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1. Introduction

Let M be an n-dimensional Riemannian manifold of class O“. For small >0 let
V.u(r) denote the volume of a geodesic ball with center 7 and radius r. This paper is con-
cerned with the following question: T'o what extent do the functions V,(r) determine the
Riemannian geometry of M? In particular we shall be concerned with the following conjec-
ture:

(I) Suppose

Vulr) = 0r™ (1.1)
for all m€M and all sufficiently small r>0. Then M is flat.

(Here w=the volume of the unit ball in R". The simplest expression for w is w=
(1/(3n))n*2 where (3n)! =T'(In+1).)

First we make several remarks.

1. Our method for attacking the conjecture (I) will be to use the power series expan-
sion for V,(r). This expansion will be considered in detail in section 3; however, the general
facts about it are the following: (a) the first term in the series is wr®; (b) the coefficient of
r*** vanishes provided k is odd; (c) the coefficients of #*** for k even can be expressed in
terms of curvature. Unfortunately the nonzero coefficients depend on curvature in a
rather complicated way, and this is what makes the resolution of the conjecture (I) an
interesting problem.

2. To our knowledge the power series expansion for V,,(r) was first considered in 1848
by Bertrand-Diguet—Puiseux [6]. See also [14, p. 209]. In these papers the first two terms
of the expansion for V,(r) are computed for surfaces in R3;

Voulr) =mrt {1 - —11£2 2+ O(r“)} , (1.2)

m
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where K denotes the Gaussian curvature at m. In fact the reason why these authors obtained
this expansion was to give a new proof of the famous theorema egregium of Gauss [16].
A new proof by Liouville [32] had appeared the preceding year. Indeed it is obvious from
(1.2) that the Gaussian curvature, defined, say as the product of principal curvatures,
really is intrinsic to M, and does not depend on the embedding of the surface into R3.

Vermeil [35] in 1917 and Hotelling {31] in 1939 generalized (1.2) to arbitrary Rie-
mannjan manifolds. (The Gaussian curvature K must be replaced by the scalar curvature.)
See also [2], [87]. The third term in the expansion was computed in [20] and in section 3
of this paper we shall compute the fourth term. Furthermore we write down the fifth term
for surfaces but we omit the calculation. These terms are given by complicated formulas in
the invariants of the curvature operator.

3. There are many hypotheses which, when combined with the hypothesis V,,(r) =cwr®,
imply that M is flat. In sections 4 and 5 we slvow that (I) is true in any of the following
cases:

(a) dim M <3;

(b) M is Einstein, or more generally if M has nonnegative or nonpositive Ricei curva-
ture;

(c) M is conformally flat;

(d) M is a compact oriented four-dimensional manifold whose Euler characteristic and
signature satisfy y(M)> —§|t(M)];

(e) M is a product of surfaces;

(f) M is a 4- or 5-dimensional manifold with parallel Ricci tensor;

(g) M is the product of symmetric spaces of classical type.

The proofs of these results utilize only the first three terms in the power series expan-
sion of V,(r). That (I) is true when dim M <3 was first proved by P. Giinther [27] by a
different method.

4. Although the conjecture (I) seems quite reasonable, we have been unable to resolve
it in general. In section 6 we give interesting examples for which

Vaulr) = wr*{1 + O(r%)}
for all points m€M. One of these is & 4-dimensional positive definite metric which is a
generalization of the Schwarzschild metric. Another is a homogeneous 5-dimensional
metric. In section 7 we use a different technique to find a manifold of dimension 734 with
Valr) =0r™{1 +0(r®)}.

(8) There is a formal similarity between the coefficients of the power series expansion

of V,(r) and the coefficients arising in the asymptotic expansion for the spectrum of the
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Laplacian. We modify some of the techniques in this theory to prove (I) in certain special
cases.

6. The volume functions for the symmetric spaces of rank 1 are written down in [20].
In sections 8 and 9 we consider conjectures analogous to (I) where the model spaces in-
stead of being flat, are the symmetric spaces of rank 1.

Furthermore we show in section 11 that if M is an Einstein manifold with dim M <5
such that for each m€M, V,(r) is the same as that of a symmetric Einstein space, then M
is in fact a symmetric space.

7. Let h,(exp,(ru)) denote the mean curvature of a geodesic sphere exp,, (8*~(r)) in
M and put

H,(r)=""1 f h(€XP,, (ru)) dus.
s ay

In analogy with (I) we have the conjecture

(I1) Suppose H,(r)=n(n—1)wr""? for all m€M and all sufficiently small r. Then M is
flat.

It is remarkable that in contrast to (I), which seems difficult, (IT) is true. We prove
this in section 12.

8. In a series of papers [38], [30], [28], [15], [29], [26] a hypothesis similar to that of
(I) was considered, namely that the volumes of tubes about all hypersurfaces be poly-
nomials. In section 13 we consider a weaker hypothesis; we require only that the volumes
of tubes about small geodesic spheres be polynomials. In this way we are able to strengthen
some of the results of [38], [30], [20], [15], and {29].

We suppose all the manifolds to be connected.

We wish to thank A. Besse, P. Gilkey, R. Reilly, F. Tricerri and T. J. Willmore for

several useful discussions.

2. Curvature invariants

In this section we write down all of the scalar valued curvature invariants of order <86,
and we give some useful identities. The invariants of order 2 and 4 are well understood,
and the 17 order 6 invariants have been written down [13], [17]. Our purpose here is to give
these invariants using the notation similar to that of [11] and [7], in order to facilitate the
calculations in later sections.

Let M be a Riemannian manifold. We choose the signs so that the curvature operator
of M is given by Rzy=Vix.y1—[Vx, Vy], where V denotes the Riemennian connection of
M. The components of the curvature tensor will be denoted by R,;; where 4, , k, ! are



160 A. GRAY AND L. VANHECKE

part of an orthonormal basis of the tangent space M,, for some m € 3. The components of
the Ricci tensor will be denoted by g,, and the scalar curvature will be denoted by 7.

By definition a scalar valued curvature invariant is a polynomial in the components
of the curvature tensor and its covariant derivatives which does not depend. on the choice
of basis of M,,. Such a scalar valued invariant is said to have order % if it involves a total
of & derivatives of the metric tensor. (Each component of the curvature tensor contains
two derivatives.) A basis for the invariants of low order has been computed using Weyl’s
theory of invariants [5, p. 76], [12]. (Weyl’s theorem implies that the invariant poly-
nomials are contractions in the components of the curvature tensor and its covariant

derivatives.)
Let I(k, n) denote the space of invariants of order 2k for manifolds of dimension ».

The spaces I(1, n) and I(2, n) are well-known (see for example [5, pp. 76 and 79]). We have
dim I(1, n) =1 for »>>2 and dim I(2, n) =4 for n>4. In fact if we put

=73 Ryy, lolI* =3, 0k, [|BI* = 3, R, Ar=3 Viiz,

then {r} is a basis for I(1, n) and {z2, o[, || B||?, Az} is a basis for I(2, n).
Furthermore the space I(3, n) of order 6 invariants has dimension 17 provided = > 6.
Using a notation similar to that of [11] and [7, chapter 6] we write down a basis for I(3, 2):

%, tllo|f?, <[ B|1%,
0= 2 01O
<e, R> =20y Rypq Bipgr  (Where Ru = ’% Riper Bipar)»

e®e, Ry=3 @y By (where Ri]kl = Ryy),
E= 2. By Buigg By

ft’ = Z By Rkpla Rptq;,
[Vell® =3 (Vi)

IVell*= 2 (V.u)*,

(@) =2 Vion Vioy
“Van = 2 v, R]qu)z’

TA7,

(Ao, 0>= Z Oy Vi Qs
Vi, ) =2 (Vi7) ews
(AR, R)= Z By V12w Rips
Az,
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Of course one must check that these 17 order 6 invariants form a basis for I(3, n), n=>6.
This can be carried out as follows. First one uses Weyl’s theorem to show that dim I(3, n) <

17. Then one assumes that there is a linear relation of the form
A3+ ... + A1, A% =0,

which is valid for all manifolds of a fixed dimension »>6. Then by carefully choosing 17
different manifolds and evaluating the linear relation on each of them, one shows that
A;=..=4,;=0, 0 that {73, ..., A%r} is indeed a basis for I(3, »). This is not as formidable
a task as it first appears, provided one makes use of certain simple 3-dimensional and 4-
dimensional metries.

Concerning the order 6 invariants see also [11], [12], [17], [33].

We shall need some identities involving the invariants. Most of these are well known
or can be found in [33]. All of the identities are consequences of the symmetries of the
curvature operator, including the two Bianchi identities and the Ricci identity. We write

down these three identities and two of their consequences.

LEMMA 2.1. We have

By + By + By = 0, 2.1)
ViRyy+ V; By + Vy, By =0, (2.2)
V]zl - Vlg{ = - Ru, (2.3)

where R, denotes the derivation of the tensor algebra determined by the curvature tensor.

> ViRt =V 01— V1 0ais (2.4)
2. Vioy=1V,7. (2.5)
The first Bianchi identity (2.1) has the following consequences.
LemMma 2.2. We have
2 Bout Rocvy= %2, Rapey Ropes, (2.6)
2. Rapos Rocva = 3| B (2.7)
The identities (2.1)—(2.7) suffice for the theory of the order 2 and order 4 invariants. For

the order 6 invariants there are many more. Many are given in [33]. For our purposes we
shall write the identities in terms of the 17 order 6 invariants.
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LeEMMA 2.3. We have

S ViR Vi Ripoo = 3IVEI, (2.8)

SV, Biose V; R = 3| VE|%, (2.9)

S V. Ry V; Ripoe = LI VE|1%, (2.10)

> Rupea Vi Boga= 1R, AR), (2.11)

3 0y Riaso Biac = 10, B>, (2.12)

S Ry Ripe Byiy= 3 B, (2.13)

> Ry Bipig Rpigy= 1 B, (2.14)

S Ry R Ry = B— 1 R, (2.15)

2 (Viow) on = 1VPT, 0> + ¢ — (o ®e, B), (2.16)

2 (V) Ruave) Ryane = 22, (Vij Biane) Rppae = 3CAR, R, (2.17)
S (Vi) Rup=(V?e, By = AR, By~ Ko, By + R+ 1 B, (2.18)
S Vit =73 Vigr= At + §|| Ve ||* + (VPv, 0D, (2.19)

2 ¢ om= > \
= 3A%T + 3| Velf2 — 2] Voll* + 2¢V?7, @) — (Ap, @) + 3x(0) + 28 — 2(e®o0, B)
- }<AR, R> + ‘}<Q’ -R> -R- *R9 (220)

> Vukk Oy = iAz" + ‘}"V""’ + 4a(g) +2(V?z, o) — 3"V9"2 <A9’ )]
+25—2(o®e, B> — 1(AR, By + <o, Ry — 2B } . (2.21)

Proof. To prove (2.8)-(2.15) one makes repeated use of (2.1) and (2.2). The Ricci
identity (2.3) is used together with (2.1), (2.2) to prove the rest of the equations.

Remark. In dimensions <5 there are certain relations between the invariants. More

precisely, the situation is as follows.

Dimension 2. The spaces of invariants of order 2, 4 and 6 have dimensions 1, 2 and 4
respectively. Instead of using 7 as a generator of the order 2 invariants, it is more convenient
to use the Gaussian curvature K. Furthermore {K? AK} is a basis for I(2, 2), and {K?,
[l[eK||?, KAK, A%K} is a basis of I(3, 2). Then we have
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K=},

K*=Hlle|l® = 3R],

AK = }ATz,

K*=1}6=o®e, By = }o, B> =}E,

IVE|® = #Vell® = «(0) = ${|VR]® = H][v=|?,

KAK =§<Ag, 0> = ¥V’7, 0> = }<AR, R) = }7Ar,
A’K = }A%,

B=o.

(2.22)

{2.22) can be proved by direct calculation.

Dimension 3. The spaces I(1,3), I(2,3) and I(3,3) have dimensions 1, 3 and 10,
respectively. We choose {r} as a basis of I(1, 3), {r% ||o||?, Av} as a basis of I(2, 3) and
{=2, tflo||% &, || V=2 [|Vel|? alo), TAz, <o, Ag), {V?r, 0>, A%} as a basis of I(3, 3). Then

|B]I® =4]lo]|* ~ =*,

{e®e, By = — 2 +frlo|I* ~ §7°,
<o, By = — 2% + a7flg|I* - *,

R= —8p+121]|o]*— 3¢, | (2.23)
R=—2p+4rol* - 32,
VR = 4][Vel]* - [|V={l*,
(AR, R) =4{Ag, p> — TA".

Equations (2.23) follow from the fact that the curvature tensor of a 3-dimensional
manifold is expressible in terms of the Ricci tensor and the scalar curvature. The exact
formula is

T
Ratea = 0ae Osa + 003 O — 0aa Ope — 0oc 0oa — 2 (Bac Bsa — 824 B5c)-
Dimensions 4 and 5. The spaces I(3, 4) and I(3, 5) have dimensions 15 and 16, respec-
tively. This comes about because the 6-dimensional Gauss—Bonnet integrand must vanish

for lower dimensional manifolds. Explicitly, there is the following relation between the
order 6 invariants of manifolds M with dim M <5 ([11], [17]):

4 37|| B[t —12¢o||* + 163 +4 K —8R + 24¢o®g, By —24¢0, By =0.  (2.24)
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For manifolds M with dim M <4 the Riemannian double form g A RA R of type (5, 5)
vanishes identically. See [23], [24]. Hence the complete contraction

CeARAR)= X (¢ A RN R)(ijklp) (ijkip)

LAk LD

vanishes identically. This leads to the following relation between the order 6 invariants of
manifolds with dim M <4:

78 —8t||g||2 +7| B|[2— 40, B) +8{o®¢, RB) +8p =0. (2.25)

Thus because of {2.24) and (2.25) we have dim I(3, 4)<15 and dim I(3, 5)<16. To
show that the dimensions of I(3, 4) and (3, 5) are actually 15 and 16, respectively, one
evaluates the invariants on carefully chosen manifolds, just as with I(3, n), » =6, to show
that there are no relations other than (2.24) and (2.25).

3. Power series expansions for volume functions

Let M be an analytic Riemannian manifold. (We could treat the C® case; then all
of our power series would be defined, but they might not converge.) Let r,>0 be so small
that the exponential map exp,, is defined on a ball of radius 7, in the tangent space M.
We put

Splro) = volume of {exp,(z)|x€M,, ||z =10},
Vulro) = volume of  {exp,(x)|x€M,, [jz|| <7}

Here we mean the (n —1)-dimensional volume for S,,(r,) and the n-dimensional volume for
Vm("o)-
Let s and ¢ be the functions defined on neighborhoods of O € M,, and m €M by

8(x) = the Euclidean distance from O to z,

o(p) = the distance in M from m to p.

If exp,, denotes the exponential map then ¢ =soexp;’. The functions s and ¢ are differenti-
able in deleted neighborhoods of O and m respectively. Finally, let (zy, ..., ,) be a system
of normal coordinates on M at m. Write

T
1..n axls ceey ax” .

In [20] the following power series expansion is given for w, . ,:
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Lemma 3.1,

n n
_— 1 ! !
w1...n={1 %‘ZIQU’QWI rz“Z lvielkxi.xjxk
= k=

n n}

+4 2 ( - %V?f Ot 30yon—% DZ i!Rialb Rkalb) Ty 2,

4.k, 1=1

n

+is 2 (— %V?ﬁc o+ §(Vion) 0n— % . %1 (Vi Biaro) Rlahb) 425 Ty, Xy Ty,

L)k h=1

n

tis 2 ( — 3ViinaCng + 3(V50x1) Cro + $(V101) (V1 010)

1.k R g=1

g VURkalb) Rhayb—ggilgkl on—H 2 v, Bioo) (Vy Ryagn)

a 1 a, b=1
-8 bZ By Brvte Bhoga + §9u Z Rkazb Rhaab) Ty %5 23 Ty %, xg} F... (3.1)
a, b, c=1 m

Using (3.1) we compute the power series expansion of V,(r) and S,{r) where r>0
is sufficiently small. In doing so we clarify the exposition of [20]. First we prove

LeMMaA 3.2. We have
$u)=r [ o alerpilru)du
s*—lay
where u varies on S"3(1).

Proof. xds is the volume element of any sphere in M,. Furthermore by the Gauss
lemma sdo is the volume element of any small geodesic sphere in M with center at m.
Moreover, let (u,, ..., u,) be the natural coordinates in M, corresponding to the normal
coordinates (so that x,=u,0exp,'). Then

eXpn (0) = ((expm),. (5%1), veey (6XPm)y (a—z—n)) duy A ... Adu,
=W p0U Ao ANdu, =0, ,ds A %ds.
On the other hand we have
expy () =expm(do A % do) = expy; (do) A exph (% do) = ds A expy, (% do).

It follows that expp (% do)=w, ,*ds.
Next let h: S"1(1)->8"}(r) be defined by A(x) =rz on S" (1), Then h*(ds) =rds and

R (du, A ... Aduy) =r"du A ... Adu,.
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Thus A*(%ds) =r""1%ds. Hence we get

S, (r)= f *do= f expn ( % do)
8XDy (P Lir)) s~ )

=f wl...n*d‘g:rn_lf ;. a%ds
s sty

=41 f .. u(eXp,, ru) du.
S"_l(l)

Next we compute the power series expansions. We write down the formulas for
Euclidean space in a way that is especially easy to remember. Let (3n)! =I'(4n+1). Then
_ (nrz)n/2

z&)! ’

2

d _ (nr2)(n12)—1(27") _ Qg2 gn-1

For a general Riemannian manifold it will turn out that the power series expansion for
Vou(r) is of the form

Vm(r)

2\n/2
V=" 4 By O L)

n
)
(The coefficient of #*** vanishes for k¥ odd.) Here

A =a multiple of the scalar curvature;
B=a linear combination of the order 4 invariants of the curvature operator;
C =a linear combination of the order 6 invariants of the curvature operator.

Next we determine 4, B and C precisely.

TEEOREM 3.3. We have for any Riemannian manifold M and any m€E€M

H(an)nm T 1
Vlr) (ZL)' { s e (MR slel + 57t 1980
ar

1 . -
+ 72()(»n,+ 2) (n + 4) (n+ 3) ( - 578 - 31."9"2 + t"R"a + “Q - ﬂ(@@@s R>

+ 50, B — YR~ 4pR + 4[| Va|l* + HVe]* + Hoxte) — HIVEY?
+ 6TAT + <A, 0> + 5V, 00 — AR, By —$A%7)r® + O(ra)}

(3.2)

m
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Proof. It suffices to compute S,,(r), because we can compute V,(r) from the formula

V,,,(r)=J S(8) dt.
0
We write

<Y
@1...n(€XPp (ru)) = 2 “E 1.
p=0P:

If u=3 a,e; where {e,, ..., ¢,} is an orthonormal basis of M,, then y, is a homogeneous
polynomial of degree p in the a,’s. From (3.1) we have

n n
vo=1, 71=0, y=—% 2 oyma;, vs=-—% 2 Viept %,
1,91 1.4.5~1

n

Vo= 2 { - %Vtz/ Q1+ 3040 — izsa 02-1 Bun Rkatb} ;0 4y,

4.0, k1=1

7 = something irrelevant,

n

Y= > { — EVin1 0o + 3(Vi) 0) Cng + §(Vi04) (Vi00)

ikl hg=1

n
P>
s b=

a

(V3 Bean) Riyags — 30401 Cng — B g . (Vi Byoi) (V; Broge)

1

n

~8 2 RupRuiRugat $0y bZ . R Rhaob} 0y 0, 0,Q,0,.

a,b,c=1

From Lemma 3.2 it follows that
-]
rad
8, (r)=r"1> — du.
m(r) pgo p! S"_l(l)yp
By symmetry on the sphere [s-1a, ¥,du =0 when p is odd.
Furthermore
275”’2

du= f du=~— .
f S"‘la)yo s*-lay (17'_ l) '
3 !
Next

f vadu=—3}2 ey aydu
Ridmts 1Y L1Js"

n/2

n
=— addu= —— du=—-=-L.
igle“ s*~1la) ' In Je1qy n
3 3 !

Here we have used the fact that > af=1 and [ afdu= [ afdu.
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To compute [s-14,7,du we first note that

373’”2

j afdu= ——————,
S (n+2) (g) !

nnlz

f . ataidu~= —————, i+j.
s (n+2) (g)t

{These formulas can be proved by making appropriate choices of the orthonormal basis
{ey, ..., &,}. All other integrals of degree 4 vanish. See also [37].) Put

A=~ Vi 0+ doy0u—% . g , Bioi Biearo-
Then using (2.5) and (2.7) we obtain

n

f . y‘ du = )'Ukl ay a, ak a, du
Rat'e }) Lk, =1 s Iy

nnl2 n
= {3 D Ayt 2 Ay + Agyy + ltm)}
mra (gl HT |
nﬂ/2 n
=7 (g + Aygyg + Ayy)
(n+2) (ﬁ) yhi=t

nn[2

) (n+2) (12‘) ! P

n
~% 2 (BupRiapm+ Bl + Riggo Ripgo)
1

a, b=

{ - §V42! (7 %Vf;g,, + douyt+ %0l

nnl2
= ——————— {67+ 8||o||*— 3|| R||* — 18A<T}.

15(n + 2) ('-g) !

Next we compute [sm-10,y¢du. We need the following formulas:

15772
] aldu=
sm=1qy

(n+2) (n+4) (g)'
f alafdu=
s

37["/2
f . ajalardu=
s

»

(n+2) (n+4) (g) 3

%n/2

(n+2) (n+4) (g) |
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Put
Bipeng= = §Vin10ng + 3(V50it) Cng + $(Vi0s) (Vi0ng)
n n
-5 bZ L (V5 Ryaro) Brago— 80401100 — 13 bZ L (Vi Biai) (Vi Brgge)
a, o= a, 0=
n n
-8 DZ L Bigsn Bypie Bpoga + 04 g L Riaio Brago-
ab, e~ a, b=

Then

Lik L hg=1

n
f Vedu= 2 i f 0y @y Oy, @y Oy, @y A
s s*i

7Z7:/2 n
= {15 Z By + 32 (Bsags + -+ F Mg} + Z (Busgpmr + -« )}
(m+2) (n+4) (é) pvot H bk
JZ"IZ

n
= " > {aggmn + Basgesn + s + Bagige + Bagiege  Magiris
(n+2) (n+4) (é) k=1

+ Mygsa T o Hagng + Muggio + Bigere + Bagocts + Bugpocs T Mg + Mgk}

.7'5"/2

=(n+2)(n+4) (g)|

{d,+...+ 4g}.

‘Here the eight A4,’s correspond to the eight terms in the expression for y,. Each 4, is a
sum of 15 different types of terms. We now compute each 4,. We start with 4; which
is the easiest. Extensive use will be made of Lemmas 2.1-2.3.

First we use (2.5) to find

45=3 ‘ le , {2V1 05V 0u+4V,04Vion + V104 V10 + 2V,0y Vi 0 + 2V,04 Vi0p + 4V 05 V;sz]
= 5||Vel|? + 10||V<||* + 10x(o).
Next we have

n
A= — 8‘ }5; 1 {04010 + 60y @izk + 804,05 Qu}

= —§7° —Yrlle[” - e
Using (2.6) we obtain

n
As= 3“ ) kZ - {eu(Ryasp Braxs + Riuies + Ryasen Rypka)
LK., 0=

+ 0(2Ryagp Rugis + 4Ran Rjaier + 4 Roaies Ricass + 2Rigqser Rian) }
= §7llol]* + | R|* + e ®e0, B) + 440, B).
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To obtain A4¢ we use (2.4), (2.8), (2.9), (2.10) and get

n

‘AG = %25 2 {2(Vl Ria]b) (VI Rkakb) + 2(V1 Riajb) (Vk Rlakb) + 2(V1 Rialb) (Vk Rkajb)

..k, a. b=l
+ (Vi Ryap) (Vs Ruaio) + 20V Rigpp) (Vi Riaks) + (Vi Brases)® + (Vy Ryggs) (Vi Rias)
+ 2(V Rigs) (V; Rigis) + 2(Vs Ryos) (V; Brg) }

= -1 {2 > (V10a— Vb001) V300 + 2] aZb_l (V00— V50as) (V1000 — V2 05))

Jab=1

+2; Z l(vjea.b—vb@aj)z'l" Zb I(Vteab)2+2( Eb: 1(Vt@ab) (Vzsz"‘Va@m)2

@, b=
+ VR + 3| VE|* + | VE[* + %IIVRIF}

= —H§{IVell" + o) - HIVE[".
To calculate 4, we must use (2.16). We find

n
4,= 34 IZH {(Vlzi 0y) O+ 2(Vi Os) Qe + 2(V12/ 1) O T+ 4(V12/ Q) @+ 4(Vt2/ One) O + 2(V121 Ox) QU}
= 67AT+ 6{Ag, 0> + 18(V?7, 0> + 12p — 12{o®p, B).
Using (2.4), (2.16), (2.17), (2.18) we have

n

AG =8 Z {(Vizl R}a!b) Rkakb + (V‘zi Rjakb) Rjakb + (Vlzl R]akb) qu/b + 2(V‘21 ‘Riajb) Rkakb

i1k, ab=1
+2(VE Riako) Rias + 2(V5 Riais) Bipka + 2(Vi Riais) Rican+ 2(V5 Ryare,) Brais+ 2(V5 Rass) Riio}
= —8{CAp, 0>+ ¥AR, R)+2 3 (V50— Vic00) 0ar + 32, (Vi) Rios) Ryas

tab

-

+ 23 (Vic0m — Vis 0ar) Rias + 22, (Vi 06 — Vis 0ase) Bicasp + 22 (Vs 0c) Ry}
= ~8{8¢A0, 0> + #<AR, R) — 23 (Vi1 00) 0ar + 32 (Vi) Rias) Riaier + 82, (Vs €as) Rioso}
= ~${3¢A0, 0> + 3AR, B — (V*1, 0> — 20 + 2{o®¢, B>
+2(AR, R>—4{o, B>+ 8R + 2K}
= —8{8¢Ag, 0>+ B<AR, B> — (Vr, 0> — 25 + 2(o®p, B> — 4o, R> + 8R + 2}.
Further using (2.12)—(2.15) we have
A? = &g % 1 {'Rlalb R!b!c chm + Rmtb Rlbkc chka + Rtatb ijkc chja. + Rta!b Rtblc chka.

1.0,k 2 b, o=
+ B Ripiee Bicwa + Biogp Biviec Bicosa + Riagp Bppse Biccka + Rigip By Bicka + Biagp Broie Biceta
+ By Bt Bicka + Biagy Biic Brcsa + Biagp Broge Bicka + Riago Bieoso Brcta + Biagp Bicoee Bicsa
+ Ry Buse Ricia}
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= —8{6+ > (0ur Broice Ricka + Oap Riie Riccsa + 0ca Biasp Bivse + Oca Rragp B
+ 0pc Riagp Ricsa + Ove Biagy Rycia) + R
+ 2 (Buap Biie RBicka T Biagy Buone Brcsa + Biagy Biowo Brera + Biagp Buvse Bera
+ By Bipte Brcsa + Riag Fise Ricka + Riagp Ringe Ricoia) }
= — R0+ B+ Ko, B>+ 3 (Riap Riskee Ryowa + Riago Bive Ricsa + Rias Rpvico Ricica
+ By Bigto Bicna + Riag Biie Brcsa+ Biag Rivse Bicka + Riagy Rivse Bcia)}
= —#{e+ B+ Ko, B>+ 13 (Riap — Byas) Rucsa Rieo + 32, Biapp Broie( Richa — Rirea)
+ 12 Riop(Busse = Bine) Brcia + 12 (Bawrs — Bass) Bioeel Brera — Beca)
+ 13 (Riap — Bujas) Recsal Bt — Beste) + 13, B Brose = Bre) (Bicka — Roaors)
+2 B Busie Bicra}
=—%{e+ E+¥o, Ry + 32, RBiaw Bect Riosa
+ 32 Rosoy Ruvwe Ricsa— 2, Biago Ructerd Bega + Risea)
= — 3o+ B+Ko, B>+ 3B+ 3B~ 3 Rupo Ricoic Rocye
+ iZ (Rtalb - Ri/aa) (Rlckb - Ruccb) Ra]ck}
= — {0+ RE+Ke, B) ~ R+ 1> Riap Bicw Rajrc}
= —§e+ 3R+ Ko BY-R+1R)
= —He-Ke. B>+ R -3%

Finally, using (2.19), (2.20) and (2.21) we have

n
4,=~- ?i ,Zk . { Vi + 2V 0 + Vg0 + 2V 05 + Vi 0 + 2Vt 05 + 2Vijns 04

+ 2V 04 + 2V 0u}

= —H{2A%T + 23 Vipyv+ 23 Vit + 23 Vo + 22 Vi 0+ 22, Vi 0y}

= —§{6A%7 + 2||Vz||* + 4¢(V?7, ) + 2A% 7 + 2||Vr||2 - 8]| Vol + 8¢V, 0>
—4¢Ag, 0> + 12a(0) + 85 — 8(o®@e, B> — AR, B>+ 2<o, Ry —4R— R
+ A%+ Vol + 8x(0) + 4<V?7, o) — 6| Vo[> — 2¢ A, ) + 42 — 42 ®e, B>
—~<AR, By + 2o, Ry~ 4R - R}

= —8{9A%7 + 5||Vz||2 + 16{V*1, o) — 14||Vo||2 — 6<Ap, @) + 20x(0) + 12¢
~12{o®¢, B> —2(AR, Ry +4<o, Ry —8R ~ 2K}.

171

Adding up all the terms we get the expansion for §,,(r). Then integrating from 0 to r

we find that V,(r) is given by (3.2), completing the proof.
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For convenience we write down the expansions for ¥ ,(r) in dimensions 2 and 3. Our
computation makes use of the fact that there are fewer invariants of order 4 and 6 in these
dimensions. Furthermore we give the fifth term in the expansion of V,(r) for a surface.
This is an expression using the order 8 invariants. In fact {18] we have I(4, 2)=8. We
omit the long tedious calculations.

CoROLLARY 3.4. If dim M =2, then for each m€ M,

_ Kol ope_
V ult) = 720® {1 12r +720(2K 3AK)rt

(~8K®+ 30| VK||*+42KAK ~15A%K) s

161280
.___1___ 4 __ 2 _ 2 2 2 2

+ 55030106 (16K* — 6OKIVE* ~ 168K*AK + 112(AK)* + 168 V*K]|

+ 420¢V(AK), VK> + 1T0KA’K — 35 A%K) r® + o(rw)} . (3.3)

CoroLLARY 3.5. If dim M =3, then for each mE€M,

3
Voul?) =é%r~{l Ty 6300 (47% — 2||o||* — 9AT) #*
R S (wr“ ~ 96eloll* + 1282~ 120 [Vell*~ 72¢Ae, 05
1587600 ’

+ 45x(0) 4+ 135 "V'rll2 + 72tA1 + 54¢(V?1, g} — 45A? ) P+ O(r")} . (34)

These expansions follow upon substituting (2.22) and (2.23) into (3.2).

4. Proof of the conjecture in some particular cases

First we note that (1.1) implies

7=0, 4.1)
3|| BYj* = 8}l 42)

In fact (4.1) and (4.2) are equivalent to
Vulr) = or™{1+0(r%)}. (4.3)

In section 6 we shall show that (4.3) is weaker than (1.1).
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In the present section we prove (I) in several cases. Actually what we prove is slightly
stronger than (I) because we make use of (4.3) instead of (1.1).

THEEOREM 4.1. (I) is true provided any of the following additional hypotheses are made:

(i) dim M<3;

(ii) M has nonpositive or nonnegative Ricci curvature (in particular if M is Einstein);

(iify M is conformally flat;

(iv) M is a Bochner flat Kdhler manifold;

(v) M is a product of surfaces;

(vi) M is a 4- or 5-dimensional manifold with parallel Ricci tensor;

(vii) M <s compact and the Laplacian of M has the same spectrum on functions as that
of a compact flat manifold.

Proof. (i) For a surface M we have || R||2=2]lo]|2. Combining this with (4.2) we get at
once R=0.
Further let dim M >3. Then the Weyl curvature tensor C of M satisfies

4 2

Since C'=0 on 3-dimensional manifolds we get from (4.4) that || R||*=4||¢||®. Using (4.2)
we obtain (I).

(ii) If M has nonnegative or nonpositive Ricci curvature, then (I) follows at once
from (4.1) and (4.2). In particular (I) is true for Einstein manifolds and for M with non-
negative or nonpositive sectional curvature.

(iii) This case is a consequence of (4.1), (4.2), and (4.4) with C=0.

(iv) Let B be the Bochner curvature tensor for a 2n-dimensional Kéhler manifold
{n>1). Then we have

8 3 2 2
e} il many vy e A

B> = I &lf*— (4.5)
M is Bochner flat if and only if B=0. Then (n +2) || R||2=8|jo]|? which implies the required
result.

(v) Let M be the Riemannian product of the surfaces M,, 1=1, ..., p. Then we have
[Bl2=2 | R.]|> and |lg[2=2 lles||> Hence || R]|2=2|o]|?, just as for surfaces. As before
(I) is true.

(vi) Suppose M is a 4-dimensional manifold with parallel Ricei tensor. If M is reducible
then locally M = M3 x M3 or M = M3 x M* and (I) follows from (i) and (v). If M is irreducible
then M is an Einstein manifold and (ii) implies (I).

12 — 782905 Acta mathematica 142, Imprimé le 11 Mai 1979



174 A. GRAY AND L. VANHECKE

The proof when the dimension of M is 5 is the same, except that one must also take
care of the case when locally M = M2 x M®. But then both M2 and M3 must have constant
curvatures @ and b, respectively, because they are Einstein manifolds. An easy caloulation
using (4.1) and (4.2) shows that in fact a=5b=0, and so (I) holds.

(vii) Finally, let (M", g) be a compact n-dimensional Riemannian manifold and A
its Laplacian on functions. If {4} is the spectrum of (M, g) we have the following asymptotic
expansion [5, p. 215]:

£>0: 3 e htn (dnt) "2 S a,ff
k>0 i20

where the first three coefficients are given by
w=vol(,0) =3 [ 1V, a=gp [ URP-2lelr+5eav.
6 Ju 360 J

Hence (I) is true if 4, <0. In particular we obtain (vii).

5. The conjecture (I) for locally symmetric spaces

It seems quite probable that the conjecture (I) is true for all locally symmetric spaces.
Of course, this could be verified if one knew explicitly the curvature of all the irreducible
symmetric spaces. To our knowledge this has been done for the Hermitian symmetric
spaces [101, {81, the symmetric spaces of rank 1 (see for example [25]) and a few others,
but not in general,

Therefore we proceed in the following way. We introduce a class 4 of Riemannian
manifolds which contains all the nonflat symmetric spaces of classical type, and also a few
exceptional symmetric spaces such as the Cayley plane. The relation (1.1) turns out to be
impossible for any manifold in 4. This implies that (I) holds for manifolds of the form
R* x M where M € 4. In particular (I) holds for all of the classical symmetric spaces.

Definition. A4 is the class of Riemannian manifolds M for which
3| B||*-8|le]|* <O (5.1)
LeMma5.1. If M, and M,arein A then so is the product Riemannian manifold My x M,.

Proof. Let || R|j?, || B,||* and [|RBy)|* denote the length of the curvature operator for
M, x My, M, and M,, respectively. Similarly let ||o]|2, ]lo,[|® and [jos||? be the corresponding
lengths of the Ricei tensors. Then one checks that

URI* = NBof|*+ || Roll* and  fleli® = leafl® + fieafi®
Hence it is clear that if both M, and M, satisfy (5.1), then so does M, x M,.
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LeMMA 5.2. Let M be a symmeiric space and suppose that M € 4. Then the dual sym-
metric space M* i3 also in A.

Proof. The curvature operator of M* is just the negative of the curvature operator of
M. Thus the quantities 3| R||2—8]||g||* are the same for both M and M*.

LeMMa 5.3. If M€ A, then
(‘7.".2)7»/2

&)

jor all m€M and for a sequence of r tending to 0.

Vulr) =+

Proof. Let M € 4 and suppose
(n,’.Z)n/2

n
&)
for some m €M and all sufficiently small ». Then in particular equation (4.2) holds for m.
But this contradicts 5.1.

V,,,(f) =

COROLLARY 5.4. The conjecture (I) holds for all manifolds of the form M x R* with
MEe A.

Next we show that most (nonflat) symmetric spaces belong to 4.

LeMma 5.5. The class A contains the following manifolds:

(1) all symmetric spaces of classical type;
(2) all Hermitian symmetric spaces;
(3) all symmetric spaces of rank 1.

Proof. To verify that all Hermitian symmetric spaces are in 4, it suffices (using
Lemmas 5.1 and 5.2) to check that all irreducible Hermitian symmetric spaces of non-
compact type lie in 4. The curvature operators of the six types of irreducible Hermitian
symmetric spaces have been computed in [10] and [8]. Using the results in these two papers,
the quantities 7, {lg||2, || R||?, and 3]| R||2—8||¢||* can be computed. The results are given
in Table I.

Next we consider the symmetric spaces of rank 1. The complete power series ex-
pansions for the volume functions of these spaces have been given in [20]. From this the
first four terms in each of the power series are given as follows:
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Table I. Hermitian symmetric spaces

Complex

Type dimension 4 flell* fizl2 3 2)2~8el*

A1, mm’ —2mm'm+m)ax 2mm'(m+m')a? Smm'{l +mm’)o? —8mm’(2m?

lsm<m’ +2m'? + mm’ — 3) a?

A-II, imim—1) ~2m(m—1)%a 4m(m — 1)2 o2 4mfm — 1) —4mim —1)

m=2 X {m2—38m+4)a?  x(bm?—Tm —4)a?

A-III,  jmim+1) —2mim+1)2a  4mim+1)Po2 dmim +1) —dmim +1)

m>1 x(mP+3m+4)at  x(bm?+Tm—4)o?

A-1IV,, m —2mia 2mBo? 4m(3m — 2) a? —4dm(4m? - 9m + 6) &®
m=3

A-V 16 —192a 1 1622 864a? —6 62402

A-VI 27 —~ 488« 4 37402 3 13202 —~25 59602

The sphere S™(A) (with constant sectional curvature 1), or its dual:

Vairy= Z0
)
an—=1)4 5 nn=1)(En-T)2* , n(n—1)(36n*—112n+93)2°
* {1 “emre "t seom+n 45360(n + 6) r°+0(rs)}.
(5.2)

The complex projective space CP™u) (with constant holomorphic sectional curvature
u), or its dual:

_m L np o, m(Bn—=1)u® , n(36n°—2ln+4)u’ ,
Valr)= al 1 15" + 10 " 369250 P+ 00%;. (6.3

The quaternionic projective space QP"(v) (with maximum sectional curvature v), or
its dual:

7‘[1’2 2n
V=
_n(n+2)v , n(20n°+68n+29)v* n(T0n° +320n° + 276n + 64)»°
X {1 3@nt1) T 720@nt1) 45760 r*+ 0]

(5.4)
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Table I1. Symmetric spaces of rank 1

Real
Type dimension T leli® 2| 3| BJj* - 8(le]l®
S™MA n nin—1)1 n{n —1)242 2n(n ~1) A2 —2n(n—~1)(4n—T7) A2
CP™u) 2n nin+1)u n(n +1)2u2 2n(n + 1) u? —2n(n+1)(2n - 1)u®
QP™(v) 4n dn(n +2)v 4dn(n +2)22 4n(57;+ 1)»2 —4n(8n2 + 17n +29) 22
Cay P*({) 16 16(36)¢ 16(36)2(2 (16)236C2 —240(16)(36)(®

The Cayley plane Cay P2({) (with maximum sectional curvature {), or its dual:

248 2 3
(@) {l_g 2.{_&4;_7-4_2_7&‘.7_5_

Val(r)="4; 3" 715 7560

r® 4 O(rs)}. (5.5)

The quantities 7, ||o]|%, and 3|| B||2—8||¢||? for each of the symmetric spaces of rank 1
can be computed by comparing the power series (5.2)-(5.5) with (3.2) and using the fact
that each symmetric space of rank 1 is an Einstein manifold. The results are given in
table II above.

Now we consider the classical symmetric spaces. Each of the classical compact simple
Lie groups can be realized as a group of orthogonal matrices. A biinvariant inner product

on the corresponding Lie algebra is given by
(X, Y>=uatr (XY*).

This, in the standard way, induces a metric on each classical symmetric space of compact

type considered as a coset space. Then the curvature tensor of ¢, ) is given by Ryxy,=

KIW, X],1Y, Z]). From the formula for the curvature operator the quantities 7, |||,

| R||2, and 3]| R||2 —8||¢||? can be computed by brute force. The results are given in Table III.
Thus in all cases we see that 3]| R]|2—8||o||? is negative. Hence the lemma follows.
Combining Lemmas 5.1-5.5 we have

TurorEM 5.6, Let M be a Riemannian product of classical symmetric spaces, Herma-
tian symmetric spaces, symmetric spaces of rank 1, and R¥. If (1.1) holds for M, then M is flat.

COROLLARY 5.7. Let M be a locally symmetric space with dim M <9 and suppose (1.1)
holds for M. Then M is flat.

Proof. The only nonclassical symmetric spaces of dimension less or equal 8 are G,/S0(4)
and its noncompact dual. However these spaces are Einstein and so (I) holds for them, as
well as their products with R,

For general symmetric spaces we have also the following result:
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Table ITI. Classical symmetric spaces

Real
Type dimension T flell* I 2]|* 3| &||* - 8fjell*
S0(n) In(n—1) nn—-1)(n—-2)f 2n(n—1) 2n(n —1)(n—2)20? —10n(n—1)(n —2)242
x (n—2)3p3
8U(n) n2—1 an(n*-1) 16n%(nt — 1)52 8n(n—1) —8n(n—1)(13n
x (n® +8n ~ 8) B2 —8n +24)48
Sp(n) n2n+1) dn(n+1) 16n(2n +1) 8n(n® + 7002 —8n(29n® — 130n?
x(2n+1)8 x (n+1)3p —151n + 104) B2 +517n —296) 2

80(p +4q) Pq palp+q-2)f  pap+e-20*  2pa(2pg-p-9)f* —2pg(4p* +4¢°
S80(p) x SO(q) +2pg—13p ~13¢ + 16)g*
_Ulp+q) 2pg 2pq(p +9)B 2(p +9) paf? 8pg(pg +1)4? —8pq(2p? +2¢*
U(p) x Ulg) +pq-3)p?

Splp+g)  4pq 8pg(p+q+1)f  18pg(p+g+1)*p* 16pg(pg+6p — 16pq(8p® + 8¢*
Sp(p) x Sp(q) +6g 7)1 +13pq — 2p - 2¢ +29)
SU(n) Hn-1) nin-1)(n+2)f 2n%n-1) 2n(n —1)(n +2)252 —2n(n—1)(n+2)
80(n) x(n+2) x (n+2)p° x (6n —8)f2
SO0(2n) n{n—1) 2n(n-1)24 dn(n—1)3p 4n(n—1) —4n(n—1)(5n% —Tn —4)5?

U(n) x (n%—3n +4)8*
SU(2n) (n-1) 4n(n—-1) 16n3(n —1) 8n(n—1) —8n(n—1)
Sp(n) x(2n+1) x(2n+1)B x (2n +1)83 x (n® + 20n — 34) 42 x (2902 — 44n + 102) 52

Sp(n) ni{n+1) 2n{n +1)38 4n(n +1)388 4n(n+1) —4n(n+1)
U(n) x (n%+3n+4)58 x (Bn?+Tn —4)80

THEOREM 5.8. Let M be a symmeiric space and M* the dual symmetric space of M.
Then the volume function of M x M* satisfies

(nri n 0

4l
Qg T
n! k?o e

Valr)=
where dim M =n.

Proof. Let R be the curvature operator of M (at any point) and E* the curvature
operator of M*. Then R*= — R. Hence if we compute the volume expansion for M x M*
we see that the coefficients of r*"+4%+2 vgnish.

6. Manifolds with ¥, (r) = or*{1+ O(r%)}

In the previous section we showed that (I) is true if dim M <3 using only the nullity
of the second and third term in the power series expansion of V,(r). (I) need not be
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true when dim M >4. We show this by giving two examples of nonflat manifolds for
which
V() = wr™{1 +0(r%)} (6.1)

for all m €M and sufficiently small »>0.

6.a. A generalization of the Schwarzschild metric

The Schwarzschild metric in relativity is a spherically symmetric metric which is
Ricci flat but not flat. Specifically it is given in spherical coordinates by
-1
ds} = (1 - 2—:”) dr? + r*df? + »* sin® Odg® — (1 - —2?) d? (6.2)
(assuming the speed of light to be unity). There are generalizations of (6.2) which are Ein-
stein metrics or have scalar curvature 0.
If one changes the sign of the coefficient of d¢? in (6.2) then one obtains a positive
definite metric. Just as before this metric is Ricei flat but not flat. In fact let us consider

the metric
ds? = " dr? 4 r2d6? + 12 sin? O dg? + e di2. (6.3)

We shall compute the curvature of this metric for general A and ». Then we determine 4
and v so that (8.1) is satisfied.
The simplest method to compute the curvature of (6.3) is to utilize the Cartan structure
equations:
db,= Z’ w,A0, w,+w,=0,

dwu = zk wu‘ A wk/ + Qu. (6-4)

Then the sectional curvatures are the only nonvanishing components of the curvature
tensor of M and are given by

Qy=—K,0,A0,.
Specifically we take

0,=et*dr, 0,=rdf, O;=rsinOdp and 0,=eld:.

Then we obtain the following expressions for the sectional curvatures K, ,:
Eu=EKp= e, Ky=EKy= —ve?
18=R13=g A€ 24— figg 2’,"’5 ’

Ky= ,% (1—e%, Kyy=1e 'V —v"—20"), (8.6)
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It is easy to see that (6.3) is Einstein if and only if A’ ++»" =0 and

l”—2'2=§(e‘—1).

However we need a weaker condition, so we choose to set
b, b
A+ =2 b a constant. (6.6)
From (6.5) and (6.6) it follows that the scalar curvature 7 of the metric (6.3) is given by

1 B gy 2
T - (830U o (B 2+ dut

where #=¢~%. Then
4

Yy ob+4

is a particular solution of the differential equation =0 and for this solution we obtain
- %

(6 +2b+4)°
2+ b - 2- b*

rPOP+2b+4) TN PR +2b+4)

K y=K;3=0, Koy=Kgy=

Ky

Hence
8b2(5° + 8)
(6% + 2b+ 4)¥’

4b%(b% + 2)

fleli*= A+ 2T A I Rl|*=

It follows easily that 3]|R||2—8]¢]|*=0 if and only if 2=16 or b=0. Taking b= +4 we
obtain the two following 4.dimensional metrics:

ds} = Tdr? +r2(d6? +sin? 6 dg?) + (cr)ids?,
ds} = 3dr? + r2(d6? +sin? B dg?) + (cr)~4d2. (6.7)

Here ¢ is an arbitrary constant. For each of these metrics (6.1) holds at all points, but
neither of the metries is flat.
A lengthy calculation, which we omit, shows that for the metrics (6.7)

Valr)= 7—‘; {1+ A4, +0¢%}

where 4,0,
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2
6.b. A 5-dimensional manifold withV,,(r) = §1'1—;—5 {1+0(r%}

Next we consider the manifold M =82 x H2(c), where H?(c) is a surface with constant
negative curvature ¢ and 82 is the 3-dimensional sphere with a homogeneous metric con-
structed as follows. Let N denote the unit outward normal to the unit sphere 82 in R%.
Regarding R* as the quaternions we obtain tangent vector fields IN, JN, KN tangent to
S83. Let ¢y, ; and g be the 1-forms on 82 given by ¢,(X)=(X, IN), etc. We consider the
metrics of the form

(,)=otgi+ B2+ ok, (6.8)

«, B, v being constant.
The curvature of the metric (6.8) can be computed using the Cartan structure equa-
tions (6.4) together with the relations
Ao, =20, \Npg, do;=20x\@, dpx =20, gy
We obtain for the sectional curvatures of 83:

1
K,= peT (a + Bt — 8y* — 2267 + 20®)% + 28%%),

1
Kix= s (o =3t 4yt + 20300 20804 28, (6.9)

1
K= % (— 3o+ B+ p* + 2028 + 2a%p% —~ 28%%).

All other curvature components vanish.
Let 8%, B, y) denote S with the metric (6.8) and let

4
o+ g

Pr=f+a?, c=-—

Put M =8%4«, f, y) x H¥c). It is not difficult using (6.9) to check that for each m €M the
volume ¥, (r) satisfies (4.1).

Actually this construction yields a 1-parameter family of (normalized) metrics for
which

2 6
Vo(r) = 8’1'—5’ {1+0(%)}.
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7. Manifolds with V,(r) =or*{l+ O(r%)}

In order to find a manifold M such that V,(r) =cwr"*{1 + O(r®)} at every point we shall
first consider certain manifolds of dimension 2 and 3. Let M, be the set of matrices of the
form

1 = =z
01 y
0 01

with the left invariant metric ds? =da? +dy?®+ (xdy — dz)2. Also let M, be a space of constant
curvature —a, and M, be a space of constant curvature b. Here we require that dim M, =2,
dim M;=3, and that @, 5>0. Let

4,= Ty
B, =(—3||B|* + 8llol*)s
0, = (649 — 192{o®o0, B> +288(0, B) — 110K — 2008 — 491Vp||? + 4050(g) + 152 || VR||%) g,

Note that up to a constant factor B, is that part of the coefficient of #*** in the expansion
of V,(r) which does not involve t. A similar remark applies to C,.

Now let M =M% x M% x M} where «, f, y are integers. It is easily seen that V,(r)=
wr™{1 +O(r®)} at each point of M if and only if

dAl +ﬂA2 +yA8 = 0,
@B, +pB,+yBy =0,
aol +ﬁ03 +y03 =0. (7.1)

Thus we must find nontrivial solutions of (7.1) for which «, 8, ¥ are positive integers.
First we compute

4, =14 Bl="%: 0, =26,
Ay=—2a, By=4a? C,=—16a3
Ay =6b, By =60b2, C3=0.
Thus, if
4, 4, 4,
det{ B, B, B |=0
G, G G
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we must have

) (9a -~ 26)
10\22%+13/°
Assuming this, we solve (7.1) and obtain
84° _10(2q%+13)*

“=138 7= 3ppa—28) *

Now let 8 be an arbitrary positive integer and take @ =13/2. Then b=13/60, & =1328 and
y="15f. Thus
M =M% x MEx M3¥
is our required manifold. When =1, M has dimension 734.
It is an interesting problem to determine if there are 4-dimensional manifolds with
Vulr) =wr*{1 + O(r%)}.

8. Characterizations of spaces of constant curvature by volume functions

Let M(A) be an n-dimensional manifold of constant sectional curvature A=0. The
n-dimensional volume of a geodesic ball is given by

V()= f ' 8,(t) dt

0
for p€ M(A), where

8y(r)=

aanwall

if >0. If 1<0, sin must be replaced by sinh and A by |4|. See for example [20]. (8,(r) is
just the (n—1)-dimensional volume of the sphere of radius r and center p in M(4).)

We state the following conjecture:

(1II) Let M be an n-dimensional Riemannian manifold and suppose that for all me M
and all sufficiently small r>0, V,(r) is the same as that of an n-dimensional manifold of
constant sectional curvature A. Then M s also a space of conslant sectional curvature A.

We prove this conjecture in some particular cases.

THEOREM 8.1. (IIT) is true in the following cases:

(i) dim M<3;
(ii) M is conformally flat;
(ill) M i3 an Einstein manifold.
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Proof. Let 7;, ||o4||? and || B;||? be the appropriate functions for a space of constant
sectional curvature A. In fact

T =nmn—1)A, |el]2 =nn—1)222, || B;||? =2n(n—1)22 (8.1)
The hypotheses of (III) imply that 7, ||o||* and || R||? for M satisfy
T=n(n—-1)4, 3| R|?-8|g|*=—2n(n-1)(4n—"7)22 (8.2)

For dim M =2 the result follows at once from 7 =24. If dim M =3 or if M is conformally
flat, (8.2) and the vanishing of the Weyl tensor imply that

lell* =nn—122, [ = 20(n— 122 3)
Hence

&)=~ IIQII2

So the required result follows immediately from a result of [4].
Finally, let M be an Einstein manifold; then 72=nl|p|2. This and (8.2) give again
(8.3), proving the result.

9. Characterizations of the other rank 1 symmetric spaces

Let N(u) be a Kahler manifold with complex dimension n and constant holomorphic
sectional curvature 4+ 0. Then the volume function for N(u) is given by:

dm)" [ | 2n
Vyir, u)y= '5“72" {sm V—2’7 r}

i, )= ””) g {smh Vul r}2"

according to whether >0 or x4 <0. See for example [20]. We state

or

(IV) Let M be a Kdihler manifold with complex dimension n and suppose that for all
mEM and all sufficiently small r>0, V,(r) ts the same as that of an n-dimensional Kihler
manifold with constant holomorphic sectional curvature u. Then M has constant holomorphic
sectional curvature u.

There are two cases where we can prove this conjecture.
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THEOREM 9.1, (IV) is true in the following cases

(i) M is Bochner flat (n=>2);
(ii) M is an Einstein Kihler manifold.

Proof. Let 7,, [|o,|* and || R,||? denote the appropriate functions for a space of constant
holomorphic sectional curvature y. Thus

Tu=nm+Du, |ou)?=3nm+12u? ||R,|?=2nn+1)u (9.1)
The hypotheses of the conjecture imply that
T=n(n+1)u, 3||R|2-8|o||?=—2n(n+1)(2n—1)u2. 9.2)
First suppose M is Bochner flat. Then (4.5) and (9.2) imply

lloll® =4n(n+17u? || B||* = 2n(n+1)u*.
Hence
Rl = 5 el
n+1
and according to [13] M has constant holomorphic sectional curvature u.
For an Einstein Kéahler manifold M we have 72=2n/||g||2. This fact together with
(9.2) implies again

Il = = el

Hence M must have constant holomorphic sectional curvature yu.

Next let Q(v) be a 4n-dimensional Riemannian manifold locally isometric to quater-
nionic projective space or its noncompact dual, where =0 denotes the maximum of the
sectional curvatures in the positive curvature case and the minimum of the sectional
curvatures in the negative curvature case. Then the volume function for @(») is given by:

€ o —— 2
V,(r, v)=msm (*V;r)(2n cos (iV;r)+ 1)
or
(47)> inh* (3 2
Vp(f, ‘v)=-(2—n+—17!—|‘;T2—n smh (% l’l’l?’) (2n COSh (‘*Vl‘l'lf)'*' 1)

according to whether » >0 or » <0 [20].

The following question naturally arises: is @(v) characterized by its volume function
among manifolds with holonomy group contained in Sp(n)-Sp(l), n>1? The answer is
yes, in contrast to the characterizations of 8"(1) and CP"(u).
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THEOREM 9.2. Let M be a Riemannian manifold whose holonomy group is o subgroup
of Sp(n)-8Sp(l), n>1. Further, suppose that for all mEM and all sufficiently small r>0,
V,.(r) is the same as that of Q(v). Then M is locally isometric to Q(v).

Proof. The key fact is that for n>1, a manifold whose holonomy group is contained
in Sp(n)-Sp(l) is automatically Einstein [3]. See also [22]. Hence if ¥ ,(r) coincides with
V,(r, »), then a computation shows that

2
- e ¥
r=dn(n+2)», ol ™

and so

2
2 TBn+1)
l dn(n+2)¥

In other words, the 7, [|g||%, and || R||? of M are the same as the corresponding functions on
Q(»). That M is locally isometric to @(») then follows from a result of [36].

Finally, we need not formulate a similar theorem for manifolds with holonomy group
contained in Spin (9), because such manifolds are automatically flat or are locally iso-
metric to the Cayley plane or its noncompact dual [1], [9].

10. Topological characterizations of compact 4-dimensional manifolds

In this section we consider some topological implications of the different conjectures
and give some characterizations of 4-dimensional compact manifolds.
First we consider a compact oriented 4-dimensional manifold M such that

Vm(r)=y—t—;7—.-‘{1 +0(r*)} (10.1)

for all m €M and for sufficiently small #>0. Then we have

TurorEM 10.1. Let M be a compact oriented 4-dimensional manifold such that V ,(r)
satisfies (10.1) for all m€M and sufficiently small r>0. Then
M) < -3 M),
where y(M) and T(M) denote the Euler characteristic and signature of M. If x(M)= —§|v(M)|
then M is flat.

Proof. It is well-known [5, p. 82] that

1
M) =5 L{IIRII*—MIeII’H*}dV- (10.2)
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Hence it follows from (10.1) and (10.2) that
. 2
2MM)y= =y fM [B)*dv. (10.3)

Further, the Hirzebruch index formula for the signature 7(M) of M states that

1
T(M)=WJ‘M(Q%2+ +Q§4).

By evaluation of the integrand on the oriented orthonormal frame {e,, e,, ¢;, €,} We obtain

1 1
(M) = 0672 “%J Mchz ByxundV = 9672 fM (R, R%5dV, (10.4)

% being the Hodge ¢ -operator determined by the given orientation.
According to the decomposition for curvature tensors (see for example [19], [34]) we

have
R=R,+R,+R,
with
By% =R, BRy%=—R, R,%=-—%R,
Hence
R¥x =R,—R,+ R,%
and

<Rs R*> = uRlua_ "‘Rﬂuz'*'(Ru» Rw*)-

Now <(R,, R,%)>=4tr (RL%)m4tr (R, R,)=—4tr (R4 %)=0. Hence (R, R*)=
[| B,]|2 = || Ry||%, and so || R|2><R, R ). The result follows from this, (10.3) and (10.4).
Next suppose y(M)= —}|t(M)|. This is equivalent to
[t re>+1RIYaT <0
M

or

| @iz iz ar<o.
Hence R,=0 and M is an Einstein manifold. But then M is flat.

The proof of Theorem 10.1 yields also the following

CoROLLARY 10.2, Let M be a manifold satisfying the same hypotheses as in Theorem
10.1. Then y(M) <O and y(M)=0 if and only if M is flat.

Furthermore we have
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CoROLLARY 10.3. Let M be a compact 4-dimensional manifold which admits a metric
such that the associated volume function satisfies (10.1). If M also admits an Einstein metric

then all Einstein metrics are flat.

Proof. y(M) >0 for any 4-dimensional manifold which admits an Einstein metric [3].
The result follows now from Corollary 10.2 since y(M)=0.
We have a stronger result for compact 4-dimensional Kahler manifolds.

THEOREM 10.4. Let M be a compact 4-dimensional Kdihler manifold such that V,(r)
satisfies (10.1) for all m € M and sufficiently small r>0. Then

a(M) =T(M) = $y(M) <0
where (M) denotes the arithmetic genus of M. The equality sign holds if and only if M is flat.

Proof. This follows easily from the following formulas (see for example [13])
1 2 2
(a0 = — g, [ ORI - 2ol av,
= _1__ 2__ 2 2
)= gims [ (RISl + 3¢ av. (105)

Here M has the orientation induced by the almost complex structure.
Next we consider compact oriented 4-dimensional manifolds such that

it
V()= 5 {1+ o0+ frt+ 0%} (10.8)
for all m€M and sufficiently small »>0, where « and f are the same as in the volume
function of a 4-dimensional space of constant sectional curvature 4, that is

A 13
o 3 and ﬁ—2401.

THEOREM 10.5. Let M be a compact oriented 4-dimensional manifold whose volume func-
tion satisfies (10.6). Then

20 < ~ He(20)] + 32 vol ().

The equality sign holds if and only if M is a space of constant sectional curvature A.
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Proof. Using (8.1), (8.2), (10.2) and (10.6) we obtain

A(M) = — f 122y + 22 volcan)
84n® |, 8n? ‘

Further we let 1 denote the identity transformation and put
T

(Thus the scalar curvature of B is 0 [19].) Then we have

2'2
2=~ iy [ NRIPa7+3Evatan)

since (&, 1> =0, <1, 1> =24 and 72=14442. Now we get the required result by proceeding
in the same way as in the proof of Theorem 10.1 using £ in place of R.

COROLLARY 10.8, Let M be a manifold satisfying the hypotheses of Theorem 10.5. Then
12
2(M) < 3 vol (30,

with equality sign if and only if M <s a space of constant sectional curvature A.

It is also easy to prove the following

CoroLLARY 10.7. Let M be a compact 4-dimensional manifold which admits a metric
such that the associated volume function satisfies (10.8). If M admits an Einstein metric then
all Einstein metrics have constant sectional curvature.

Finally we consider a compact 4-dimensional Kéhler manifold with volume function
7521‘4
Valr) ==~ {1+ art+ frt+ 0%} (10.7)

for all m€ M and all sufficiently small >0, where & and B are the same as in the volume
function for a 4-dimensional space of constant holomorphic sectional curvature u, that is

o B "
& 6 and f 80"

13 — 782905 Acta mathematica 142. Imprimé le 11 Mai 1979
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TaEOREM 10.8. Let M be a compact Kihler manifold whose volume function satisfies
(10.7). Then
2
(M) = T(M) = by (M) < é‘—n, vol (M).

The equality sign holds if and only if M is a space of constant holomorphic sectional curva-
ture u.

Proof. The result follows from (9.1) and (10.4).
Using a result of [13] we obtain

CoROLLARY 10.9. Let M be a compact complex analytic manifold of complex dimension
two which admits a Kdhler metric such that the associated volume function satisfies (10.7). If
M admits an Einstein Kdhler metric, then all Einstein Kdhler metrics have constant holo-

morphic sectional curvature,
Finally we prove a theorem concerning 2n-dimensional Kahler manifolds,

TuEoREM 10.10. Let M be a 2n-dimensional compact Kdhler manifold with nonnegative
generalized Chern number c,[F1*~2(M). (F is the Kdhler form.) Then the conjecture (I) is true.

Proof. Let F denote the Kihler form and y, the second Chern class of M. Then [5]

. -2)!
&l FI*(M) = fMya NFE= 9‘377;} fM{IIRII” = 4flell*+ < a¥. (10.8)

Suppose ¢,[F]"~2(M) is nonnegative. Then we obtain from (4.1), (4¢.2), and (10.8) that

f IB[Pav<o
M
and hence R=0.

11. Characterizations of locally symmetric spaces by volume functions

In this section we prove some results concerning volume functions and locally sym-

»+8 in the power

metric spaces. This is the first time we make use of the coefficient of »
series expansion of V,(r). Our theorems are analogous to those of [33] for the spectrum of

the Laplacian.

TuEOREM 11.1. Let M be an n-dimensional Einstein manifold with n=4 or 5 and
suppose M has for all mE€M and all sufficiently small >0 the same volume function as an
n-dimensional locally symmetric Einstein space M'. Then M is locally symmeiric.
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Proof. For an Einstein manifold we have

T
e=_g v =nlel (11.1)
and so
—
e= n’
T
. B>=_[IBI', ¢ (11.2)
- T
Then (11.2) and (2.18) imply
(AR, Ry= 27: |BjE - B~ 4R. (10.3)

Further on an n-dimensional manifold with » <5 the 6-dimensional Gauss—Bonnet
integrand vanishes and so (2.24) holds.
On a 4-dimensional Einstein manifold (2.24) reduces to

3 .
%*—31"R"2+4R—8R=O. (11.4)
(11.3) combined with (11.4) gives

E= ——+ R -3<AR, B,
(11.5)

1 s 1
R=-o1 7||R|| g (AR, RB).

T _
48
For a 5-dimensional Einstein manifold we proceed in the same way and obtain

7 2
-5-"5‘{"13" +4B— 8R 0,

f= -

-—

|R||=- Z(AR, R}, (11.6)

30 30I

.
120 120

R=—-— =1l R|*- <AR, R,

Now let M’ be a locally symmetric Einstein space of dimension 4 or 5 and suppose
that for all m€M and sufficiently small r, M has the same volume function as M’, Then
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the equalities of the corresponding coefficients of #"*% and s"** in the two expansions
imply that
v=7 fell*=le’ll*. &I* =] 2> (11.7)

In particular | B||? is constant and so
(AR, Ry = — ||VRJJ2. (11.8)

Then, using (11.7), (11.2), (11.5), (11.6), (11.8) and the equality of the coefficients of r"+®

in both expansions, we obtain
IVE[~o.

Hence the result follows.

Of course a 3-dimensional Einstein manifold has constant curvature and so it is
automatically symmetric, which is the reason that we considered only 4- and 5-dimensional
manifolds in Theorem 11.1, However, for 3-dimensional manifolds we have a stronger result:

THEEOREM 11.2. Let M be a 3-dimensional manifold with the same volume function as
a locally symmetric 3-dimensional manifold M’'. Assume also that o{g) =0 and that §=>g’.
Then M is also locally symmetric.

Proof. We use the special expansion (3.4) for 3-dimensijonal manifolds. Equality of the
coefficients of #* and #* in the two expansions implies that

t=1" and [le* = [[e’[[* (11.9)

Since M’ is locally symmetric, (11.9) implies that v and ||g||? are constant. In particular
Ve]j2 =0, (11.10)
{Ag, 0> +|| Vel = $Ajo]lt = 0. (11.11)

Next (11.9), (11.10), (11.11) and the equality of the coefficients of #° in the two expansions
imply that
1285 +§ || Vol[2 +46ax(0) = 128¢". (11.12)

Finally assume p=>9’ and a(g)=0. From (11.12) it follows that M is locally symmetric.

12, Mean curvature and geodesic spheres

Let h,(exp,ru) denote the mean curvature of a geodesic sphere of radius r>0 and
center m with respect to the outward normal. Put H,(r) =1""1 §|,4=1m (€Xppru)du. Here
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H,(r)r"™ is the integral over the unit sphere in the tangent space of the mean curvature
of a geodesic sphere of radius r>0. It should be remarked that this is not the same as the
integral over the geodesic sphere itself of the mean curvature. The latter integral is just

d2
‘—l;z Vm(f) .

See [26].

We compute the first four terms in the power series expansion of H,(r).

LemMaA 12.1. Let m€M and let exp,,(ru) be a point of the geodesic sphere with center m

and radius r. Then the mean curvature h,, of this geodesic sphere at the point exp,, (ru) is given
by

’

-1, (6
ufoxpa ) ="+ () (cxparu)
where 0=w, , , and 0’ is the radial derivative of the function r—>0 (exp,, (ru)).

Proof. See for example [5, p. 134]. Note that &, (exp,,(r«)) is essentially the Laplacian
of the distance function.

Lenvma 12.2. We have
hin(eXpy, (ru)) = n__;l oy + g+ oy 1+ oy 1t + 05+ O(r%)
where

n
oun==% Z gy(m)a,a,
f,1=1
n
=~} 2 Viou(m)a,a,a,
4.1, k=1

n n
w=—% 2 {9V¢210m+2a§134a/oRmb} a a0y,
o Qwe m

th k=1

oy = something irrelevant,

n

==, > 1 Vheut 3 ViR BrawtH 3 ViRV B

1.k 10 0~1

n
+3 > , By Bisie Rhcna} 0y @y Uy By Qg B,

a.b, c- m

Proof. Put =1+ 72+ 373+ .... Then

4

% =2B,r+ 37 + (48, —26%) * + 5(Bs— B2 Bs) e+ (685 — 60284+ 263 — 3}%) 4 0(7'6)-

The result follows from (3.1) and Lemma 12.1.
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THEOREM 12.3. We have

Hyr) =11 f h(oxpp () du

s 1(1)
T 2

—_— __;,__ 2 2 4
it Sonn T 3) (B[ R|I*+ 2l|e]|* + 18A7) *

= neor*2 {n— 1-

1
t Sa0n(n+ 2) (n+ 4)

— 25a(p) — 45A% 7 — 25|| V1|2 — T2(V?7, o> — || Vo[> + 6<Ag, @

(— 426+ 4R, B> +4¢0, By — 0B -4k

—30¢AR, B> —%||VR|]>) »*+ 0(r8)} (12.1)

Proof. This follows immediately using Lemma 12.2 and the formulas in the proof of

Theorem 3.3.
We have at once

THEOREM 12.4. For sufficiently small r>0 we have H,(r) >0, If >0, then H,(r)<
n(n—1)wr"2, for sufficiently small r>0.

TEEOREM 12.5. Let M be a compact n-dimensional manifold such that

H (r)= nwr"‘z{n—— 1- 3

ln 2+ O(r")}m (12.2)

for all m €M and all sufficiently small r>0. Then M is flat.
Proof. From (12.1) and (12.2) it follows that
18Ar = — (3] B||2+2[l¢][?), (12.3)
and so the result follows at once from the maximum principle.

THEOREM 12.6. Let M be an n-dimensional manifold such that

— n-2 — _1 2 ]
H,(r)=nor {n 1 3nr +O(r )}

m

for all m€ M and all sufficiently small r >0 and suppose T is constant. Then M is flat.
Proof. This is immediate from (12.3) with Ar=0.

CoROLLARY 12.7. The conjecture (11) is true.

In the same way as in sections 8 and 9 we deduce from (12.1):
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TeEEOREM 12.8. Let M be an n-dimensional manifold such that
H,(r) = nwor"2{n—14ar? + fré + 0(r%)}

for all m and all sufficiently small r >0, where oc and B are the same as for a space of constant
(constant holomorphic) sectional curvature A. Then M has constant (constant holomorphic) sec-

tzonal curvature.

We also remark that the coefficient of #"** in the power series expansion of H,(r)
may be used to obtain theorems for locally symmetric spaces analogous to those of section
11.

13. Growth functions of hypersurfaces

Let M be a compact orientable hypersﬁrface of an n-dimensional Riemannian mani-
fold M. For small >0 denote by A(s) the (n—1)-dimensional volume of the hypersurface
at a distance s from M, in the direction of a chosen normal. In [30], [38] the following
results have been proved:

TrEOREM 13.1. Suppose that for any compact orientable hypersurface M of M the
function A(s) i3 linear for small s >0. Then M is flat and dim M =2.

THEOREM 13.2. Suppose that for any compact orientable hypersurface M of M we have
A"(s)+cA(s) =0 for small $>0. Then M has constant curvature ¢ and dim M =2.

See also [15], [26], [28], [29] for related results. In each of these theorems a condition
on the function 4 is required for every hypersurface. We shall show that it is only neces-
sary to assume that A satisfy a differential equation for hypersurfaces of the form G, (r) =
{p€M |d(p, m)=r} for m€M and small r>0.

The point is that once one has the power series expansion for the volume function
V(r) the results of {15], [38], [30] can be strengthened and the proofs simplified.

TaEoREM 13.3. Suppose that for all m€M and all small r>0 the growth function A(s)
of each hypersurface G,(r) satisfies A"(s)+cA(s)=0 for small 320, where ¢ 13 a constant.
Then M has constant curvature ¢, and dim 3 =2.

Proof. We do the case when ¢>0. The proofs for ¢ =0 and ¢ <0 are similar.
The (n—1)-dimensional volume of G,(r) is

Sulr)= 2 Valr).

Moreover A(s) =8,,(r+8). Suppose now that 4” +cA =0 where ¢>0. Then

A(S) = a,(r) cos Ves +bp(r) sin Ves.
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Using the fact that A(0)=8,,(r) and A(—7)=0 we can determine a,(r) and b,(r). Thus

A(s )= smV—(.9+r)
sin Vt_:r
On the other hand reversing the roles of  and s we have

A(8s) =8 (r+ )— sin Ve(s+7).

lfs
It follows that
Sul?) _ Sals) _
sin V_r sin Ves
a constant. Therefore
8p(r) =c,sin Ver.

From the power series expansion of S,(r) we see that

dim M =2, c,,,=2—n

[

for all m, and so M has constant curvature c.
In the same way we strengthen another result of [15].

TREOREM 13.4. Let M be an n-dimensional Riemannian manifold (n>2) such that for
all m €M and all sufficiently small r > 0 the growth function A{s) of each geodesic sphere Gy(r)
satisfies the differential equation

A" 40y A" e A" +cyd =0, (13.1)

where the ¢;'s are functions of s. Then the dimension of M must be 2 or 3 and M is a space of
constant curvature.

Proof. Since A(8)=8,(r +8) we have by Theorem 3.3 that

A(s) =w{n(r+ 8" 1+ A(r+ 8)"*1 + B(r+ s)"** + O((r + 8)**%)}, (13.2)
where
1
=1 g B- sgo )~ SIBI+ Sl + 57"~ 180)

We differentiate (13.2) with respect to s, use'(13.1) and set s=0. In this way we obtain a
power series expansion in » which must be identically zero. Setting the coefficients of this
power series equal to zero, we obtain certain relations. The first such relation implies that
the dimension of M is 2 or 3. The next five conditions imply that M has constant curvature.
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