THE RATIONAL SOLUTIONS OF THE DIOPHANTINE EQUATION.
Y?=X3*-D.
By

J. W.S. CASSELS

TRINITY COLLEGE, CAMBRIDGE.

1. We study the rational solutions X, ¥ of the equation
Y?=X3-D (1)
where D is a given integer, a problem of a type con‘sidere‘d by Bachet over three
centuries ago. When D = +1 Euler! [10] showed that the only solutions are X = 2,
Y = 43 and trivial ones with X = 0 or ¥ = 0. Apart from a treatment of the

special case when D is a perfect cube by Nagell [29], the first significant advance
for many years was made by Fueter [12] who writes the equation as

X3=Y24+D,

assumes that D > 0, and studies factorisation in R(y/(--D)). This work has been
extended by Brunner in a doctorate thesis [3]. The case D < 0 was considered by
Mordell [26] and then by Chang Kuo-Lung [5].

2. The integral solution &, 7, { of the equation
&+ = AL3, (=+0)

where 4 is a given integer, is trivially equivalent to the rational solution of (1) with
D = 2¢334?% by putting

X:Y:A = 2230:2232¢—v) b+ .
The case 4 = 1 is, of course, Fermat’s problem‘ with exponent 3. The equation with
general A was extensively investigated in the 19th Centuty by Lucas [19], Pépin
[36, 37] and Sylvester [40]; and Sylvester states that he either had a solution or

! For references see end of paper.
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knew the equation to be insoluble for all positive 4 < 100 except!' 4 = 66. Further
results have been given by Hurwitz [17}, Faddeev [11] and Holzer [16]. Much of
this work is summarized by Nagell [31]. [added in the proof]. Since this was written
new and interesting work has been done by Dr. E.S. Selmer (so far unpublished).

3. The equation (1) is, of course, a special case of
Y= X3-CX—-D (2)

where C and D are integers. This was studied by Poincaré [38] who noted that the
values of the parameter u corresponding to rational solutions form an additive
group, U, when the usual parametrization ¥ = }p'(u), X = p(u) is employed.
This group was shown to have a finite basis by Mordell [25]. A more precise form of
this result was given by Weil (cf. theorem II) who gives an elementary proof [42]
as well as a deep proof of a far-reaching generalization [41]. In a doctorate thesis,
Billing [2] has given a general study of (2) using methods based on Weil’s theorem
and, in particular, he gives a complete solution of (1) for all |D| < 25 in the sense
that he gives a complete basis for 1. He does not, however, give a detailed account
of the method of obtaining these results. The present work was done in ignorance
of Billing’s paper; indeed, it was not until a late stage that I realized that the
algorithm which I employed was that underlying Weil’s theorem II. In it, T have
developed a more detailed theory of (1) than is given by Billing and have given
general theorems as well as carrying the solution up to |D| < 50. With one
exception (D = —15), my results confirm Billing’s in the range |D] < 25 studied
by him. I have been led to compute a table? of class-numbers and units for
all cubic fields R(}/ D) with |D| < 50; which I do not think has been given before,
although a number of partial tables exist. Finally, it should be remarked that
(2) is the subject of a series of papers by Nagell {30, 32, 34, 35] and that other
aspects of the problem have been studied by Chételet {6, 7], Lutz {20] and Lind [18].

4. In part I, I give a resumé of the general theory of (2) and discuss its relevance
to (1) in general terms. In part II the general discussion is carried further using the
specific arithmetical properties of the relevant cubic number-fields, and in part 111
the actual applications are made.

1 Insoluble by theorem VIII.
2 Table 2.
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Part 1.

5. Let (X', Y')and (X", Y'') be any two rational solutions! of Y2 = X3-CX D
with parameters u’, »” and let (X', Y'”’) be the solution with parameter »'’ =
w'+u”’. Then (X', Y'), (X, Y"') and (X', —Y'") lie on a straight line y = Az+ B
by a known result?, where 4 and B must be rational. Hence X', X', X’ are the
roots of

X3 0X—-D—(AX+B)2=0. (3)

The left-hand side of (3) must be identical with (X —X")(X —X"")(X—X"") and so,
if § is a root of 63—C6—D = 0,

(X' —8)(X" —0)(X"" —d) = (46+B)e,
(X' —0) = (X' —8)(X"'—0)B, e R(3). (4)

In other words, if squared factors are ignored, the values of X —¢ form a multi-
plicative group homomorphic to 1l. There are three groups &,, @,, &; (say) corre-
sponding in this way to the three values é,, é,, d; (say) of 8. If 62— Cd—D is irreduc-
ible, the numbers X —4, (j = 1, 2, 3) are conjugate algebraic numbers, and the three
groups ¢; run entirely parallel to one another. If, however, 63—Cd—D is reducible,
this parallelism does not necessarily hold and so we are compelled to introduce a
group @ in terms of “‘triplets”. ;

A triplet {«;} is defined as a set of three numbers «;, x,, &5 such that o; € E(d;)
and the operations of addition and multiplication for triplets are defined by

{O‘j}+{ﬂj} = {O‘j+ﬁj}; {"‘j}{ﬂj} = {O‘jﬂj} .
Then the set of triplets {X —d,} is clearly also a multiplicative group & homomorphic

to U, when squared (triplet) factors are ignored. Obviously, when 63—Cd—D is
irreducible @ is isomorphic to each of the groups ;.

We denote, further, by 2Ul the set of 2u, u € Il. Clearly 211 forms a group. We
denote the quotient group of 11 and 211 by 11/(211). Then the following three theorems
hold.

Theorem I (Mordell). The group W has a finite basis.

Theorem IT (Weil). & ¢s isomorphic to 11/(211). T'he element of & and the element

1 (X, Y) (with or without affixes) will always be a rational solution of Y2 = X®—CX —D.
2 cf. Whittaker and Watson [44].



246 J. W. 8. Cassels.

of W/(211) belonging to the same solution of Y2 = X3—CX — D correspond to one another
in the isomorphism.

Theorem III. Let (I) w be the number of indeﬁendent generators of infinite order in
11, (II) g be the number of generators of & and (I11) s=0, 1, 2 according as 63 —Cd—D=0
has no, has one or has three rational solutions. Then w = g—s.

Theorem IIT is really a corollary of theorem II. For proofs we refer to the paper
of Weil [42] or the book of Delaunay and Faddeev [9].

6. If @ is known, then, by theorems II and III, the structure of U is known,
except for its generators of finite order. A theorem has been given by Lutz [21]
which, while not completely characterizing the solutions of finite order of Y% =
X3—-CX—D (i. e. those solutions whose parameters are of finite order in 1), reduces
the problem, when C and D are given, to the vstudy of a manageable number of
cases. We shall not need it here, but quote it for completeness.

Theorem IV (Lutz). If X, Y is a rational solution of Y2 = X3—CX—D of
finite order, then X and Y are integers and Y?2/(4C3—27D?2).
This is superseded in the case C = 0 by

Theorem V (Fueter-Billing). Solutions of Y2 = X3—D with X = Oor ¥ = 0
are of order 3 and 2 respectively. The only other solutions of finite order are the two

SJollowing : — X=2Y=43,D= —1; (5)

X =223, Y = +2232, D = 2433; (6)
of order 6 and 3 respectively.

7. Another general theorem is

Theorem VI (Fueter-Billing); The number w* (say) of independent generators
of infinite order of the group U* (say) of the equation Y2 = X34 27D is equal to the
corresponding number w for Y2 = X3-—D,

The interdependence between these two equations has been known for a long
time. It is connected with the possibility of “complex multiplication’” of the para-
meter u by y/(—3).

8. Finélly, we enunciate the almost trivial

Theorem VII. There is a 1—1 correspondence between the rational solutions
X,Y of Y= X3—CX—D and the integer solutions x, y, t of
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y? =23 —Catt—Dt;t > 0, (x,) = (y,t) = 1. (N

This follows immediately by putting X = xf{r, ¥ = y/s where , y, r, s are
integers and the fractions are in their lowest terms. Comparison of denominators
on both sides of Y2 = X3—-CX—D gives s2 = r% and hence s = ¢3, r = ¢ for some ¢.
It will be more convenient to use this form in future. We note that the multiplicative
group & of the triplets {X —4;} may also be defined as the group of the {x—2,},
squared factors again being ignored.

Part II1.

9. We shall now confine ourselves to the equation
y?=23—Dts 140, (x,t) = (y,t) = 1, ' (8)

where x, y, t are integers. We may clearly assume that D is sixth-power-free and,
by theorem VI that 27/D. Any such D can be put in the form!

D=EFQ3,E>0,F>0,31G, (9)
B, F)=1, v (10)
E, F, G squarefree . : ‘ (11)

By theorems I1I and V the structure of the group 11 of solutions can be found from
that of the group &. Until further notice, we shall assume that D is not a perfect
cube and so, by theorem I1I, the number of independent generators of infinite order
of N is equal to the number of generators of . Further, all three expressions
x—1t%; (j = 1, 2, 3) where §; runs through the roots of 4° = D, are conjugate, and
so we need study only one, say x—¢20 where 4 is the real cube root of D. We first
state some properties of the cubie fields R(d). For proofs see a paper by Dedekind {8]
or the general theory in Weyl [43].

10. Write
6=GA,D* = EF? = A%>1.
Small Greek letters denote numbers in R(4), Gothic small letters denote ideals, as
also do square brackets enclosing a (possibly redundant) basis. If D* == 4-1 mod 9
integers in R(A) have the basis {1, 4, 42/F} but if D* = +1 mod 9 the basis is
{1, 4, A2/F, }(1 +4+442)}. In particular

1 For let p°//D where p is a rational prime. According as s = 1, 2, 3, 4, 5 we make

(s = 1) p||E, p{ FG; (s = 2) p||F, p{ EG; (s = 3) p/|G, pf EF; (s = 4) zél/E, p{ F, p|G;
(s = 5) pfE, p||F, p||@. Further, sign @ = sign D.
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Lemma 1. The number a-+bA, where a and b are rational, is an integer in R(A)
if and only if a and b are integers.
The rational primes p factorise as follows in R(A4):

p/D*: p = p3% where p = [p, 4] or p = [p, 4%/F] according as p/E or p/F.
p=3/D* D*== +1 mod 9: 3 = 3, t = [3, +4] where D* = 41 mod 3.

p=3/D* D*= 41 mod 9: 3 = 123 where
v=[3, 154, H14+4+42)],
8=1[3,1F4, }(—2+4+4%].
Here 18 = [3, 17 4].

= —1 mod 3, p/D*: p = pa where
p=[p,d-4],
q = [p, d*+dA+4%]
and d is the unique root of the congruence d® = D* mod p.
p and g are of the first and second degrees respectively.!

=1 mod 3, p/D*, D* a cubic residue of p: p = p,p,p; where p; = [p, d;—4]
and d,, d,, d; are the distinct roots of d® = D* mod p.

p =1 mod 3, p/D*, D* not a cubic residue of p: p remains prime in R(4) .
The following are quoted for reference as lemmas. The proofs are elementary.
Lemma 2. Let a, b be rational integers and pf(a, b) a rational prime. Suppose

px3if D*= 11 mod 9. Then either p is prime to a-+-bA or

[p, a+bd] = p*

where p is some first degree prime divisor of p.

Lemma 3. If p is a prime ideal of the first degree the rational integers
0,1,2,..., p—1 area complete set of incongruent residues mod p where p = Norm p.

Lemma 4. If q is a prime ideal of the second degree the numbers
a+bAd (a,b=0,1,2,...,p—1)

are a complete set of imcongruent residues mod q where p* = Norm q.

Lemma 5. Let t be a prime ideal and t°/2 for some s > 0. Then « = p mod {*

li.e. Normp = p, Norm q = p2
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implies x? == 2 mod t*. Indeed it implies x? = B2 mod t***! if t is of the first degree.
In particular «* =1 mod t3 if t is of the first degree and tf«x.

11. The units of R(A) are all of the form --¢* where ¢ > 0 is the fundamental
unit. For our present purpose it is enough to know any odd power! 5 = ¢ > 0
of ¢. Values of 5 and of the classnumber h of R(A) are given in table 2. As a special
case of a known general theorem we have?

Lemma 6. If h is odd, n is not a quadratic residue of 4.

Let now & be the principal class of ideals in RB(A4)and #,, §,,. . ., §, the classes
of order 2, if any, i.e. 8 + g{, ﬁ; = . Let GES; and choose y; > 0 such that
vl = ¢}. Then every number 6 > 0 of R(4) for which [6] is the square of an ideal
has one of the forms

«?, mo?, yiot, gyt
The y; can be chosen to be integers prime to any given ideal m. Hence, if 6 is an
integer, & contains in its denominator only ideals prime to m. In particular, we shall
suppose henceforth that the y; are prime to 2. There is a generalisation of lemma 5
which states that then precisely half of the numbers

L0, v ny; G=12,...,k
are quadratic residues of 4. We shall not use this generalisation in the general
theory but in numerical work we shall use the corollary that if # is not a quadratic
residue of 4 the y; may be chosen all to be quadratic residues, to give a normalisation
of the y; where possible. This is always possible in the range |D| < 50, since there 7
is not a quadratic residue of 4.

12. Consider the factorisation

¥ = (x—G12A)(x*+ G2zl - G4?) .

1 It is difficult to decide if a given unit #, > 0 is a fundamental unit but easy to decide if it is a
perfect square. If not, put 5 = #,.

2 Lemma 6 belongs to the general theory of class-fields as expounded by Hasse [13, 14]. The full
force of this theory is not required and it is possible to base a proof on the simpler theory of relative-
quadratic fields developed by Hilbert [15]. By Satz 4 on page 374 of [15] if 7 is a quadratic residue of 4,
the relative-discriminant of R(4, l/r)) over R(A) is unity, since it has no prime factors. By Satz 94 on
page 155 (and the remark on page 156 extending it to I = 2 in the there notation if a further condition
is satisfied) it follows that h is even.

In the language of class-field theory if 7 is a quadratic residue of 4 the field R(4, Vn) is unramified
(unverzweigt) over R(A) and so is the class-field to some absolute ideal group of index 2. This implies
that % is even.
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Any common divisor a of the two terms on the right hand side must divide
224Gt 4+ QA% — (x—Gt%4)? = 3Gt*xA

and so a/3G4 since (z, t) = 1. Hence [x—Gt?4] = ab? for some ideal b and a/3GA.
We classify the prime divisors of a as follows

(¢) p/A4. Then p® = [p] where p = Norm p. Since p occurs in y2 = Norm
(x—G124) to an even power, p occurs in x—G#24 to an even power, and so may
be absorbed in b.

(1) q/G but g4, so qf3 by (9). Then q/z since q/G and q/(x—Gt24) i. e. gz
where ¢ is the rational prime divisible by q. Write 2 = gx,, ¢ = ¢@G,. By lemma 2,
either x,—Gt*4 is prime to ¢ or [q, z;—G,#?°4]) = q'* for some first degree prime
divisor g’ of ¢, since qfG,t? [as ¢/ @, by (11) and g/t by (8) (and g/z)]. But y* =
Norm (x—@t?4) = ¢3Norm (x,—G,t24) and so the second alternative holds and
q’ divides x]—G,24 to an odd power. '

' (232) p/3 but p1G4. Hence 3/D but 3/y since y?> = Norm (x—Gt24). Conse-
quently 2% = G%°D* mod 9 so this case occurs only when D* = 41 mod 9 i. e.
when [3] = v?3. Now 23 = @3%°D* = 4-G%° mod 9 implies x = +G#2 mod 3 and
80 18/(x—Gt?A) since 3 = [3, 1F A]. But 3f(x—Gt24) (lemma 1) so v//(x—Gt2A).
Hence 8 occurs in z—Gt24 to an odd power since y? = Norm (x—G#24) and
Norm ¢ = Norm 3 = 3.

All this proves.

Lemma 7. Let q,,..., q, be the rational primes such that g;/(z, G) but quD*.
Then

[x_Gtzd]zgl.....q_‘.bz’ (12)
q: a

where q; is some first degree prime divisor of g; and b is some ideal; except that, when
D* = +1 mod 9 and 3)y,
r—a] =D ... 2gpe, (13)
a: a
In particular [x—G¢24] = ab? where a is one of a finite set. Hence = HR?
where fand & are the ideal classes to which a and b belong and & (as before) is the
principal class. For given a and so for given &, this equation for # may be insoluble
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(e.g. when? the class-number & = 2 and HA+ &F). If however HARP® = K has the
solution @ = &,, the other solutions are all the @ = %Elﬁj where §; (as before)
runs through all the solutions of §2 = &, #+ F. We may choose b, € @, and prime
to any given ideal m. Then ab} is a principal ideal, say ab? = [1]. Now [x—Gt24] =
ab? = [ab]][bb;"]* where bbi'€ @@" = 4 for some j, or = .
Hence finally
r—Gt24 = +Ax? or +nlx? or +y;Ax? or inyjlocz ,

say

—G24 = pxt (14)

where u is an integer in R(4) taken from a finite set, which may be chosen so that «,
though not necessarily an integer, has in its denominator only factors prime to any
given® m. We note that u > 0 since 23—(Gt24)3 = y2 > 0. ‘

- We shall say that two values of u are essentially similar if their quotient is a
square in R(A), otherwise essentially dissimilar. The values of u which actually
correspond to solutions of (8) form the multiplicative group @, when squared factors
are ignored, which we discussed earlier. We shall use this group-property frequently.
We note in particular that we can assume that u is essentially distinct from 1 when
investigating the number of generators of ®. As we remarked earlier, the number of

generators of & is the number of generators of infinite order of 11.

13. All the argument so far applies equally to the equation y* = z*+Dts in
which the sign of D is changed and leads to the equation

T+ G1?4 = pot (15)

in which u has the same o pribm’3 possible values as for (14). It will often be con-
venient to discuss (14) and (15) simulbaneoﬁsly and then, in numerical work, we
shall always mean by D, ¢ the positive values and make the appropriate changes
in the formulae when discussing negative D. General theorems will, however, apply
equally to either positive or negative D.

1 A numerical case is D = 88 and 2/z. Then G = 2, D* = 11, h = 2 and @ = 1 is the second-
degree divisor of [2] in R( zi/l 1), which is not a principal ideal. Hence there are no solutions with D = - 88,
2/x [indeed none with D = 488 at all]. A similar argument in a quadratic field has been used by Mordell
and independently by Marshall Hall (both unpublished).

? We require only 1t = 6.

3 i. e. so far as the discussion in part IT is concerned. We shall use a priori in this sense throughout
part IIL.
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Part II1.

14. In this part ‘we give a number of general theorems covering most of the
values of D such that |[D| < 50 and then dispose of the rest individually.

15. D odd. We examine (14) modulo powers of t and u, the prime divisors of
[2] of the first and second degrees respectively. We note that

t =[2,140], t* = [4, D—4],1*> = [8, D—4],

u=1[2, 14+6+62], ut = [4, 1406462, u® = [8, 14Dé+6%] .
We prove first

Theorem VIIL. If D is odd and (14) is true then either u is a quadratic residue

of 4 or
u=D-6,2—-0,D-25 mod u?. (16)

One and only one of x, y,t is even since (z,t) = (y,t) = 1 and we take the
possibilities in turn.

(?) ¢t even. Then z =23 =y2=1 mod 8 so pux® = x—t?*0 =1 mod 4 and u
is a quadratic residue of 4.

(¢3) y even. Then x = «® = Di®* = D mod 4 and so ux? = x—#2 = D—0 mod 4.
But « is prime to u since x—t2§ is (by lemma 2). Hence

4= (@—12)(1/a)? = (D—0)(1/x)*  mod uZ.

By lemma 4, (1/x) = 1,6, 14+6 mod u so, by lemma 5, (1/a)2= 12, 62, (1+49)2
mod u? and then (16) holds.

(¢%t) = even. Then D = Di* = —y2 = —1 mod 8. If 4/z, then un? =
x—1%0 = —0 = (62)? mod 4 so u is a quadratic residue of 4. If, however, 2//x then
poa? = x—120 = 2—4 mod 4 and so (16) holds.

This concludes the proof.

Corollary 1. If D is odd and u is not a quadratic residue of 4 at least one of
(14) or (15) is insoluble.

For if (16) is true the corresponding congruences in which the signs of D and ¢
are simultaneously changed cannot be true.

In particular,

Corollary 2. If D=z 41 mod 9 is odd and cube-free! and if h;, is odd, non-

1 It is enough that there is no prime p with p3//D.
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trivial solutions do not exist for both y* = x3+ Di8. If non-trivial solutions do exist for
one of these equations then the corresponding group W has precisely one generator of
infinite order.

For under the conditions of corollary 2 the only a priori possible value of u
essentially dissimilar from 1is 4 = %, which is not a quadratic residue of 4 by lemma 6.
Hence & has at most one generator, i. e. 1 has at most one generator of infinite
order (theorem III) and, by corollary 1, such a generator exists for at most one of
the two equations. Finally, by theorem V, the only solutions of finite order for the D
under consideration are trivial.

We now consider some numerical examples.

Non-trivial solutions actually exist (table 1) for the following values of D for
which kj, is odd (table 2) and which satisfy the other conditions of corollary 2:

D= —3, -5 +17, —9, +13, +21, +23, 125, +29, —31, —33, —41, 445, +49 .

Hence 11 has one generator of infinite order for these D whereas there are no non-
trivial solutions at all for
D = +3, +5, -1, +9, ete.

Consider now D == 4+1 mod 9 and cube-free, but with &y even. Then the only
possible values of u essentially different from 1 are u = 7, y;, ny;. Suppose further
that |D| < 50. Then (table 2) the group of ideal-classes is cyclic, so essentially only
one value of y;, = y exists, and y is a quadratic residue of 4 but » and »y are not.
As the values of y for which (14) is soluble form the multiplicative group &, the
group 1 has no, one or two generators of infinite order according as none, or one
or all three possible values of u essentially dissimilar from 1 do in fact have solutions
in (14).

In particular, consider D = +-11. Neither of the solutions (z, y,t) = (3, 4, 1)
or (15, 58, 1) leads to a value of x which is a quadratic residue of 4 (as in the proof
of theorem VIII) nor do they belong to the same u since the ratio

(3—4)/(15—0)
is not a perfect square!. Hence solutions exist both for u = 5 and for u = 7y, so
also for 4 = y by the group-property of u. The corresponding group W, has thus
two generators of infinite order. By corollary 1 there are then no solutions for D= —11

either with u = or u = 7y, so when D = —11 the only possible value for u
essentially dissimilar from 1 is 4 = y i. e. the group U_;; can have at most one

1 It is not a quadratic residue mod [5, §—1], the first-degree prime divisor of 5.
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generator of infinite order. 1t has precisely one such generator since non-trivial

solutions do in fact exist. However 4 = 1 or 4 = y is a quadratic residue of 4 for

all these solutions and hence so is! x+#20. Since —11 == —1 mod 8, this implies 2/,
as in the proof of theorem VIII. In particular X = #/t? and ¥ = y/t3 cannot be
integers. The solution given in table 1 for D = —11, namely (z,y,t) = (—7, 19, 2)

corresponds to! 24120 = ya? and not to 24120 = a® since —T7+46 =5 mod t3 but

«? =1 mod t* by lemma 5.

Similar arguments apply to D = +39, 443, +47. The only modification
necessary when D = 415 is that although we can prove that, when D = 415,
x—1%) is a quadratic residue of 4 this does not imply 2/f since 15 = —1 mod 8 and
we may have 4/x as in the case (¢77) of the proof of the theorem. This in fact does
oceur.

We leave for later consideration the cases D = +1 mod 9.

16. We may strengthen theorem VIII somewhat by considering congruences
to powers of { as well as to powers of 1. We prove the strengthened form although
it is not required to deal with [D| < 50. We require first

Lemma 8. If D is odd and (14) is true but u is not a quadratic residue of 4 then

either 2[y or 2//x, the second case occurring only when D = -1 mod. 8. Further y =3
mod t% and u =17 or = 3 mod t3, in the first case according as 2//y or 4y, and in the
second case according as x = —2 or x = +2 mod 8. ‘

The proof of the first sentence has already been given in the proof of theorem
VIII. We reconsider cases (¢) and (¢i¢) of that proof.

(¢¢) 2/y. Suppose 2%/y. Then t**//(x—t26) since y? = Norm (x—t%}) and
1 f(x—1t20) by lemma 2. Hence -

y? = xs—DtG = 38+ 3u x20+ Suntis?
on substituting for x in terms of ¢ and « and so

Yy B plat
3y — (h) — — . 17
= \wo 20 120 ' (17)

If a > 1 the second and third terms on the right are divisible by t! and the first,
by lemma 5, is congruent to 1 mod t3 Hence 3u = 1, u = 3 mod t3. If however

1 §3 = +11 in accordance with the convention introduced at the end of part II.
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a = 1, the third term is still divisible by t* but the second only by t? and so! is
congruent to 4 mod t3. Hence 3y = 5, y = 7 mod t3.
(#it) 2fx so D = —1 mod 8. Here « is prime to t since y is to 2 and so

t==pol=x—120 =206 =x+1 mod t3.
Since we have already shown that 22 fx if u is not a quadratic residue of 4 this
concludes the proof of the lemma.
If 4 is not a quadratic residue of 4 we may now write
u = 3+4k mod {3,

where k = 0 or 1, and proceed to prove

Theorem IX. Theorem VIII remains true if (18) is replaced by

p = D04 4k-+4(1+0), —2D 0+ 4k 415, 2—D—25+ 4k6+ 41 modu®, (18)
where k has just been defined and | may take both values 0 or 1.

It is easily verified that only half the numbers which are quadratic residues of
u? are quadratic residues of n3. Thus if § =1 mod u then % = 1, 5 mod u® but
1444 and 5444 are not quadratic residues of us. To prove theorem IX we need now
only reconsider cases (i2) and (i7z) of theorem VIII and use lemma 8.

(12) 2/y. Here

x = x® = y*+ Dt = 4k+D mod 8,
by lemma 8. Hence :
w= (x—1t20)(1/x)? = (D+4k—08)(1/x)? mod u?

and so (18) holds.

(¢23) 2/x. This may be similarly dealt with.

17. 2//D. We consider congruences to powers of t where

t = [2, 6], t2 = [2, 6], t* = [2]

Theorem X. If 2//D and (14) is soluble then either u is a quadratic residue of 4 or
n=1+4+6+8214+D—6,1—-D+$6 mod {7 = 4{2, é]. (19)

If either « or y were even then so would the other be, and then D = 23 —y2 =0
mod 4 i. e. 2/t contrary to (x,t) = (y, t) = 1. Hence 2 fzy. There are two cases (1)
t even and (i2) ¢t odd.

L If tf B, and t{ B, then f,= B, mod t since Norm t = 2; similarly if t*//8, and t//8, then 8,=§,
ts+1.

mod



256 J. W. 8. Cassels.

(¢) t even. Here x = 2® = y? = 1 mod 4, 80 ux? = x—126 = 1 mod 4 and u is
a quadratic residue of 4.
(%) t odd. Then x = 2® == y2+4- Dt = 14+D mod 8 so

po? = x—1%0 = 14+D—9d mod [8] = t°.

But y is odd, so « is prime to t and then (l/x) =1, 144, 1462, 14+6+62 mod
[2] = t% Hence, by lemma 4,

(1/x)? = 1, 14-20+62, 1426+262, 5+36°  mod {7, (20)

and p = (x—120)(1/x)? satisfies (19).

This concludes the proof. We note that the right hand side of (19) remains
unaltered when —D, —§ are substituted for 4D, 4§ respectively.

Let us now consider some numerical examples. If D == +1 mod 9 is cube-free
and if A5 is odd the only a prior: possible value of 4 essentially different from p = 1
is 4 = 5. Thus @ has at most one generator and 11 at most one generator of infinite
order. Since non-trivial solutions- (. e. solutions of infinite order) do exist for
D= 42 -+18, +22, +30, +38, +50 the corresponding group U has precisely one
infinite generator. Theorem X, using table 2, shows that x4 = # is impossible for
D = 46, +14, +34, +-42. Hence for these D there are no non-trivial solutions.

Table 2 shows that there are no even values of D with even class-numbers in
the range |D| < 50 under consideration. If, however, any even values of D exist
with even class-number they could be treated as when D is odd.

We consider later the cases D = +1 mod 9.

18. 22//D. Write
D=4J, 27J .
We consider congruences to powers of t where
t= [2, %62], t2 = [2) 6]7 t3 = [2] .

Theorem XI. If 22//D and (14) is soluble then either u is a quadratic residue
of 4 or (I) if J = —1 mod ¢4,

u=5-—-0,1—-28, 1462 1406—0* mod {7, (1)
or (II) ¢f T = +1 mod 4,
p= —1+16%, 3+30% 1406+36% 14+6+36% mod t’ (22)

As (x,t) = (y,t) = 1 it is easy to see that one of the three cases holds (¢)
2fxy, 2/t (w0) 2fxyt (ice) 2/z, 2]/y, 21
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(¢) 272y, 2/t. This is analogous to case (i) in the previous two sections. We
have x = 2% = y? = 1 mod 8 and so ya? = x—120 = 1 mod 4 i. e. u is a quadratic
residue of 4. ;

(#4) 2/ayt. Here x = x® = y2+-Dt* =1+D = 5 mod 8 and so

p® = x—1%% = 590 mod 8.
But « is prime to t since y is prime to 2 and so
(1/x) =1, 146, 14+162, 14-6-+362  mod ¥ = [2].
Hence, by lemma 5,
(x)2 =1, 14264682, 1+J864+02, 54+3J8  mod 1. (23)

Thus if J = 4-1 mod 4, u is a quadratic residue of t7 and a fortiori of 4 and if J = —1
mod 4 one of the congruences (21) holds. _
(vie) 2/x, 2//y, 2ff. Write x = 22, y = 2y’ so that 2/y" and

2% =y 2 Jtd = 14+J mod 8.

Hence J ==3 mod 8 and

4 if J =1 mod 8. } (24)
x=2¢'"=1+J mod 8 if J =1 mod 4.
Let & = 342« so that &’ is prime to t and
po'? = (2/02)2x—120) = —J +wé2/4 mod 7. (25)

We now consider the two cases J =7 mod 8 and J = 1 mod 4 separately.

(t3¢,) J = 7T mod 8. Then (24) implies either that the right hand side of (25)
is congruent to 1 mod t? so that u is a quadratic residue of t’ and Sortiort of 4
or that it is congruent to 1+46% mod t’ and then (21) holds.

(¢3¢5) J = 1 mod 4. By (24) the right hand side of (25) is congruent to
—J 4+ (1+J)6%/4 mod t7. Since (1/x') is prime to t, (1/«’)? satisfies one of the con-
gruences (23) and hence (22) holds.

This concludes the proof of the theorem.

Corollary 1. If 22//D and u is not a quadratic residue of 4 at least one of (14) or
(15) is tnsoluble.

For (21) is incompatible with the set of congruences obtained from (22) by
writing —d for 4.

In particular, precisely as corollary 2 of theorem VIII is derived from corollary 1,
we have here also

17. Acta mathematica, 82. Imprimé le 9 mars 1950.
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Corollary 2. If 23//D, D == +1 mod 9 is cube-free and if by, is odd, non-trivial
solutions do not exist for both y* = x*+ Dtt. If non-trivial solutions do exist for one of
these equations then the corresponding group W has precisely one genmerator of infinite
order.

We now consider some numerical examples.

Non-trivial solutions actually exist for the values D = +4, —12, 420 and —36
which satisfy the conditions of corollary 2. Hence there is precisely one infinite
generator for each of the corresponding groups 1. Moreover, by the same corollary,
there are no non-trivial solutions for D = —4, 412, —20, 4 36.

We leave for later consideration the cases D = 4-1 mod 9.

19. 23//D. As (z,t) = (y,t) = 1 it is not difficult to see that one of the three
cases holds: (i) 27y, 2/t (42) 2fayt (ei) 2/[x, 22[y, 27/t. Of these (¢i¢) gives rise to
the new possibility that [x—£25] is not the square of an ideal.

Since we are excluding perfect cubes at present, the only values in the range
|D| < 50 under consideration are D = +24, 4-40. For all these D = 4-23D* where
D* is odd and cube-free and k. = 1. As before let 43 = D*. We consider congruences
to powers of t and u, the first and second degree prime divisors respectively of 2,

where
t =[2, 14-4], t* = [4, D*—-A], t* = [8, D*—A4],

u =2, 1+4+42), ut = [4, 14+ D*A+42), ud = [8, 1+ D*4+4?].

By the discussion in § 12 the only @ prior: possible values of u are p = 1, % in
cases (¢) and (¢7) and y = A, An in case (427) where 4 > 0 and [1] = u. The group 1
has no, has one or has two generators of infinite order according as no, one or all
three value of 4 essentially distinct from 1 can actually occur in (14). Case (2) is
completely analogous to case (i) previously. It implies that x is a quadratic residue
of 4 i.e. that 4 = 1 and so it may be neglected in the rest of this §.

We now treat D = 424, D = —24, D = 440 separately. We shall show that
the corresponding group U has no, two and one generator of infinite order respectively.

D = +424,4% = D* = 3. (if) 2fayt. Here x =23 =y =1 mod 8 and so

uxt = x—244
=1-24 mod 8
=3 mod 3.

But « is prime to t, since y is prime to 2, and so «? = 1 mod t3 (lemma 5). Hence
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u = 3 mod t2. This is clearly impossible for x4 = 1 and it is also false for the only
other possibility p = n = 42—-2 = —1 mod {3.

(152) 2//x, 22/y, 2ft. Letx = 22’ where «’ is odd and let ), denote either 1 orz.The
only a priori possibility for u is 5, A where 1 > 0 and [A] = u, say 2 = 2(4—1)"". Then

N2

= 24 =2 -4 mod 4.
A—1

Now « is prime to u since ' —#24 is by lemma 2 and so (1/x) = 1, 14+4, 4 mod u
by lemma 4. Hence (1/x)2 =1, —4, —144 mod u? by lemma 5, and then

g = @ —A)(A4—1)1/x)2 mod n?
= l—2'4+2'4, -1+ (1—24, 2 —4 mod uz.

Since " is odd this congruence is impossible both for 7, = 1 and for j, = p =42 —2 =
1-4+4 mod u2,

Hence when D = 24 none of the a priori possible values of u essentially
different from 1 actually can occur, i.e. Ul has no generators of infinite order.

D = —24, /1% = D* = 3. (i1) 2/xyt. Solutions of this type do exist with
p = 17. An example is '

1352 = —24

since 14-24 = ux? is not a perfect squarel.

(442) 2//x, 2%y, 2ft. Solutions do exist of this type i.e. with u = 2¢,/(4—1)
where n, = 1 or #. An example is

(—2)3—42 = 24 .

Hence for D = — 24 solutions exist for at least two, and so for all three a priors
possible values of u essentially distinct from 1 i.e. U hs two generators of infinite
order.

D = 440, 43 = D* = 5. (&) 2fxyt. Here x = 2® = y* = 1 mod 8. The only
a priort possible value of u essentially different from 1 (which we neglect) is u = #.
If this actually occurred we should have

na? = x4+2124 = 14+24 mod 4,

and so

p=14+24, 2—4, 1—4 mod u?
by a familiar argument. This is a contradiction since y = 1—44+4-24% = —1—-4
mod u2,

114 24= —1 mod {® whereas a perfect square is congruent to +1 by lemma 6.
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(t99) 2//x, 2%/y, 2ft. Solutions do exist of this type, i.e. with u = 9,4, for
both D = 140 (see table 1). By the group property of 1 and since u = # was shown
not to oceur, solutions with 4 = 1 and 4 = # cannot both occur for the same value
of D.

Hence when D = + 40 precisely one of the a priori possible values of u essentially
different from 1 actually occurs i.e. 1l has one generator of infinite order.

20. 2¢//D. Since (z,t) = (y, t) = 1 it is not difficult to see that one of the three
cases holds (v) 2fzy, 2/t (it) 2fxyt (vid) 2%/x, 22/ly, 2/t

The only values of D to discuss are D = 16, +48. Since for these D = +1
mod 9, G has no factors which are not already factors of D* = EF? and kp. = 1,
the discussion of § 12 shows that the only @ priori possible value of u essentially
dissimilar to 1 is u = 7. There is thus one or no generator of infinite order according
as solutions of infinite order (i. e. non-trivial solutions) do or do not oceur.

D = +48. Non-trivial solutions occur for both these values of D (table 1).
Hence for both D = + 48 the group Ul has one infinite generator.

D = 416. A% = D* = 2, We shall show that no non-trivial solutions exist.
It is enough to show that none exist for which u = 7. We consider congruences to
powers of t where

t=1{2,4], t*=1[2,4%, t3=[2].

(r) 2fxy, 2/t. As before, this implies that u is a quadratic residue of 4, i.e.
that u = 1.
(11) 2fxyt. Here x = 2% = y®> = 1 mod 8 and so if x = n we should have

na? = 4242 = 1424 mod 8.
Hence by a familiar argument
n=1+24, 5442, 14+24+342 1+24° mod 1.

This is a contradiction since n= —144.
(vie) 2%/x, 22/[y, 2/t. Write # = 22’, y = 22y’ so ¥’ is odd. Then

4’ = y'2 418,

The upper sign is impossible mod 8 and if the lower is to hold we have 2/2’. Further,
if 4 =7 we have (taking only the lower sign)

no? = x+2624 = 4’ + 224 = (A2)2(t2+2'42) .

If 4/, 242’42 = 1 mod 4 and so 5 would be a quadratic residue of 4, which is
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untrue. If 2//x" we also have a contradiction since then {22’42 = 14242 mod
17 = 4[2, 4] and so

n == 14242, 14244342, 5442, 1424 mod {7,

whereas n = —1+4 .
This concludes the proof that there are no non-trivial solutions when D = -+ 186.

21. 25//D. Since (x,1) = (y,t) = 1 it is easy to see that either (i) 2fxy, 2/t
or (i) 2fxyt .

The only values of D to discuss are D = +32. Here 4% = D* = 4, by, = 1.
The only a priori possible value of u other than I is y = 5 and so I has one or no
generators of infinite order according as solutions of infinite order (i. e. non-trivial
solutions) do or do not exist. We shall show that no non-trivial solutions exist. It
is enough to show that none exist with u = .

We consider congruences to powers of { where
t = {2,442, t? = {2, 4], t3 = [2].
() 27y, 2/t. As before this implies that y is a quadratic residue of 4,i. e. u = 1.
(¢0) 2fxyt. Here x = 2® = y%? =1 mod 8 and so when u = 5 we have
na?=x+224=1424 mod 8

=1—-24 mod t7.
Hence
=1-24, 1+42 54+4, 1—4—4%2 mod t7,

by a known argument. This contradicts n = 14+ §42.

22. D = 41 mod 9, D cube-free, hp odd. All the remaining values of D in the
range |D| < 50 which are not perfect cubes fall in this category. We shall consider
congruences to powers of r and 8 where

28 = [3], 18 =[3, D—9d].

By the argument of § 12 the only a priori possible values of u are

p=1,1,1 M,
where 1 is defined by

2>0, [1] =180,

The values 4, A occur if and only if 3/y. The group U has no, or one, or two generators
of infinite order according as no, or one, or all three of the values of 4 other than 1
actually occur.
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Suppose 3/y so that y=»,4 where ;=1 or 5. Then 3/¢, and sox == Dt¢ =D
mod 3. Hence
mAxt =z—120 =D—-46=0 mod 133,
=0 mod 18.
Since r+oa and consequently x2 =1 mod 1, we deduce
m=D—=8A"1 mod . (26)

We now prove two general theorems according as # = 41 mod 1.

Theorem XII. The group U has at most one infinite generator if (I) D = *1
mod 9, (IT) D is cube-free (II1) hy, 45 odd (IV)y = —1 mod 1. ‘

For if # = —1 mod r the congruence (26) cannot be true both with #, =1
and with 7, = % i. e. not all three values of u other than 1 actually occur.

Theorem XIII. At least one of the two equations y? = x>+ Dt® has no solutions
with 3y if (I) D= +1mod 9 (II) D is cube-free (II1) hp is odd (IV) n=+1 mod t.

For if (26) is true either with 7, = 1 or with », = 7 the corresponding congruence
in which the signs of D and J are simultaneously changed is false both for , = 1 and
for n, = 7.

We now consider some numerical examples.

The conditions of theorem XII are satisfied for the following values of D,

D= 419, +28, +35, +44.

Since non-trivial solutions exist for these D (table 1) the corresponding group 11 has
precisely one infinite generator.

There are solutions when D = —17 both for y = # and for u = #,A since
(—1)>—42 = (—2)>—3% = —17. Hence the group U_,, has two infinite generators.
For D = +17 there are consequently no solutions either with 4 = # (theorem VIII
corollary 1) or with u = #,4 (theorem XIII). Hence there are no non-trivial solutions
at all for D = 4-17. Similarly for D = +37.

When D = +10 there are no solutions with g = # by theorem X. As a non-
trivial solution (—1)3—32 = —10 does exist for D = —10 the corresponding group
U_,, has precisely one infinite generator. By theorem XIII there are consequenﬂy
no solutions with 3/y for.D = +10 i. e. none with u = 7;4. Since there are also
none with y = # there are none at all.

By a precisely similar argument the group U, has no and the group U_,
precisely one infinite generator. We note further that the solution for D = —46,



The Rational Solutions of the Diophantine Equation ¥? = X3— D. 263
(—T7)3—512 = —46.2¢

must correspond to a p other than 1 since 3/y, and hence to the only other occurring
value of u. Consequently this value of u is also a quadratic residue of 4, i.e. uis a

quadratic residue of 4 for all solutions with D = —46. This implies that 2/t and
hence X = x/t?, Y = y/t® cannot be integers (cf. § 15).
Finally D = +26 has a group I with two generators. Hence D = —26 can

have a group 11 with at most one generator by theorem XIII and so precisely one,
as non-trivial solutions do exist.

23. D = G*. We discuss now the case when D is a perfect cube. By the remarks
at the beginning of part II we may assume

G square-free , 3/G .

The roots 4,, d,, 33 of 63—D = 0 are @G, oG, p*G where g is a complex cube root of
unity. Since §,, d,, 63 are not all conjugate we must use the “triplets” introduced in
§ 5 to define the group ¢. We recollect that the set of triplets! {x—%24,} form the
multiplicative group & when squared factors are ignored. We shall first prove

Lemma 9. The set of triplets {x—429,;} corresponding to solutions with 31y
Jorm a subgroup &° of & with one less generator. )

We note that B(d,) = B(1), R(d,) = R(d;) = R(p) and that (1—p) is a prime
divisor of 3 in R(p) satisfying

(I1—0)?= —3p.
Write Bj = x—tzéj so that

0, = x—Gi2, 6, = 63 = x—pGt?,

where the bar denotes the complex conjugate. Now it would follow from 3/0, that
3/x, 3/Gt® contrary to (,t) = 1 and 3/G. Hence (1—p)%/0, and it is easy to verify
that (1—¢)70, or (1—p)//0, according as 3fy or 3/y. Clearly the set of {0} for
which (1-—)76, form a subgroup ¢° of & which either coincides with & or is of
index 2, i. e. the set of {0} corresponding to solutions with 3y does this. Further
&° cannot coincide with @& since there is always the trivial solution (x,y,t) = (@, 0, 1)
which does not belong to &°. Since all the elements of @& are of order 2 it follows
that &° has one fewer generator then , which proves the lemma.

1 cf. § 8.
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Suppose now that 37y so that all the 0; are prime to 3 (and non-zero). We shall
find a bounded set of triplets {x;} = {1, y2, 4z} such that

0, = ma*, a€ R(1); 0, = u,x?, x€ R(o)
always holds for one of the set, and indeed with u;, u,, @, & all integers. Since

0,+00,+0%0; = 0

the common factor of any two of the 0J~ must also divide the third. This common
factor must also divide 0,—0, = (1—p)Gt* and 6,—p0, = (1—p)x and so since
(¥,t) = 1 and the 0; are prime to 3 = —¢*1—p)* we have

(04, 05, 05) = (2, &) = K > 0 (say).

Write 6; = K¢; where the ¢; are co-prime in pairs. Now y* = 0,0,0; = K3 0.0,
and K, being a divisor of G, is square-free. Hence y = K?b, where b€ R(1) is an
integer and

P1P:F2 = @1Pps = KO? .
Since K > 0 and the ¢; are co-prime in pairs it follows that there are integers

H > 0, He R(1) and v € R(p) such that
¢, = Ha* ae R(1); ¢, = ¢y = v~%, x€ R(p); K = Hvw = HN (say),

0, = KHa?, 0, = 6; = Kva?.
We may therefore put
{u;} = {1, por pa} = {KH, Kv, Kv} . (27)

Further, by eliminating z between 0, and 6, we obtain

Kva*— KHa? = (1—g)Gt2

Ha?+4(1—p)Jt* = va?, t & 0,2+ 0, (28)
where
G=JK=HJN, N=w, H=>0. (29)

Conversely a solution of (28) gives a solution of the original equation y* = x3*—@3*
with 37y. Since the groups &° or & involve triplets they are difficult to handle.

We now show that we may use a group not involving triplets.

Theorem XIV. The values of v/H for which (28) is soluble form a multiplicative
group § if squared factors are ignored with the same number of generators as there are
independent generators of infinite order in .
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Since the set of triplets {u,, s, pg} of the form which actually occur with solutions
of y? = x®— @3¢ form the multiplicative group &° when squared factors are ignored
the values of u,/u, = v/H do form a multiplicative group % when squared factors are
ignored. Now (v, H) = 1 since wH = NH is a divisor of @, which is square free.
Thus, since H > 0, the ratio v/H determines » and H uniquely i. e. by (27) and (29)
it determines {u;} uniquely. Hence  is isomorphic to &° and, in particular, the two
groups have the same number of generators, i. e. one fewer than & by lemma 9.
The theorem now is an immediate consequence of theorem IIT since 63—D = 0 has

just one rational root.

Corollary 1. If (28) is insoluble except, possibly, when v = H = 1, the group 1

has mo generators of infinite order.

For then § has no generators. In particular, by theorem V,

Corollary 2. If D &= —1 and (28) is insoluble except, possibly, when v = H = 1
there are no non-trivial solutions of y* = x3—Q3ts,

We now prove a useful lemma.

Lemma 10. Ify = -+ 1 and (28) has solutions then vH = Norm y where y € B(}/3).

For suppose « = e-+fo where e and f are rational integers. By equating coef-
ficients of 1 and ¢ in (28) and eliminating ¢ we obtain

vHa? = e*4-2¢ef —f2 = (e+f)2—2f?
which proves the lemma.
Since we are assuming 3/G the only values of D = ¢ in the range |D| < 50
are D = 41 and D = 48. They are both covered by the general theorem due to
Nagell {29].

Theorem XV. If every prime divisor p > 0 of G is of the form 12n+5, the
equations y* = x*4-G3° have no solutions of infinite order (and so no non-trivial

solutions except when D = —1).

For Norm » = »» = N 5 1 is impossible in R(g) if the factors of N are to be
of the required type. Hence v = +1, +p, +0? and by absorbing factors p = (?)?
or p? in x2 we may assume that » = 4-1. Hence, by lemma 10, vH = Norm y,
¥ € R(\/g) and this again implies vH = 1,i.e.v = H = 1 (since H > 0). Theorem XV
now follows from corollary 1 to theorem XIV.
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25. Conclusion. We have established a number of general theorems and' also
given the number of generators.of infinite order of U for all values of D with [D| < 50.
We end with three general remarks.

L. It has not been shown that the solutions listed in table 1 together with the
solutions of finite order form a basis of the group 1. All that has been shown is that
the number of independent generators of infinite order is the same as the number
of solutions given in table 1. It is, however, quite straightforward but rather laborious
to find-a basis from the data given. Indeed the Mordell-Weil proof of theorems I
and II depends essentially on the lemma.

Lemma 11. Suppose @ has g generators and that we have obtained g solutions
(@@, ¥, 1) of parameter u®, (I = 1,..., g), one for each generator. Then there is a
constant A depending only on the x©, y©, 1O, and which may be given explicitly, with
the following property:

If (x,y,t) is any solution with parameter w there is a solution (x*, y*, t*) of

parameter w* such that
Max (ja*|, t*2) < A - (30)
and
u = w*+ku®P+ - +ku?,

where the k;, are rational integers.

By (30) the set of (z*, y*, t*) is bounded and may be found explicitly by trial-
and-error. Clearly the u* together with the «® form a (possibly redundant) basis
for 1.

A considerable amount of computation is involved. Numerical examples are
given by Billing [2]. v

II. In all the equations discussed we have found solutions except when we have
shown that none exist. There is, however, no certainty that this will continue to
happen. In other words our criteria are necessary for solubility but their sufficiency
is unproved. It seems to me likely that necessary and sufficient criteria could be
obtained by regarding (14) or (28) as congruences to appropriate moduli, but I do
not see how this could be proved. '

Nevertheless considerable assistance in the search for solutions of y? = x3—D¢¢
may be obtained by regarding (14) or (28) as congruences.

Suppose for example D = —39, 62 = 39. The only value of 4 + 1 which is not
excluded in (14) by theorem VIII is y = 4—4. Then
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T2 = (4—0)n? (31)
and
y? = 2313948 .

Since 4—38 = 462 mod 4, x+120 is a quadratic residue of 4. Hence 2/t (cf. proof of
theorem VIII). Suppose ¢ = 2. Then

r=23=y>=1 mod 24. (32)

It is easiest to examine (31) modulo rational primes which split into three
distinct factors in R(8). The smallest of these is

19 = {19, 6—1]{19, 6—T][19, 6 —11] = p,p:03

(say). On regarding (30) with ¢ = 2 as a congruence mod p,, ,, P in succession we

obtain
x=N,—4=R-28=N,—6 mod 19,

where N, and N are quadratic non-residues or zero and R is a quadratic residue or

zero. Hence
x =8, 15 mod 19. (33)

The least integer satisfying both (32) and (33) is = 217 and indeed
(217)34-39.28 = (3197)2.

III. We have proved incidentally that no infeger solutions exist for D = —11,
—39, +43, —46, —47 though rational solutions exist. However, my method appears
unsuitable for discussing integer as opposed to rational solutions!. As a matter of
fact, Mordell [23] has shown that in the remaining? cases D = +21, 422, 429, 430,
438, 450 where rational but no integral solutions are given in table 1, then
integer solutions do not exist.

I am grateful to Professor L. J. Mordell for his criticism and advice.

1 Integer solutions have been widely discussed. Cf. Mordell [27].
2 Mordell does not actually consider D = -+ 50 in the text, but it can be dealt with by his
methods.
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Table 1.
Solutions of y? = x3-—Dt® of infinite order.
D Solutions Integers! Refs?
x Yy 14 x Yy t

1 None — 24

2 3 5 1 + 17

3 None — 15

4 2 2 1 + 18

5 None — 15

6 None — 17

7 2 1 1 + 15

8 None — 24

9 None — 15

10 None — 22

11 3 4 1 15 58 1 -+ 15

12 None — 18

13 17 70 1 -+ 15

14 None — 17

15 4 7 1 =+ 15

16 None — 20

17 None —_— 22

18 3 3 1 -+ 17

19 7 " 18 1 -+ 22

20 6 14 1 -+ 18

21 37 188 3 M 15, M8
22 71 119 5 M 17, M8
23 3 2 1 -+ 15

24 None — 19

25 5 10 1 -+ 15

26 3 1 1 35 207 1 + 22

27 None — 7

28 4 6 1 + 22

29 3,133 175,364 3 M 15, M14
30 31 89 3 M 17, M8
31 None — 15

32 None — 21

33 None — 15

34 None — 17

35 11 36 1 + 22

36 None — 18

37 None — 22

38 4,447 291,005 21 M 17, M14
39 4 5 1 10 31 1 + 15

40 14 52 1 + 19

41 None — 15
42 None — 17

43 1,177 40,355 6 — 15

44 5 9 1 + 22

45 21 96 1 + 15

46 None — 22

47 12 41 1 63 500 1 3- 15
48 4 4 1 -+ 20

49 65 524 1 + 15

50 211 3059 3 M 17

1 (4 ) non-trivial integer solutions exist; (—) proved not to exist in present paper; (M) proved
not to exist by Mordell [23]. (A reference to Mordell is given only when necessary).
2 References are to §§. Those prefixed with an M are to Mordell [23].
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Table 1 (contd.)
Solutions of y* = x*— Dt® of infinite order.
D Solutions Integers Refs
x y t x Yy

—1 None < +1 24

—2 —1 1 1 -+ 17

—3 1 2 1 + 15

—4 None — 18

—5 —1 2 1 + 15

—6 None — 17

—1 None — 15

—8 2 4 1 —+ 24

—9 —2 1 1 -+ 15
—10 -1 3 1 + 22
—11 -7 19 2 — 15
—12 -2 2 1 4 18
—13 None — 15
—14 None — 17 1
—15 1 4 1 109 1,138 4 15
—16 None — 20
—17 —1 4 1 —2 3 -+ 22
—18 7 19 1 + 17
—19 5 12 1 + 22
—20 None — 18
—21 None — 15
~—22 3 7 1 + 17
—23 None —_ 15
—24 —2 4 1 1 5 —+ 19
—25 None — 15
—26 —1 5 1 -+ 22
—27 None — 7
—28 2 6 1 -+ 22
—29 None — 15
—30 19 83 1 4+ 17
—31 —3 2 1 +- 15
—32 None — 21
—33 —2 5 1 -+ 15
—34 None — 17
—35 1 6 1 + 22
—36 -3 3 1 + 18
—37 —1 6 1 3 8 - 22
—38 11 37 1 + 17
—39 217 3,197 2 — 15
—40 6 16 1 + 19
—41 2 7 1 + 15
—42 None — 17
—43 —3 4 1 57 2,290 + 15
—44 —2 6 1 -+ 22
—45 None — 15
—46 —1 51 2 — 22
—47 17 89 2 — 15
—48 1 7 1 + 20
—49 None — 15
—50 -1 7 1 + 17

1 The solution (2, 3, 1) of finite order.
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Table 2.1
Class "numbers and units in R(/D).

D h 7 2 y 3
2 1 — 146
3 1 — 2462
4 1 — 14302
5 1 1—40+4 262
6 1 1—-866+36%
7 3 2—4§
9 1 —2+4
10 1 1(23+118+58%)
11 2 1+46—26° 9—46
12 1 1436200
13 3 —4—-36+ 262
14 3 1426—8°
15 2 1—306-4 1202 494200+ 862
17 1 1876
18 1 1—36+4 62
19 3 1(2+20—6%)
20 3 14+6—}6°
21 3 — 474654462
22 3 23435 —442
23 1 —41,399—3,1605 1 6,23062
25 1 14+ 26— 02
26 3 3—6
28 3 1(—2— 26462
29 1 * 322,461,439+ 103,819,4620+ 370,28402
30 3 14 96— 342
31 3 — 367+ 546 1 208?
33 1 *3,742,201 + 97,3926 — 394,09842
34 3 613 —245—5162
35 3 1(—22+105—5%)
36 1 1+36—62
37 3 10—36
38 3 — 1514556 — 362
39 6 — 234242 448
41 1 *_211,991,370,839+305,478,475,1845

—170,761,183,38242
42 3 1—426-+1262
43 12 — 7426 —124-062
44 1 1(113-26 — 1;26%)
45 1 1,081 46648 — 10442
46 1 *16,449,049 4-4,590,7986 4 1,281,2550*
47 2 * 592,199 — 69,7040+ 64,7865% 12—6
49 3 2442
50 3 1—4+446°

123 Bee page 271.
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1 Several 5 and about half the h have been specially computed. Markoff [22] gives a large number
of 1 and a few A. Reid [39] gives the values of & and 7 for | D} < 10 as part of a larger table for general
cubic fields. Dedekind [8] finds some more values of & using Markoff’s table and incidentally proves
certain of the 7 to be fundamental units. Nagell [28] gives a larger table of # and discusses general criteria
for a unit # to be the fundamental unit. All these tables except the'last are reproduced by Delaunay and
Faddeev [9]. [added in the proof]. There is a table of units for all in Wolfe [45]. I am indebted
to Dr. E. 8. Selmer for this reference.

2 These are fundamental units except, possibly, those marked (*), as is proved by Dedekind or by
Nagell (loe. cit. supra).

3 'We remember that y > 0 and [y] is the square of an ideal but that neither p nor 5y is the square
of a number of R(d). Since the group of ideals is cyclic for [D| < 50 essentially only one y occurs.

REFERENCES

[1] Biruing, G. “Ueber kubische Diophantische Gleichungen mit endlich vielen Lésungen’.
Comm. Math. Helv. 9 (1936-37). pp. 161-165.

[2] — “Beitrage zur arithmetischen Theorie ebener kubischer Kurven’'. Nova Acta Reg.
Soc. Scient. Upsaliensis. Ser. IV vol. XI (1938) No. 1, pp. 1-165.

[3] BRUNNER, O. “Lésungseigenschaften d.kubischen Diophantischen Gleichung Z3— Y2 = D”.
Inaugural dissertation. Ziirich 1933.

[4] — “Weitere Untersuchungen iiber die Kubische Diophantische Gleichung Z*— Y2 = D”.
Comm. Math. Helv. 7 (1934). p. 67.

[56] Crang Kvuo-Lune. “On some Diophantine equations y? = 2®-+-k with no rational solutions’’.
Quarterly J. (Oxford) 19 (1948). pp. 181—188.

[6] CHATELET, F. “Points exceptionnels d’un cubique de Weierstrass’’. Comptes Rendus (Pa-
ris). 210 (1940). p. 90.

[7] — “Groupe exceptionel d’une classe de cubiques”. Comptes Rendus (Paris). 210. (1940).
p- 200.

(8] DEDEKIND, R. “Ueber reine kubische Kérper”. J. f. Math. 121. (1900). 40-123 and Ges.
Math. Werke (Braunschweig, 1930). Vol. II, pp. 148-234.

[9] DELAaUNAY, B. N. and FabppeEv, D. K. “Theory of irrationals of the third degree’ (in
Russian). Travaux de 'Institut Stekloff XI (1940).

[10] EULER, L. “Theoremata quorundarum arithmeticorum demonstratio’’ Theorema 10. Opera
Omnia Ser. 1 vol. 2 (= Commentationes Arithmeticae vol. 1) (Lipsiae et Berolini,
MCMXYV) pp. 38-58 especially pp. 56-58.

[11] Fapprgev, D. K. “The equation 23 +y3 = A2%’. (in Russian). Travaux de I'Institut Stekloff
V (1934). pp. 25-40.

[12] FuEeTER, R. “Ueber kubische Diophantische Gleichungen”. Comm. Math. Helv. 2. (1930).
pp. 69-89.

[13] Hassge, H. “Bericht uber neuere Untersuchungen und Probleme aus d. Theorie d. alge-
braischen Zahlkérpern”, Teil 1: Klassenkorpertheorie”. (Berlin, 1930).

[14] — “Klassenkdrpertheorie”. (Marburg, 1933. Cyclostyled).

[15] HiLBErT, D. “Ges. Abhandlungen, Erster Band, Zahlentheorie”. (Berlin, 1932).



272 J. W. S. Cassels.

[16] HowzEr, L. “Ueber die Gleichung z®+y® == Cz?". J.f. Math. 159 (1928). pp. 93-100.

{17] Hurwitz, A. “Ueber terniire Diophantische Gleichungen dritten Grades. Vierteljahr-
schrift d. Naturf. Ges. in Ziirich. 62. (1917). pp. 207-229.

[18] Lixp, C. E. “Ein Analogon zu einemn Nagell’'schen Satze iiber kubische Diophantische
Gleichungen”. Comm. Math. Helv. 9 (1936-7). pp. 156-160.

[19] Lucas, E. “‘Sur l'analyse indéterminé du troisiéme degré”. Nouv. Annales de Math. 2,
sér. 17 (1878). pp. 507-14.

[20] LuTz, E. “Sur Péquation y? = 23— Ax— B dans les corps p-adiques”. J. f. Math. 177 (1937).
pPp- 238-247.

[21] — (Same title). Comptes Rendus (Paris) 203 (1936), pp. 20-22. A short resumé of the
above but followed by an interesting comment by A. Weil.

[22] MARKOFF, A. “Sur les nombres entiers dépendents d’une racine cubique d’un nombre
entier”. Mém. de I’Acad. Imp. des Sciences de St. Pétersbourg. VII Série, Tome
XXXVIII No. 9 (1882).

[23] MorpELL, L.J. “The Diophantine equation y2—k = a3”. Proc. London Math. Soc. 13
(1914) pp. 60-80. (The closing paragraphs of this paper are misleading since the author
was unaware that there is never more than a finite number of integer solutions of the
title equation. cf. next paper).

[24] - “Note on the integer solutions of the equation Ey® = Axd+ Bx2+ Cx+D”. Mess. of
Math. 51 (1922). pp. 169-171.

[25] — “On the rational solutions of the indeterminate equation of the third or fourth degree’.
Proc. Cambridge Phil. Soc. 21 (1922). pp. 179-182.

[26] — “On some Diophantine equations y* = a3k with no rational solutions”. Archiv for
Math. og Natur. B. I. L. Nr. 6, 1947. :

[27] — “A chapter in the theory of numbers”. (Cambridge, 1947).

[28] NagrLL, T. “Ueber die Einheiten in reinen kubischen Zahlkérpern”. Skrifter Videnskap-
selskapet. Christiania, 1922.

[29] — “Ueber die rationalen Punkte auf einigen kubischen Kurven”. Téhoku Math. J. 24
(1924). 48-53.

[30] — “Sur les propriétés arithmétiques des cubiques planes du premier genre”. Acta math.
52 (1928-9). pp. 93-126.

[31] — “L’analyse indéterminé du degré supérieur”. Mem. des Sci. Math. 39 (1929).

[32] -— “Solutions de quelques problémes dans la théorie arithmétique des cubiques planes du

premier genre”. Skrifter utg. av d. Norske Videnskabs-Akademi. I. Math.-Naturv.
Klasse 1935 No. 1.

[33] — “Bemerkungen iiber d. Diophantische Gleichung z*4-y® = 42%°. Arkiv f. Math.
Astronomik och Fysik 25B No. 5 (1935). pp. 1-6.

[84] — “Ueber die Losbarkeit gewisser Diophantischer Gleichungen dritten Grades”. Comm.
Math. Helv. 9 (1936-7). pp. 31-39.

[35] — “Sur la résolubilité des équations Diophantiennes cubiques & deux inconnus dans un

domaine relativement algébrique”. Nova Act. Reg. Soc. Sci. Upsaliensis, Series 1V,
Vol. 13 (1940) No. 3.

[36] P&rin, FATHER. “‘Sur la décomposition d’un nombre entier en une somme de deux cubes
rationnels”. Journal de Math. (Liouville) IT¢ Sér. t. 15 (1870). pp. 217-236.

[87] — “‘Sur certains nombres complexes compris dans la formule a—{—b\/—c”. Journal de Math.
(Liouville) I11¢ Sér. t. 1 (1875). pp. 317-372 especially pp. 360-372.

[38] PoincarEk, H. “Sur les propriétés arithmétiques des courbes algébriques”. Journal de
Math. (Liouville) Ve Sér. t.7 (1901). pp. 161-234.

[39] REm, L. W. “Tafel der Klassenzahlen fiir kubischen Zahlkérpern”. Dissertation, Gottingen
1899. Abstract in Amer. J. Math. 23 (1901). pp. 68-84.



The Rational Solutions of the Diophantine Equation Y2 = X3—D. 273

[40] SYLVvESTER, J.J. “On certain ternary cubic-form equations”. Collected Math. Papers
(Cambridge 1909) vol. IIL. pp. 312-391 especially pp. 312-313 and pp. 347-350.
Originally appeared Amer. J. Math. vol. IT (1878). pp. 280-285, pp. 357-393 and
vol. ITT (1880) pp. 58-88, pp. 179-189.

[41]1 WEIL, A. “L’arithmétique sur les courbes algébriques”. Acta math. 52 (1928-29). pp. 281-
315.

[42] — “‘Sur un théoréme de Mordell”. Bull. des Sci. Math. 2¢ Sér. 54 (1930). pp. 182-191.

[43] WEvL, H. ““Algebraic theory of numbers’. (Princeton, 1940).

{44] WHITTAKER, E. T. and WarsonN, G.N. “A course of Modern Analysis”. (Cambridge.
4th Edition 1927).

[45] Worrg, C. “On the indeterminate cubic equation a®+ Dy?+ D%2%— 3Dxyz = 1.” Univ. of
California Pub. in Math. 1 No. 16 (1923). pp. 359—369.

The above list is far from being exhaustive. In particular, there are many more papers by
NaGeLL and others in Scandinavian journals, but references to these will be found in those
papers noted here.

18. Acta mathematica, 82. Imprimé le 12 mars 1950.



