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A standard technique in classical analysis for the study of eontinous sub-solutions 

of the Dirichlet problem for second order operators may be illustrated as follows. Suppose 

it is to be shown that  a continuous real function ](x) is convex (respectively, striely 

convex) at x0; then it suffices to produce a C ~ function g(x) such that  g(x)<<.](x) near x 0 

and g(Xo) =/(x0), and such that  9"(xo) >/0 (respectively g"(xo) >1 some fixed positive constant). 

The main point of this procedure is to sidestep arguments involving continuous functions 

by working with differentiable functions alone. Now in global differential geometry, the 

functions that  naturally arise are often continuous but not differentiable. Since much of 

geometric analysis reduces to second order elliptic problems, this technique then recom- 

mends itself as a natural tool for overcoming this difficulty with the lack of differenti- 

ability. In a limited way, this technique has indeed appeared in several papers in complex 

geometry (e.g. Ahlfors [1], Takeuchi [20], Elenewajg [7] and Greene-Wu [11]; cf. also 

Suzuki [19]). The main purpose of this paper is to broaden and deepen the scope of this 

method by making it the central point of a general study of nonnegative sectional, Ricei or 

bisectional curvature. The following are the principal theorems; the relevant definitions 

can be found in Section 1. 

Let M be a noncompact complete Riemannian manifold and let 0 E M be fixed. Let  

{Ct}tG1 be a family of closed subsets of M indexed by a subset I of R. Assume that  et = 

d(0, C t ) ~  as t - ~ ,  where d(p, q) will always denote the distance between p, qEM 

relative to the Riemannian metric. The family of functions ~t: M-~R defined by ~t(P)= 
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et -d(p ,  Gt) is Lipsehitz continuous (with Lipschitz constant 1) and also satisfies 

]B~(p)] ~<d(p, 0) (by the triangle inequality). I t  is thus an equi-continuous family uni- 

formly bounded on compact sets. By Aseoli's theorem, a subsequence of {~/~}, to be 

denoted by {B~}, converges to a continuous function ~/: M ~ R ,  the convergence being 

uniform on compact subsets of M. To fix the ideas, it may be helpful to keep in mind 

two special cases. 

Example o~. I = R  and C,={y: d(O, y )=t}=the  geodesic sphere of radius t around 0. 

Example ~. Let 7: [0, oo )~M be a ray emanating from 0, i.e. T is an arclength- 

parametrized geodesic such that  7(0)=0 and each segment of 7 is distance minimizing. 

For each tER, let Ct={7(t)} (i.e., the one-element set consisting of ~(t)); then every 

subsequence {~n} converges to a unique ~/ in this case. This ~7 is called the Busemann 

]unction o] 7 (Cheeger-Gromall [4] and Eberlein-O'Neill [6]). In order to state the theorems, 

two definitions are needed. A continuous function ]: M-~R is called essentially strictly 

convex (respectively, essentially strictly subharmonic) iff for every C oo function Z: R-~R 

satisfying X > 0, X' > 0 and Z" > 0, Zo] is strictly convex (respectively, strictly subharmonic). 

Essentially strictly convex (subharmonie) functions are convex (subharmonic), but the 

converse does not hold in general. 

THEOREM A. Let M be a complete noncompact Riemannian mani]old. No~tion as 

above: 

(a) I] M has nonnegative sectional curvature, then each ~1 is convex; ]urthermore, *1 is 

essentially strictly convex at the points where the sectional curvature is positive. 

(b) I] M has nonnegative Ricci curvature, then each y is essentially strictly subharmonic; 

]urthermore, ~1 is strictly subharmonic at the points where the Ricci curvature is positive. 

(c) I f  M is a K•Ider manifold with nonnegative bisectional curvature, then each ~7 is 

plurizubharmonic; ]urthermore, ~ is strictly plurisubharmonic at the points where the bisec- 

tional curvature is positive. 

In the next theorem, it is important to note that  a general ~ is never bounded from 

above (Lemma 6 of Section 1). 

THEOREM B. Let M be a noncompact complete Riemannian mani]old and let K be a 

compact subset of M. Fix an ~7 as above. Then there exizts an aoER , a o depending only on K,  

such that (a), (b) and (c) o] Theorem A hold with M replaced by M -  K in the hypothesis and 

with the conclusion asserted only ]or the open set {~ >%}. 
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THEOREM C. Let M be a complete noncompact Riemannian mani/old and let K be a 

compact subset o/ M. 

(a) I / t he  sectional curvature is nonnegative everywhere and is positive in M - K ,  then 

each 7 is essentially strictly convex. 

(b) I~ the Ricci curvature is nonnegative everywhere and is positive in M - K ,  then each 

7 is strictly subharmonic. 

(e) I / M  is a Kghler mani/old with everywhere nonnegative bisectional curvature which is 

positive in M - K ,  then e ~ is strictly plurisubharmonic /or each 7. 

Theorem C together with Greene-Wu [13], [14] yield two immediate corollaries; the 

first is due to Cheeger-Gromoll [4] and Poor [17] while the second has its roots in 

Greene-Wu [12] and [14]. 

COROLLARY 1. I /  M is a noncompact complete Riemannian mani/old whose sectional 

curvature is nonnegative everywhere and is positive outside a compact set, then M is di//eo- 

morphic to Euclidean space. 

COROLLARY 2. I/ M is a noncompact complete Kghler mani/old such that/or some 

compact set K c M ,  the bisectional curvature of M>~O in K and >0 in M - K ,  and the 

sectional curvature o/ M >10 in M - K ,  then M is a Stein mani/old. 

The emphasis on Corollary 1, as in Greene-Wu [13], is that  while the Cheeger- 

Gromoll-Poor proof of this involves intricate geometric arguments, the present proof is 

function-theoretic and is conceptually transparent. I t  goes as follows: Let 7 be the 

Bnsemann function of a ray issuing from 0 (Example ~ above) and let ~ =sup 7, where 

sup is taken over all rays issuing from 0. By Cheeger-Gromoll [4], ~ is an exhaustion 

/unction (i.e., for every cER, {xEM: ~(x)~c} is a compact set; this is a simple argument 

using part (a) of Theorem A). By (a) of Theorem C, Xo~ is a strictly convex function where 

X is any C ~ function on R obeying Z > 0, Z '>  0 and Z~> 0. By Theorem 3 of Greene-Wu 

[13], the existence of this strictly convex exhaustion function implies that  M is 

diffeomorphic to Euclidean space. (In outline, the proof is as follows: Xo~ can be 

smoothed to a C ~ strictly convex exhaustion function ~, say; ~ being strictly convex 

implies all its critical points are nondegenerate; ~ being an exhaustion function implies 

there can be only one nondegenerate critical point P0 for ~; mapping the integral curves of 

grad ~ in M -  (P0} in the obvious manner to the radial rays of R ~ gives a diffeomorphism 

between M - ( p o }  and R~-{0}; a minor technical adjustment then extends the diffeo- 

morphism to one between 1K and It".) 
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The proof of Corollary 2 is equally simple. Let  ~ be as above; sectional curvature 

being nonnegative on M - K  implies tha t  ~ is an exhaustion function (Cheeger-Gromoll 

[4] and Greene-Wu [10, Proposition 3]; it is a simple argument using part  (a) of 

Theorem B). Then (c) of Theorem C implies that  e ~ is strictly plurisubharmonic. Grauert 's 

solution of the Levi problem in the form given by Narasimhan [16] then concludes the 

proof. Note that  this corollary slightly extends Theorem 3 of Greene-Wu [14] and at 

the same time implies both part  (B) and part (C) of Theorem 1 in Greene-Wu [12]. In  

the above proof, the assumption of the nonnegativity of the sectional curvature in M - K  

was only needed to insure that  ~ is an exhaustion function. However, for the validity of 

Corollary 2 itself, it is natural to conjecture tha t  this assumption is superfluous. 

When ~ is the Busemann function of a ray (Example ~ above), (a) of Theorem A is in 

Cheeger-Gromoll [2] and Greene-Wu [10], a weaker version of (b) (the subharmonicity of 

~) is in Cheeger-Gromoll [4], the positive half of (c) is in Greene-Wu [14], and finally (a) 

of Theorem B is in Greene-Wu [13]. These are the basic facts governing the behavior of 

noncompact complete Riemannian manifolds. Note however that  these papers had to 

devise an ad hoc method for each case, which seems to work only for that  particular case 

and only for the Busemann function. The method of this paper is by comparison ele- 

mentary, simple, and more powerful as it applies to a general ~ and to all cases all at  once. 

Thus the study of nonnegative curvature on noncompact manifolds is beginning to 

submit to order. A pertinent remark is that  the original motivation for considering such a 

general ~ was that ,  by allowing the arbitrary closed sets (Ct) to enter into the definition 

of ~ (rather than just a ray), the resulting ~7 might turn out to be an exhaustion function. 

(Thus far, the only exhaustion functions which can be constructed this way are those 

by Cheeger-Gromoll [4] on manifolds of nonnegative sectional curvature using only the 

Busemann functions; see also the generalization by Greene-Wu [10] to the case of non- 

negative curvature outside a compact set as well as the proofs of Corollaries 1 and 2 above.) 

The available evidence suggests that  the picture is more complicated than meets the eye, 

but this extra generality may prove to be useful in the eventual solution of this problem 

(cf. the remark after Lemma 7 of Section 1 in this regard). Such a solution would have 

many applications. 

The scope of the present method is by no means confined to nonnegative curvature. 

As an illustration, Section 3 gives some sample theorems indicating other possible applica- 

tions such as the study of minimal hypersurfaces in compact manifolds of nonnegative 

Ricci curvature or the global study of the heat kernel on complete manifolds. In  a related 

manuscript (Wu [21]), this method is also applied to yield a general criterion for the 

volume of a Riemannian manifold to be infinite. Moreover, this method is particularly 
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sensitive to the presence of positive curvature when everywhere nonnegative curvature is 

already assumed; the implication of these considerations in the theory of q-complete 

spaces of Andreotti-Grauert [2] will be taken up in a future publication. 

The theorems of this paper were obtained in January  1976, contemporaneously with 

those of a related paper Greene-Wu [14]. Due to an unfortunate set of circumstances the 

appearance in print of both papers has been much delayed. 

I wish to thank Kuniko Weltin for help that  made this paper possible. 

Section 1 

Here is a collection of definitions. Unless stated otherwise, M is a Riemannian mani- 

fold and D its covariant differential operator. Given I~EM and a function ]: M-~R 

continuous near p, three numbers C/(p), S](p), and P](p) will now be introduced to measure 

the deviation of / from being convex, subh (abbreviation for subharmonie) and psh 

(abbreviation for plurisubharmonic) at p, respectively; here as later, the third case will 

always be understood to be in the context of a K~hlerian M. 

Let XeM~, [X[ =1 and let ?: ( -a ,a )~M be a geodesic such that  2(0)=X.  The 

extended real number C](p; X) is defined to be: 

C/(p; X)-- l im inf ~ {[(/o?)(r) + (/o?) ( - r)] - 2(/07) (0)}, 
r--~) 

and then 
Vl(p) -- inf el(p; X) 

X 

where the infimum is taken over all unit vectors X in M~. 

Next recall that  the Green's function a~ of the ball B(r) of radius r around p is the 

fundamental solution of the Laplace-Beltrami operator A with singularity at x (i.e. 

Ao~x=(~x) which vanishes on aB(r). Then: 

S/(')'~liminf2(dimM)lfor-,.o r' ,(T) f~da~-/(,)},  

where ~e is the usual star operator in Hodge theory. 

Now let M be in addition a K~hler manifold. With the same setting as above, let 

][L be the restriction of / to a 1-dimensional complex submanifold L through p. Then 

S(]]L)(p) is defined via the induced KRhler metric on L, and by definition, 

Pt(p) = inf S(ll L)(p), 
L 

where the infimum is taken over all 1-dimensional complex submanifold L of M through P. 

(Cf. Takeuchi [20], Elencwajg [7], and Greene-Wu [14].) 
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In general, - c~ ~< {C/(p), S/(p), P/(p)} ~< + c~. Assume/rom now on that all/unctions 

are continuous. Recall that  given a continuous func t ion / :  M ~ R ,  then by definition: / is 

convex iff its restriction to every geodesic is a convex function of one variable, ] is subh 

iff for all sufficiently small geodesic ball B, any harmonic function h on B which agrees 

with / on 0B satisfies h>~] in B, and ] is psh iff its restriction to every 1-dimensional 

complex submanifold of M is subh; ] is strictly convex (respectively strictly subh, strictlypsh) 

iff in some neighborhood of each point of M, f is the sum of a convex (resp. subh, 

psh) function and a C ~ strictly convex (resp. strictly subh, strictly psh) function. The 

latter is understood in the sense of Dzcr > 0, A~ > 0, and ~0:r > 0 respectively. A trivial but  

crucial definition is the following: a real-valued function g is said to support / at p E M  

iff g is continuous near p, g ~ l  and g(p)--~(p). The following lemmas shed light on this 

string of definitions. Their proofs are either standard or straightforward and hence omitted. 

Let a continuous funct ion/ :  M ~ R  be given. Then: 

LEMMA 1. 1/ / is C a at p, then C/(T; X ) =  (to~)" (0) where ~ is a geodesic such that 

]p] =1 and p(0)--X, C/(p)=minxD~/(X,  X)  where X runs through the unit vectors at p; 

S/(p) =A/(p); and /inally P/(p) =4 minx O0/(X, X)  where X runs through all unit tangent 

vectors o/ type (1, 0) at p. (C/. Feller [8] /or  8](p) and Oreenc-Wu [9] /or  PI(p).) 

LEMMA 2. / is convex, subh, psh, respectively i]! C] >>.O, S] >>-O, P] >>-O, respectively. 

L E M M x 3. ] is strictly convex, strictly subh, strictly psh, res T. i / / /or some positive/unction 

k on M, C/>~k, S/>~k, P/>~k, res T. (Cf. Greene-Wu [13]/or C / a n d  Riehberg [18]/or  P/.) 

L~.MMX 4. I!  g supports / at p, then C/(p)~Cg(p),  S/(p)~>Sg(p), and P/(p)>~Pg(p). I /  

/ is supported at every point o I M by a (strictly) convex, subh or psh /unction, then ] is 

(strictly) convex, subh, or psh. 

LEMMA 5. Suppose there exists a sequence o/ continuous /unctions {In} converging 

uni/ormly to / and suppose C/n>~en, S/n>~en, or P/n>~en, where en is a sequence o/ real 

numbers converging to e, then C] >~ e, S/ >~ e, P/  >~ e respectively. 

Among these five lemmas, Lemma 4 is the most trivial and at  the same time the 

most important for the purpose of this paper. For suppose it is to be proved that  the 

function ] is subh, then Lemma 4 implies that  is suffices to find at  each p EM a function g 

supporting ] at p and to prove that  g is subh at p. In  the situations under consideration 

(see next section), it  turns out that  this g is C 0~ so that  the proof of Ag>~0 can be 

accomplished by standard dif/erential geometric arguments. This is the key observation 

underlying this paper. 
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For the proof of Theorem C, the following elementary facts about the function ~ of 

the introduction will be needed. Let M be a complete noncompact Riemannian manifold 

and let 0EM be a fixed point. Recall: {Ct}tex is a family of closed subsets of M ( I c R ) ,  

et--d(0, Ct)-* co as t o  co by assumption, 7 t - - e t - d ( ' ,  Ct), and a subsequence {7~} of {7t} 

converges uniformly on compact subsets of M to an 7: M-+R. 

Now fix pEM. Choose rn=~Cn such that  d(p, rn) =d(p, C~), and let 7n: [0, In]~M be 

a minimal geodesic joining p to rn. 7n is assumed parametrized by arclength so that  

In =d(p, rn). The tangent vectors {~n(0)} are unit vectors in M~ and hence (by passing to a 

subsequenee if necessary) converge to a unique unit vector XEM~. Let 7: [0, co )~M 

be the maximal geodesic issuing from p such that  ~(0)= X; y is a ray, i.e., every segment 

of y is minimizing. 

LEMMA 6. (~o~)(t)=t+7(p) for all tE[0, oo). 

Proof. By the definition of 7, (7~ -7(P)=limn~od(P, Cn)-d(~(t), C~). Fix t in 

the following discussion. By the definition of ~, there exists a sequence (t~}c[0, co) 

such that  lim~..co~(t); since the geodesics are parametrized by arelength, necessarily 

llm~..~tn=t. Then: d(p, Cn)-d(y(t), Cn)=Length ~/~-d(r(t), Cn)=Length {yn[[0, tn]}§ 

Length {rnl[t~, /n]}-d(7(t), Cn)= Q+ d(7~(t~, Ca)-d(7(t), C~). Equivalently, d(p, Cn)-  

d(y(t), Cn)-t~ ~-d(yn(tn), Cn)-d(7(t), Cn). Hence 

I(7 ~ - 7(P) - t[ = lira [d(p, C~) - d(7(t ), Cn) - t~ [ 

= lim ]d(y.(tn), V~) -d(y(t) ,  V.)[ 

~< lira ]d(y~(t~), ),(t))[ 

= 0. Q.E.D. 

L~,MMA 7. Let a eR and let D = {p: W(p)<a}. Then/or all p e D, 7(P)=a-d(p,  OD). 

Proo]. Fix p e D  and let W(p)=b; then the lemma is equivalent to: a-b-~d(p, OD). 
First show a-b<d(p, OD). To this end, choose qe0D so that  d(p, q)=d(p, OD). By the. 

definition of 7~, there exists 8neC~ such that  d(q, Un)=d(q, sa). Thus 7~(q)=e~-d(q, sn) 
and 7n(P) ~>en-g(p, s,). Hence, a - b  =lim..,~{7.(q )-W.(p)} ~<lim {d(p, s,)-d(q, s.)} ~< 

lira d(p, q) = d(p, 8D), as desired. To prove the reverse inequality, use the notation of Lemma 

6. Let y be the ray issuing from p as in that  lemma, and let %=y(a-b). Then Lemma 6 

implies ~(q0)=a, and F being a ray implies d(p, %)=a-b. The former implies qoe 8D and 

hence d(p, 8D) <d(p, %) =a -b. Q.E.D. 

Remark. To assess the exact degree of generality of this paper, the following observa- 

tion may be of value. For the fixed point 0 E M, the construction leading up to Lemma 6 
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associates with 0 a ray ~: [0, r162 Explicitly, if snEC n satisfies e~ =d(0, sn)=d(0, C~)for 

all n, let ~n be a minimizing geodesic joining 0 to s, parametrized by arclength. Pass to a 

subsequence if necessary, let $=(0) converge in M 0, where ~,(0)=0. Then ~ is by definition 

the maximal geodesic issuing from 0 such that  $(0)=lim ~(0). Let fl be the Busemann 

function associated with the ray ~. Then in general ~ ~>fl, and examples show that  the 

inequality is strictly on nonempty open subsets of suitably chosen M. This shows in some 

sense that  the construction of ~] generates more functions than just be Busemann function. 

I t  remains to recall the definitions of the various curvatures in order to fix the signs. 

Let M be a Riemannian manifold. If R is the Riemannian curvature tensor and X, Y 

are orthonormal basis of a plane in some Mr, then the sectional curvature of this plane is 

+R(X,  Y , X ,  Y). The Ricci tensor Ric is defined as follows: let X, Y E M  r, then 

Ric (X, Y ) = ~  R(X, Xt, Y, X~), where (X~} is an orthonormal basis of M r. If X is a 

unit vector, the Ricci curvature in the direction X is then Ric (X, X). Now suppose M is a 

K/~hler manifold with structure tensor J .  Let  P l  and P~ be two planes in M r each invariant 

under J ,  and let X 1 and X~ be unit vectors in P1 and P~ respectively. The (holomorphic) 

bisectional curvature of P1 and P2 is by definition H(P 1, P~)= R(X 1, J X  1, X~, JX2). By 

the Bianchi identity, also H(P1, P2)=R(X1, X2, X1, X2)+R(X1, JX2, X1, JX2), thus a 

sum of two sectional curvatures. 

Section 2 

This section gives the proofs of the three theorems. Let {~n} and ~ be as in the 

introduction; thus ~ / n = e , - d ( ' ,  C,) and ~ -+~  uniformly on compact subsets of M. 

Proof o/Theorem A. The proof must of necessity treat the three parts (a), (b) and (e) one 

by one. However, the reader will note that,  except for superficial differences arising from 

the different kinds of curvature under consideration, the three proofs are identical. 

First assume M is complete, noncompact and Riemannian, and the sectional 

curvature of M is nonnegative. Given pr iM,  the first objective is to prove the first part  

of part (a), i.e., 

(cl) c~(p) >1 o. 

Let B be a small open ball containing p (not necessarily with p as center) and let 

~: ( - a , a ) ~ B ~ M  be a geodesic parametrized by  arelength, i.e., It] =1. Since ~ , - ~  

uniformly on B, Lemma 5 and the definition of C~ imply that  it  suffices to prove: 

(C2) There exists a sequence en, en depending only on B and end0,  such that  C(~/o~) >~en 

for all geodesics ~ in B. 



A N  E L E M E N T A R Y  M E T H O D  I N  T H E  S T U D Y  O F  N O N N E G A T I V E  C U R V A T U R E  6 5  

To this end, fix an n and pick ~: ( - a ,  a ) ~ B  so that  ~(0)=p. Also choose q, EC,~ so that  

d(p, qn)=d(p, Cn)-In. Introduce the function /: ( - a , a ) ~ R ,  where ](s)=en-d(~(s),qn ) 

and e,-=d(0, Cn) as in the introduction; / depends on n. Then / supports ~ o ~  at 0 and by 

Lemma 4, C/(O)~< C(W, o ~)(0). In view of (C2), (C 1) would follow from: 

(C3) There exists a sequence en, e. depending only on B and t ~ 0 ,  such that  C/(O)>~e n 

for / as above. 

As "mentioned in Section 1, C/(0) will be computed by first finding a suitable C oo func- 

tion ff which supports ] at 0 and then estimating g"(O) from below via differential geometric 

methods. The construction of such a g proceeds as follows. Let 7: [0, ln]-~M be a minimizing 

geodesic from p to q~ such that  IP[ - 1 .  Thus l~=length of 7. Recall: ~: ( - a ,  a)-->B is a 

geodesic such that  ~(0) =p. Both r and ~ are therefore unit vector fields. Let V(t) be a vector 

field along 7 defined by: V(t)=the parallel translate of r to 7(0 along 7, where 

0 ~< t < l~. Define W(t) = (1 - (t/ln)) V(t); then W(0) = r and W(In) =0. Let k be a variation o/ 

7 which induces W(t), i.e., for a small positive (~, k: [0, l~] • ( -(~, (~)-+M is a Coo map such 

that: (i) k(t, O)=7(t ) for all re[0, ln], (ii) k(0, s)=~(s) for all s e ( - ~ ,  0)N ( - a ,  a), (iii) 

k(l,, s)=q~ for all sE ( -5 ,  0), and (iv) for each re[0, l~], the tangent vector of the curve 

s~-->k(t, s) at s = 0  is W(t). Such a k can be obtained, for instance, via the exponential map 

along 7. Now define g: ( -~ ,  O)-~R by g(s)=e,-[length of the curve t~-+k(t, s)]. I t  follows 

that  g < / i n  ( -~ ,  ~)N ( - a ,  a), and g(O)=](O) because of (i). Thus g supports ] at  0 and 

by Lemma 1 and Lemma 4, g"(0)=Cg(O)vC/(O). Thus to prove assertion (C1), it suffices 

in view of assertion (C3) above to prove: 

(C4) There exists a sequence {en) such that  g"(0)>~en, en depends only on B, and tn-+O 
a s  n - -~oo .  

By the very definition of g and k, {-g"(0)} is just the second variation of arclength of the 

family induced by W(t). Thus: 

(c5) g"(o)= [R(~,w,f,,w)-<W,W>+{<w,~>'}']~t 

where <, > denotes the Riemannian metric, the prime denotes differentiation with 

respect to t a n d W - D ~  W. By assumption, R(~, W,~, W)>~0. Also <W, l~r)=l/l~. Thus 

(C5) implies g"(O)>~-l/1 n. By assumption, e~-d(O, Cn)-+~ as n - + ~ .  Thus also 

In =d(p, Cn)~ ~ as n ~  ~ .  As p varies through B, l n >~d(B, Cn)~ ~ as n ~  ~ .  Consequently, 

assertion (C4) is valid with e, = - l i d ( B ,  Cn). The proof of assertion (C 1) is complete. 

Now assume the sectional curvature to be in addition positive at p. To conclude the 

5 - 782904 Acta mathematica 142. lmprim6 le 20 F~vrier 1979 
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proof of part (a) it is necessary to show that, given Z: R ~ R  satisfying Z>0,  Z '>0  and 

g">0,  the following holds (see Lemma 3): 

(C6) C(Xo~])>e for some positive constant ~ in some neighborhood of p. 

Some simple reductions as in (C 1)-(C4) would render (C6) more tractable. Let B be a small 

open ball of radius b containing p, p not being necessarily the center of B. b may be 

assumed so small that the sectional curvature has a positive lower bound fl in the ball of 

radius 2b concentric with B. Now argue exactly as in (C1)-(C4) with ~], ~ ,  1, g replaced 

by ZoO, Zorn, So/, zog respectively. The conclusion is that  to prove (C6), it suffices to 

prove: 

(C7) There exists a positive number e0, e0 depending only on b, fl and Z, such that for all 

sufficiently large n, (zog)" (0) ~>e0. 

Now (~o9)" =(Z"o9)(9')2+ (Z'og)g"; it is thus necessary to evaluate g'(0) and 9"(0). At p, 

the following decomposition takes place relative to ~(0) and ~(0)• 

r  = a 1 N  + a 2 ~ ( 0 ) ,  

where <N,~(0)>=0, INI =1, and a~+a~=l .  Define the vector field N(t) along 71by: 

N(t) =the  parallel translate of N to 7(t) along 7. Then from the definitions: 

W(t) = (l - ~) {al N(t) + a~(t) }. 

Hence <W, ~>' =a2/1,. (C5) implies: 

[f ] l§ g"(o)= R(~, w,~,, W)dt - ~  ~-. 

Let K(~, W) be the sectional curvature of span {~, W} at each t fi [0, ln]. Then 

- a ~  t- z"(1 t ~ _ - ~ )  K(p,W)dt 

Recall, in the ball of radius 2b concentric with B, K(~, W) >ft. Thus replacing the integral 

by ~ (  )dr loads to: 

Since n may be assumed arbitrarily largo, in which case l~ =d(p, Cn) is also arbitrarily large, 

{bfl(1- (bfln)) 2-1fl~} may be assumed to exceed �89 Thus 

(csl g"(o) >t a~b~/2. 
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Observe also that  g'(O)=(the first variation of arelength of the family induced by 

W(t))=-a2. Hence, 
(zog)" (0) = {(z"og)(g')~ + (z%g)g"} (0) 

>~ ((x"og)a~ + (g' og)a~bfl/2} (0). 

Since g(0) =en-d(p, C,), for n large it  is near ~(p) and is hence within a fixed compact 

neighborhood K of ~(B) in R. On K, let Z' and Z" be bounded below by a positive constant 

a s . I t  follows that: 

(C9) (Zog)" (0) >~ aa(a~ + �89 

Let a4=min(1 ,  �89 Then from (C9) and the identity a~+a~=l, it follows that  

(z"og)(O)>~aaa4>O. This proves (C7) with eo=aaa 4 and consequently also proves (C6). 

The proof of part  (a) of Theorem A is complete. 

Next, part (b). First suppose that  the Ricci curvature of M is everywhere nonnegative 

but is positive at p. Let  B be a small open ball of radius b containing p and let fl > 0 be a 

lower bound of the Ricci curvature in the ball of radius 2b concentric with B. To show ~ is 

strictly subh near p, it suffices to show: 

(S1) S~ >~e in B for a fixed constant e>0 .  

Since ~ , ~  uniformly on B, Lemma 5 becomes applicable, as follows, Fix an n in the 

following discussion. Let gECn be chosen so that  d(p, q)=d(p, C,)-~/,, and let 7: [0, 1,]~M 
be a minimal geodesic joining p to q such that  I•l ==1. Consider the function /: B ~ R  

defined by [=e~-d(. ,q).  Then / < ~ , ( = e , - d ( . ,  C,)) and l(p)=~(p). T h u s /  supports 

~. at p, and Lemmas 4 and 5 imply that  assertion (S 1) would follow from: 

(S 2) There exists a positive number co, e0 depending only on fl and b, such that  for all 

sufficiently large n, S/>1 eo in B. 

To this end, let A be the ball of radius b in M~ and consider the C ~~ map k: [0, l~] • A-~M 
defined as follows. For any XEA,  let X(t) be the parallel translation of X to 7(t) along 7. 

Then k(t, X) -expr (o  [(1 -t/l~)X(t)]. k so defined has the following properties: (i) k(t, O)= 
7(t) for all rE[0, ln], where the first 0 denotes the origin of Mp; (ii) k(0, X )=ex p p X  for all 

XEA; (iii) k(ln, X)=q for all XeA; (iv) the length of the tangent vector to the curve 

s~->Ic(t, sX) at s = 0  is ( l - t / l ~ ) ] X [ ;  (v) if (X,  Y ) = 0 ,  then the tangent vectors to the 

curves s~-~k(t, sX) and s~--->k(t, sY) at s=O are orthogonal at 7(t)(=k(t, 0)) for each t. 

Thus k is a (dim M)-parameter variation of 7. Now define a C ~ function g: e x p , A ~ R  by 

g(exp~X) = e~ - (length of the curve t~-->k(t, X)). I t  is straightforward to verify that  g supports 

/ at p. Lemma 4 and Lemma 1 imply that  to prove ($2) it suffices to prove: 

($3) There exists a positive number e 0, e0 depending only on fl and b, such that  Ag(p) ~>e0- 
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Let (x~} be normal coordinates centered at p obtained from the exponential map 

exp,; to be specific, let the hyperplane orthogonal to ~(0) be defined by xl=O and let 

{(8/8x~) (0)} be an orthonormal basis of M~. In particular, r near p is just the xl-coordinate 

curve issuing from p. The following is an elementary computation: 

($4) Ag(p) = ~ ~x~ (0) . 

Since if(t, 0 ..... O)=en-(ln-t  ) for all small t, (8~ff/Sx~)(0)=0. Consider from now on only 

the case i > 1. For convenience, let the x,-coordinate curve issuing from p be denoted by 

r ~ is a geodesic parametrized by arclength and is orthogonal to ~ at ~(0)=r The 

restriction of k to [0, ln] x {A N span ~(0)} is a variation of 7; this variation induces a vector 

field W,(t) along V. W~(t) has the properties: [W,(0)[ =1, ( W ~ , # ) - 0 ,  and W,(/.)=0. 

Thus (82g/Sx~)(0) is the negative of the second variation of arclength corresponding to 

W(t). Hence 

~'q ~0~ ~ yl" (S5) ~-~, , (R(~, W,, ~, W , ) -  <r r162 

where the dot indicates covariant differentiation along 9z. By property (iv) of k above, 

(ttrt, W~) = 1/l~. Moreover, if K(~, Wt) denote the sectional curvature of the plane spanned 

by {9>, Wt}, property (v) of k above implies: 

82g Ag(p) 

b 2 

Ric (~,, 7>) dt (dim M) - 1 

Ric (~, ~)dt (dim M ) -  1 
1,, 

(dim M) - 1 
In 

Now l,=d(p, C n ) - ~  as n - ~ .  Thus for all large n, Ag(p)>bfl/2. This proves ($3) with 

s0=b~/2, and therewith also ($1). 

To complete the proof of part (b) of Theorem A, let Rie>~0 everywhere and let 

Z: R-~R be a C ~ function such that  %>0, g ' > 0  and Z">0. Again let pEM be given and 

let B be a small open ball of radius b containing p. I t  is to be proved that: 

($6) For a fixed constant e>0 ,  S(go~)>s  in B. 
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Repeat the argument from (S1) to ($3) verbatim, with ~/, ~=, / and g replaced by Zoo/, 

9o~/=, Xo /and  Zo9. The upshot is that  to prove ($5), it suffices to prove: 

($7) There exists a positive constant e0, e0 depending only on B and g, such that  for all 

sufficiently large n, A(Xog ) (p) >e0. 

Now let k, {xt}, W~(t) be as above. Then ($5) and the argument immediately following 

it imply: 

f i ~ ( t )  2 (dim M ) -  1 (dim M ) -  1 
Ag(p) = 1 - / ,  Ric(#, #) dt 1, >~ l~ 

(Note: a similar inequality has essentially been proved in Calabi [3].) 

In general, A(Zo g) = (g"og) [dg[ ~ + (g '~ A9. The first variation of arclength formula 

shows I dgl(p) = 1 .  Thus: 

($8) A(Zog) (p) >1 [(Z" o g ) -  (Z'~ (dim M ) -  1] l~ (P)" 

Now let n be large; then l~ is also large since l ~ o o  as n~oo .  Moreover g(p)=~]=(p) 
which is therefore close to ~/(p) when n is large. As p varies over B, g(p) will remain in a 

fixed compact neighborhood K of ~(B) in R. In K, let a 1 =rain X" and a S =max  Z', and let n 

be so large that  1,,>�89 (dim M - I ) .  Then ($8) implies that  A(zog)(p)>~al/2. Conse- 

quently, ($7) is valid with eo=aJ2. The proof of part (b) is complete. 

Finally, part (c). For the remainder of the proof. M is a Kiihler manifold in addition 

to being complete and noncompaet; its bisectional curvature is assumed everywhere non- 

negative. Given pEM, the claim is: 

(P1) P~(p) >>. O. 

By Lamina 2, this is equivalent to ~ being psh. Let B be a small open ball of radius b 

containing p. Recall ~n-~/uniformly in B. Take p f i B  as above and let qEUn be a point 

satisfying d(p, q)=d(p, Cn)-l,=. Define /: B-~R by /=e,=-d(., q). Since ~l,==en-d(., Cn) 
and since/(Io) =v/n(J0), / supports ~/n at p. By Lemma 4 and Lemma 5, (P1) follows from: 

(P2) There exists a sequence an, en depending only on B and en-~0 as n-* 0% such that  

P/(p) >~en for / as above. 

The next move, as usual, is to find a C ~ function g: B-~R that  supports / at p. Let 

y: [0, ln]-~M be a minimizing geodesic from io to qECn such that  ]~] -- 1. Let A be the ball 

of radius b in M r. Now define the following (dimBM)-parameter variation of y, namely, 

k: [0, ln] • such that, if XEA and X(t) is the parallel translate of X along ~ to 
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},(t), k(t, X)-exp~a)[(1-t/ln)X(t)].  Note that  since parallel translation preserves the 

complex structure tensor J ,  J[X(t)]=(JX)(t) for every XEA. This plays a role in the 

following summary of the properties of k: (i) k is C ~~ (ii) k(t, O)=7(t) for every tE[0,/n], 

where 0 is the origin of M v. (iii) k(0, X) =exprX for every XEA. (iv) k(ln, X)=g for every 

XEA. (v) Let XEMr and let sXEA for every sE( - a ,  a). Then the variation of ~ given by 

[0, ln] • ( - a ,  a)~M such that  (t, s)~->k(t, sX) is a variation that  induces the vector field 

(1 -t/l~)X(t) along y. (vi) The variations of ~ given by (t, s)~--->k(t, sX) and (t, s)e-+k(t, sJX) 
induce vector fields along ~ such that  J applied to the former yields the latter. 

Now define g: BNexprA-+R by g(expvX)=en-[length of the curve t~--->k(t,X)]. 
g is C ~~ and supports ] at p (=expr0). Thus in view of Lemma 4 and Lemma 1, (P2) 

would follow from: 

(P3) There exists a sequence e=, en depending only on B and en-+0 as n-+cr such that  

the minimum eigenvalue of O~g at p exceeds s~. 

Since M is K/ihler and g is C ~, the eigenvalues of ~ g  can be calculated from those of the 

Hessian D2g in the following way: if Xo=X+ V-1JX ,  then: 

(P4) a~g(Xo, Xo) = D2g(X, X) + D2g(JX, JX). 

(Cf. e.g., Greene-Wu [9, p. 646] or [12, w 4].) To put this to use, let X be any unit vector in 

Mr; JX is then also a unit vector in M r. Let ~1: ( - a ,  a ) ~  B and ~2: ( - a ,  a ) ~  B be geodesics 

such that ~l(s) = expr (sX) and ~2(s) = expr (sJX); in particular, r = X, r = JX. Then 

D2g(X, X) = (]o~1)" (0) and D2g(JX, JX) = (go~)" (0). From the definition of g, - ( g O ~ l ) "  (0 )  

is nothing but the second variation of arelength of the family of curves t~-+k(t, sX), 
s E ( - a ,  a); similarly for -(go$2)"(0 ). Thus if V(t) and J V(t) are the vector fields along 

given by V(t) = (1 - t/ln) X(t) and J V(t) = (1 - t/l=) JX(t), then properties (v) and (vi) of k 

above and the second variation of arclength formula give: 

(P5) D2g(X, X)= fi" [R(2, V, ~), V ) -  <l ~, ~> + {<V, ~>'}] dt 

fi D2g(JX, JX); [R(p, JV, p, JV) - <JlZ, Jr,'> + {<JV, ~>'}] gt 

where the prime denotes d/dt. Now let P~ =span {~, V) and P2 = span {~>, J V) at each 

~(t). Since IV[ =l-(t[In), R@, V, ~, V)+R(~, JV, ~, JV)=(I-t/I~)2H(P~,P2), where H 

denotes bisectional curvature (see end of Section 1). Moreover, <I:', ~> = < j  t t, j ~ >  = 1/l~n. 
Hence adding the equations of (P5) and substituting into (P4) lead to 

(P6) O~9(Xo, XO >~-I--gZ + ; "  ( 1 - ~ )  2H(P,,P2)dt, 
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where X o = X  + V ~ J X .  Now H/>0 by assumption. So ~g(Xo, Xo)>1-2/ln. As p varies 

over B, ln>~d(B, Cn), so that  a~g(Xo, Xo)>~ -2/d(B, Cn). Since d(B, Cn) -~c~ as n ~ ,  

(P3) is valid with en=-2/d(B, Cn). (P1) is therefore proved. 

To finish the proof of part (c), and hence the proof of Theorem A, it remains to 

show that  if H > 0  at p, ~ is strictly psh near p. Let  B be any small open ball of radius b 

containing p, but not necessarily centered at p, and let the lower bound of the bisectional 

curvature in the ball of radius 2b and concentric with B be positive, say f l>0.  By 

Lemma 3, it suffices to show: 

(P7) P~>~e in B for a fixed positive constant e. 

Notation exactly as above, the arguments leading up to (P3) show that  (P7)is implied by: 

(P8) There exists a positive constant co, ~o depending only on b and fl, such that  for all 

sufficiently large n, the minimum eigenvalue of ~ g  at p exceeds e o. 

Now, S~ ~ (1 - t/l=) 2 H(P~, P2) dt >~ ~ (1 - t/l~) 2 fl dt > (1 - b/l~) ~ bfl. By (P7), ~g (X  o, Xo) > 

{(1-b/ln)2b~-2/l~). When n is sufficiently large, (1-b/l~)2>�89 and 2/ln<b~/4. Thus 

~g(Xo, Xo)>bill4 when n is sufficiently large. This shows that  (P8) holds with eo=bfl/4. 
The proof of (P7), and hence of Theorem A is thereby concluded. 

Remark. Since Theorem A has been dealt with in sufficient detail, each o/the/ollowinq 

proofs will deal with only one case, and then only in outline. The remaining cases are similar. 

Proo/o~ Theorem B. Let M be a complete noncompact Riemannian manifold with 

nonnegative Ricci curvature outside a compact K. The claims is that  ~ will be essentially 

strictly subh on {7 >a0), where a 0 depends only on K. 

Pick a 1 so large that K is contained in the ball B of radius al about the fixed point 

0 of M. Let  %=2a r Suppose ~ (p )>a  0, then it has to be proved that  ~ is essentially 

strictly subharmonic near p. Let N be an integer so large that  n ~>N implies ~ ( p ) > % .  

For such an n, let qEC, satisfy d(p, q) =d(p, Cn)=-l~, and let ~: [0, l~]~M be a minimizing 

geodesic from p to q parametrized by arclength. Then for every rE[O, l~], 

d(O, ~(t)) >1 d(O, q) -d(q, ~(t)) 

/> d(0, C~) -d(q, ~,(t)) 

= e .  - ( l ~  - t )  

= e . - l .  = e . - d ( ~ ,  C . )  

= ~ n ( P )  > % .  
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Thus ? lies outside the ball of radius 2a 1 around 0. I t  follows that  the set A of points of 

distance ~ a 1 from ? still lies outside B, and hence outside K. On A, the Ricci curvature is 

non-negative. The arguments from assertion ($6) to ($8) in the preceding proof are 

therefore valid in A and ~ is consequently essentially strictly subh near p. By the same 

token, suppose the Ricci curvature >0  at p. Then the arguments from (S1) to ($5) 

transplanted to this situation again show that  ~ is strictly subh near p. Q.E.D. 

Proo[ of Theorem C. Let M be a complete noncompact K/ihler manifold such that  the 

bisectional curvature i>0 everywhere, and > 0 outside a compact set K. The claim is 

that  e" is strictly psh everywhere. 

By Theorem A, ~ is known to be everywhere psh and strictly psh outside K; a/ortiori, 

so is e ' since e x is a strictly convex and strictly increasing positive function. I t  remains to 

show that  the psh function e ~ is in fact strictly psh in K. 

Let K o ={xEM: d(x, K)~ 10}, and let a 0 be any number exceeding the maximum of 

on K o. ~ is strictly psh in the neighborhood { a o - l < ~ < a 0 + l }  of 2Y-=~/-l(ao), and 

consequently 1/(a o - 7 )  is strictly psh in U 0-={%- 1 <~/<ao}. By a theorem of Richberg 

[18], 1/(a0-~/) can be uniformly approximated in U o by a C OO strictly psh function o~. For 

definiteness, let Iw-1/(ao-~l)l <1; since 1/(ao-~) -~oo towards N, do does o~. If a t is a 

sequence of regular values of r such that  at ~oo, let Art-= ~o-l(at). Each Nt is therefore the 

full boundary of a (possibly unbounded) Coo strictly pseudoconvex domain in M; moreover, 

d(N, 2Yt)-+0 in the sense that  suprd(n, hi)-+0 as i-~ 0% where L is any compact subset of 

M and nENflL, niENINL. Here Lemma 7 enters. Let  pEK, then ~(p)<ao-lO<a o. 
Lemma 7 implies that  on K, ~ = a o - d ( . ,  N). Since d(p, lqt)-~d(t), N) uniformly as p 

varies over K, Lemma 5 says that  e~ would be strictly psh if the modulus of plurisub- 

harmonicity of each exp { - d ( . ,  iVt)} can be bounded below by a positive constant 

independent of i when i is large. Since ~ is Lipschitzian with Lipschitz constant 1, the 

fact that  ~ I K and ~1 ~V differ by  at least 10 implies that  d(K, s >~ 10. Hence the following 

assertion suffices to prove that  e~ is strictly psh: 

(Pg) Let M be a complete K/ihler manifold with nonnegative bisectional curvature. Let  

D be a Coo strictly pseudoconvex domain in M, possibly unbounded, and let ~: 

D~[0 ,  oo) be the boundary distance function, i.e., ($(x) =d(x, ~D). Suppose the bisec- 

tional curvature is positive in D~ = {x E D: ($(x) ~<~}, where ~ E (0, 1]. Then e -~ is strictly 

psh in D*={xED: ~(x)>~l}. More precisely, let ~(p)=/~>l and suppose qEOD 

satisfies ($(p)=d(p, q). Let  f l>0  be a lower bound of the bisectional curvature in 

D~ N {ball of radius 21 around q}. Then 

Pe-a(p) >t 31~ �9 
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The proof of (P9) is in outline similar to the proof of Theorem 1 in Greene-Wu [14]. Let  

b be a small positive number so that  B - { x E M :  d(x, p)<b} lies in D. Let  B o be the ball 

of radius b in Mr; assume b is so small that  expr is a diffeomorphism of B 0 onto B. The 

main step is the construction of a Coo function g on B which supports - 8  at ~o. First 

construct a C ~ function k: [0, l] • Bo~M as follows. Let qEaD be such that  ~(p)=d(p, q) 
as above, and let ~ be a minimizing geodesic satisfying I~1 - 1  and joining p to q. Thus 

y: [0, 1]-~/), such that  7(0)--p and y(1)=q. I t  follows from the first variation of arclength 

formula that  ~(l) is orthogonal to OD at q, in symbols: ~(1).l_~D. The tangent space 

(~D)~ of ~D contains a maximal complex vector subspace C(/); C(l) has real codimension 

1 in (~D)q. For every t E [0, 1], let C(t) be the parallel translate of C(1) to ~(t) along 7; 

C(t).l_~(t) for every t and, since M is Ki~hler, C(t) is a complex vector subspace of 

M~t~ of complex codimension 1. The orthogonal projection of M~t) onto C(t) induces an 

orthogonal decomposition of Mrct ) for every t, and it has the following property. For 

every XEM~, this decomposition at t=O gives X=al#(O ) +aiJ#(O)+X h, where XhEC(O) 
and a 1, a S fiR. Let X(t) (resp. Xh(t)) be the parallel translation of X (resp. X h) to y(t) along y. 

Then the above-mentioned property is that  X(t)=al#(t ) +azJ#(t)+ Xh(t) is the orthogonal 

decomposition of X(t) in Mvr ~ relative to C(t), with the same real number al, az as above 

and with Xh(t)EC(t). Now the desired (dimRM)-parameter variation k: [0, l] • Bo~M is 

required to satisfy all the following properties: (i) k(t, 0)=y(t)  for all t E[0, l], where the 

first 0 is the origin of Mr; (ii) k(0, X ) = e x p r X  for all XEBo; (iii) k(1, Bo)C~D. Next, let 

XEA and let sXEB o for every s E ( - a , a ) .  Let  the variation of y given by [0,1] • 

( - a ,  a)--*M, (t, s)v-~k(t, sX), induce the vector field V(t) along y. Then V(t) has these 

properties: (iv) If X=al#(O)+a2J#(O)+X ~ is the orthogonal decomposition of X in Mp 

as above, then V(t)=(1-t /1)[al#(t)+a2J#(t)]+Xh(t) ,  in the preceding notation; (v) in 

particular, every vector field V(t) along 7 induced by k has the property tha t  V(l)E C(/); 

(vi) if V(t) and W(t) are the vector fields along y induced by the variations (t, s)v+k(t, sX) 
and (t, s)v-->k(t, s iX)  respectively, then JV(1)-~ W(1). 

Here is one way to construct such a k. At q, let OD be locally defined by the real 

function ~, i.e., locally near q, OD = {9 =0}. Let  ~ be another C OO function and let {zt} be 

complex coordinates near q (zt=xz+~/--Zly, as usual) such that  {% ~, x 2, yz, x 3, Y3 . . . .  } 

forms a local coordinate system near q. (Observe: C(/)=span {(~/Ox,)(q), (O/ay~)(q)},~.) 
The coordinate vector fields {~/~9, ~/~y~, O/~xt, O/~y,), where i>~2, when decreed to be 

everywhere orthonormal, define a Riemannian metric G~ near q. Now let 6/ be a new 

Riemannian metric on M such that  near 1o, G equals the original K/~hler metric, and 

that  near q, G equals Gx. Let  Et denote the exponential map of G at y(t). Then, in the 

notation of the preceding paragraph, k may be defined by 
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k(t, X) = Et[(1 - t/l) (al~)(t) + a2J~(t)) + X~(t)]. 

Define a C ~176 function g: B-+R by: g (exp~X)= - [ length  of the curve te+k(t, X)] for 

every X E B  o. Then g ( p ) = - 5 ( p ) = - l e n g t h  of ~, and g~<-(~ in general on account of 

property Off) of k above. Thus g supports - ~  at p, and by Lemma 4 as well as Lemma 1, 

the following holds: 

(P10) Pe-~(p) >~ {minimum eigenvalue of ~eg(p)}. 

The next  step is to evaluate 8~g(p) with the help of (Pd). In the notation of (Pd), suppose 

X o = X + V - ~  JX  is given where X is a unit vector, then the computation of ~0g(X0, Xo) is 

simplified by noting 8~g(X o, Xo)=8~g(X~, X*), where X~=-X*§ V---1JX* and X* is any 

unit vector in span (X, JX}. Thus choosing X* from span (X, JX}  to have zero component 

in the Jp(0) diretion implies that  there is no loss of generality in assuming X 0 = X + V - 1 J X  
where X now takes the special form X=al~(O)+a2X h, XhEC(O), IX hI =1 and al, az~R. 

Since X is by choice a unit vector, it follows that  a~+a~=l .  With such an X, let 

(1: ( -a ,  a)-~B, ~2: ( -a ,  a)-~B be the geodesics (l(s)=expp(sX) and (a(s)=exp~(sJX). 
Then D2g(X, X)=(~7o(1)"(0 ) and D~g(JX, JX) = (go(2)"(O). By properties (ii) and (v) of k 

above, (go(x)" (0) and (go(2)" (0) are the second variations of 7 with variation vector fields 

V(t) = (1 -t/l)(al~,(t)) +a2Xh(t) and JV(t) = (1 -t/l)(aiJ2(t)) +a~JXn(t). The second varia- 

tion formula now gives: 

( P l l )  D~ g(X, X) = - <Dv(t) V(t), ~(t)> [lo 

j ~ [ -  R(~,, V, :~, V) + ( ~ ,  ~> - (<V, ~,)'}*] dt, 

JX)  = - (.D+v(t) dV(t), ~'(t)> "t t D~g(JX, 
I 0 

Jl [ - R(~, JV,  ~, JV) + <JV, j~z> _ { (JV,  ~>'}~] dr. 

Adding these equations leads to many simplifications, as follows. First at t = 0, the boundary 

terms vanish. At t=l, note that  ~)(1) is the outer unit normal to OD at  q=y(t) and hence 

(letting ~0 be the local defining function of 0D at  q as before): 

[<V, Dye)+<JV, Djv~,>](l)=40~q0(V o, 17o)> 0, 

where Vo = V(l) + (----I J V(1). The equality in this formula involves a standard computation 

using the K/~hler property of the metric, while the inequality follows from the strict pseudo- 

convexity assumption of ~D plus property (v) of k above. Thus 

-<DvV,  7)1"-<D~vJV, 7)~1~ = [<V, Dv ~>+ (JV,  Dsv~>](1) (PI2)  >0. 
io io 
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Next let H(t) be the bisectional curvature determined by span (~), J~} and span (V, JV} 
at $(t). Then 

(P13) [R(~, V, ~, V) + R(~, JV, ~, JV) ] (t) = [ ( 1 -  ~) 2a~ + a~] H (t). 

Since (V, ~) '=-al / l  and (JV, ~ '=0,  (P4) and (Pll)-(P13) together yield: 

(P14) ~g(Xo, X o ) > - -  ~ ; [ ( 1  - ~ 2 + a 2 ]  i ]  al 2J H(t)dt. 

Now by assumption, H(t)>fl along ~[ [I-2,  1]. Since 

t 

f l  ( )H(t)dt fz_ ( )H(t)dt, 

(P14) implies: 

(P~5) ~g(Xo, X ' o ) > - ~ - r f l 2  ~-~a~ +a~ >~ - a ~ - r ~ ,  

where the last inequality is due to a~+a~=l  and l > l .  Since ~eg=eg(~gA~g+~9), 

(a~e g) (X0, X0) = eZ[ ( Xg ) ~ + ( J Xg ) 2 + ~g( X o, X0)]. 

By the first variation of arclength formula, Xg = (go~x)'(O) = -al  while JXg = (go~2)' (0) = 0. 

Hence, 

z ~ 23 (~eg) (X0, X0) > e w  

This together with (P10) proves (P9). The proof of this part of Theorem C is complete. 

For the proofs of the remaining cases, the analogues of the theorem of Riehberg 

[18] used in the above for strictly convex and strictly subharmonic functions were 

announced in Greene-Wu [11]; their proofs are contained in Greene-Wu [13] and [15]. 

Q.E.D. 

Remark. The preceding proof of part (e) of Theorem C shows that, more generally, 

Xo~ is strictly psh if Z is the usual C ~~ function of one variable such that (in addition to 

Z>0, Z '>0 and i~">0) the quotient (Z'/Z") is bounded above in [a, ~ )  for some aER. 

Section 3 

This section records several applications and extensions of the method developed in 

the preceding section. No proofs will be offered, nor would they be necessary since no new 

ideas are involved beyond those already exposed above. 
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(I) Implicit in the proof of Theorem C, particularly (P9) and its convex and subh 

analogues, is a wealth of information of the following type. Let  D be a domain in M and 

let 0: D~[O, c~) be the distance to the boundary ~D. Then suitable assumptions on M, D 

or ~D would lead to function-theoretic conclusions about 0. The following are two among 

the many possible variations; the second one slightly extends Theorem 1 (B) of Greene-Wu 

[14] which assumes everywhere positive bisectional curvature. 

THEOREM 1. Let M be an n.dimensional complete Riemannian manifold with non- 

negative Ricci curvature. Let D be a domain in M and let O: D-~[0, cr be the distance to ~D. 

Then O 2-~ is essentially strictly subh in D, is strictly subh wherever the Ricci curvature >0,  

and is everywhere strictly subh already if the Ricci curvature is positive near OD. I / O D  is 

further assumed to be a C ~~ hypersurface whose second fundamental form has nonnegative 

trace relative to the outer unit normal, then the same conclusions hold i/52-n is replaced by -~). 

(In case n = 2 ,  - l o g 0  must be used in place o/O2-n.) 

COROLLARY. Suppose N is a closed imbedded minimal hypersur/ace in a complete 

Riemannian manifold M and let ~: M - N - ~ [ 0 ,  cr be the function O(x)=d(x, 2Y). Then -O is 

essentially strictly subh in M - N  if M has nonnegative Ricci curvature, and is strictly subh in 

M - N  if M has in addition positive Ricci curvature near N. 

THEOREM 2. Let D be a locally pseudoconvex domain in a complete Kdhler manifold 

M which has nonnegative bisectional curvature everywhere and positive bisectional curvature 

near ~D; let O: D-~[0, cr be the distance to the boundary. Then - l o g  5 is strictly psh in D. 

(II) I t  is known that  on manifolds, a continuous convex, subh, or psh function in the 

sense of Section 1 is convex, subh, psh respectively in the sence of distributions, but the 

proof for the first two cases is non-elementary (see e.g. Greene-Wu [9] and [15J). For the 

function ~ of Theorems A-C, however, the proof is much easier. For instance, suppose 

one wants to show that  the ~] in part (b) of Theorem A is subh in the sense of distributions. 

I t  suffices to show that  (Az(~))(r162 t>0 for all positive increasing convex C ~176 functions Z 

and for all C~0 nonnegative functions ~. To this end, fix Z. By ($7), for each p there is a ball 

B containing p such that  for all n: there is a C ~ function gn on B, z(gn) supports Z(~-) 

at p, and Ag(gn)>0 on B. Then if % is any nonnegative C~0 function vanishing outside B, 

A(Z(~/) ) (%) =hm,z(~ , )  (A%) ~,lim z(g,) (A%) =lim A(z(g,) ) (%) >0. The general conclusion 

for ~ follows by a partition of unity argument. In the same way, the strict convexity, etc., 

of ~/in the sense of distributions can be immediately proved. 

(III) The method of this paper is most effective whenever the curvature has a good 

lower bound. The paper Wu [21] gives one example in this direction. The following gives a 
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few more. Let  M be a complete Riemannian manifold and let r be the distance function 

relative to a fixed 0 E M. Suppose A is a constant and U is a given open set containing 0. 

THEOREM 3. There exists a constant K which depends only on A and U such that: 

sectional curvature o / M  >~ A :~ Cr <~ K on M -  U 

Ricci curvature o / M  >1 A ~ Sr  < K on M -  U. 

bisectional curvature o / M  >~ A ~ P r  <~ K on M - U. 

The proof merely repeats those of Section 2 with ( - r )  replacing ~,. As an immediate 

consequence: if the Rieci curvature of the complete Riemannian manifold M is bounded 

below, then the Laplaeian of r in the sense of distributions is bounded above outside any  

open U containing 0 (d. the remarks in (II)); this fact was already known independently 

to S. T. Yau ([22]) in his global s tudy of the heat kernel. Furthermore since r is (globally) 

Lipschitzian, the smoothing theorems of Greene-Wu ([11], [15]) imply: 

THEOREM 4. On a complete Riemannian  mani]old whose Ricci curvature is bounded 

below, there is a Coo Lipschitzian exhaustion ]unction whose Laplacian is bounded above. 

The convex and psh analogues can be similarly proved. Theorem 4 should have 

applications. 

(IV) The results of this paper prompt  two observations of a technical nature. In  

the first place, one of the principal motivations of the approximation theorem for convex 

functions of Greene-Wu [1] was to be able to handle the Buseman functions on a K~hler 

manifold of nonnegative sectional curvature. By part  (e) of Theorem A, the Busemann 

functions are now known to be psh. Therefore the option is now available to invoke instead 

Riehberg's approximation theorem [18] for the fnnetion theory of K~hler manifolds of 

nonnnegative sectional curvature. Second, all the smoothing (approximation) theorems 

thus far (Greene-Wu [9] and [15], Riehberg [18]) are fairly elaborate affairs since they 

apply to general convex, subharmonic and psh functions. However, if it is merely a 

question of approximating the functions ~7 of this paper by  Coo functions of the same 

kind, the proofs given in this paper raise the hope tha t  those proofs would be simpler. 

The reason is tha t  such an ~ has now been shown to be supported at  each point of M by  a 

C oO function possessing (almost) the same function-theoretic properties. 
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