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1. Professor Boas recently suggested the following problem in a letter:

For what integer-valued sequences {t (n)}, n=0, +1, +2, ..., is it true that
2 a(t(n) €™’

— o0

18 a Fourier series whenever

18 a Fourier series?

Theorem I of the present paper contains the solution of this problem, and leads
to a complete description of all automorphisms and endomorphisms of the group
algebra of the unit circle, i.e., the algebra whose members are the Lebesgue inte-
grable complex-valued functions on the unit circle, with convolution as multiplication.
The algebra of all bounded complex Borel measures on the circle is also discussed
from this standpoint.

Boas’ question was prompted by the following theorem recently obtained by
Leibenson [7] and Kahane [6] (the latter removed the differentiability conditions im-
posed on w by the former):

The only real functions w which have the property that f(e'"®) has an absolutely
convergent Fourier series whenever the Fourier series of f(¢'®) converges absolutely, are

of the form w(0)=n 0+ a, where n is an integer and o a real number.



40 WALTER RUDIN

The basic “‘reason” for the contrast between the simplicity of this result and
the rather complicated Theorem I of the present paper seems to be the fact that
the circle group is connected, whereas the additive group of the integers is discrete.
This point is further illustrated by the following result of Beurling and Helson:

If G is a locally compact abelian group with connected dual group and if T is an
automorphism of the group algebra L (@), then T is given by the formula

(TH@)=k-y(z)-f(y(@) (z€G, fEL(H), (1.1)

where y is a continuous character of G, y ts a topological automorphism of G,.and k

is a positive number which compensates for the change in Haar measure caused by .

This theorem is not explicitly stated by Beurling and Helson, but is an easy
consequence of the second theorem of [1] and the first two paragraphs of [2]. Since
the present paper is primarily devoted to the group algebra of the circle group C,
we omit the details.

Thus L (Q) admits only the trivial automorphisms (1.1) if the dual of @ is con-
nected, whereas L (C) admits the much larger variety of automorphisms described

toward the end of this paper.

2. This paragraph is devoted to a quick review of some of the principal facts
concerning Fourier and Fourier-Stieltjes series, measures, and convolutions, which will
be needed later. By the circle group ¢ we mean the set of all complex numbers of
absolute value 1, with multiplication as group operation. The additive group of all
integers will be denoted by J. Instead of writing ¢, etc., for the elements of C,
we shall use the letters z, y, z; instead of Lebesgue measure on C we shall use the
Haar measure m (E) (which is nothing but the Lebesgue measure of E, divided by
27); this simplifies the formalism. L (C) is the set of all complex functions on C

which are integrable with respect to Haar measure; with convolution defined by
(fg) (x) = Cff(xy‘l)g(?/)dm(?/) (2.1)

and norm

I#ll= [t @ |dm @), (2.2)

L(C) is a commutative Banach algebra. The Fourier coefficients (or simply the

coefficients) of a function f€ L (C) are given by

a(n)= éfx‘"f(x) dm (@) (n€J); (2.3)
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the statement

f)~ 2a(n)2" (2.4)

nelJ

is equivalent to (2.3). With these definitions the coefficients of f* ¢ are the products
of the coefficients of f and g.

By a measure we mean a countably additive bounded complex-valued set fune-
tion defined for all Borel subsets of C; M (C) is the set of all measures. With the
norm |[u| of u defined as the total variation of u on C and convolution of two

measures g and A given by
(ux2) (B) = L[M (Ey™") dA(y) (2.5)

(where Ey ' is the set of all elements xy ! with x€E), M(C) is a commutative
Banach algebra; for the details of this, see for instance [11]. The measure which is
concentrated at the point x=1 and which assigns the value 1 to that point is the

unit element of M (C). The coefficients of a measure y are the numbers
a(n)=[a"du(x) (n€d); (2.6)
(o]

the Fourier-Stieltjes series of y is

duz)~ 2 a(n)z", (2.7

nelJ

with a(n) given by (2.6). Again, convolution of measures corresponds to multiplica-
tion of coefficients.

For every y €M (C) there is a unique decomposition
= pyt g+ g (2.8)

where y, is discrete (i.e., y; is concentrated on an at most countable set of points),
Uy is absolutely continuous with respect to Haar measure, and u, is singular (ie.,
continuous, but concentrated on a set of Haar measure zero). From (2.5) it follows
immediately that if one factor of a convolution is continuous or absolutely continuous,
then the same is true of the convolution; the convolution of two discrete measures
is discrete.

With every f€L(C) there is associated a measure

pr (E) =EIf(x)d7n(x)- (2.9)
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This formula furnishes an isometric isomorphism of L(C) onto the set of all abso-
lutely continuous measures and the identification of f with u, allows us to consider
L{C) as a closed ideal of M (C).

3. Besides the well-known facts outlined in the preceding section, the following

will be used several times in our investigation ([3]; see also [4]):

HerLsox's THEOREM. If n€M(C) and if the coefficients of u have only a
finite number of distinct values, then u=oc+7, where o is a discrete measure whose
coefficients form a periodic sequence, and T has only finitely many coefficients different

from zero.

Conversely, it is easy to see that every periodic sequence of complex numbers,
with period p, is the sequence of Fourier-Stieltjes coefficients of a discrete measure,
concentrated at the pth roots of unity.

A set S<J is said to be periodic if, for some p>0, n€S if and only f n-+p€S.
A set N<J will be called a P-set if N can be made periodic by adding or deleting
a finite number of elements.

With this terminology, Helsons’s theorem furnishes the following characterization
of the idempotent measures (i.e., those measures which satisfy the equation uxu = u),

since their coefficients are all 0 or 1:

A trigonometric series D a(n)z" is the Fourier-Stielijes series of an idempotent
nelt

measure if and only if there is a P-set N such that

1 4 n€N,

a(n)= .
0  otherwise.

On the other hand, this characterization of the idempotent measures immediately
implies Helson’s theorem. The extension of this result to arbitrary compact abelian
groups would be a major step toward a complete description of the automorphisms

and endomorphisms of their group algebras.

4. In order not to interrupt the main argument, we insert here a measure-

theoretic lemma which depends on the theory of analytic sets [9].

LeMMA. Let f be a complex-palued Borel measurable function on the topological
product CxC, and suppose that for each x€C there is an at most countable set A, < C
such that f(x, y)=0 if y¢A,. If
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glx)= 2 f(z,y) (z€0),

ved,
the series converging absolutely for each x, then g is Lebesgue measurable.

To prove this, assume first that the only two values of f are 0 and 1, let &
be the set of all points (z, y) at which f(x, y)=1, and, for every positive integer k,
let E) be the set of all x€C at which g(x)>%. Since g(x) is, in this case, nothing
but the number of points in A,, the Lebesgue measurability of g will be established
if it is proved that every E, is Lebesgue measurable.

To this end, fix k& and let {V.}, n=1, 2,3, ..., be a countable base for O'xC.
Let W, be the set of all x€( such that (x, y)€En V, for some y€C. Then W, is
Lebesgue measurable (since projections of Borel sets are analytic sets ([9], p. 144)
and the latter are Lebesgue measurable ([9], p. 152)).

For any choice of positive integers =, ..., 7n, such that the open sets V,,
(¢=1, ..., k) are pairwise disjoint, put

Q(nl, ees nk)=W,,i N...N W"k'
It is easy to see that
Ek=UQ(n1, -",nk)’

the union being taken over all k-tuples subject to the above condition. Since this
a countable union, E; is Lebesgue measurable.

Thus the lemma is true if f is the characteristic function of a Borel set, hence
if f is a simple function (i.e., one with a finite set of values), then if f is real and
non-negative (since f is then the pointwise limit of an increasing sequence of simple

funections), and the general case follows by noting that
f=h—f+ifs—if, with {,20 (n=1, 2,3, 4).

REMARK. The proof shows that the hypothesis of the lemma can be weakened
and the conclusion strengthened by replacing Borel and Lebesgue measurability, re-
spectively, by measurability with respect to the analytic sets. However, the state-
ment of the lemma becomes false if “Borel” is replaced by ‘“Lebesgue” in the hypo-
thesis or if “Lebesgue” is replaced by “Borel” in the conclusion.

5. THE PrRINCIPAL THEOREM. Let N be a subset of J and let ¢ be a
mapping of N into J. We say that ¢ carries L(C) into L(C) if ‘the series

> al(t(n)) " (5.1

nelN
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is a Fourier series! whenever the series

> a(n)z" (5.2)

nel

is a Fourier series.

THEEOREM I. Let t be a mapping of N into J, with N<J. Then t carries L(C)
into L(O) if and only if the following conditions are satisfied:
A: N is a P-set.
B: There is a mapping s of J into J and a positive integer q such thal
B1l: t(n)=s(n) for all n€EN, except possibly on a finite subset of N,
B2: for every n€J, s(n+q)+s(n—q)=2s(n);
B3: for every n€J, s(n+q)#s(n).

The special case N =J answer Boas’ question.
6. PROOF THAT THE CONDITIONS ARE NECESSARY. This proof is rather

long and will be broken up into several steps. We assume now that ¢ carries L(C)
into L (C).

Step 1. Extend t to a mapping of J into J by defining t(n)=n if n¢N. Let

1 if neN

n)=
v 0  otherwise.
For every x€C there is then a measure v, such that

dv, ()~ Zj'tp (n) '™ 2", ‘ (6.1)

These measures are bounded in morm.

For every f€L(C) with Fourier series (5.2) there is a function 7'f€L(C) with

Fourier series (5.1). The coefficients of 7'f are accordingly given by
.Cfx‘" (T () dm (x) =w(n)a(t(n))=w(n)!ﬂ:'”"’f(x)d7n(w)~
Putting

@n (2, 2) =k=§_n [1 — n—lél—l] (k) 2t 2,

the Cesaro means of the Fourier series of 7'f are therefore

1 This means, of course, that there is a function in L (C) whose nth Fourier coefficient is 0 if
n¢ N and is a(t(n)) if n€EN.
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on (T} 2)= gf(x) Qu(z, z7)dm(x) (n=0,1,2,..).

Suppose the functions

gn(x)=£|Qn(z, ) ]|dm() (n=0,1,2,..;2€0)

are not uniformly bounded. Then there exist sets E, < C such that the functions

by (2) =Ef Qn(z, z™ VY dm (2)

are not uniformly bounded, and by the Banach-Steinhaus theorem there is a func-
tion f€L(C) for which

Efan (T]; z)dm (2) = J;f(x) by (x) dm ()

is unbounded as n—occ. This implies that for this particular f
[lon(Tf; 2)|dm(2)
is unbounded, contradicting the fact that 7'f€L(C) [13, p. 84]. Consequently there
is a constant K such that
[1@n(z, 2)|dm(z)<K (n=0,1,2,..;2€0).
c
Observing that @, (z, ) is the nth Cesiro mean of the series (6.1), the assertions of

Step 1 follow ([13], p. 79), with ||».||< K for all z€C.

STEP 2. The set N satisfies condition A of the theorem.

Taking x=1 in (6.1), we see that {y(n)} is a sequence of Fourier-Stieltjes coef-
ficients of an idempotent measure. The definition of y(r) now shows that N is
a P-set.

STEP 3. If t is extended as in Step 1, then the extended mapping also carries
L (C) into L(C), and for every x€C there is a measure u, such that

dpz(2) ~ nzuxt(") z". (6.2)
These measures are bounded in norm.
Taking =1 in (6.1), we see that
2 -y )"

nelJ

is a Fourier-Stieltjes series. Hence, if (5.2) is a Fourier series, so is
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Sh-pmlamz =73 atm)z";

ne¢N

adding this to (5.1}, we conclude that

2 a(t(n)2"

nel
is a Fourier series. We can now apply Step 1 with N=J, and Step 3 follows.
StEP 4. The measures u, of Step 3 satisfy the eguation
U ¥ Uy =pzy (€0, y€Q). (6.3)
If 1, s the discrete part of u,, then we also have
Ar¥Ay=Ay (x€C,y€Q). (6.4)

Since convolution of measures corresponds to multiplication of coefficients, (6.3)
is an immediate consequence of (6.2); and (6.4) follows from (6.3) by equating the
discrete parts on both sides of (6.3).

STEP 5. There is a mapping s of J info J such that

d Az (z)~ ngjxs(’” P (6.5)

Let the coefficients of A, be denoted by ¢, (z); we compute ¢, (x) in terms of
the coefficients of u;: for 0 <r<1, let

1-72
— TOPC LN B Rl A
Uz (7, 2) ,g,x “r Cfl—2rRe (zy 1) + 2 #s (9),

where Re (z) denotes the real part of z, and put

f(x, 2)=lim 1—;Z uz (r,z) (x€C,2€0).
-1

From the Poisson integral representation of u, it follows easily that f(x, z) is equal
to the mass which u, assigns to the set consisting of the single point z, so that

Sliwal<e  (@eo),
and

cn () = Cj"z‘” d s (2) =z§:z‘" f(=, z).

Since f(z, z) is the pointwise limit of a sequence of continuous functions on CxC,

the lemma of section 4 is applicable and shows that the functions ¢, are Lebesgue
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measurable. From (6.4) we infer that
en (@) en (Y)=ca(xy) (x€C, yeO). (6.6)

Now it is well known ([10], p. 479) that the only Lebesgue measurable solu-
tions of

9(0)g(p)=g(0+¢) (6, ¢ real)
which are not identically zero are of the form
g(0)=e*"*P8 (g, B real).

If g is to have period 2x, then «a=0, S€J.
Since A, =g, (the unit of M (C)), we see that ¢, (1)=1, and we conclude that
for each n€J there is an s(n)€J such that ¢, (x)=2"". This completes Step 5.

STEP 6. The mapping s of Step 5 satisfies condition B 2.

Since A, is a discrete measure, the integral

2= [27"d 1, (2)
é

reduces, for each fixed z€C, to a series of characters of J which converges absolutely
and uniformly on J. Hence a°™ is, for each x, an almost periodic function on J
({10], p. 448). Every infinite set of translates of an almost periodic function con-
tains a wuniformly convergent subsequence; all we need here is that for each z€(C

there is a positive integer k, such that
le(")'—xs(n+k’)|<1 (nGJ).

It follows that there exists a positive integer k¥ and a set £ < C with m(E)>0,
such that
|a*™ — 2?0 <1 (n€J, x€E).

Putting b(n)=s(n+ k) — s(n), this becomes
[1-2°®|<1 (n€J, z€E). (6.7)

If {b(n)} were unbounded, then the sequence {x°™} would be dense on C, for almost
every z ([12], p. 344); by (6.7) this is false for every x€E; hence {b(n)} is bounded.

Since {2°*¥} and {x*™} are sequences of Fourier-Stieltjes coefficients of dis-
crete measures, so is their product {#°™}. Helson’s theorem now tells us that {2°™}
is a periodic sequence, for every z€(C. Considering an x€C which is not a root of
unity, we conclude that {b(n)} is periodic; i.e., b(n+p)=>b(n) for some positive in-
teger p and every n€J.
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The definition of b (n) shows that

p~1
2lsn+G+)k)—s(n+jk)]

=0

s{n+kp)—s(n)

-1

2 bn+ijk),
=0

and similarly that

-1
s(r)—s(n—kp)= b(n—kp+ik).
=0
Since p is a period of {b(n)}, these last two expressions are equal. Putting g=kp
we thus obtain condition B 2:
s(ntq)—s(n)=s(n)—s(n—gq).
SteP 7. For every x€C, put
Tr = (A — pz) ¥ Ao 1.
Since A;— u. is a continuous measure, so is 1,. Putting r(n)=t(n)—s(n), (6.2) and
(6.5) imply
dr.(2)~ 2 [1—a"™]2" (6.8)
nelt
This is obvious.

StEP 8. The sequence {r(n)} has at most a finite number of terms different from

zero; this implies that conditton B 1 holds.

For every continuous complex function g on € the integral

ny(Z)de (2)

is a continuous function of x; if ¢ is a trigonometric polynomial, this follows from
the fact that the coefficients of 7, are continuous functions of x, and the general
case follows if we approximate g uniformly by trigonometric polynomials and note
that ||7.|| is bounded.

For any open set Ec< C, the total variation |7.|(E) of 7, on E is given by

|7:| (B) = sup |[9@)dz @),

where the supremum is taken over all continuous functions g which vanish outside
E and are bounded by 1 in absolute value. Being the supremum of a collection
of continuous functions, |7.|(¥) is a lower semi-continuous function of z. Taking

E=C, we see that the same is true of ||.||.
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For any closed set F< C with complement £ we have
7| (B) =l 7= || - | == | (B,

so that [7.|(F) is the difference of two lower semi-continuous functions of z and is
therefore continuous on a dense set of type Gs ([5], p. 310).

Let R be the set of all x€C which are roots of unity. If y€R, (6.8) shows
that 7, has only finitely many distinct coefficients, and Helson’s theorem, together
with the continuity of 7,, implies that 7, is absolutely continuous. From (6.8) it

follows also that

Ty ¥ T, =Ty +7.~ Ty (Yy€C,2€C0),

so that 7,, and 7. have the same singular part if y€R.
Suppose now that 7, fails to be absolutely continuous for some z€(C. Then
there is a closed set F with m (F)=0, such that

| 72| (F)=] 7| (F)>0

for every y€R. But |7,|(F)=0 for every y€R. Since R is dense in C, this means
that |7.| (F) is discontinuous at every x€C, a contradiction.

We conclude that 7, is absolutely continuous, for every x€C, so that

lim [1—-4""™]=0. (6.9)

| n |00

If {r(n)} were unbounded, (6.9) would be false for almost all = [12]. Thus {r(n)}
is bounded. Taking x¢ R, (6.9) now shows that r (n) =0 except possibly for a finite

set of values of n.

STtEP 9. The mapping s satisfies condition B 3.

The fact that s satisfies B2 (proved in Step 6) means that s is linear on each
residue class modulo ¢. Suppose 8(n+q)=8(n)/ for some n; then s is constant on
some residue class H. If H NN is finite, then s(r)=n for all n€ H, by Bl and the
way in which ¢ was extended. Hence H NN is infinite, so that for some n,€N we
have ¢(n)=mn, for infinitely many n€N. If a(ny)=0 in (5.2), the coefficients of (5.1)
do not tend to 0 as |n|—>co. This contradiction shows that B3 holds.

The proof of the necessity of the conditions A and B is now complete.

7. PROOF THAT THE CONDITIONS ARE SUFFICIENT. Suppose the con-
ditions A and B hold, and extend ¢ to J by defining ¢(n)=s(n) if n¢N. The
transformation of (5.2) into (5.1) can be considered as the product of three trans-
formations:

4 —563801. Acta Mathematica. 95. Imprimé le 6 mars 1956.
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"Zeja (n) z"——>n§€:Ja (s (n)) 2", (7.1)
g s(n))z"— Z n)) 2", (7.2)
Ela t(n)) z”—»nezNa (t(n))2". (7.3)

Since N is a P-set, (7.3) is nothing but convolution with an idempotent mea-
sure; since B 1 holds, (7.2) changes only a finite set of coefficients; hence ¢ transforms
L(C) into L(C) if (7.1) transforms L (C) into L (C).

Condition B 2 means that s is linear on each residue class modulo ¢; that is to

say, there exist integers b, ..., b, and ¢, ..., ¢, such that

stkg+g)=ke;+b (j=1,..., 9.

By B3, ¢;=0.
The second series in (7.1) is therefore the sum of the ¢ series
kZ a(ke;+b)2" " (=1, ..., q), (7.4)
el

and it is sufficient to show that each of these is a Fourier series if the first series
in (7.1) is the Fourier series of a function f€ L (C).
To do this, fix j, put b;=b, ¢,=c¢, and define

h@)=f(@)z"~ Z (n)2"~". (7.5)
Denoting the |¢| distinct cth roots of 2z by a (2), =1, ..., |c|, observe that
lel B =
. le|z" if ¢(n—b)=hc for some hEJ,
21 @ (2) : otherwise,
and that the function
1 i}

f2(2)= I | z 1 (@ (2)9)
belongs to L (C); the Fourier series of f, is consequently
Salgthc+b)z",
heH

where H is the set of all A€J such that ¢ divides he.

Let » be the idempotent discrete measure defined by

dv (z)~kezlz°".
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Then if f,=f, % v, we have

fa(2)~ > a(kc+b)2?".
kel
Hence (7.4) is a Fourier series.

This completes the proof of Theorem I.

8. TurorREM II. Let ¢t be a mapping of N wnto J, with NcJ. The following

three statements are equivalent:

(i) t carries L (C) into M (C).
(i) Conditions A, B 1, B2 hold.
(iii) ¢ carries M (C) into M (O).

The statement (i) means, of course, that (5.1) is a Fourier-Stieltjes series when-
ever (5.2) is a Fourier series; (iii) has the obvious analogous meaning,

Note that Step 1 depended on the fact that the Cesiro means of the Fourier
series of 7'f are bounded in the norm of L(C); but this is equally true for Fourier-
Stieltjes series ([13], p. 79). Hence if (i) holds, the assertion of Step 1 is still true,
and the remainder of the proof of Theorem I, up to and including Step 8, is
unaffected. Thus (i) implies (ii).

A very slight change in the argument of Section 7 proves that (ii) implies (iii),
and it is trivial that (iii) implies (i).

Theorem II is proved.

9. ExpoMORPHISMS AND HomMomMoRrRPHISMS. If 7 is a mapping of L(C)
into L(C) such that
[T(f+y)=Tf+Tg
Tfl=aTf (9.1)
lT(f*g)=Tf*Tg

for any f, g€L(C) and any complex number «, then 7 is an endomorphism of L (C).
If, for every f€L(C), we have 7'f€ M (C) and (9.1) holds, then T is a komomorphism
of L(C) into M (C). An endomorphism of M (C) is a mapping of M (C) into M (O)
which satisfies (9.1).

We mention in passing that these definitions are purely algebraic and that no
continuity assumptions are made. However, if the argument of Section 7 (slightly
modified if M (C) is involved) is examined in detail, it will be seen that all map-

pings 7T considered in this paper are actually continuous with respect to the norm
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topology. This could also be deduced from the general theory of semi-simple com-
mutative Banach aigebras ([8], pp. 76-77).

If the conditions of Theorem I hold, then the operator 7' which associates with
a function f whose Fourier series is (5.2) the function T'f whose Fourier series is
(6.1) is evidently an endomorphism of L (C). We next prove that there are no other
endomorphisms of L (C):

THEOREM III. Every endomorphism T of L(C) is of the form
>a@mz"—> > alt(n)z", (9.2)
nenN

nelt
where N and t satisfy the conditions A and B of Theorem 1.

To prove this, denote the coefficients of 7'f by ¢, (f). For each n€dJ, ¢, is a
homomorphism of L (C) into the complex field. Let N be the set of all n for which
¢, is not the zero homomorphism. For each n€N, ¢, (f) is then a Fourier coefficient
of f [[8], p. 136), so that there is an integer f(n) for which

e (f) = cfﬂf”"’f(vc)dm(%) (fEL(C), n€N). (93)

That is to say that 7 transforms the function f whose Fourier series is (5.2) into
the function 7'f whose Fourier series is (5.1), and Theorem III follows from Theo-

rem I.

TaEOREM IV. If T is a homomorphism of L(C) into M (C), then T is of the
form (9.2), where N and t satisfy the conditions A, B 1, and B2 of Thecrem 1.

Every homomorphism of L (C) into M (C) can be extended to an endomorphism of
M (C). This extension is unique if and only if N=J.

The proof of the first assertion is precisely the same as the proof of Theorem III,
except that we replace the reference to Theorem I by a reference to Theorem II.
Thus T is given by (9.2), with A, B1, B2 holding, and Theorem II shows that (9.2)
also induces an endomorphism of M (C); this furnishes one extension of T to M (C).

To prove the last part of Theorem IV we let T be an endomorphism of M (O)
and investigate the extent to which 7 is determined by its action on L (C). The
restriction of 7' to L(C) is a homomorphism of L (C) into M (C), and is therefore of
the form (9.2), with N and ¢ subject to A, B1, B2.

For any u€ M (C), denote the coefficients of T u by ¢, (1). Then for every n€J,
¢, is a homomorphism of M (C) into the complex field.

Suppose now that »€N. The restriction of ¢, to L(C) is given by (9.3). Thus,
if u€M(C) and f€L(C), we have
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en (f % )= cu (f) ca (u);
since fx p is absolutely continuous, (9.3) applies, and

Cn (f % p)= gx‘“"’d(f*ﬂ) (r)=cn (f)'gx'“")d/«t(x%

Choosing an f€ L(C) for which ¢, (f) +0, we conclude that

en (1) = L[x*“"’d,u(x) (LEM (C), n€EN).
In particular, there is only one extension of 7' from L(C) to M (C)if N=J.
Let us now assume that N is a proper subset of J. Since L(C) is a closed
ideal of the normed ring M (C), L(C) is contained in at least one maximal ideal of
M(C) ([8], p- 58), so that there exists a homomorphism of M (C) onto the complex
field which maps L(C) into 0. If A4 is any finite subset of the complement of N,
the mapping

> a(n) z"—>n ZNa (t(n) 2" + MZAkn (u) 2", (9:4)

nedJ

where the %, are homomorphisms of the type just described, is an endomorphism
of M (C).

This completes the proof of Theorem IV.

A npatural question to raise at this point concerns the restrictions one has to
impose on the homomorphisms k, if the set 4 of (9.4) is infinite; the answer would
provide us with a complete description of the endomorphisms of M (C). The homo-

morphisms of measure algebras on groups are discussed in [11].

10. AUTOMORPHISMS. An automorphism is an endomorphism which is one-

to-one and onto.

TREOREM V. If t is a one-to-one mapping of J onto J which satisfies condi-
tion B of Theorem 1 (with N =J), then the mapping T given by

Sam)zt—> 2 a(t(n))z" (10.1)

nel nel

ts an automorphism of L(C) (and of M (C)); every automorphism of L(C) (and of M (C))
ts obtained in this manner.
Our previous results show that (10.1) is an endomorphism of L(C) and of M (C);

since ¢ is one-to-one and onto, the inverse mapping of ¢t also satisfies B; it follows

that T is an automorphism.
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The second part of the theorem can now be proved in several ways, of which
the following is perhaps the simplest. The continuous characters of ' are the only
idempotents in L(C) and in M (C) which are not sums of two non-zero idempotents.
Since automorphisms preserve all algebraic properties and since J is the dual group
of C, every automorphism must be induced by a one-to-one mapping of J onto J

and must therefore be of the form (10.1). The theorem follows.

CoroLLARY. Juppose T is an automorphism of M (C).

(i) If p is absolutely continuous, so is T u.
(i) If p is a continuous measure, so is T u.

(iii) If u has no singular component, then T u has no singular component.

Assertion (i) is part of the statement of Theorem V. A slight change in the
argument of Section 7 shows that (7.1) carries continuous measures into continuous
measures and discrete measures into discrete measures (it is again sufficient to con-
sider the series (7.4)). The transformation (7.2) adds at most an absolutely continuous
component. This proves (ii) and (iii).

The corollary shows that certain structural properties of measures are invariant
under every automorphism of M (C). Theorem V exhibits quite a large variety of
such automorphisms. The trivial ones (i.e., those which are of the form (1.1)) are
given by t(n)=c+n and by t(n)=c—=n, where ¢ is constant. To mention just one

non-trivial case we consider the example
tBk)=2k tBk+1)=4k+1; t(3k+2)=4k+3 (kEJ).

11. We conclude with a remark which concerns our method of proof and re-
strict ourselves for simplicity to the problem of finding the automorphisms.

It is known [2] that every automorphism 7' of L(C) can be extended to an
automorphism of M (C). The extended mapping carries idempotents into idempotents,
s0 that the mapping ¢t of J onto J which induces T carries P-sets into P-sets. It
is tempting to try to deduce from this alone that ¢ satisfies condition B of Theo-
rem 1. The following example shows that this is impossible.

Let £ be the set consisting of the integers n! and —=!, and denote the ele-
ments of K by k (1€J), in such a way that k;_, <k, Define t(n)=n if n€E, and
t(k)=k_1. Then t is a one-to-one mapping of J onto J which evidently does not
satisfy condition B. We shall show that the image of every P-set under ¢ (as well

as under ¢t7!) is again a P-set.
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To this end, let H be a residue class (mod p) for some p>0. If H consists of

all integers divisible by p then all but a finite number of elements of E are con-

tained in H. If H is any other residue class, then HN E is finite. Consequently

t(H) differs from H by at most a finite number of elements, and is therefore a

P-set. Now, any periodic set with period p is the union of a finite number of residue

clagses (mod p). This makes it evident that £(S) is a P-set for every P-set S.

The assertion concerning ¢ ' is obtained in the same manner, and implies that

every P-set is the image, under £, of some P-set. Thus ¢ induces a one-to-one map-

ping of the set of all idempotent measures onto itself which cannot be extended to

an automorphism of M (C).
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