained in Table 4° of [26]; and also in the cases contained in Table 2% of [26].

If |abc|=2, there are none but the trivial solutions zyz=0 and |z|=|y|=|z|.
A gpecial case of Theorem A for ¢=3 is this:

TuaeEorREM E (Nagell). If D is a mulitple of 3 and has no prime factors of the
form 6h+1, the equation 2*+Dy*=1 has none but the trivial solution x=1, y=0, un-
less D=9. ([23)]).

TuEoREM F (Lebesgue). The equation °+y®=c2® has none but the trivial
solutions (i.e. |[xyz|=0,1 if z, y, z are assumed to have no common factor) if ¢ has no
prime factor of the form 10h+1 and furthermore ¢ +1, +7 (mod 25). ([12]).

5.2. Cases p=1, p=3. Lemma 10 a), Theorems D and F, and Remark II in
Section 4 imply that equations (4.2) have none but the trivial solutions and there-
fore the equation (4.1) for p=1 has none but the trivial solution n =m =1, whenever
g is a multiple of 3, 5, or of any prime in Rn B,n C,. Remark IV then disposes
of the case p=3 for ¢ odd or twice an odd number (we include this case in this

section for p=3) and at the same time a multiple of any of the primes mentioned.

5.3. Other cases. Due to lack of space, we shall not discuss the different
cases in detail. After giving the general data for p=2,...,11 (which will also serve
for Section 6) we shall make some general remarks about the cases with odd ¢ and

give two examples of how the method applies.

P even

p  k(p) @ (y) D, D,

2 6 1 1 1
4 30 3y—1 1 7
6 42 32-3y+1 1 31
8 90 57— 1042+9y—3 3 3-.127
10 66 (y—1)(3y*—Ty*+10y—5) 5 5-7-73

For p=8, Q(n(n+1))=6 (mod9) for every integer n, so that it is divisible by
exactly one factor 3 of k(8), and thus d;d,=1, and d;=1 or 127. For p=10 we set

Qo= —1)-8(y) and find: D(1,0,y—-1)=D(1, -1, 8(y)) =1;

D(1,0,8(y)=D(2,1,x(x+1)—1)=5; D(2,1, S(z(x+1))=7-T3.
12 — 563801, Acta mathematica. 95. Imprimé le 2 mai 1956.
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In all cases considered, D, and D, are squarefree, so that, in (4.6), we have
a;a,a3=1. By the Corollary to Lemma 8, ¢;=1.

p odd
p  k(p) @ (¥) D,
5 12 2y—1 1
7 24 3y —4y+2 2
9 20 (y—1)(24*—-3y+3) 3

11 24 24*—84*+1742—-20y+10 10

For both p=17, p=11, @, (n(n+1))=2 (mod 4) for all n, so that it is divisible by
exactly one factor 2 of k(p). Therefore for p=7, d;d,=1; and for p=10, d,d, =1, 5.
As for p=9, we set Q,(y)=(y—1)-8(y) and it is clear that n(n+1)—1 and
S(n(n+1)) are relatively prime for all n.

The general method of attack for both even and odd values of p consists in
eliminating » between the various factors in (4.6) (and in the corresponding equation
for p odd), which are known to be perfect qth powers. A set of equations is thus
obtained for every set of values of the coefficients. This set is tested by the con-
gruence methods of Lemma 9 and its corollary. The computational difficulties have
limited us in general to 2<6; in the case p=10 the number of equations and the
values of their coefficients were so high that the computations could not be carried
out, and in the case p=11 they were limited to A=1.

In those cases in which the Corollary of Lemma 9, completed with Remark
3 following it, breaks down (as it must, since equation (4.1) possesses the trivial
solution and therefore no simple congruence method can settle it completely), we
apply Lemma 10 and Theorems A, D, E, F. In the cases p=2, p=5, the congru-
ence method adds nothing to the knowledge we obtain through these theorems, and
can therefore be dispensed with. Theorems A and E (for ¢=3) are required only
for the cases p=9, 10, 11, and will therefore not appear in the given examples.
The results obtained for these as well as for the other values of p considered, with
q odd, are given in Section 7 (Theorem 2).

As examples we shall now discuss the cases p=4 and p=7.

Case p=4. According to the data above, we have d,d,=1, by=d,. Therefore
the following equations must hold:

n=kz' nt+tl=ky' d;2n+1)=k2* 3n(n+1)—1=Fkd;i
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Elimination of n provides the equations
oy k2 —1=0 dyka" +dkay® —ky29=0 3k ky(zy)?—k,dyt°=0. (5.7)

For ¢=3, these equations are treated by congruences modulo 7, 9, 13, and those
cages that are not incompatible are settled by means of Theorem D. Taking into
account that n must be positive, this yields the trivial solution n =m =1 as the unique
solution of (4.1). A similar conclusion is reached for ¢=5 by means of congruences
modulo 11 and 25 and use of Theorem F.

In the general case (¢=+3,5) the Corollary of Lemma 9 and the subsequent
Remarks 1 and 3 are applied to (5.7) for h<6. (Note: In view of the fact that
our result will be restricted by other considerations to g€ RN B,n C,, it was not
considered necessary to check cases under Remark 3 for values of ¢ not in this class.)

The method breaks down only in the following cases:
(i) kykp=2; (i) dg=ky=F,=1; (iii) dg=ky=lky=1.

In case (i) the first of equations (5.7) has no non-trivial solutions for g€ Rn B, n C,
by Lemma 10, a). In cases (ii) and (iii) the equation obtained in eliminating y or z,
respectively, between the first two equations (5.7) similarly has no non-trivial solution
for the same class of values of ¢. Only in case (i) do the trivial solutions yield the
trivial solution n=m=1 of the original equation; in the other two cases they yield
the absurd value n(n-+1)=0. We conclude that for p=4 the original equation has

6
none but the trivial solution n=m=1 for ¢=3, 5, or g¢e RN B,n C,n UL, (or
1
multiples of these).

Case p="7. From the above data we conclude d,d,=1, and hence the following
hold :

nt=ka® (n+1)P=ky® Q,(n(n+1))=kyt.

We may set ky=2ks, and k3 =1, 3 as is easily seen. We thus have either of the two sets

?(n+1)P= 4(xy)® Q,(n(n+1))=6¢°

(5.8)
m+1P2=12(xy)® Q,(n(n+1))=2¢.

In the first case, since ¢ is odd and z, y are relatively prime, we must have
z=X? y=7Y? and therefore n(n+1)=2(XY)? whence either of the equations
Y?-2X%=1, X9-2Y"=-1

holds; and these have no non-trivial solutions for ¢=3 (Theorem D), ¢=5 (Theorem F)
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or ¢ RnB,n C, (Lemma 11, a)). In all these cases the trivial solutions yield only
n=m=1.

In the second case of (5.8), the left-hand member of the first equation being a
square and ¢ odd, we must have xy=3(XY)%. This implies

n(n+1)=2.3D2(X¥),
whence one of the following equations must hold:

2. 3(a+l)l2 LY - X=1
(5.9)
3(a+1)l2 LY —2X9-1

or those obtained by substituting (—X), (—Y) for X, Y, respectively, in these
equations; since g is odd, these last two cases need not be considered separately.
The first equation (5.9) has none but the trivial solution for ¢=3 (Theorem D), ¢=5
(Theorem F) or g€ RN A, 0 A,n (C, U C;) (Lemma 11, b)); the trivial solution yields
n =0, which is excluded. _

Consider the second equation (5.9). For ¢=3 we obtain 9¥*—2X3=1, which
is impossible modulo 9; for g=5 we have 27Y°—2X%=1, which is impossible mo-
dulo 11. In the general case (g+3,5) we obtain, in conjunction with the second
equation of the second set of (5.8),

g@+hiz, ye_9 ye ]
2. 3q+2_ (Xy)zq —4. 3(a+1)/2, (XY)G + 1=t

The Corollary of Lemma 9 cannot be applied directly, but this set may be trans-

formed to
3(3Y%9—(2X%+1)2=0
(5.10)
48 X%9. (3Y?)? — (18 X% (3Y%)?—¢°+1)*=0

to which the Corollary may be applied. We do this for A<6. We note that 3, and
therefore 3Y?, is a quadratic residue modulo r=2kg+1 for 2=0, 1, 5 (mod 6), and
a non-residue otherwise; this follows from the quadratic reciprocity law and the fact
that r, ¢ are prime and =+3. This fact may be used to restrict the choice of the y;
in (5.2) and hence the sets of S(P, k) for which the assumption of Lemma 9 and its
Corollary must hold. With the help of Remark 3 to the Corollary, we are able to

8
show that (5.10) is impossible for all g€ U L.
1
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Combining the previous results, we conclude that for p=7 and ¢=3, 5, or
. 6
gERNA,nA,nC,n UL,
1

(or multiples of these), there is no solution of the original equation other than the

trivial one n=m=1.

6. The Equation S,(n)=m9. Even Values of q

6.1. Preliminary theorems. We shall require some facts about certain ‘“Pellian”
equations 2 — Dy?*=a (D square-free). For the elementary theory of these equations,
see, e.g., [28], Ch. XI. We shall be interested in particular in the equations

—2¢2=+1. (6.1)
The non-negative solutions of (6.1) are all given by the general relation
a+yV2=(1+V2) (6.2)
for non-negative s, in such a way that
w5~ 2ys=(-1)" (6.3)
A few trivial facts concerning these solutions are:
(%35 Ys) = (@ss o11) = (@5, Tsi0) = 1. (6.4)
¥s i3 even or odd according as s is even or odd, and
(Yar-1s Yors1) = (Y2:/2, Yorse/2)=1. (6.5)
According as r=0,1,2,3 (mod 3), we have respectively
%2,=1,3,5,3 (mod 12)  ¥,,/2=0,1,0,5 (mod 6). (6.6)
A more interesting -property of the z, y; is as follows: from (6.2) we have
Zor + Yo, V2= (2, + 9, V2)?
and therefore 7y, =x7+2y?. Combining this result with (6.3),

Zor =29+ (1) (6.7)
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One further type of “Pellian” equation which we consider is

»—6y*=3 (6.8)
the general solution of which is

z+yV6=(3+V6)(5+2V6) r=0,1,2,.... (6.9)

Lemma 11. The equation 92*—1=8y® has mo solution except the trivial one
|z|=y|=1. |

Proor: By congruence modulo 16, y must be odd. Thus the only way of
factoring (322 —1)(32%+1)=8y* admissible modulo 3 is such that we obtain the
equations "

20 —ul=1, 22+ u?=322,
and according to a result of Lucas ([21]), this set implies |u|=|v|=|z|=1.

LemMMA 12. The equations

2 -2 =41 =1 (6.10)

have no solutions except the trivial ones y=0, x= +1 (for the plus sign) and |z|=|y|=1

(for the minus sign).

(Note: A theorem of Liouville ([15]), implies this result for the equation with the
plus sign for all s for which Fermat’s Theorem holds.)

Proor: Without loss of generality we may assume that s is a prime. For s=2,
the lemma is a well-.known result of Fermat (see [13], Th. IV; [28], Ch. XII). We
may therefore assume from now on that s is an odd prime. Consider first the

equation with the minus sign. It may be put in the form
X241=2Y" (X=2', Y=y?),

and this equation has no non-trivial solutions unless s=4 (see [17]) and this is
excluded.

For the equation with the plus sign, (6.10) may be considered as a case of (6.1),
and therefore by (6.3) and (6.7) we may set °=2>1+1. The minus sign cannot hold,
since 2 is odd and the left-hand side would have to be factored into perfect sth
powers differing by 2. We therefore have 2°=2*+1, and an elementary argument in
the field of Gaussian inf,egers shows that this has ho non-trivial solutions (see, e.g.
[4], Th. II).
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LeEMma 13. The equation 42°—1=3y*°, s=+1, has none but the trivial solu-
tion |z|=|y|=1.

Proor: We may again assume that s is a prime. If s=2, the first member
can be factored; the only factoring compatible modulo 3 is 22—1=u% 22+1=3v%,
so that 3v*—wu®=2. This equation has none but the trivial solution |u|=|v|=1
(see [16]).

We then assume that s is odd. We rewrite the equation as
1+3Y*=42"; (Y=y¢°.
By congruence modulo 8 it follows that # must be odd. A result of Ljunggren ([18])

then implies that, if there are non-trivial solutions, s must divide the class number

of K (/—3) (K the rationals), but this class number is 1.

6.2. Cases p=1, p=3. The equations for p=1 are (4.2). If ¢ is even but
g+2, Lemma 12 implies that there is none but the trivial solution n=m=1. The
remaining case is p=1, ¢=2, which has, according to Theorem 1, an infinite number
of solutions. Instead of using (4.2), we obtain directly from n(n-+1)/2=m® the
equation (2n+1)2~8Mm?=1. We bhave then from (6.1), (6.2), (6.3) the result:

n=(r2,—1)/2, m=ys/2 for r=1,2,....

As for p=3, it is disposed of by Remark IV; the cases with ¢ even but double
an odd number were already discussed in Section 5; the cases with ¢ a multiple of
4 are covered by the above result for p=1.

6.3. Cases with p even. From the data in the preceding section, (4.4) implies,
for p=2,4,6,8, ¢g=2:

n=ka® n+tl=ky® 2n+l=kydyz® Q,(n(n+1))=rkdst>.
For the case p=10 see below.

Case p=2. Here k,k,k;=6. By means of congruences modulo 3 we eliminate
all the cases except

(i) ky=1, k=2, k3=3; (ii) k=6, ky=ky=1.
In case (i) we square the third of the above equations and obtain, substituting

the first and the second, 9z'—1=8(zy)%. According to Lemma 11, this equation
has none but trivial solutions, which yield n=m=1.
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In case (ii) it follows that 2> —24®*= —1 and therefore by (6.1), (6.2), (6.3) we

may seb
2= 1=%2r +2¥2, =2Yar12— Tars2

(6.11)

Y=Yors1=%ar + Yor =Tari2— Y2r42.

On the other hand we must have 62®>=2%—%® and using (6.11) this may be
written 62%=(2—y) (2+y)=9ya,Yorso. Since both factors in the right-hand member

are even,  must be even, and we have
6 (x/2)* = (y2r/2) (Y2r42/2). (6.12)

By (6.5) the factors in the right-hand member are relatively prime, and using (6.6)
we see that they must be 6u? »®* in some order, where uv=2/2. Set y,,=2v"
(either s=r or s=r+1) and substitute in (6.3); we find a%;,—1=8v* There are

only two ways of factoring this compatible with the fact that z.; is odd. If
Xos=4at+1=205"—1

we obtain b*—2a®*=1 which has only the trivial solution @ =0 (Lemma 12) and this
implies the excluded value n=0. Thus z;=2a*+1=40*—-1 and a*—2b'=—1,
whence by Lemma 12 |a|=|b|=1, and x,,=3. This implies s=1. If now r=s—1=0,

we should have n=62®=y,y,=0, which is excluded. Therefore r=s=1, and
n=yyy,=24.

We find 8§, (24)=4900="70% so that m="70. This is thus the only non-trivial solution.
Since 70 is not a perfect power, the equation for p=2, ¢ even but ¢=2 has none

but the trivial solution.

(Note: Lucas [22] derived the final argument from a theorem of Gérono [10].
Cf. also [20]. Although Lucas solved the case p=g=2 completely in [22] (cf. also
[19]) we have included a proof, mainly since the argument will be used again.)

Cases p=4,8. By appropriate congruences we can eliminate all the combinations
of values of k,, k,, ks, k,, d; except k,=d;=1, ky=2, k;=3. This case coincides, as
far as the first three equations are concerned, with the case (i) for p=2, and thus

n=m=1 is the only solution.
Case p=6. By appropriate congruences, the only cases remaining are:

() ky=dy=1, ky=2, k,=3,
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which coincides with case (i) for p=2 and yields none but the trivial solution
n=m=1; and (ii): k=42, ky=k;=d,=1. Following the reasoning for case (ii) of
p=2, we obtain, corresponding to (6.12),

42 (2/2)" = (421/2) (y2r42/2)-

This time the factors in the right-hand member must be either 42%* and +%, or 6u?
and 7% in some order, with wv=z/2. In the first case the procedure is identical
with that for p=2, but leads to gy, =12 =84 4® which is absurd. We may thus assume
that ys,=12%* (r=s or r+1=35). Substitution in (6.3) yields 288u*=23,—1. There
are only four ways of factoring compatible with the fact that z., is odd. Of these,
only two are possible modulo 4: If x,,=144a*+1=20*—-1, we get b*—72a*=1,
which may be transformed to b*+ (6a%*= ((6a?)?+ 1)?, which is of the form a*+ y*=2?
and has no non-trivial solutions (see e.g. [28], Ch. XII). This leads to n =0, which
is excluded. If x,;=16a*+1=18b*—1, we get (3b%)>—8a'=1. This equation, as we
have seen in the case p=2, leads to a=0 or a=1. a=0 implies n =0 which is
excluded. From a=1 we have b=1, x,,=17, s=2. According as r=s or r=s—1
we obtain y,=70=140% y=2=144% both of which are absurd. Case (ii) therefore
yields no additional solutions.

Case p=10. Here we take advantage of the peculiar algebraic structure of @,,(y)
(see Section 5). By means of appropriate congruences, all possible cases for g=2
are eliminated except those containing the equation n(n+1)—1=w? But this may
be written (2n+1)2—(2u)*=5. It follows that we must have

2n+1+2u=5, 2n+1-2u=1,

whence n=1, and thus n=m=1 is the only solution.
We have thus shown that for p=2, 4, 6, 8, 10 and ¢=2 there is no non-trivial
solution of (4.1) except the solution n=24, m=70 for p=2. For g even but g=+2

there is, by Remark II of Section 4, none but the trivial solution in any of these cases.

6.4, Cases with p odd >=5. We set ¢g=2¢'. Since, for the values of p con-
sidered, d,d, is squarefree, and 4 is the only square factor of k(p), we may set
k(p)=4k' and the reasoning which led to (4.12) yields the equations

nn+1)=2(zy)? Q,(nn+1))=k 27, (6.13)

The first of these equations is precisely the equation we obtain in the case p=1, ¢=¢'.
Solvability of this case is thus a necessary condition for that of (6.13). The results
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of the discussion of the case p=1 in this section and the preceding one may thus
be applied (see Theorem 2).

(Note: Simple conditions can be given for p odd in order that (6.13) should
hold; we shall not, however, go into this matter).

We are, however, able to prove more than what has just been stated, at least
for p=5,17,9.

Case p=25. The case ¢'=1 has, according to Theorem 1, an infinite number of
solutions. By (4.14), (6.8) and (6.9), all the solutions are given by

n=(z—1)/2, m=y@By*+1)/4

where z, y are given by (6.9).

For ¢'+=1, we substitute the first equation of (6.13) in the second and obtain
4(zy)¥ —1=3¢%, which by Lemma 13 has none but the trivial solutions for all ¢’;
this implies n=m=1.

Case p=T. We shall only examine the case ¢'=2 in addition to the general
remarks made above. In the second equation (6.13), set n(n+1)=22, and we obtain
2(3z—1)2+1=09¢*, as is easily verified from the data in Section 5. Since ¢ must be
odd, 3z—1 is even, say 3z—1=2w. Thus 9#—1=8«?, and by Lemma 11 this has
none but the trivial solution, which yields n=m=1.

Case p=9. Consider ¢'=1. Since @,(y)=(y—1)-8(y), the second of equations
(6.13) splits into
: nn+1)—1=ku® Sn(n+1)=kyo?
where kgky =k =5. If ky=1, the first of these equations may be written
(2n+1)2—(2u)®*=5,

which clearly implies =1, and hence m=1 also. If k3=5, n(n+1)=1 (mod 5),
and hence t*=8(n(n+1))=2 (mod 5), which is absurd.
The results obtained in these cases are completed by a reference to Remark II

in Section 4.

7. Summary of Particular Cases and Conjectures

The results of the two preceding sections are collected in Theorem 2. The classes
of primes L,, R, B,, A,, C, are defined in Section 5. If % is an integer, [«] will
denote the class of all multiples of u, and [u]* the class of all multiples of u ex-
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clusive of u itself. If U is a certain class of integers, [U] will denote the class of

all numbers that are multiples of at least one integer in U.

TaEOREM 2. All the solutions of the equation S, (n)=m? are given in the fol-
lowing cases:

a) If q=1 or if p=38, ¢=2; every value of n provides a solution.

b) If p=1, q=2 or if p=38, q=4, the number of solutions is infinite; they are
all given by n= (23, —1)/2, m=y,,/2, where x + Yy, Vo=(1+V2), r=1,2,3,....

c) If p=5, q=2, the number of solutions is infinite; they are all given by
n=(x—1)/2, m=y (3y*+1)/4, where 2 +yV6=(3+V6) (5+2V6)", s=0,1,2, ....

d) If p=2, g=2, the only solutions are n=m=1 and n=24, m="70.

e) In the following cases the equation has mone but the trivial solution m=m=1:

q odd g even; q=2¢

P (g belongs to:) (¢’ belongs to:)

1 [BJuls]U[Rn B,n Cy] [

2 [3]u[s]u[RnB,n C,] e

3 [BlUBIU[RNB,NC,) [2]* V3]V [5]U[R N B, n C,]

]

4 [3JU[BJU[RNB,nC,n llJL,,] [1]

5 [B]JUIBJU[RN A4,n 4,0 G, [

6 [3JuBJURNB,NC,n l_lj L] 1

7 [3]u[5]U[RnA2nA3nC2n(:th] [21U[3]U[5]U [RN By C,]
8 [3]U[5]U[RNB,N Cznl:JLh] 1]

9 [3]u[5]u[RnAznAanAan2nl:jL,,] [1]
10 [3]u 5] (1]

11 [BJuBJu[RnA,nA4;n A0 Cyn L] [21*V[3]u[5]U[Rn B,n C,]

Table 1 contains those primes from 7 to 997 which belong to each of the classes
mentioned in Theorem 2. The table is based on the data in Appendix II.

It is interesting to find out what lowest bound we may obtain for the number
of solutions in the cases not covered by Theorem 2, by means of an adequate use
of Theorem A. In this connection it is convenient to sharpen Domar’s result by
using his own discussion of formula (8) in his paper [9]: If we exclude a possible

solution |z|=|y|=1, the equation |A2®— By?|=1 has at most one solution in positive
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integers for ¢=7. Application of this statement yields the following bounds for the

number N (p,q)—1 of non-trivial solutions: (g=7):

P 1 2 3 4 5 6 7 8 9 10 11
godd 1 2 1 7 2 7 3 7 4 13 9
geven 0 0 1 O0 O 0 1 O0 O 0

It would seem that, except for p=4, 6, 8, 10, these bounds cannot be improved by
the use of Domar’s result alone.

The results obtained in this paper give rise to the following conjecture:

CoNJECTURE: Disregarding the cases with an infinife number of solutions
(specified by Theorem 1), the only non-trivial solution of the equation S, (n)=m? is
p=2, ¢q=2, n=24, m="70.

TanLE 1

RnB,NC,

7 11 13 17 19 23 29 41 43 47 53 61 71 79 83
97 107 109 113 137 139 163 167 173 179 181 191 193 197 199
211 227 229 239 241 251 269 277 281 313 317 331 349 359 367
373 383 397 419 443 449 457 479 487 499 503 509 521 563 569
571 599 641 643 661 701 709 719 733 739 743 769 787 823 829
853 857 859 863 883 907 941 947 967 977 983 991 997 (88 primes).

6
RnBzﬂczﬂllen

7 11 13 17 19 23 29 41 43 47 53 61 71 79 83
97 107 109 113 137 139 163 173 179 181 191 193 199 211 229
239 241 251 269 277 281 313 331 349 359 367 373 383 397 419
443 449 479 487 499 503 509 569 571 599 641 643 661 709 719
733 739 743 769 787 823 829 853 857 863 883 907 941 947 977
997 (76 primes).

RNA,N4,0C,

17 19 29 41 43 53 61 97 113 137 139 163 173 193 197
211 241 269 281 317 331 349 373 397 449 457 499 509 521 569
571 641 643 661 701 739 769 787 853 857 859 883 907 941 977
997 (46 primes).

6
RnA;nA;nConU Ly
1
17 19 29 41 43 53 61 97 113 137 139 163 173 193 211

241 269 281 331 349 373 397 449 499 509 569 571 641 643 661
739 1769 787 853 857 883 907 941 977 997 (40 primes).
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L]
R0A N A0 4,0 C0 U Ly

17 29 41 43 53 61 97 113 137 163 173 193 241 281 349
373 397 449 509 641 643 661 769 787 853 857 883 907 977 987
(30 primes).

RnA,n4;nA4;,nCy,NL,
20 41 53 113 173 281 509 641 (8 primes).

Note : Total number of primes in interval considered : 165.
Regular primes among these: 100.

Appendix I: Proof of Lemmas 3 and 4

t s
LeMMA 3. Let P be a prime, n an arbitrary positive integer, and set n= 2 n P,
0
where 0<n, <P —1. (The n; are the digits of n writien fo the base P, and are therefore

uniquely determined.) Then (m ( ; _ 1))50 (mod P) fJor all integers m such that

t
0<m(P—-1)<n if and only if > ni<P—1.
0

t .
Proor: 1. Let r<=n be a non-negative integer, and set r= > r; P', where
0

0<r<P-1. It is wellknown and easy to prove (e.g. by application of Legendre’s
rule for the exponent of a prime factor in a factorial) that (1:) $0 (mod P) if and
only if-r, <=, for all 1.

2. Assume that there exists an integer m, 0 <m (P — 1) <n, such that (m ( : _ 1)) £0
(mod P). Set r=m(P—1). It follows from part 1 of the proof that r, <=, for all ¢.

Since moreover we have assumed r<n, equality cannot hold for all 7, and therefore
we obtain

Z r << z n;. (A.l)
On the other hand, since P=1 (mod P—1), we have

nP'=m(P—1)=0 (mod P-1).

o\ o

£

2 =

0
Since, however, we have assumed r>0, this implies

4
z riZP——l (A2)
0
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t
and combining (A.l) and (A.2) we finally obtain > #u;>P—1, and this completes
[1) .
one-half of the proof.
t
3. Assume now that > n;>P —1. Then there exists a “section” of the sequence
0
k
of digits, say =,,...,nx, such that > n;>P—1, and such that this inequality does
7

not hold for any sub-section. Since we have n;<P~1 for every 1, this section

cannot consist of a single element. We now set

k-1 P -1
m, =P’ (1 + >n (——)) =+ 0. A3
0 20: 7+s P-1 ( )
Hence
k-5 k k
mg(P—1)=P. (P—1+ S n,+3(Ps—l))= (P— 1- 3 ni)P’—i- SmP.  (Ad)
0 i+l i+l

k k
Now by assumption > n;>P—1, but > n;<P—1, and therefore
7

i+l

k
P—l—-'nj< Z n;SP—l,
j1
whence we conclude

k
0<P-1- >m<m<P-1. (A.5)
71
If we finally set r=my(P —1), it follows on inspection of (A.3) and (A.5) and from
the fact that the determination of the digits of » is unique, that ‘

k
rp=P—1— > m<n;; rn=n @G=7+1,..,k);
i+

and r,=0<mn; otherwise. Since we now have r;<mu; for all ¢, part 1 of the proof

implies that ( )$O (mod P); and since the inequality r;<n; is a strict one

n
my (P —1)
and since my=+=0 by (A.3), we conclude that 0 <m,(P —1)<n, which completes the
proof.

LeEmMMA 4. Let n be a positive integer such that n=2 (mod 4). If P is any odd

(P
prime, set n= ) npP', where 0<mp<P—1. If both the following conditions are
[

satisfied
t(P)

a) Rither n=2 (mod 3) or D m<2
0
b) For all odd primes P> 3, S up<P-1.

then n must be one of the numbers 2, 6, 10, 30.
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ProoF: It is obvious that the numbers mentioned satisfy a) and b). We shall
now replace condition b) by the weaker one that the inequality be verified for
P=5,17,13.

1. Since % is even and P is odd,

t(P) t(P)

O=n= Y npP'= 3 np (mod2). (A.6)
0 o
If P=1 (mod 4) we have
t(P)
2=n= 3 np (mod 4) (A7)
0
and if P= -1 (mod 4)
t(P) .
2=n= Y (—1)np (mod 4). (A.8)
0

2. Applying condition b) and (A.7) to P=5 we obtain n=5°+5% Applying
condition a) and (A.8) to P=3 we distinguish the following three cases:

Case I: mn=2 (mod 3)

Case II: n=1 (mod 3); then n=1+3% a=+=0, a=0 (mod 2)

Case IIT: n=0 (mod 3); then n=3%+3° ab=0, a=b (mod 2).

3. Case I. Since 5°+5%°=2 (mod 3), both ¢ and d are even. Therefore n==0
(mod 7). Application of condition b) and (A.6) to P=7 and the fact that we are in
Case I yield n="7°+7". But then n=1,2 (mod 7). In the latter case, n=2.

Excluding this case from now on, we have n=1+7"=1 (mod 7). Therefore
¢=d=2 (mod 6), and in particular ¢d+0, so that =0 (mod 5). Therefore h=2
(mod 4). On the other hand the above condition implies n=5°+5%=5 (mod 9), so
that A=2 (mod 3). Thus finally 2=2 (mod 12). This implies =11 (mod 13), which
contradicts condition b) and (A.7).

4. Case II. Since 5°+5%°=1 (mod 3) it follows that ¢ and d are odd, and
therefore n=3, 10, 0 (mod 13). On the other hand, 1+ 3°=2, 4, 10 (mod 13). Thus we
must have n=10 (mod 13). It now follows from condition b) and (A.7) for P=13
that »=10.

5. Case III. From 5°+5%=0 (mod 3) it follows that c¢$£d (mod 2), and, say,
¢ is even, d is odd.

Since a=b (mod 2) it follows that n£0 (mod 7). Analysis of the combinations
of values modulo 6 of ¢ (even) and d (odd) which make this possible then shows
that we must also have n=%0 (mod 9). This implies that a, b cannot both be =2.
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Since neither can be 0 in Case III, one at least, say «, is 1, and consequently b
also is odd.

If b=1 {mod 6) it follows that n=6 (mod 7), and by condition b) for P=7 it
follows that n=6.

If b=5 (mod 6) it follows that »=12 (mod 13), which contradicts condition b)
and (A.7) for P=13.

Therefore, in the remaining discussion of this case, b=3 (mod 6), and n=2
(mod 7), n==4 (mod 13).

We now recall that ¢ is even and d odd. If ¢=0, then n=1+5%=6, 9 (mod 13),
which contradicts the preceding. Thus ¢=+0 and n=0 (mod 5). It follows that b=3
(mod 4), and hence n=3+3"°=14 (mod 16).

Application of condition b) and (A.6) to P=7 and the fact that we are in
Case IIT and that n=2 (mod 7) yield n=2+7°+7"+7 +7*. Then n=14 (mod 16)
implies that g¢, &, j, &k are all odd. It is easy to verify that there is then no com-
bination of these numbers which will make n=0 (mod 25). Therefore, since ¢=2,
we must have d=1. Taking into account 5=3 (mod 6) we may set b6=3b"; and
since ¢c=2¢ is even we must have n=3+3%" =5+5%°". Therefore, setting x=3%
y=5° we have 2®—y*=2; but this diophantine equation has the unique solution
x=3, y= 15, as is well known (see, e.g., [28], Ch. XII). Therefore b'=c¢ =1, and
n=230. The proof is thus complete.

Appendix II: Data concerning Primes

Of the 165 primes between 7 and 997, 65 are irregular:

37 59 67 101 103 131 149 157 233 257 263 271 283 293 307
311 337 347 353 379 389 401 409 421 433 461 463 467 491 523
541 547 557 577 587 593 607 613 617 619 631 647 653 659 673
677 683 691 727 751 757 761 773 797 809 811 821 827 839 877
881 887 929 953 971

The table in this appendix contains the following information concerning the
regular primes ¢ between 7 and 997:

a) The values of % such that g€ L,, for A<6. If there is no such value, the
least 2 is given in brackets.

b) The fact whether ¢ belongs to B,, A, A4, A (indicated by x in the ap-
propriate column).
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Dénes [6] states that 2 belongs to exponents 35 modulo 281 and 281

modulo 563, whereas actually 2 belongs to exponents 70 modulo 281 and 562 modulo

563. In particular, [6], Th. 9 is also valid for 281.

Note :

251
269

281

313
317
331
349

X

(13)

359
367

373
383
397

419
431

439
443
449
457

X

(15)

479
487

499

503
509
521
563
569
571

X

(16)

(7

[l+]

599
601
641

5

643
661
701

(9

709
719
733

739
743
769
87

3

11

X

2356

13
17
19
23
29

3
4

31

41

43

47

53
61

71

3

73
79
83
89
97
107

3

o

109
113
127

137
139
151

163
167
173
179
181

(7

191

193
197
199
211

(9)

223
227

X

(12)

229
239
241

13 —563801. Acta Mathematica. 95. Imprimé le 4 mai 1956.
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Table (count.)

[1].

(2.
[3].

[4].
[5].

[61.
[71.
[8].
[91.

[101].

[11].

[12].

[13].
[14].

[15].
[161.

[17].
[18].

[19].

[20]

[21].

q h B, A, A, A q h B, 4, A4, A4,
823 5 x X x 919 2 X
829 56 X X 937 3 5 X X
853 2 3 X X x b4 941 3 4 x x X
857 4 x X x b4 947 3 4 X x X
859 (11) x x x 967 (8) x x x
863 3 6 x b4 977 4 x x x x
883 2 5 6 X x X x 983 (7 x x
907 3 x x x x 991 (9) x x
911 1 997 2 X b4 x x
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