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1. Introduction.

The paper is concerned with certain aspects of a theory of critical points
of a scalar (i.e., a real valued function) ¢(t) defined in a Hilbert space H, especi-
ally with the relation of the critical points to the gradient field of 7(r). More-
over, applications to the theory of non-linear integral equations are made.

Let V be a bounded open convex set of H, and § its boundary. We sup-
pose that 2(x) is defined in an open region V' containing V + § in its interior.
If 7(x) is written in the form

(r.1) t@=llzl*/2 + Ix)

where ||z|| denotes the norm in the space H we will always assume that
G (x) = grad I(r) (Definition 2.2) exists and is completely continuous. Moreover,
if a critical point is defined as a point ¢ for which

(1.2) grad () =g()=1+ G{x)=0o

it will be assumed that such a point is not degenerate (definition 3.2) and does
not lie on the boundary S of V.

Under these assumptions it can be proved (theorem 3.1) that there are at
most a finite number of critical points in V, say a,, a,, ... as. For each crit-
ical point a, there will be defined a non-negative integer r,, the type of the
critical point a, {definition 4.1). Tt will be proved that the “quadratic form”
giving the second differential at a, can, by the use of a proper base of H, be

written as a sum of squares multiplied by + 1, the number of those multiplied
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by — 1 being 7, (theorem 4.1). 1f j,=j(a,) is the index' of the point r = a,
as solution of equation (1.2), then theorem 5.1 asserts that j{a)=(—1)o. In
agreement with the definitions used in the finite dimensional case® we define

for ¢ =1, 2, ... s the zth type number m’ of the critical point a; by
(1.3) my = &% 3 (8} Kronecker symbol).
Moreover, we call

(1.4) M= Zm;
o=1

the 7-th Morse number of the scalar #(xr) in 7. If now 3 = x(g, S) denotes the
characteristic of the gradient field g on the boundary S of ¥, if v =u(g, S, 0)
denotes the order of the zero point o of H with respect to the image of S under
the mapping ¢(r), and if finally y =y(g, S, 0) is the mapping degree of g(x)
(considered as mapping of V) in the point 0, then as is well known,®

(1.5) 1=u=y.

Theorem 6.1 of the present paper asserts then

(1.6) x=é¢=7=i(—1)’a:2(— 1y M°.

g=1

This connection between the Morse numbers of ¢(r) in ¥ and the char-
acteristic y of the gradient field on S has a number of consequences. As an

immediate consequence, we note the estimate
(1.7) sz |zl

for the number s of critical points in V.

More definite statements can be made in special cases. If
(1.8) ry=r1r,=-=r; (mod 2),
(1.6) yields
(1.9) s=lzl

! For the definition of an index see (1], p. 470 in the finite dimensional case, and [9], p. 54
or [10], p. 188 in the case of a Banach space. (Numbers in brackets refer to the bibliography at
the end of the paper.)

* [16], p. 33.

371}, chapter 1z in the finite dimensional case, and [10], Satz 4 and the beginning of § 3,
in the Banach space case.
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Let d,(x, b, f) be the second differential' of the scalar 7(x). Then it follows
immediately from the definition of the 7, that (1.8) (and therefore (1.9)) is cer-
tainly true if the quadratic form d,(t, §, ) is non-negative in all critical points
L = 0, since in this case all 7,=o0. (Corollary 6. 1).

If dy(r, b, f) satisfies the stronger condition of being uniformly positive de-
finite in V, i.e., if there exists a positive ¢ such that for all t in V

(1.10) ds(z, b, h) = c|[HI°

it will be proved that y =1 if V is a sphere which has the origin 0 as center
and whose radius R is greater than ||g(0)|/c (lemma 6.1). This together with
(1.9) shows that in such a sphere there is exactly one critical point.

In section 7, the preceding theory is applied to uniqueness and existence

questions concerning a system of non-linear integral equations of the form

(1.11) y}‘(s)-i—fZng(t,s)ﬁ(t,y,(t),...yn(t))dtzo j=1,2,...%)

D, i=1

for the “conjugate n-tuples” (definition 7.1) 4;(¢), 7 (f) (j =1, ...n). If (besides

certain regularity conditions concerning the f; and K;) X\ fi(f, uy, ... un) dusisa
=1

total differential then a certain scalar ¢(r) the “Hammerstein scalar’? (definition
7.2) can be defined in a suitable Hilbert space of elements ¢ together with two
mappings @:¢ = (y,(®), . . . yn(®) and @*:r ~ (yi @), ... ya®) such that the con-
jugate n-tuple @(xr), @*(r) is a solution of (1.11) if and only if ¢ is a critical
point of the scalar 7(xr). Thus the question of existence and uniqueness of a
solution of (1.11) is reduced to the investigation of the critical points of 7 (x).
Now under the assumptions of theorem 7.1% the second differential of ¢{t) turns
out to be uniformly positive definite. Therefore the characteristic of the gradient
field of ¢(r) on the surface of a large enough sphere ¥ is 1 and such a-sphere
contains one and only one critical point a of 7(x), and a turns out to be an
absolute minimum (theorem 7.1). Since an estimate for the radius of such a ¥V

! In the sense of Fréchet. See [2), [6] or [8].

* For the motivation of this name see the introduction to [15]. In the case that the system
(1.11) consists of one single equation (n = 1), the condition about the total differential is obviously
always satisfied.

® In the case of one equation (n = 1) the main condition (7.21) of this theorem states that
there exists a positive constant ¢ such that min 0 f/3 4 = — ¢ 1/4; where A; is the greatest eigen-
value of the (not necessarily symmetric) kernel of the integral equation.
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can be given, theorem 7.2 concerning the system 1.11 (including an estimate
for the solution) follows now easily.

If the system (1. 11)is symmetric and positive definite then y} ({) = ¥, (¢) which
proves that the system

(1.12) yj(s)+fZK,-j(t, s)filt, y, @, .. . yn@®)dt =0 (j=1,2,...n)

by i=1
has one and only one solution (theorem 7.3), a result which was first obtained
by M. Golomb.!

2. Differentials and Gradients.

The following notations will be used throughout: points of the real Hilbert
space H will be denoted by German letters; o especially denotes the zero point
of H. Correspondingly f(r) is a mapping of the point £ < H into the point
f(t) < H while 7(x) or I(r) denote scalars, i.e., real valued functions. The vector
field associated with the mapping f(£)? will also be denoted by f(r). ¥ isa convex
open bounded set of H, and § its boundary. All mappings, vector fields, and
scalars will be supposed to be defined in some open set ¥’ which contains V + S
in its interior. (g, z) is the scalar product of the points ¢ and y) of H, and

lzll = + V(z, r) the norm of .
Definition 2.1. The scalar ¢(x) is said to be differentiable in the point ¥,

if there exists a linear® functional d(z, Ly, §) = d(x,, ) of §) such that if »(g,, b)
is defined by the equation

(2.1) T+ H— (@) =4dl(r, h) + r(z,, B
then

(5. b)
@2) m e

d{z,, §) is called the (Fréchet-)differentia'l of ¢(x) at r,. If d(xr, b) exists for all
points £ of a neighborhood of &, and, as function of g, admits a differential
dy(t, 5, f) in x,, then d,(z,, ) ¥ is called the second differential of the <(r)
at z,.*

' 14), Satz 1.
[10}, 88 1 and 3.

3 Linear means additive and continuous.

‘ (2], (6], (8.
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Since d(xy, §) is linear in % it can be written (in a unique way) as a scalar
product, i.e., there exists one and only one g =g(x,) in H such that

(2.3) d(z,, §) = (3@ b).

Definition 2.2. The g(r,) defined by (2.3) is called the gradient of <(z) at
z,. If ¢(r) is differentiable in V (i.e,, at all points of V) then the mapping
) =g(t) defined by (2.3) for all ¥ in V is called the gradient mapping of ¢(x).
The vectorfield associated with the mapping® is called the gradient field of ¢(x).?

Lemma 2.1. ¢(xr) ¢s completely continuous if and only if d(x, §) s completely
continuous considered as mapping of t < H into the element 1(§) = d(x, B) of the
space of linear functionals.

Proof. The proof follows easily from the fact that on the one hand by

(2.3 fdx—2, )| =la@ —g &) llH]l, and that on the other hand the inequality
|dx—1',9)| = e||h]| for all § implies, again by (2. 3):

@ —98@) s@—g@)=ellgl —a@), ie., 6@ —g@) I =e.

Definition 2.3. The mapping Y ==f{z) (or the associated vectorfield) is said
to be differentiable at the point g, if there exists a mapping [(z,, § =I(f, z,, B,
linear in f, such that if t(x, f) is defined by the equation

(2.4) flro + 5 — ) = [z, ©) + r(xo: B,
then

.
(2.5) I!I_I}]D e = g.

[{zy, ¥ is called the differential of f(z) at z,.

Lemma 2.2. If the mapping §(x) has the differential (x,, ¥) at 1,, then the
scalar 1(x) = (f®©), §) has (for each V) a differential at t,, and this differential equals
the scalar product ({(zy, b, §).

Proof. By 2.4:

(2.6) S+ 0 —fg) =F@ + b—1a), b =1, ¥, §) + (t@, b, ).

Since (I(x,, P, ) is linear in f and since because of (2.3), r(x, §) = (r, b, h)
divided by [|f|| approaches zero as f— 0, (2.6) show that the lemma is an im-

-

[ro], § 3.
*[3), § 6 and [13].

2
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mediate consequence of Definition 2.1 together with the fact that the differential

is uniquely determined.!

Lemma 2.3. If g(x)= grad ¢(x) has a differential [(x,, ¥) at g,, then i(r) has
a second differential dy(L,, 9, ¥) at 1, and
(2"7) d2 (20? f)) f) = (I (ZO! f>7 f))

Proof. Because of definition 2.2 we have only to apply lemma 2.2 with
fz) =g

Definition 2.4. The real valued function ¢(}, f) of the pair of points §, ¥
of H 1is called bilinear if it is linear in §) and in f. ¢ is called degenerate if
there exists a f, 0 such that ¢(§, ) =o0 for all ) < H. If no such ¥, exists
q is called non-degenerate.?

Lemma 2.4. If q(h, ¥) is positive definite (i.e., if ¢, b = 0 and the equal sign
holds only for Y) = o) then q (9, ¥) is not degenerate.

Proof. If there would exist a f, 7 0 such that q(h, ) =0 for all §), then
we would have ¢ (f,, f,) = o which is impossible if ¢(h, f) is positive definite.

Definition 2.5. The differential [{g, f) of definition 2. 3 is called non-singular
at r, if the equation for f
(2.8) Uz Y=o
has only the solution f=o.

Lemma 2.5. The differential 1(t, ¥) of §(x) = grad i (x) ¢s non-singular at 1,
if and only if the second differential dy(to, 0, ¥) of <(r) considered as bilinear form

in B, ¥ <s non-degenerate.

Proof. The lemma is an immediate consequence of (2.6).

3. Critical Points.

Definition 3.1. Let the scalar 7(r) be differentiable at x=a. a is said to
be a critical point of 7(¢) if the differential d(a, b)) of 7(x) at a is the zero func-
tional, i.e., if d(a, §) =0 for all § < H. Clearly this is equivalent to saying that

1 (6], lemma TI.I.
n n

? It is immediately seen that in the finite dimensional case of a form y ¥ %; h; kj the
i=1j=1

above definition of degeneracy coincides with the usual one that the determinant of the matrix

(qij) is zero.
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(3.1) gla)=o
where g(r) is the gradient of ¢(z).

Definition 3.2. The critical point a of 2{t) is called non-degenerate if the
gradient g(r) of #(z) has a differential /{a, ¥) at £ = a and if the second differential
ds(a, 9, 8) of ¢(r) at a (which by lemma 2.2 exists) considered as bilinear form

in b and f is non-degenerate in the sense of definition 2.4.

Using the notations explained in the first paragraph of section 2 we make
now the following assumptions: if Z(r) is written in the form

(3-2) @) =lzlP/2 + I(x)

then:
Hypothesis 3.1. I(r) has a differential D(x, §) for all t < V.
By definition 2.2, I(r) has then also a gradient ®&(x) for all £ < 7’ and

(3-3) D, h)=G®, N x< 7).

Hypothesis 3.2. The gradient &(g) is completely continuous in 7.

Hypothesis 3.3. If a < V7 is a critical point of 7(r) then a is a non-degener-
ate critical point (definition 3.2).

Clearly the existence of differentials for ¢(r), g(r) is equivalent to the ex-
istence of differentials for I(xr), ®(r) respectively. Therefore Hypothesis 3.3 im-
plies the existence of the differential £(n, f) of the gradient & (1) at r=a.

Hypothesis 3.4. The linear operator on f, £(q, f) giving the differential of
& (r) at a critical point & is completely continuous.

Hypothesis 3.5. There are no critical points of ¢{r) on the boundary §
of V.

Lemma 3.1. Under the hypotheses 3.1—3.5 we have in a critical point a of V'
(3-4) la, §) =+ Z(a, ¥).

Moreover, 1(a, ¥) is non-singular (definition 2.5), and L(a,¥) 2s completely continuous
n I

Proof. Since grad ||z]l/2 =1 and since the differential of r is ¥, equation
(3.4) is an immediate consequence of the definitions. That (a, ) is completely
continuous is a restatement of hypothesis 3.4. Finally the non-singularity of
I{a, ¥) follows from hypothesis 3.3 and definition 3.2 together with lemma 2. 5.
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Lemma 3.2. Under the hypotheses 3.1—3.5 a critical point a of V s
1solated.

Proof. ¢(r) has at a a differential [(q, f) of the properties indicated in lemma
3.1. By [12], lemma 3 these properties imply that a is an isolated root of the
equation (3.1).

Theorem 3.2. Under the hypotheses 3.1—3.5 the scalar i(x) has at most a
Jinite number of eritical points in V.

Proof. For each critical point a equation (3.1), ie.,, a + ®(a) = 0, holds.
The complete continuity of &(r) shows immediately that a bounded set of solu-
tions of this equation is compact. Therefore if there were. infinitely many solu-
tions in V they would have a limit point a,is ¥ + S. Because of the continuity
of ®(x), a, would also be a solution of g(r) =0, i.e., be a critical point. By
bypothesis 3.5 a, could not lie on S. Therefore a, would be a non-isolated
critical point of ¥ in contradiction to lemma 3.2. .

4. Type Numbers of a Critical Point.

We first add to the hypotheses 3.1—3.5 the following:
Hypothesis 4.1. If a <<V is a critical point of #(r) then there exists a
neighborhood N, of a such that at all points of N, the gradient & (x) of I(x)

has a differential R (r, ¥) which, moreover, is continuous in .

Lemma 4.1. Under the hypotheses ‘3. 1—2.5 and 4.1 the differential £(a,})
of the gradient &(t) of I(t) at the critical point a < V is a linear, completely con-
tinuous and symmetric operator in .

Proof. The linearity and complete continuity are obvious from Hypothesis
3.4. To prove the symmetry we note that &(r) = grad I(r) and that therefore
by lemma 2.3

(4. 1) D,(r. 5. H=(8a. b

is the second differential of I(r) in each point r in which £(z, f) exists. By
Hypothesis this is the case for all £ < N,, and, by the same hypothesis, 8(, §),
and therefore by (4.1) also D,(x, 8, ¥), is continuous in r for t < N,. But it is
well known that the continuity of a second differential in the neighborhood N,
of a point a implies its symmetry in ), ¥ for the point a.! Therefore, we have
from (4.1)

! (5], theorem 8; [8], Satz I.
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(L, H,9) = (L@, §), ) = (£, L, B)

which, by definition, is the symmetry of £(a, ¥) as operator on f.
1t follows from lemma 4.1 that L(a, ¥) has a finite or countably infinite
number of eigenvalues and that in the latter case o is their only limit point.
In any case there are at most a finite number of eigenvalues less then — 1.
Moreover, we prove

Lemma 4.2. — 1 ¢s not an eigenvalue of L(a, f).

Proof. Otherwise there would exist a I, 7 0 such that £(qa, §) = —¥§,, or
[{o, t)) =%, + L(a, §) = 0. By lemma 2.5 this is a contradiction to hypothesis 3. 3.
Definition 4.1. Let » be the number of eigenvalues of 2(a, f) which are
less than — 1, each counted according to its multiplicity. Then 7 is called the
type of the critical point a, and mi=mi(a)=d. (§i the Kronecker symbol;
¢ =1,2,...) is called the ¢-th typenumber of the critical point a. (By lemma

4.2, r may be also defined as the number of eigenvalues not greater than —1.)

Theorem 4.1. With the assumptions and notations of lemma 4.1 and defini-

tion 3.2 there exists a mormed orthogonal basis e,, e,, . .. of H and positive numbers
P1s Pg, - . . Such that
r o0
(4.2) o, ) =—Ddpkes+ D pkoe,
yal ‘ y=r+1
(4.3) @ L) =— Dok + D p &l
v=1 y=r+41

where k, = (e,, §) and where r s the type number of the critical point a. (If r=0,

the symbol Z ts understood to mean o in (4.2) and o 7n (4.3).

»=1

Proof. Let €, ¢, ... be a complete normed system of eigenelements of
the linear symmetric and completely continuous operator &(a, ¥), and ui, us, ...
the corresponding eigenvalues. Then

(4.4) Lo, B = D mler, Hel.

! The multiplicity of an eigenvalue is the number of linearly independent eigenfunctions
belonging to it.

6842127 Acta mathematica. 85
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Let now e}, €J, ... be a normed ortogonal system such that the e, e, together
span H and such that (¢), €;) =0 for all ¢, e;. We set u, = 0. We now bring
the ¢, ¢, and, correspondingly, the u,, u, in a simple order and call them

€, €y, ... and g, Yy, ... in this order. (4. 4) remains then true if we replace
e,, v by e, u, respectively. If we add to the equation thus obtained the equa-
tion ¥= D) (e,, e, we obtain

r=1
(4.5) o, =F+8(a, 0 = D (1 + m)le, Pey.

v

This proves that [(a, f) can be written in the form (4.2) since by definition 4.1
exactly r of the numbers 1 + u, are negative and since by lemma 4.2 none of
them is zero. Finally, (4.3) is a consequence of (4.2) and (2.7).

5. Type Number and Topological Index.

Theorem 6.1. With the same assumptions as in theorem 4.1 let r be the type
of the ecritical point a. Denote by j{a) the index of a as solution of the equation
(3.1).2 (Because of lemma 3.2 the index exists). Then

(5.1) j(0)=(—1y.

Proof. g(r) has the differential [(a, ) at a. It follows from the properties
of this differential described in lemma 3.1 that the index j(a) of a as solution
of g(r) = 0 is the same as the index of ¥ = » as solution of the equation [(a, §=0.?
This latter index is by definition the order u(l, S,, 0) of the point o with re-
spect to the image under the mapping [=1I(a, f) of the sphere S,: [[I}l = ¢.®
Therefore,

(5.2) (@)= u(l, S, 0).

If now e, e,, ... is the normed orthogonal base of H used in theorem 4.1,
if I,=/(e,,1(a, b), and, as is theorem 4.1, k, = (e,, f) then (4.2) shows that the
mapping %~ [(a, f) is given by

Z'v:ﬂpVZ'v:kVT“(_I-'pg-)A'mv, y=1, 2, ...7r
(5.3) , |

=pvkw=kv+(pv_'l)/cv, yv=r+1,r+2 ...

! For the properties of an index in a Banach space see [g], [10], [12).
% (9], p. 55/56. For a detailed proof see [12], lemma 3.
* Since | is linear, the size of the radius @ of Sp does not matter.
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Comparison with (4.5) shows that p,— 1=y, for » >r. Since lim u, =0 it
follows that there exists a v, > » such that
(5.4) o< uy=|(ps—1)| < 7lp for » =,

where 7 is the distance of the image of S, under the map (4. 5) from the point o.

With such a », we define a mapping ¥~ 1" = D/l e, where

v==1
l,=—psky forv=1,...7
(5.5) L=pks > v=r+1,...7
lh==rF, » v==y, 4+ Lyt 2. ...

(5.3), (5.5) and (5.4) show that for f < S,, ie. [[f||=0¢

[0t =20 —0r= 2 (p— 1)K < (|t* /o) = =* < [I1]|".
r»=1 y=v+1

This estimate together with the theorem of Rouché® proves that
5.6) u(l, Sp, 0) =u(l’, S,, 0).

If E* is the space spanned by e,, ¢, ... e,, (5.5) shows that ' — f< E™, ie.,
that I’ is a “layer mapping”’ with respect to E".? By the definition of the order
of a layer mapping,® the order «(l', S,, 0) is therefore equal to the order of o
with respect.to the image of the intersection AS’g"_I=;S'Q/\IE"0 under the mapping
of E™ into itself given by the first », of the equations (5.5). But this order is

equal to the sign of the determinant of these equations. This determinant is

(—1y | »» and its sign is (— 1)’ since all p, are positive. Thus « (I, Se, 0) =

v=1

= (— 1)" which because of (5.6) and (5.2) proves (5. 1).

6. Morse Numbers and Properties of the Gradient Field.

By theorem 3.1, there are at most a finite number s of critical points of
¢(t) in V. We denote them by a,, a,, ... a,.

Definition 6.1. For 7=1, 2, ... the ¢th Morse number M: of V is de-
fined by

! For the finite dimensional case see [1], p. 459, for the Banach space case see {11], theo-
rem 4.

* For the definition of a layer mapping see e.g. {11}, p. 374.

3 [11], definition 1. '
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(6.1) Mi= D\m}
o=1

where m! = m'(a,) is the ¢-th type number of the critical point a, (definition 4. 1).

Obviously M’ is the number of critical points in ¥ of type 7, and
(6.2) Z Mi=s,

Theorem 6.1. With the wusual notations assumptions let y = y(g, S) be the
characteristic of the gradient field g on the boundary S of V, let u =u(g, S, 0)
be the order' of o with respect to the image of S under the mapping §, and let
y=7(8, S, 0) be the mapping degree® in 0 of the mapping g (considered as map-
ping of V). Then

8
(6.3) x=u=a'=21(—1)’0=2(~1)"M"

K}

where 1, denotes the type of the critical point a, (definition 4.1).

Proof. That y=wu =y is known.? That the two sums in (6.3) are equal

is an immediate consequence of definition 6.1. It remains to prove that
8
1= (1.
o=1

8

But this equation is by (5.1) equivalent to the equation y = 27 (a5) which is
o=1

known to be true.!

We formulate the following obvious consequences of theorem 6.1 as
Corollary 6.1. Let s, be the number of critical points of even type and
s, the number of critical points of odd type in V. Then
(6.4) L =8 — 8, §=8y + 8.

Therefore, s=]|x|, and the equality sign hold if and only if the types of all
critical points are of the same parity. This is certainly the case if none of the

eigenvalues of the linear operators £(a,, f) (=1, 2, ... s) is less than — 1 (or,

! See [10], definition II for the definition of ‘“order’” in Banach spaces, and [10), beginning
of § 3, for the definition of “characteristic” in such spaces.

* The mapping degree in Banach spaces was introduced in [g)].

% [10), Satz 4 asserts u = y. The equation ¥ = u is the definition of x; cf. (10}, § 3.

* [10], Satz 5.
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what is the same, if all second differentials d,(a,, §), ¥) become positive definite
quadratic forms for §) =1} since then by definition 4.1 the types of all critical
points are zero.

Before stating theorem 6.2 we give the following

Definition 6.2. A bilinear form (definition 2.4) ¢(r, b, ¥) in §, ¥ is called
uniformly positive definite in a set W < H if there exists a positive constant
¢ such that for all t < W

(6.5) S e

A linear operator [(r, ) of f is called uniformly positive definite in W if the
associated bilinear form ¢(r, §, {) = (Iz, b, h) is uniformly positive definite in W.

Theorem 6.2. In addition to the hypotheses 3.1—3.4 and 4.1 we assume
that the second differential dy(x, 9, ¥) of the scalar i (t) is uniformly positive definite
in V + 8 and that V is a solid sphere of center o and of radius R with

(6. 6) R>{g(o)fl/e

where the positive constant ¢ satisfies (6.5) with q =d,. Then (L) has exactly one
cretical points tn V' and none on the boundary S of V. Moreover, tf B = R, satisfies
(6.6) and if M{R,) is an upper bound for |i(t)| in x|l = R,?, then for any m>1

©.7) i@ z=0—1/mellzl[{Ry—1lg{0)l/c} — M(R,) for [xr[l=mR,.

Before proving this theorem we first state and prove

Lemma 6.1. Let v(r)=1z + B(x) with completely continuous B be a vector
field® which is differentiable in V + S (definition 2.3). We suppose that the dif-
Serential [(x, ¥) of v(r) 4s uniformly positive definite in V + S (definition 6.2). If
then ¢ 1s a constant satisfying (6.5) with q = ([, §,9) and {f V is a solid sphere
with center 0 whose radius R satisfies the imequality

(6.8) R > |lv(o)]l/e,

then v (t) does not vanish on S and the characteristic y of the field v (L) on S equals
+ 1. Moreover, for any t whose norm R =||¢|| satisfies (6.8) we have

(6.9) @, 1) = cllzll(lz]l — o (o) ]}/e).

! Such a finite M(R,) exists since ¢(z) — g = I(g) is completely continuous.
® p 1) is not necessarily a gradient field.
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Proof. We recall that if »(zr) is an arbitrary scalar which is differentiable

in a convex domain containing the two points L, and £, then
. 1
(6. 10) o) — vl = [ol + & — 1wt r—1)dt
0

where d(r, §) is the differential of v(r).! We apply this equality to v (r)=(v (), h)
with =0, and take for ¢ an arbitrary point of S. Lemma 2.2 shows that

(6. 10) then becomes
1

(6.11) (@, H) — @, §) = [ ((tr, v, b

¢}

We now set h =r. On account of the assumptions made about ¢, (6.11) yields
then

1
(@, ) — P, )= [(¢r v ddtzc|zl=cR?
0

or
@z cR —|b0 1|z cB —|[v@)[R =Rc(B—|v)l/c).
This proves (6.9). Moreover, we see now from (6.8) that (v(x), ) >0 for £ < S.
This shows that v(x) 20 for £ < S. It also shows that in no point of S the
field v(x) can have the direction of the interior normal since otherwise by de-
finition of the term ‘“‘interior normal’? there would exist an ¥ << § and a positive
¢ such that v(x)= — ¢z, and this point would render (v@), 1) = — ¢ z||° nega-
tive. This proves that y = 1 since it is known that a vectorfield v(x)=y + B(x)
with completely continuous L (x) which is non-vanishing on § and which has

no interior normal on S has the characteristic + 1.3

Proof of theorem 6.2. On the one hand, the application of lemma 6.1 to
b(r) =g(r) shows that §(r) % 0 for £ < S and that the characteristic x of the
gradient field g(r) of the scalar ¢(x) on § is equal to + 1. Since, on the other
hand, the second differential d,(x, ), ¥) is uniformly positive definite the quadratic
forms d,(as, £, ¥) are certainly positive for all critical points a, (6 =1, 2, ... s) of
V and corollary 6.1. shows that s =|y]|. Thus 1=y =s.

To prove (6.7) let R, > |lg(0)ll/c, let m be a given number > 1 and  be
such that |||l >mR,. We set 1,=1/m. Since (§(1), §) is the differential of
7(r) we obtain from the general formula (6. 10)

! [5], theorem 5.
* [10}, § 1, no. 4.
3 [10), part b of Satz 7.
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1 1/m 1
(6.12) =g, Ddt = [ (g(tr) »at + [(atp, Ddt
0 0 : 1/m

Now using the substitution s = ¢m one sees easily that

[

%3

1
(tr), D)dt = [(gGx), to)ds = i (x) — i (0).
0

o\

Therefore, we see from (6.12) that

1 1
: . 1 .
(6.13) i(®) = i) + [ (g, Ddt= f; gltr, tr)dt — M(R,).
1/m 1/m
Now for { = 1/m we have t|z][ == ”g” > |lg(0)l|/c. Therefore, we can apply

lemma 6.1 with p(z) = g(r) and obtain from (6.9) for t;i

glet,xt) zellzltlzlie —Ng@ll/o) = ellzll ¢ (R, — g/ e).
Substituting this in (6.13) we obtain (6. 7).

Corollary to theorem 6.2. If (1) is defined and satisfies our usual assump-
tions for all v << H, and if d,(r, B, f) is uniformly positive definite in H, then
7(r) has one and only one critical point a in H, and 7(a) is an absolute mi-

nimum.

Proof. It is an obvious consequence of (6.7) that there exists an R, > R,
such that

(6.14) i(t) > (o) for [[zfl= R,

Now in the sphere ¥ defined by ||z|| =< R, the scalar i(z) takes an absolute min-
imum in some point a' by a previous theorem ([14], theorem 4.2). Because of
(6.14), 7(a") is then an absolute minimum for the whole space H. Likewise by
(6.14), o’ is an interior point of ¥ and, therefore, a critical point of ¢(z). Con-
sequently a’ must coincide with the unique critical point of theorem 6. 2.

7. Applications.

The general purpose of this section has been explained in the introduction.
Let E™ be the r-dimensional Euclidean space, let Kij(s, ) (2,7 =1, 2,...n) be
admissible kernels defined for pairs of points s and ¢ of an admissible domain
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Dy < E'* Let E" be the Euclidean space of n-tuples U = (u;, uy, ... ), and
filt,uy, ... us) =1, 2,...n) be n functions defined and continuous in the pro-
ductspace Dy X E" and for which

U n
(7.1) F(t, U) fz (t, vy, ... va) du
? i=1

is a function of the upper limit U = (u,, ... u.) alone.

We now recall the definition of the Hammerstein scalars connected with
the K;(s, t) and the f;.

For 2=0,1,...72—1 let D; denote the domain obtained from D, by the
translation 7-d, where the translation vector d, is such that no two of the do-

mains I); have a mnon-zero intersection. We then obtain the admissible kernel

n-—-1

K (s, t) defined for s, t <D = ZDi by setting (in obvious notation)
=0

(72) K(S, t) = Ki+1,j+1(.5' —_ ido, t"—jdo) for s < Di, t < DJ'

(¢, =o0,1,...n—1).

Likewise we obtain a one to one correspondence between the ordered m-tuples
91 (), ... ya(t) of functions defined in D, and the functions y(¢) defined in D
by setting

(7.3) ¥ (8) = yir1(s —1d,) for s < Dy, (¢=o0,1,...n—1)
This correspondence will be indicated by writing

(7.4) y(s) = (909, ... yn(s).

Let now g, (s), ¢3(s) (» = 1,2, ...) be a complete system of pairs of normed
orthogonal eigenfunctions of the (not necessarily symmetric) kernel K (s, #), and
i, the corresponding eigenvalues.® The A, may, and will, be assumed to be
positive and to be arranged in not increasing order. The Hilbert space H we
deal with will then be the space of all sequences ¢ = (z,, 23, ...) for which

Z)W x} converges with the scalar product (r, 1) of ¢ with y = (y;, ¥s, ...) de-

fined by

! The word “admissible’ has the same meaning as in [15], definition 2.1.

2 For details we refer to [15], sections 2 and 3.

® The so-called Schmidt eigenvalues of an unsymmetric kernel. The notation differs from the
one used by Schmidt, Hammerstein and others in that Ay is replaced 1/4y.
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(7.5) (£.9) = Dlzps.

By H, we denote the subspace of those 1) < H for which 21/3 converges®, by

L? the space of those functions y(¢) for which y*(f) is summable over D, and
by M and M* the subspaces of L® spanned by the functions g, (s), @s(s), . ..
and @i (s), @i (s) ... respectively. The mapping H, -~ M which assigns to the
element Y =(y,,y,, ...) of H, that element y(¢{) of M whose component with
respect to @, () is y,, is called @,:y(f) = @,(y). Correspondingly a mapping
y* () = @ (y) of H onto the space M* is defined by using the system gy (¥) instead
of the system g, (f). @,, @] and y(t), ¥*({) are called pairs of conjugate mappings
and functions respectively. Also the ordered n-tuples y,(t), . .. y.(t)and yi(8), . . . v (f)
associated by the correspondence (7. 3), (7.4) with y(¢f) and y*(f) respectively are
called conjugate. This terminology is in agreement with the following general

Definition 7.1. The functions y(f), ¥*(f) of L? are called conjugate if
(i) ftpy(t)y(t)dt = fgvi(t)g/*(t)dt w=1,2,...), and (ii}) y{t) < M, y* (t) < M*. The
b b
n-tuples (y,(8), ... ya(®) and (y1(®), ... yn(®) are conjugate if the functions y(t),
y* () corresponding to them by the correspondence (7.3), (7.4) are conjugate.
@, (y) and @7 (y) are mappings of the subspace H, of H into L®. We define

now mappings @(x) and @*(x) of all of H into L? in the following manner: if
T = (x,, x5, ...) is an arbitrary element of H we set §) = (X, x,, 4,%,, ...). Since

Zli converges, 1) is in H;, and @, (y), @7 (y) are defined. We set then
(7-6) y(t) = @) = @,(), y* (&) = " (z) = @1 (y).
Definition 7.2. Let Y (f) be the point of E™ whose coordinates are

¥:.(t), ...y (t)

where this #n-tuple is the one associated by (7.3), (7. 4) with y(t) = @ (z), let Y *(?)
be defined in the corresponding way be using y*(¢f) = @*(z), and let F(¢, U) be
the function defined by (7.1). Finally set

(7.7) I) = [F(t, YWt)dt, I*() = [F@, Y*(Hat.

! We recall that 4, — 0 such that H, is actually a subspace of H.
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Then
(7.8) o) = llzlPlz + 1@, <@ =llcl/z + I (),

are called Hammerstein scalars.

1(r) and ¢*(r) are defined for those t < H for which the integrals in (7.7)
exist. The conditions imposed in all of the following lemmas and theorems will
insure that they exist for all t << H. It follows moreover from [15], theorem
3.1 that for all £ << H the scalar I(f) has a continuous differential D (g, §)

given by

(7.9) Z,f Nt 9, ®, ... ya(®)d
i i=1 Dy

(B ®, ... kn®) =k(f) = @)

if only the f; are continuous functions of their arguments ¢, %, ... u, and if the
following assumption A) is satisfied:
Assumption A. There exists a constant C such that

(7. 10) DA @i(t)< C* for all t< D.?

A corresponding statement holds for I*(r) with the same constant C.
Our next goal is to show that under certain additional conditions the scalars

¢(x) and 2* (¢} satisfy all assumptions of theorem 6.2. We first prove

Lemma 7.1. Let the fi be continuous functions of their arguments and let
assumption A be satisfied. Then the scalar I(t) has a completely cintinuous gradient
& (x) for all t < H given by
(7.11) G =(¢,@ G®,...)
where G, (t) 7s the v-th Fourter coefficient of

Sy@) =(fE 9@, ... @), .. fult, O, ... g @), ie

(7.12) G = [g(Oflt ye)dt=3 [@, 01t 1@, ... pm)dt
i=1 D,

D
(q’vl(t),---q)vn(t))=9)w(), Yy =1, 2,...).
A corresponding statement holds for I*().

! We recall that ||z|[*= A x2; ef. (7.5).
v

? As to the significance of the assumption A, see [15], footnote to (3.7).
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Proof. We obtain from (7.12), (7.9) using the definition (7.5) of the scalar
product and observing that %(t) = @(x) < M

D= Db Gh= D G ho= [ flt, yt) k() dt =
i sz Vit v, @y ... ya®)dt = Dz, b).

Thus (& (x), §) = D(z, §) which by definition 2.2 proves that & (r) is the gradient
of I(t). Observing that by [15], theorem 3.2, D(z, b)) is completely continuous,
the complete continuity of &(r) follows from lemma 2.1. The proof for the
statement concerning I*(xr) is analogous.

Lemma 7.2. In adddition to the assumptions of lemma 7.1 let the derivatives
0 fil0u; exist and be conlinuous tn all points t, u,,...u. of the product space
Dy X E*. Then for all x < H

(i) the gradient & (x) of I(x) has a continuous differential &(t, 9) =(Ly, Ly, .. )
with

(7.13) Lz, 5=

n n
=1 i=

[ o Zf tys (0), .. yn ) ki () ¢
Dy

1 Dy

where the k;(t) and the @, (t) have the same meaning as in (7.9) and (7.12).
(ii) I(x) has a continuous second differential D, (t. Y, §) given by

(7.14) D,(x. 5, b)) = i i M’ (t, o (8), ... yn®)

where ¥ (f) = (K, (), B D), . .. Ko (t) = D (V).
(i) For fixed x, £(z, §) vs completely continuous in §.

Proof. [If we define R, be setting

(7.15) Go(t +h) — Gu(@) = L.z, h) + B,
where L,(r, ) is given by (7.13) one sees easily that R, may be written in
the form
”n
(7.16) R, = gb&:qu;% ai o< 9 <1)

i=1D,
where
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n 9 1
(7.17)  a:(t)= D & { i Y&+ Sk B, .. Ya D + S n) —

Jji=1
— 3% 0fi &y, @, ... ¥n (t))}-
J

To prove (i) it will be sufficient to show: if
m: ER(E? f)a 19) :(Rl’ Rﬂ) . '))
then there exists to given & > o a positive ki, such that

(7.18) 1%z 5, d) <ellbll for [[h]] < ko and o =& = 1.

We recall that by [15], lemma 3.1 y;(f) and k;(tf) are continuous functions whose
absolute values are bounded by C||z]| and C|§]| respectively where C is the
constant of the inequality (7.10). Since the 9f;/0u; are continuous it follows

immediately that there exists an h, to the given ¢ such that

2 n
(7.19) ai(d) _};H,(ZIk] ) S 5 Z ) for ||§ll <hy and o= & =1

J=

If we set a(t)={(a,(®), ... a,®), then (7.16) shows that R, is the Fourier coef-
ficient of a(¢) with respect to ¢, (f), and we obtain by the use of Bessel's in-
equality and (7. 19)

IR2= Z,x By QR =i[a@®dt=21D [d)dt
v D )

62 n n

RPN

This proves (i). To prove (ii) we have only to show that the expression given
by (7.14) is the scalar product (2(x, ), §’). We omit this verification which is

b\

i < o2 2
N Df f)dt = | i,

similar to the one used in the proof of lemma 7. 1.

- Finally, to prove (iii) we notice that the mapping @ (§)= k(t) is completely
continuous. Therefore, it will be sufficient to show that the mapping k(f) - £
is continuous. In other words we have to show that £ as operator on %(f) is
bounded. To do this we note first that, as already mentioned, the y:(t) are con-

4 fi
0 u;

tinuous. Therefore, the (t Yy, (O, ...y, are likewise continuous functions of

! [15), lemma 2.2.
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t and consequently bounded in D,. If M is an upper bound for their absolute

values in D,, and if we set

bif) =) gff B, b=, ... b0),
j= O
we have

(7.20) 01 = (o 3 10]) =200 3 550,

=1

On the other band, we see from (7.13) that L, is the Fouriercoefficient of b (¢)
with respect to ¢,(t). Therefore, we obtain from the Bessel inequality and (7. 20)

I = DALt D LIk [b(dt=

=4 [Bdt=d, M0 [ D EOdt=2,Mn [k (f)at
i=1 Dy D, j=1 Do
which proves the required boundedness of L since the last integral is the square
of the norm of k() in L%

Theorem 7.1. Let u = u(t, w) be the smallest eigenvalue of the matrix (0. f;/0w),
and, as always, A, the greatest of the eigenvalues of the (not necessarily symmetric)
kernel K (s, t) defined by (7.2). In additivn to the hypotheses of lemma 7.2 we assume
that there exists a posttive constant é such that for all t, u,, ... u, in the product
space Dy X E*

(7.21) w=—ée>—1/k.

Then: (i) the Hammerstein scalar i(r) has exactly one critical point a, (ii) for the
norm || a|| of this eritical point the estimate

Ali‘, [filt o, ... 0)at

i=1 D,y
o c_'11)2

(7.22) ol < g

holds, and (iii) 7 (a) is an absolute minimum in H.

n
! This matrix is symmetric since Efidui is a total differential,- namely the differential of
i=1

the line integral (7.1).
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Proof. Since it is easily seen that the gradient of [[x|[*/2 = D\l ai/2 is
given by (z,, #,, ...} and the second differential by leh,k; it follows from

lemmas 7.1 and 7.2 that the gradient g(x) of 7(x) = ||t]|*/2 + I(x), the differential
[(x,5) of g(t), and the second differential d,(x, ), §)’) of 7 (r) exist, and that g(z)and

dy are given by

(7.23) g(r) = (2, + G, @, =, + G,@, .. )

(7.24) dy (2,9, 5) = Zl hy by + 2 2 fk Of’ 6y @, .. . yt)dt
=1 j=
where the G, (r) are defined by (7.12).
We want to show first that d,(x, §), ') is uniformly positive definite in H
in the sense of definition 6.2. By a well known property of the smallest eigen-
value of a symmetric matrix! it follows from (7.21) that

n

o3 3 Dk0b0 L w0 = —c D)

i=1 j=

-

Observing that

i flc?(t)dt=pf/c2(t)dt=Z(thv)gélx”f)”g

i=1 Dy
and that the first sum in (7.24) for ) =1 equals [|§]’, we see from (7.24),
(7.25) that
dy (& b, 0) = 161 — A NYI* =1pl*(x —¢
This shows that (6.5) (for ¢ = d,) is satisfied with
(7.26) c=1—2ch.

Therefore, d, is uniformly positive definite in H since ¢ > o by (7.21).

It follows from lemma 2.4 that d, is not degenerate and, therefore, from
lemma 2.5 that the differential I{x, §) of g(r) is non-singular. By lemmas 7.1,
7.2 it is now obvious that the hypotheses 3. 1—3.4 and hypothesis 4.1 and,
consequently, all assumptions of theorem 6.2 and its corollary are satisfied. It
follows, therefore, from this theorem and the corollary that (r) has exactly one
critical point a, that Z(r) is an absolute minimum and that

! See e.g. COURANT—HILBERT, Methoden der mathematischen Physik, 2nd ed., 1930, vol. 1,
Chapter 1, § 3.
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(7.27) Hall <lig{o)li/e

where ¢ is defined by (7. 26).
It remains to prove the estimate (7.22). Using (7.23), (7.12) and Bessel's
inequality we see that

lg@ =8 @ = X2 6Gi(0) <2, X G (o)
=i [rito)dt=212 [filto,...0)dt.
b i=1 b,
Combining this inequality with (7.27) we obtain (7.22).

Theorem 7.2. Under the same assumptions as in theorem 7.1, there exists one
and only one pair of conjugate n-tuples y (s)=(y,(s), . .. ya®), ¥* ()= (W1 ), ... y2 ()
(def. 7.1) satisfying the system (1.11).' For this solution the following estimates hold

n . 2 [fito ... 0)dt

2 i == > i=1 D,
(7.28) P4 Do?/i(t)dt = ;l Dfoyz (dt= =TT
ly &)1 ) ] MZ [filto,...0)dt
[7'29) =C i=1 D, _ o
I'/*(t)” 1 —GA,

where C s the constant of Assumption A (see (7.10)) and ¢ the constant appearing
in the inequality (7.21).2

Proof. Since by definition the eigenfunctions g, (s), @5 (s) satisfy the linear
integral equation

! We draw attention to the definition 7.1 of conjugate n-tuples. If one asks for solutions of
(1.11) satisfying condition (i) but not necessarily (ii) of this definition, then the unigueness asser-
tion of theorem 7.2 is ne more true. If e.g. (1.11) consists of one single linear equation whose
kernel K admits an eigenfunction n(f) to the eigenvalue o, it is easily seen that with y(f), y*(®
also y()+ n(t), y*(f) is a pair of solutions of (1.11) satisfying condition (§) of definition (7.1). If,
however, the kernel of (1.11)is closed, i.e., M = M* = L2, condition (¢4) of definition 7.1 is automati-
cally satisfied, and the uniqueness assertion is true. )

We finally remark that the y*-part of a solution is always uniquely determined since the
Behmidt expansion theorem shows that for a solution y(#), y*(f), the function y*(f) is always
in M*,

? We note that if the so-called bilinear series for the kernel converges, we may take

Max [ K(s, s)] for C, and that in case of one single integral equation ¢ may be taken as
min 0 (¢, u)0u.
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Lo )= [K(t s)g(s)ds
b
we obtain from (7.12)

WGy =[ i) [K(t 8)f(t y®)dtds,
D D

and since
Ay o, = f(p: (s)y™(s)ds,
D

we have for the components g, of the gradient g(z) of i(x)

(7.30) Ao =hvy + 4 G, =Dflp: (s) [y* (s) +DfK(t, s) f(¢, y(t))dt] ds.

Now for the critical point r = a whose existence is assured by theorem 7.1, we
have g(a)=o0. Therefore, (7.30) shows that for y(t) = @(a), y* () = @*(a) all
Fourier coefficients of the quantity contained in the bracket of equation (7.30)
are zero, and this quantity itself will be shown to be zero once it is proved to
be an element of the space M* spanned by the ¢3(s). But this is true since
y* (s) < M* by the definition of y*(s) and since by the Schmidt expansion theorem

[K(t, s f(t, yt)dt

can be expanded according to the ¢y (s). This proves the existence of a solution
of (1.11) since the n-tuple formed by the left members of these equations is just
the n-tuple associated with the quantity in the bracket of (7. 30) by the rule given
in (7.3), (7.4) and by the definition of f(¢, y(®) given in lemma 7. 1.

The uniqueness follows easily from the fact that because of (7.30) the con-
jugate pair y(f) = @(z), y* (f) = @*(¢) is a solution of (1.11) only if g(z) =0, i.e.,
if ¥ is a critical point of 7(r) since by theorem 7.1 there exists only one crit-
ical point.

It remains to prove the estimates (7.28), (7.29). Since

2 [uai= [y @at=3([v0g.0a9 =
=Dz =4 D hat=12]z|

and since the corresponding inequality holds if y(t) is replaced by y*(¢), (7.28)
follows from (7.22) since as already obsetved, r is the critical point a of ¢(y) if
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D(x)=y(t), @ (x)=y"(t) is the solution of (1.11). To derive also (7.29) from
(7.22) we have only to recall that C||z|| is an upper bound for |y(t)| and |y” (¢)]
([15], lemma 3.1). ;

The following theorem was first obtained by M. Golomb.!

Theorem 7.3. If in addition to the assumptions of theorem 7.2 the kernel
K(s, t) defined by (7.2) is symmetric and posttive definite, then the system (1.12)
has one and only one solution y(t) = (y, (b, . .. yn (D), and this solution is conlinuous.

Proof. Under the present conditions we may assume g, (s) = g} (s). There-
fore, y;(s)=yi (s) and the theorem follows immediately from the preceding theorem
7.2 and the final remark made in the footnote to theorem 7.2 concerning the

uniqueness.
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