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Introduction.

1. Let H be a Hilbert space and T and T* two adjoined transformations,
both determined throughout H. Let @, be the set of eigenelements of T, cor-
responding to 4, i. e. the solutions @ 7 o0 of the equation T¢ = A¢p; and @ the
sum of all @;. Firstly we assume that

(A) the set @ is fundamental on H.

We shall denote by C; and Cj the closed linear manifolds spanned by {I™f}%
and {T*"g}®, respectively; f, g being elements in H.

This study is devoted to two general problems concerning the transforma-
tions T and T* which we shall call the extinction problem and the closure
problem. We shall say that T has an extinction theorem if, for every f# o, it is
true that the manifold C; contains at least one eigenelement ¢ 5% 0. In the case

fzzcvq)v, @vem}w,

=0

where 4, # A, for v u, it is obvious that all g, belong to C;. By (A), every
S may certainly be approximated arbitrarily closely by linear combinations of
eigenelements; but this does by no means imply that the extinction theorem is
a consequence of (A).

By the closure problem we mean the characterizing of the elements g, for
which Cj =H, by the behaviour of the scalar product (g, g), when ¢ runs
through @. From the relations

(@a, T*"g) = (T" @1, 9) = (g1, 9), n=0,
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it immediately follows that the condition
(1) (@, 9) #0, €O,

is necessary for closure. If this condition also is sufficient we shall, on account
of a well known analogy in harmonic analysis, say that the transformation 7™
will possess a Wiener closure theorem.

It seems to be a very difficult undertaking to decide, in general non-trivial
cases, whether these two theorems are true or not and if they are equivalent.
However, under the assumptions already made, it is always true that the extine-
tion theorem implies the Wiener closure theorem. For, if Cj is a proper subset
of H, an element f> o exists, such that

o=(f, I*"g)=(T"f,g), n=o.

Thus ¢ is orthogonal to every A€ C;, and hence to the eigenelement ¢, which,
according to the extinction theorem, must belong to C;.

2. If we, in addition to the postulate (A), also assume that T is isometric,
the extinction theorem holds and is a simple consequence of v. Neumann's ergodic
theorem which we state in the following generalized form, due to F. Riesz' and
G. Birkhoft:

If T is a linear isometric transformation, or a contraction (| T f|<|f|), of a
uniformly convex Banach space, then the limit

s Sy sin

will exist for every element f.
Let us first give the following complement of this theorem. We shall say
that f is orthogonal to g, or f1g, if

If+ egll =1/l

for every complex number ¢. It ought to be observed that in general Banach
spaces the property f1g does not imply g1 f

If T has a fixelement @, = T @, that is not orthogonal to f, then the limit S(f)
will be different from the null element.

By the definition of orthogonality, there exists a constant ¢ such that
l@o + ¢fl <ll@oll. From this and the relations | S(g)| <|g| and S(po) = @,, it
follows that

! See (4] in the References and G. BIRKHOF¥, The mean ergodic Theorem, Duke vol. 5 (1939).
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15e)I=18(gs + ¢f) — gol Z ol —lipo + ¢/l >0,

i.e. S(f)# 0. We thus get the following general extinction theorem:

Let T be a linear isometric transformation of a uniformly convex Banach space,
such that the set @ of eigenelements of T has the property:
(A") plf, Q€D implies f=o.
Then for every f o the manifold C; will contain at least one eigenelement ¢  o.

By (A') a ¢ = ¢@; must exist which is not orthogonal to f. Since T is iso-
metric, we will have |A|=1 and the operator T, =A"1T is consequently iso-
metric too, and has ¢; as fixelement. Thus

n—1
S:(f) = lim le N Tif#o,
n=o0 0

and the theorem follows since S:(f) belongs both to C; and @.2

It is immediately seen, that the theorem holds true also for a contraction,
provided that its eigenvalues lie on the unit circumference |4|= 1.

3. Returning to the space H, it is now natural to consider the following

case: T is a proper metric contraction, i.e.

(B) ITA=1A, lim [ T7f]= 0%,
while T™ is isometric,
©) LZ* £l =111

As will be seen subsequently, the class of operators subject to the conditions (A),
(B) and (C) is still too wide to admit general results concerning the extinction
and closure problems, However, under the additional assumption

(D) at least one eigenvalue is stmple,

the two problems may be completely discussed with the following principal re-
sults: neither the Wiener closure criterion (1), nor the extinction theorem are
valid; but the Wiener closure theorem holds true in a modified form stating
that the inner product (@i, g) is different from zero and, for normalized @;, not
»too small» as [A] -~ 1.

Similar results will be obtained for the extinction problem.

* The interest of this theorem is chiefly due to the fact that the relevant orthogonmality is
¢ 1 f and not the converse but more natural /) ¢. It should also be noted that at least in the
ordinary LP-spaces (p > 1, # 2) there are subsets M having the property (A’) without being
fundamental.

* This latter condition may be replaced by the.following weaker assumption: the eigenvalues
of T are of modulus < I.

31—48173. Acta mathematica. 81. Imprimé le 28 avril 1949,
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An Isomorphism.

4. By elementary arguments we obtain the following proposition:
The conditions (A), (B), (C), and (D), imply the existence of a complete ortho-
normal set {e,}%, such that

2) {Teo=o

Te,=ep—1, n=1,
(3) T* en=ea41, n=0.

The eigenvalues of T are all simple and fill the open unit civcle || < 1. The cor-
responding eigenelements, normalized by the condition (pn, €,) = 1, are of the form

(4) Pi = 2:, M en.
In accordance with (C),
(TT9) = (T4, T*9) = (1 9),
for everyypair of elements f and ¢, and thus,
(5) T T* = I = the identity.

By (D), there exists a simple eigenvalue A = e, which in view of (B) must be of
modulus < 1. If ¢, is a corresponding eigenelement, then ey = g. — a T* @, will
be different from the null element, since by (C), |le)| =] @a|(1 — | «]). In the fol-
lowing, we will suppose that @, is normalized by the condition [¢,| = 1. We get
by (s)

(6) Teo=T@pe—alTT*po=e@p,—a@.=0;

hence ¢, is an eigenelement corresponding to A =o0. Putting e, = T*"¢,, n = o0,
it follows from (6) that, for » > m = o,

(en, em) = (T*n ey, T*™m e)) = (e,, T" ™ey) = 0.

In view of the normalization [e,/==1 we then get

(en, em) ={

By the definition of the set {e,}?° the relations (2) and (3) are satisfied, and thus
@: defined by the series (4), really represents an eigenelement. Putting 1= e in

0, nHFEm,
1, n=m.

the series, we get back our original element ¢,.
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It remains to prove that every eigenvalue is simple. If this is not true,
there will exist a number 8, |8]| < 1, such that the equation T'¢p = 8¢, besides
the solution @s of formula (4), also has a solution @ # 0, orthogonal to gg.
Starting from @3 we obtain, in the same manner as before, an orthonormal set
{en}® with the same properties as {e,}®. Furthermore, (e, o) = 0, from which
follows that (es, en) =0, n = 0, m = 0. Consequently, the closed linear manifold
spanned by the two sets are orthogonal. On the other hand this implies that,
for every A in the open unit circle, ¢; of formula (4) and

0
’
Qi = Zl"e;,,
0

will be linearly independent eigenelements.

From the preceding discussion, it will be clear that the conditions (A), (B)
and (C) imply that the dimension number of the set ®@; is the same for all 1
in the open unit circle, hence =1 in view of (D). Since @ is fundamental by
assumption, and (4) represents all normalized eigenelements, the set {en}? must
be complete, thus proving our proposition. '

5. For every f€H we then have

Sf= f_nen’ Jo=en, f),

oM

P = Z:Ifnl"-

The below scalar product, where the parameter A is replaced by 2,

(7) (@, )= Dfaz"=fle), |zl <1,

0

thus transforms f into a function f(z), holomorphic in the unit circle and satis-
fying the inequality

2z
1 ) .
;rflf("e”’)lzdeéufil”, o<r<u.
0
According to well known properties, the radial limit

fletf) = lim flret®)

r=1—0
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exist almost everywhere, and has a summable square. Furthermore, the class of
Taylor series f(z) constitutes a Hilbert space H with the scalar product

o [ e gt ae

and the norm | f| = V(f,f). By means of (7) we obtain a unitary transformation
of H into H.
The operator I’ takes the function f(2) into
1o =@ =70,

z
while 7% takes f(2) into

T*f(e) =z fle).
The eigenelements of 7' in the space H are obviously the functions

I

1— Az

’ Ill<1.

The Closure and Extinction Problems.

6. In the space H we may formulate the closure problem in the follow-
ing way:
For which functions f(z) is it true that the set

(8) e

is fundamental on H? If f(z) does not possess this property, which functions
are then contained in the closed linear manifold C} spanned by the set (8)?

We already know that the Wiener criterion f(z) # o, |2| < 1, is a necessary
condition for closure. At first sight, this condition also seems to be sufficient.
However, as we shall see, this is not true. On the other hand, an additional
condition of the form

P
df < oo, p>o,

27
Gm - |-
r=1—027 ) [f(re')
[

proves to be sufficient but not necessary. By aid of a quantity d(f) defined in
the following manner
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2%

i flef) .
) 3(f) = ;;Bflog 7o) d8 it f(o)s£o

+ o0 if flo)=o

the adequate condition takes the simple form d(f) =0. We easily see that

27

im L [ 1og| L€
(10) r]iil—l-oznj log Sf(r €9 d6=o0
[}

holds true if fs= 0. The relation d(f)= o thus requires both that

27

f(,,. ez’e) _
7] df=o

. I
lim — | log
r=1-—~0 2w
0

i.e. f(2) has no zeros in the unit circle, and that the limit (10) vanishes, which
means that [f(2)] is not allowed to be very small as [z| ~ 1.

7. By the proof, we shall avail ourselves of some well known properties,
essentially due to Herglotz, F. and M. Riesz and R. Nevanlinna*, concerning
harmonic and analytic functions. Here we shall not express these results in their
original scope, but in a modified form appropriate for our special purpose.

Let f(¢)==0 be holomorphic for |z]| < 1 and subject to a Hardy condition

27
(11) lim — | flre®)]|?dl < oo, p>o.
r=1-0 270 J -
0

The radial limit f(¢’®) then exists almost everywhere and log |f(e'?)| is sum-

mable. Let us put

(12) fl(z)=exp{;l;6[log |f(e"")|§%£—§d0+ia}

where a is the argument of the first nonvanishing Taylor coefficient of f(z).
The following important inequality,

(13) lf@l=1AE1 1zl <1,
holds always true, and the function f;(z) defined by the relation
(r4) fle) = fole) fiie),

* See [3] Chap. VII, also for further references.
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will then have the properties,

(15) ol =1, le] <1,
(16) riiﬂlol‘ﬁ, (re’®)[=1 p.p-

In view of the normalization of f,(z), the first nonvanishing Taylor coefficient
of f,(2) will be real and positive. The general expression for a function of this
type is

v —2 @y -ne“’+z
(17) f;,(z)—_—-[[?d:ﬁ m exp {—fd—o:éda}y
0

where
S(1—|as|) < oo, |a|<T1,

and where ¢ =«a(f) is a real nondecreasing bounded function, whose points of
increase form a set of at most zero measure. If some of the a,’s are zero, we
define the corresponding factors in the Blaschke product as 2. In special cases
both the Blaschke product and the exponential factor may, of course, be reduced
to the constant 1.

A function which can be expressed in the form (12), where U () = log | f(¢%) |
is summable, we shall call an outer function, whereas a function of the form (17)
shall be called an Zuner function. The special functions f, and f, defined above,
shall be termed the oufer factor and the zmner factor of f respectively. This de-
composition is obviously uniquely determined if f= o0, and will be referred to
as the Factorization Lemma,

8. Let now

27

b,— 2z b, el + 2
ale) =TI v oo |~ [Gitoas)
]

1—2zb,

be another inner function. When g,/f, is bounded in the unit circle, then it
obviously is an inner function too, and we shall call f; a divisor of g,. For this
it is necessary and sufficient that {a.} is a subset of {b,} and that 8 — « is non-
decreasing. In the general case we define the largest common factor of £, and g,
a8 the inner function
27‘1'0
hole) =TT = Ziz— exp {—f:,-ei—zdr}

0
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where {c,} is the intersection of the sets {a,} and {b,} and the connection be-
tween y, @ and # (considered as nonnegative and completely additive setfunctions)
is such that y is the largest common minorant of ¢ and 8. It is easily seen that
h, has the following characteristic property: if z is a point in the unit circle
such that |f,(2)| + | go(2) | # o, then |Ay(2)]| < |#,(2)| for any inner function &, = A,
which is a divisor of both f; and g,. In the case h,= 1, we shall say that f
and g, are without common factor.

Again, supposing that f and g are two functions, satisfying a condition (11)
and = 0, we may write

Lol S,

9 G O

If h, is the largest common factor of £, and g,, we have f, = h, F; and g, = h, G,
and obtain

(18) f_Ey, H,
9

A

where H, = fi/g, is an outer function and F,, G, are inner functions without
common factor. Obviously these three functions are all uniquely determined.

Regarding the quantity J(f), we have d(f;)= o for every outer function.
Hence

3 (f)=4a(fo) + 6 (f) = 8(/o).

For inner function, on the other hand,

I

2
1
3(f,) =log = lg——+fd =o.
(f;‘) 0 f;)(O) ZO 'avl d ¢

The relation d(f)=o0 thus implies that the inner factor of f reduces to the
constant 1.

9. The two problems, raised at the beginning of this chapter, will now be
completely solved by the following:

Theorem 1. Let f,g€H and be 0. Then g will belong to the manifold
C; when, and only when, the inner factor of f is a divisor of the inner factor of g.

The stated closure criterion 6(f)=o0 is obviously a consequence of this
theorem, since the property Cf = H demands that the inner factor f, of fis a
divisor of any inner function which can only be true if f, =1, i.e.if §(f)=o.
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Let us first prove that g€ C} if f, is a divisor of g,. To this end, it is suf-
ficient to prove that to every £ > o, a polynominal p may be found such that

lpf—gl<e

But |f,(¢'%)| = 1 almost everywhere, and g,/f, = h, is an inner function, hence

lpf—gl=lpfi —bog,|

and it is thus sufficient to prove that C} = H i.e. that the equations
(19) (T*"f,, k) =0, n=0

have no solution %€ H other than k=o0. Let us put
2
-1 i6 {6\ ,~ing
Cn 2”ff,(e ) k(e'®) e=i"0 d 8.
0
By (19), en=0, n <0, and consequently

(z0) S1(€9) k() ~ D eneime,

where ~ is the common symbol in the theory of Fourier series. Since the left
hand member in (20) is a summable function, the Taylor series

(21) Yle)=Deme", |2z]<1,
1
has the following well known properties,
(22) Y(e'%) = lim y(re’®) =f, () k(e°) p.p.
r=1-0
27
(23) tim L [y — plre9]a0=o.
r=1-02 7T
0

According to the Factorization Lemma we get, if %, and v, denote the outer
factors of £ and 1, respectively,

|¢(3)|SIW1(Z)|=|f1(5)I|k1(3)|’ |Z|<I-
Hence
=1 i<y,
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and the function /f, then belongs to H and vanishes at the origin. It then
follows from (22) that

2n 2z
. —-—_I_ w(ew) inéd J ___I_f 0\ sind

(24) 0~2nff1(e“’)e d0=— [ k(¢)e"°ab, n=o.

0 [}
Again, since k€ H,

' an
0=ifk(e“’)e‘""d0, n= 1.
2

[

By taking the conjugate value of (24), we see that all the Fourier coefficients
of k(e*®) vanish; thus k=o0 and C} = H.

We still have to prove that g cannot belong to Cf if g, is not divisible by f;.
To this end, let m(r) denote the minimum of |f,(z)| on the circle [z|=1r <1,
and let » be a fixed value such that m(r)=m > 0. Under the assumption g€ C}
there will, for every & > o, exist a polynomial p = p, ., such that ||p f— g|| < em.
Hence for [z]=9p, 0<p=<1,

(25) = [Is6)70 - g@ras <ermt

Putting g,/f, = h, we get on the circle |z|=1r

(o = [0 A —hE) g @10 <

and obtain, for |z| =7, by Minkowsky's inequality,

2n
(27) ;I;flh(z) 9, ()P0 < (lg] + eCr + m).

From this it is obvious that the function hg, must belong to H, and since
|h{e'%)| =1 almost everywhere, g, must be the outer factor of hg,, and thus h
its inner factor. Then g, is divisible by f,, which ends the proof.

In the preceding we have seen that the inner factor of f is of decisive
importance for the properties of the set C7. Thus it follows from Theorem I
that a function generates the same manifold as its inner factor, i.e. Cf = Cj,.
More generally, C; and C; are identical when, and only when f, is a divisor

of gy, and conversely, g, a divisor of f;, which will occur only when f; = g,.
32-48173. Acta mathematica. 8l. Imprimé le 28 avril 1949.
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10. Now we shall see that the inner factor, together with the quantity d(f),
besides their function-theoretical definition, also may be characterized by certain
minimum properties in the manifold Cf. If e denotes the unit element (e(z) = 1),
we have

(28) T*re=¢" n=o0,1,2,...

and, if d is the distance from e to C7, then the condition d = o is obviously
both necessary and sufficient for closure. In this case we have f;, =e¢; in the
general case the following holds true:

Theorem II. The projection of e on Cf coincides with the inner factor f of f
multiplied by the constant V1 — d®. The quantities d and & = 8(f) are connected
by the relation
(20) d®=1—e?,

If fl(2) vanish with ts first p — 1 derivatives at the origin then the projection
of T*Pe=2 on C} falls on V1 —d} f,, where dp is the distance from 2° to C}.

By the proof of the first part of the theorem, we disregard the case f(o)=o
as being trivial, since d =1, § = oco. Let us then assume f(0) 7 0 and let g be
the projection of ¢ on Cf. Obviously g — e must be orthogonal to all elements
of (7, hence in particular, to {T*"g}?, which yields,

2
(30) %rf(g(e“’) — 1) g(e'®) é"8d@ =0, n=o0,
: v
n 2n
L i0) |2 sin6 ___._L i6) ,iné m—— Ig(O), "=
B0 g flaar erao= [oeqemean= T 70
[} 0

By taking the conjugate part of this integral, we see that the Fourier series of
| g (¢*%}|* reduces to the constant term g(0) and therefore,

lg)*=g() p.p.
from which follows,

(32) Mw=%mgﬁg

(33) @ =1—g(0)=1— e 290,

Let us now compare g(¢) with the function h(e) =f,(0) fo(2); /, being the inner
factor of /. A simple computation yields

(34 [h—el* =1 = f3(0) = 1 — =290
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Since f, must be a divisor of the inner factor of g, d(g) = d(f,); hence, by (33)

and (34),
(35) lh—e|<|lg—e|=d.

On the other band, it follows from the definition of g that
Ih—eli=llg—el.

Then the sign of equality must hold in (35), which implies h =g, since the
manifold C} is linear and the Hilbert space is uniformly convex. Thus,

9@ =£00) fole) =V1—a f,(2),

and the first part of the theorem is established.

As for the latter part of the theorem, let H, be the subset of H consisting
of all functions that vanish with their p — 1 first derivatives at the origin. The
transformation defined as a multiplication by 2z~? is then isometric and deter-
mined throughout Hp. From this it is clear, that the second part of the theorem
is a consequence of the properties already proved. Let us only note that if
Sol@)=ayz? + ..., ay =0, then

(36) b=1—ap,
and g,(2) = a, £, (2), gp being the projection of z# on Cf.
Theorem III. The closed linear manifold C} o spanned by the sets
{enfle)ly, {egle)},

where f, g =0, is identical with Ci, generated by the largest common divisor h, to
the inner factors of f and g.

Firstly, let us prove that h € Cfgy; i.e. for every ¢ > o polynomials p and ¢
exist such that [pf+ gg — hol| < &. Putting

S=ffi=hFofi=hF
9=9091=heGyg, = hy G,
F, and G, will, by assumption, be inner functions without common factor. Hence
lpf+ a9 —hll=lpF +q6—1]

and it is then sufficient to prove that Cp ¢ = H.
If this is not true an h =0 will exist, orthogonal to {2" F(z)}%, {2" G (2)}.
Putting
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2n
=1 i0 i6) ,—ind
n 2ufh(e ) F(e'?) e=i7¢d80,
1]

2z
R N eyt 0 ,—ind
b,.-—znfh(e‘)G(e‘)e d0,
0

we thus have a, = b, =0, # < 0, and the functions

ple)=daz", |2]<1,
1

ple)=dbae", |e|<1,
1

will possess the same properties as 1 (z) of formula (21). Since the radial limits
F(e'%) and G(¢’®) may vanish only on sets of measure zero, we have almost
everywhere,

lim g,g f;; = h{)
w (T etﬂ) 3 (e‘ 0)

r=]n-)-.0 G (’I‘ ei 0)

and thus the quotients ¢/F and w/G will represent one and the same mero-
morphic function m(z) in the unit circle. According to (18) we may now write,
=%
m T, my,
where k, and I, are inner functions without common factor, and m, an outer

function such that | m, (¢?®)| = | h(¢’?)|. Putting @ = @, ¢, and ¥ = Y, y;, we thus
obtain

Hence

The inner functions ¢, and 1, must then be divisible by %,. This implies that
I, is a common factor of F,, G,, and therefore, l, must be = 1. Accordingly,
the function m not only is holomorphic in the unit circle, but it in addition also
belongs to the space H, which, as has been previously shown, implies that k= o.
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The function h, therefore belongs to C},. Then, by Theorem I, C5, < C},.
Let us now assume that k=/k,%, is an arbitrary function belonging to C7,.
Then for every ¢>o0, we can determine two polynomials p and ¢ such that
|lpf+ g9 —k|<e In the same way as in Section 9, this leads to the bouund-
edness of the quotient ky/h,; i.e. k, is divisible by h,, which according to
Theorem I, implies Cf, < Ci,. Thus, the two sets must be identical, and the
theorem is proved.

11. Now, we shall consider the fully general case of a closed linear subset
C*¥ of H with the property
(37) I*C* < C%,
i.e. T* f€ C* when f€ C*.

Theorem IV. KEvery closed linear manifold C* having the property (37), and
not tdentical with the null element, contains a uniquely determined inner function f,
that generates C* in the sense
(38) Cc* = Cf.

Let p be the least integer = o such that C* contains a function whose pth
order derivative is > o at the origin. As is easily seen, the distance d, from
T*Pe==2P to C*, is then < 1, and we may define a function f, by the relation:

V1 — dj f, = the projection of 2# on C*.
In the same way as in Section 10, we find that f, is an inner function,

fole) =ap2® + apyr 2P+t 4+ -,
such that
dp=1—aj.

It then follows that Cf < C* Furthermore, if (38) were not true, there would
exist an inner function g,€ C* which would not be divisible by f,. In view of
Theorem III, the largest common factor

h()(z) = bpzp -+ bp+12'p+l + .-
of fy, 9o would also belong to C*. Then

fol2)
ho(2)

<1, lel<r,

which implies a, < by, thus leading to the contradiction

I2? — bpho ()" =1 — B < d3,
which ends the proof.
17
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From Theorem IV we immediately get the following corrolary which in an
essential point is equivalent to the theorem itself: Every non-empty set of inner
functions {f,}, enumerable or not, has a uniquely determined largest common
factor h, defined by the following properties: h, is an inner function which is a
divisor of every f,€{f)}; whereas every k, with this property is a divisor of A,.

12. Regarding the extinction problem, we shall content ourselves with the
following result:

Theorem V. Let C be a closed linear subset of H with the property

(39) TC<C,

and mnot identical with the null element. Then C will contain, either at least one
etgenelement

@i(e) = o 1Al<a

or, otherwise, a function of the form

27

(40) Yle)=1—exp {—j'l—l—du}éo

— 26

where pu = pu(6) is a nondecreasing and bounded function whose points of increase form
a set of at most zero measure.

Let us denote by C* the orthogonal complement of C, and let f€ C, g€ C*.
In view of (39), we have,

o=(f,9)=(T"f, 9)=(/, T*"g), n=o0
which implies that 7* C* < C*. As the theorem is evident in the case C=H
we can assume that C is a proper subset of H, and consequently, that C* con-
tains functions £ 0. According to Theorem IV, there will exist an inner func-
tion h generating C*, and the condition
(f, T**h) =0, n=o,

is then both necessary and sufficient for f to belong to C. In particular, an eigen-
function @; belongs to C when, and only when (p;, h) =o. Putting

-]
hiz) = Dewe®, |e| <1,
[}
we obtain

(h, 2) = 2 enA® = h(h).
0
Then @;€ C only when k(1) = o.
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On the other hand, a general property of inner functions h, is that 1 — k(o) h(z)
is orthogonal to {z"h(2)}>. Thus, 1 — k(o) h(2) belongs to C, and, in the case

h{z) # 0, |z]| < 1, we have
T

2
i0
h(z) = exp {— fe-.—j:_—z-da}sé I,
(1]
2

e 4
k1

da}%o,

1 —h(0)h(s)=1—exp {~— I—_—ie_w
[1]

i.e. a function of the form (40), which proves the theorem.

Finally, let us point out that through slight modifications of the argument,
the results obtained may be extended to the space HP, p > 1, of holomorphic
functions f(¢) subject to a Hardy condition (11) and. with the norm

2

1
— __I_ " 78\ |p 5
=55 [1searas.
0
However, a case of considerably greater interest is offered by the metric

={Slabf, »=1,

0

an being the Taylor coefficients of f(¢). When p =1 we arrive at a case included
in Wieners original results concerning the closure of translations of functions.
The eigenvalues now fill the closed unit circle and the Wiener closure criterion
S(2) # 0, | 2] = 1, holds true. If, however, the closure condition d (f) = o is relevant
in the cases 1 <p < 2, is an open question.’
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