FURTHER RESULTS ON E.COMPACT SPACES. 1

BY

S. MROWKA

Pennsylvania State University, University Park, Penn. U.S.4.(1)

Contents
I. Extensions of topological spaces . . . . . . . . . . . . .. ... ..o 163
II. Embedding into produets . . . . . . . . . . . . L. .00 L0 164
IIT. E-completely regular spaces . . . . . . . . . . . . . . . . . .. B 1
IV. E-compact SPaces. . . . . . . . « v« v e e e e e e e e e e e . 178
V. Estimation of exponents. The defect . . . . . . . . . . . . . . . ... ... 181

There are two problems naturally connected with topological products: (a) given a
space E find all spaces that are homeomorphic to subspaces of topological powers of E,
and (b) given an E find all spaces that are homeomorphic to closed subspaces of powers
of E. Problem (a) has been solved in [16]; to solve Problem (b) I have introduced in [17]
the concept of E-compact spaces; the first systematic investigation of this concept has
been given in [9]. The present paper is the first part of the summary of the anthor’s further
results in this direction. It contains a discussion concerning arbitrary spaces E; the second
part will concern some particular cases of E. Some of the present results have been stated
in [6], [19] and [20], some were announced in various issues of Notices Amer. Math. Soc.
Various results included here have been obtained in cooperation with R. Blefko.

This paper is self-contained; all the results given in [16] and [9] are reproved, some-
times in a more general form and frequently with more efficient proofs.

In this paper, for the sake of logical simplicity, we define an E-completely regular
(an E-compact) space as a space that is homeomorphic to a subspace (closed subspace,

respectively) of some topological power E™ of E. (Thus, our original definitions in [16],

() The preparation this paper was partially supported by the U.S. National Science Found-
ation (Grants GP-1843 and GP-5286).
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{17], and [9] now become necessary and sufficient conditions for E-complete regularity
and F-compactness.) It should be pointed out that recently H. Herrlich [12]() has initiated
a still more general approach to this type of problems. Herrlich considers a class € of
topological spaces and he calls a space X €-completely regular (€-compact) in case X is
homeomorphic to a subspace (a closed subspace, respectively) of a product of spaces from
the class €. We give only a brief comment on Herrlich’s approach at the end of Ch. IV.
Undoubtedly, this approach is very promising; it sometimes enables us to state some results
and some problems in an essentially more general form.

The following terminology and notations are used.

The domain and the counter-domain of a function f is denoted by D(f) and C(f),
respectively. f: XY (f: X—Y) stands for: { is a function with D(f) =X, C()= Y (C(f)= Y,
respectively). f[4] and f-1[A] denote, respectively, the image and the counter-image of a
set A under f. In general it is not assumed that 4 < D(f) (4 < C(f)); it is easy to see that
HAI=AN D], FHAl=FTANnC(f)]. The compositions of the functions f and g (i.e.
the function b defined by h(x)=f(g9(z))) is denoted by fog. In general it is not assumed
that D(f)> C(g); consequently, D(fog) can be a proper subset of D(g); in fact, we have
D{fog) =g~ D(f)]. idx denotes the identity function on a set X.

By a regular, completely regular, normal space we mean a T';-space which satisfies the
corresponding separation axiom.

X< Y (X<, Y) stands for: X is homeomorphic to a subspace (closed subspace,
respectively) of Y.

A function f whose domain and range are topological spaces is said to be open (closed)
provided that for every open (closed) subset A of the domain of f, fl4] is open (closed)
in the range of J. f is said to be quotient provided that for every subset of B of the range
of f, B is open in the range of f iff /~[B] is open in the domain of f.

F denotes the Alexandrov connected dyad; i.e., the two-point space {0,1} whose
only proper non-empty open subset is the set {0}. D is the discrete dyad {0, 1}, R denotes
the space of the reals, ¥ denotes the space of non-negative integers (=the discrete space
of cardinality ®,). D and Q denote, respectively, the spaces of rational and irrational
numbers. Ly, where 1t is a cardinal, denotes the space consisting of m points whose only
closed proper subsets are the finite sets; Gy, is a compact T';-space.

Given two spaces X and E, C(X, E) denotes the set of all continuous functions f
with f: X~ K.

(*) The manuseript of [12] was prepared already in 1965.
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I. Extensions of topological spaces

An extension of a space X is a pair (X, £X), where ¢X is an arbitrary Hausdorff super-
space of X such that X is dense in ¢X. An extension (X, ¢X) will usually be denoted by
eX. An extension ¢X of X is called proper provided that eX +=X.

If ¢, X and ¢, X are two extensions of X, then by a canonical map of & X into &, X we
mean any continuous map ¢: &; X —~¢&, X such that p(p) =p for every p € X. Clearly, a canoni-
cal map, if it exists, is unique.

We shall consider three relations between extensions ¢; X and g, X of X. We write

& X =&, X provided that there exists a canonical map ¢ of & X onto £, X and this
map is a homeomorphism;

8, X< 8, X provided that there exists a canonical map ¢ of & X into £ X and this
map is a homeomorphism;

& X < 8, X provided that there exists a canonical map of £, X onto ¢ X.

It follows from the uniqueness of canonical maps that if a canonical map ¢ of 5 X
into ¢, X is not a homeomorphism, or ¢ is not onto ¢, X, then ¢, X +,,&, X.

The above relations have the following properties.

1.1. THEOREM. For every three extensions &, X, ¢, X, e, X we have
Loy X = 6: X if 69 X = exc 82X, then e, X =6, X;
if 65 X =ex 82X and &, X = ey 83 X, then 6, X = oy 83 X.
2. 6 X Cexs 8. X if 6, X Cox 80 X and 63 X C oyp 65X, then 6, X Coxp 65X,
3. 6 XSt X; of 8, X S ex 82X and £, X < 83X, then 6, X < gpp 85 X.
4. 61X = oxp €. X 3ff 6. X Coxp 82X and £, X C o6, X iff 6, X S exp €5 X and £, X < oxp 6, X
5. If 6 X C 80X and e, X < 3580 X, then 6, X = oy 85 X;

if 6, X Cexy8a X and e, X < oxo8: X, then 6, X = o508, X

Proof. The only non-trivial parts of this theorem (4. and the first statement in 5; the
second statement in 5 follows from the uniqueness of canonical maps) follow from the

following lemma.

1.2. LEMmA. If f and g are continuous functions with f: 6, X —~e, X, g: 6, X ¢, X and
f(p)=g(p)=p for every p€X, then f=g1. Consequently, each of the functions f and g is onto

and each of them is a homeomorphism.
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Proof of Lemma 1.2. Consider the compositions fog and gof. We have gofi g, X —¢, X,
fogie, X, X and fog(p)=gof(p)=p for every p€X. Since X is dense in both & X and
e, X, we have gof=id, y and fog=id,,; consequently f=g-1.

One could consider still another relation between extensions ¢, X and ¢, X asserting
the existence of a canonical map of &, X into (but not necessarily onto) ¢; X. However at
the present moment, we did not find this relation very useful; furthermore, this relation can
be expressed as the composition of the relations <, and <, Consequently, no special
symbol will be introduced.

Note. The definition of an extension adopted in this paper is formally different from
the one frequently used in the theory of compactifications. According to the latter an
extension of X is a pair (&, ¥), where 4 is a homeomorphism of X onto a dense subspace
of Y. We have found, however, that our definition frequently makes various proofs for-
mally simpler. If an extension of X (in our sense) is to be constructed via an embedding of

X into a space Y, one can always appeal to the following.

1.3. THEOREM. (The formal theorem.) If & s a homeomorphism of X into Y, then there
exists @ superspace X* of X which is homeomorphic to Y by a homeomorphism b* which is an

extension of h.

Clearly, the topological relations between A[X] and Y are identical to those between
X and X* (for instance, A[X] is dense, open, closed, ete., ..., in ¥ iff X is dense, closed,

open, etc., ..., in X*).

II. The embedding theorem

Let {E,: £€E} be a class of topological spaces; the topological (Tihonov) product
of this class of spaces will be denoted by X{&: § €Z}. Elements of the product X{E:£€E}
are functions e defined on & and such that e(£) € E; for every £€E. ¢(£) is called the &-th
coordinate of e and it is denoted by 7.(e}). The map s, is called the projection of the product
X{E e & €Z} onto the &-th coordinate axis X ¢~ We shall also consider a more general type
of projections: if H, is a subset of 5, then we let 7= (e) =¢| &, (=the restriction of e to =)
for every e€ X{E,: £€E}. ng, is called the projection of X{E;: §€E} onto the product
X{E £€E,}. (There is a formal difference between 7, and 7;,.) Projections are continuous
open maps. If all spaces H,, £€T, are equal to a space X, then the product X{&#,: £€Z}
is denoted by E™, where mi=card E, and it is called the m-th (topological) power of E.

Sets of the form

(1) =GN naEl (G

where &, ..., &, €E and G, is an open subset of X¢, 1=1,2,...,n,
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are called elementary neighborhoods in the product X{E,: £ €E}; elementary neighborhoods
form a base for the topology in this product. Every elementary neighborhood can be
written in the form (1), where the indices &,, &,, ..., &, are all distinct.

Let X be a space and let F={f,: £€E} be a collection of functions with

(2) fe: X—E, for every fEE;
let A be a map with

(3) h: X>X{E,; (€}

and consider the condition

4) mgoh=f, for every £€EE.

Condition (4) can serve a dual role: if a map h with h: X—X{E,: £€E} is given, then (4)
defines a class §§ of functions f,: X-E ¢ Conversely, if such a class % of functions is given,
then (4) defines a map h: X>X{E;: £€E} (ie., there is one and only one map h: X—
X{Eg §€E} satisfying (4)). This map kb will be called the parametric map (of X into
X{E;: §€E}) corresponding to the class .

If fg,, feo -os fen is a finite system of functions with f;;: X — By, then by <f¢,, fes s fzn)
we shall denote a map whose value at a point p € X, {f,, f,, ..., fz.> (), is equal to the point
(fe(D), fe.(P)s s fea(p)) of the product Eg X EHgX...X Ey, (€., {fg,fa s fey is the
parametric map corresponding to the class {f;,, fz,, ..., fe, })-

Our main embedding theorem is as follows.

2.1. TaHeorREM. (The Embeddihg Theorem.) Let = {fz: £€E} be a class of functions
with fg: X~ E;, where X and E;, E€EE, are topological spaces. Let h be the parametric map
corresponding to the class  (i.e., b is a map of X into X{E: §€E} such that condition (4) is
satisfied). We have

a) h is continuous if and only if each f is continuous;

b)  his one-to-one if and only if the class ¥ satisfies the following condition:
(i) for every p, g€EX, p==q, there is an [ €F with fp)=f(q);

¢) h is a homeomorphism if and only if h is continuous and one-to-one and the class
satisfies the following condition:

(ii) for every closed subset A of X and for every p€X\ A there exists a finite system
feus -s fea Of functions from & such that {fe,, ..., f.> (p) §Clfy,, ..y feu [A], where el
stands for the closure in Eg X...X Eg,;

11 — 682902 Acta mathematica 120. Imprimé lo 19 juin 1968
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d) assume that the spaces E; are all Hausdorff and assume that h is a homeomorphism. h[ X ]
is closed in X{E: E€E} if and only if the class §§ satisfies the following condition.:
(iii) there is no proper extension ¢X of X such that every function f; € F admits a contin-
uous extension fi: eX—Ej.
Furthermore, in condition (iii) i suffices to consider only such extensions ¢X of X that
eX S o X{B;: EEE}.

Proof. Parts a) and b) of the theorem are well-known and are stated here only for
completeness.

Part ¢) Assume that 4 is continuous and one-to-one and that the class {§ satisfies con-
dition (ii). Let 4 be a closed subset of X. For every finite system &, ..., §, of elements of
E we denote by T . . the set of all points e of the product X{E, £€E} such that
7efe) =fg(p) for some p€A and for 1=1,2, .., n. It is now clear that condition (ii) is
equivalent to the fact that A{4] is the intersection of all sets of the form A{XTn7T furoe En
where £,,...,&, ranges over all finite systems of elements of E (and T £ ....g, denotes the
closure of T, ..., Ty, in X{E: E€E}). Thus A[A] is closed in A[X], hence £ is a homeo-
morphism.

Conversely, assume that h is a homeomorphism. Let A be a closed subset of X and Iet
pEX\ A. We have h(p)¢h[A]; consequently, there is an elementary neighborhood
U=n:'[GIN...0Nn;1{G,] (&; are all distinct) with A(p)€U and UNA[A]=D. Set
{feys voor feup =mg, 0k, where By={£,, ..., &,}. It is clear that the system f,, ..., f;, satisfies
the requirements of condition (ii).

Part d) Assume that A{X] is closed in X{E: £€E}. Let ¢X be a Hausdorff extension of
X with the property that each f; in § admits a continuous extension f;: ¢X —E,. Let h*
be the parametric map of eX corresponding to the class {§*={ff: £€E}. Clearly, * is an
extension of h. This implies (X is dense in £X) that »*[eX]<A[X]=h[X]. In other words,
#* maps ¢X into h[X]. Consequently, setting g =A'ok*, we see that g is a continuous func-
tion with ¢g: eX—X and g(p)=p for every p€X. Therefore ¢X =X. () Consequently, no
proper Hausdorff extension ¢X of X has the property expressed in (iii).

Conversely, assume that A[X] is not closed in X{&;: £€X}. By the Formal Theorem
(Theorem 1.3) there exists a superspace ¢X of X which is homeomorphic to the space
Y =h[{X] by a homeomorphism A* with »*= k. Clearly, £X is a proper extension of X with

() Here we use the following statement:

If P is a subset of a Hausdorff space 8 and g is a continuous function such that g:S—P and
gp)=p for every pE P, then P s closed in S.

The proof follows from the equality P ={p€S: (o) =g(p)}, where f is the identity function on §.
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eX o X{E;: E€EE} (so eX is Hausdorff). Furthermore, for every £€E, the formula ff =
mgoh* defines a continuous extension of f, with ff: ¢X— E,. Consequently, condition (iii)
is not satisfied.

In connection with the Embedding Theorem we shall introduce the following definition.

2.2 Definition. An {E: £ €E}-distinguishing, an {E,: & €E}-separating, an {Ey: E€E}-
non-extendable class for X is a class §F={f;: £€E} of continuous functions with f;: X~ E,
satisfying condition (i), (ii), (iii) of Theorem 2.1, respectively. If all the spaces E, are equal
to a fixed space E, then we shall use the terms: an E-distinguishing, an E-separating, an
E-non-extendable class.

It is clear that if E=E,UE,UE; and §, = {f;: £€E,}, Fo={f¢: £€EL}; Fs={fr: E€E,}
are, respectively, {E. &€E,}-distinguishing, {E. &€E,}-separating, {H; &€E,}-non-
extendable classes for X, then =3, U F U Fs={f;: §€E} is an {E,: £ €E}-distinguishing,
{E: £€E}-separating and {E;: £€E}-non-extendable class for X. E, are not assumed to
be disjoint.

23. If Xisa Ty-space, then an { E . & €E}-separating class is {E;: £ € B}-distinguishing.

Proof. Given two distinct points of X there exists a closed set containing exactly one
of them. Suffices to apply the definitions.

24. If By, §€E, are Hausdorff and X is compact, then every {E,: & € E}-distinguishing
class for X is {E: £E€E}-separating.

Proof. Let §={f;: £€E} be an {E,: £€E}-distinguishing class for X, let A<X be
closed and p,€X\ A. For every ¢€A we can find an fe, € F so that fr(po) +f¢(q). Select
disjoint open set @, and H, of E,, so that feDo) €Gy and fr,(q) €H,. The class {f;,[H,]:
g€A} is an open cover of 4; let fo'[H,], ..., fs'[H,] be a finite subcover. Let £, ..., & be
all the distinct indices out of &, ..., &y it is easy to see that the map s ooos fray
satisfies the requirements of condition (ii) of Theorem 2.1.

It can easily be seen that the proof of part ¢) and Theorem 2.1 yield the following

2.5. If F={f;:§€E} is an {Ey §€E}-separating class for X, then the corresponding
parametric map h is continuous and closed (consequently, h is quotient).

In the above statement we do not assume, in contrast to part ¢) of Theorem 2.1,
that 4 is one-to-one (i.e., we do not assume that ¥ is an {E,: & € E}-distinguishing class).
However, the converse of 2.5 is false, i.e., if 4 is not one-to-one, then A being continuous
and closed does not imply that the class ¥ is {E,: £ €E}-separating.

2.6. Let By, £€E, be Hausdorff and let b be a homeomorphism of X into X{E;: £€H}.
Let eX be a Hausdorff extension of X such that b admits an extension to a continuous map h*:
eX—>X{E;: E€E}. Then there exists an extension ¢y X such that
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a) & X <eneX, 8, X< (. X{E; EEE}, and ‘
b) & admits an extension to a homeomorphism hy: g, X —~X{Hs: E€E}.

Proof. By the Formal Theorem, there is an extension & X of X that is homeomorphie
to A*[X] by a homeomorphism k, with h<h,.
We shall conclude this section with the following criterion for non-extendability.

2.7. Let ¢X be a compactification of X, and let e X be an extension of X;; cX and eX; are
assumed to be Hausdorff. Let {g.: EEE} be a class of continuous functions with g¢: cX —~eX,
and g X< E;. Let f;=g.|X. The class F={f;: E€E} is {B EE€E}-non-extendable if
and only if for every Po€cX\ X there exists a EEE with gy(p,) ¢ B 2

Proof. The necessity of the condition is obvious; we shall prove the sufficiency. Let
£X be a proper extension of X, let ¢,€¢X \ X.Let R be the class of all open subsets of eX
containing g,. There exists a point p,€cX such that p, €GN X for every GER. Clearly,
Po€cX\ X. Take a £€E such that ge(po) € E;. f; does not admit a continuous extension
freX—~>E,.

Historical remarks on the Embedding Theorem. The method of producing maps into
topological products via classes of functions into eoordinate spaces is as old as parametric
equations. Parametric equations of, say, a circle, z =cos 2af, y =sin 2at, 0 <t <1, give raise
to a map & of the interval 0 <¢<1 into the product of the ranges of the functions x =cos 2at,
y=sin 2xt; this map A assigns to every point ¢, 0<¢<1, the point (cos 2nt, sin 27t) of the
plane. It is clear that “the parametric map corresponding to a class of functions” is con-
structed in exactly the same way. Urysohn {24], [25] to prove his famous metrization theorem,
applied the technique of parametric maps to countable classes of functions with values in
the unit interval J; subsequently, Tihonov [23] extended this procedure to classes of
arbitrarily many J-valued functions. Both [25] and [23] contain sufficient conditions for
a parametric map to be a homeomorphism. In [16] classes of functions with arbitrary
ranges were considered; furthermore [16] contains a necessary and sufficient condition for a
parametric map to be a homeomorphism. (In [16] only T -spaces were considered; conse-
quently, conditions (i) of Theorem 2.1 was not mentioned; see 2.3 in the present paper.)
Further comments on this topic can be found in [1], pp. 67-68, or [2], p. 42. Part d) of the
Embedding Theorem was shown, in a somewhat less general form, in [9]; however, the proof
given here follows that of {19]. The origin of part (d) can be traced to Kuratowski and
Sierpifiski [15] (1921) who, in fact, used one-element R-non-extendable classes to prove that

a difference of two closed subsets of a metric space X is homeomorphie to a closed subspace
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of X xR. Subsequently, Kuratowski used countable R-non-extendable classes to prove
that a Gs-subset of a metric space X is homeomorphic to a closed subspace of X x R™%.
For further information see [14], pp. 240-241.

III. E-Completely regular spaces

3.1. Definition. Given two spaces X and E, we say that X is E-completely regular
provided that X<, E™ for some cardinal 1. The class of all E-completely regular spaces
will be denoted by (). The smallest infinite cardinal m for which X<, E™ is called
the E-exponent of X and it is denoted by expz X (expz X is defined only for an E-completely
regular X). Classes §(E) are called classes of complete regularity (i.e., a class € of topological
spaces is called a class of complete regularity provided that there exists a space £ with
E=C(E)). If E€C(E,) and E,€C(E), then we say that F and E, has the same degree of
complete regularity.

The following statements (3.2-3.7) are direct consequences of the definition.

3.2. E€C(E); in fact, expz B =¥,,.

3.3. If Xe€Q(E) and X<, X, then X,€Q(E); in fact, expy X,<expgX.

34. If X €Q(E) for every £€Z, then X{E;: §€E}EC(H); in fact, expy X{E: E€E} <
T{expy Xy E€EE} (< cannot be replaced by = and X {expyX;: £€EE} cannot be replaced by
sup {expy X ;: £EE}).

3.5. §(E)<Q(E,) ¢f and only if E€E(E,).

3.6. §(E)=C(E,) tf and only if E€Q(E,) and E,€C(E).

3.7. C(E)=C(E™) for every cardinal m>0.

From part c) of Theorem 2.1 we obtain the following characterization of E-completely

regular spaces.

3.8. TEEOREM. A space X is E-completely regular if and only if the following two
conditions are satisfied:

(a) for every p, g€X, p =g, there is a continuous function f: X~ E with f(p)=f(q);

(b) for every closed subset A of X and for every p € X \ A there is a finite number n and a
continuous function f: X — E* such that f(p)¢flA4].

Equivalently, X is E-completely regular if and only if C(X, E) is both an E-distinguishing
and an E-separating class for X (or, if X admits a class which is both E-distinguishing and
E-separating).

Remark. 1f X is a Ty-space, then, by 2.3, condition (a) can be ommitted. In this form
Theorem 3.8 was stated in [16]. It was shown in [9] that in condition (b) it is not sufficient

to consider only functions f with f: X~ E.
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Another characterization of E-completely regular spaces (due to R. Blefko) is as
follows.

3.9. A Ty-space X is E-completely regular if and only if for every net{x,: n€ D} of points
of X we have

1) z, >z if and only if f(x,)—f(z) for every f€C(X, E).

Proof. Assume (1) and let % be the parametric map corresponding to the class C(X, E).
If %, y€ X, x <y, then one of these points does not belong to the closure of the other; say
z¢{y}. Then z,+>y, where x,=x for n=1, 2, .... Consequently, by (1), f(x)=+f(y) for at
least one fEC(X, E). It follows that % is one-to-one. It is now clear that (1) implies that &
is a homeomorphism. Thus X<, E™, where m=card (X, E); consequently, X is E-
completely regular. The converse follows immediately from Theorem 3.8.

In 3.9 the assumption of X being a 7T,-space cannot be omitted. In fact, if X is an
indiscrete space and E is a T-space, then condition (1) is always satisfied.

It is clear that €(J) =€(R) =the class of all completely regular spaces. In fact, we have

3.10. C(E)=the class of all completely regular space if and only if E is completely regulor
and J< o E.

Proof. Assume that €(E) =the class of all completely regular spaces. Complete regu-
larity of E is obvious. On the other hand, we have J< ., E™ for some cardinal . Let I,
be a subspace of B with Iy=,, J; write B =X{E,: £€E,}. For at least one §,€E, 7,,[],)
contains more than one point. Now, 7¢,[,] is a locally connected (metrizable) continuum;
therefore 7z;,[1,] contains a homeomorph of I,. Thus J<, E.

The proof of the converse is obvious.

Similarly, we have

3.11. €(D)=the class of all O-dimensional T-spaces. Furthermore, §(E)=E(D) if and
only if E is a 0-dimensional T-space containing more than one point.

3.12. §(F)=the class of all Ty-spaces. Furthermore, &(E)=C(F) if and only if Eis
T,-space and E is not a T'-space.

Verification of 8.11 and 3.12 is straightforward (use Theorem 3.8). The first parts of
3.11 and 3.12 are classical results due, respectively, to N. B. Vedenisov and P. S. Alexan-
drov. For references see [1], p. 47, or [2], p. 42.

The first part of 3.12 implies, in particular, that for every 7'y-space X the class C(X, F)
is F-separating. In fact, a stronger statement holds:

3.13. For every space X the class O(X, F) is F-separating.

For the proof of 3.13 [16] can be consulted. 3.13 indicates the necessity of the assump-
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tion that X is a Ty-space in 2.3. In fact, the class O(X, JF) (which by 3.13 is always J-
separating) is F-distinguishing iff X is a T,-space.

3.14. Let F* be the space consisting of three poinis 0, 1, 2 in which {0} is the only non-
empty proper open subset. €(F*) =the class of all topological spaces.

Proof. By 3.13 and the fact that F is a subspace of F* we infer that (for every space X)
the class C(X, F*) is F*-separating. To prove that C(X, F*) is F*-distinguishing one uses
functions with values 1 and 2 (every such function is continuous).

In a similar way one can show that &(E) =the class of all topological spaces iff E contains
a non-trivial (i.e., containing more than one point) Ty-subspace and a non-trivial indiscrete
subspace.

According to the above each of the following classes: the class of all topological spaces,
the class of all T'y-spaces, the class of all 0-dimensional T'y-spaces, the class of all completely
regular spaces, is a class of complete regularity. It was shown in [16] that the class of all
T,-spaces is not a class of complete regularity. This result has been strengthened by
Bialynicki-Birula in 1958, who has shown (using Theorem 1 of [16]) that there is no T,-space
E such that §(E) contains all Hausdorff spaces(1)). In [11], H. Herrlich has obtained a still
stronger result showing that there is no T'-space E such that §(E) contains all regular spaces.
These results include, of course, the result concerning the class of all 7';-spaces; they also
imply that neither the class of all Hausdorff spaces nor the class of all regular spaces is a class
of complete regularity. It follows from the above and from 3.12 that if €(Z) contains all
regular spaces, then €(E) contains all 7T-spaces. In other words, the class of all T y-spaces it

the smallest class of complete regularity containing all regular spaces.

3.15. Definition. A set A< X is said to be E-closed (2) (E-open) in X provided that for
some finite n there exists a closed (an open) subset 7' of E" and a continuous function
f: X—E" such that 4 =f[T1].

If E=J or E=R, then the E-closed sets coincides with the so-called Vedenisov sets
[26] or zero-sets of continuous real-valued functions.

3.16-3.20 follow directly from the definition.

3.16. Ac X is E-closed if and only if X\ A is E-open.

3.17. If f: XY is conbinuous and A is an E-closed (E-open) subset of Y, then f[A4)]
is E-closed (E-open) in X.

3.18. A4 finite union and a finite intersection of E-closed (E-open) subsets of X is B-closed
(E-open) in X.

(*) This result has never been published.
(3) This concept was introduced in [7].
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3.19. Let m be a cardinal and assume that every closed subset of E™ is E-closed. Then the
sntersection of m E-closed subsets of X is E-closed in X.

3.19 is a generalization of a well-known fact: the intersection of countably many zero-
sets i3 a zero-set. Indeed, J% is a metric space.

3.20. A Tyspace X is E-completely regular if and only if the class of all E-open subsets
of X is a base (for open subsets). In particular, if X is E-completely regular, then every open
(closed) subset of X is the union (the intersection) of E-open (E-closed) sets.

3.21. Definition. A space X is said to be E-Hausdorff provided that the class (X, E)
is E-distingnishing. X is said to be E-normal provided that for every two disjoint closed
subsets 4 and B of X there exist two disjoint £-closed subsets A* and B! of X with A< A'
and Bc B, X is said to be strongly E-normal provided that for every two disjoint closed
subsets 4 and B of X there exists a finite number %, a continuous function f: X > E",
and two disjoint closed subsets F, and F, of E" such that A< f-1{F,], B<f[F,].

If £E=J or E=R, then E-normal as well as strongly E-normal T;-spaces coincide
with normal spaces (in the usual sense). However, the property of being J-Hausdorff is
stronger than the usual Hausdorff separation axiom; J-Hausdorff spaces are sometimes
called functionally Hausdorff.

3.22. An E-completely regular space is E-Hausdorff; an E-normal T,-space is E-com-
pletely regular; a strongly E-normal space ts E-normal.

An E-normal T-space need not to be E-completely regular; for instance, F is J-
normal but JF is not completely regular. An E-normal space need not be strongly Z-normal.
Indeed, it is easy to see that if finite powers of E are normal, then a strongly E-normal
space is normal. Consequently, a non-normal completely regular space is not strongly
Jmnormal for any cardinal m. On the other hand, every completely regular space is J™-
normal for sufficiently large m.

3.23. Let E be Hausdorff. If X is compact and E-Hausdorff, then X is strongly E-normal.

Proof. By 2.4 we infer that X is E-completely regular. Let 4 and B be disjoint closed
subsets of X. For every p €4 there is a finite number », and a continuous function f,: X — E"»
with f,(p) ¢f,[B]. Since f,[ B] is compact, we can find an open subset G, of E™ with f,(p)€G,
and G, N f,[B]=0. The sets f,'[G,], p€A, form an open cover of 4; let £,'[G,], ..., f;kl [Gg]
be a finite subcover of A. Set f={f,,, ...; fo0» Fy = U1 (B™ x ... x G, x ... x B™), Fy={[B].
{ is a continuous function of X into E”, where n=mn,, +...+n,,, F; and F, are disjoint closed
subsets of E" and A< {1 F,], B&f-1[F,]. Thus X is strongly Z-normal.

Consider now the following situation: Let ¢ be a continuous map with ¢: X— ., X*.
@ induces a map ¢ of C(X*, E) into C(X, E) defined by
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(2) @(g) =gop for every g€C(X*, E).

The map ¢ is always one-to-one; in general, ¢ does not map C(X*, E) onto O(X, E). ¢ is
interesting from algebraic viewpoint; it is easy to see that ¢ is an isomorphism relative to
all pointwisely defined operations in C(X*, E) and C(X, E). More precisely, if ® is an
arbitrary operation (binary, for simplicity) in F; and if ® y and ® x« are the corresponding
pointwisely defined operations in C(X, E) and C(X*, E), respectively (i.e., (f,® xfs)}(p)=
L(P)®fy(p) for every p€X and (g;® xgs)(9) =1(9)®9x(g) for every ¢E€X*); then
P91 ® xd2) =P(9,) ® x p(gs) for every g,, g,€C(X*, E). Similarly, if o is an arbitrary (binary,
for simplicity) relation in E, then g,0xg, iff @(g)ox@(gs) for every gy, g,€C(X*, E);
where ox(gx+) is defined by f,0xf, = f1(p)ef(p) for every p € X (g9,0x+: = 91(g)092(q) for every
q€C(X*, E)).

We shall now prove that one can always find an E-completely regular X* for which
& maps C(X*, E) onto C(X, E). '

3.19. THEOREM. (The identification theorem.) For every space X there exists an E-
completely regular space X* and a continwous map @: X — ono X* such that the map @ (de-
fined by (1)) maps C(X*, E) onto C(X, E).

The pair (X*, @) with the above properties is called the E-transformation of X and X*
18 called the E-modification of X.

The E-transformation of X is unique in the sense that if (X*, ¢,) and (X*, @,) are both
E-transformations of X, then there exists a homeomorphism h of X* onto X* such that g, =g, 0h.

Proof. Construction of an E-transformation. Let §=C(X, E). It is easy to see that the
pair (X*, @), where p is the parametric map corresponding to the class §§ and X* =¢[X],
is the E-transformation of X.

Unigueness of an E-transformation. Let (X7, ¢,) and (X3, @,) both be E-transformations
of X. The map y=(p,) Lo, is a one-to-one map of C(X3, E) onto C(X7, E). This map y
induces, in a natural way, the map vy, of C(X3, E") onto (X}, E™; n=1, 2, .... y, satisfies

(3) for every f€C(XY, E™) and every g€ C(X5, E™) we have f =palg) iff fle(p)) =g(ps(p))
for every p€X.

Using (3) and the E-complete regularity of X1 and X3 we obtain that

(4)  for every p;, P, €X, @i(p1) =@1(Ds) I @o(p1) =@a(py).

(4) enables us to define a one-to-one map k of X} onto X3 such that ¢, =hog,. Using (3)

again we prove that 4 is, in fact, a homeomorphism.
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The above proof was obtained in cooperation with Bletko. Another proof of uniqueness
(also due to Blefko), which is perhaps technically simpler and which, in particular, does not
involve (X7, E7), can be based on 3.9.

According to Theorem 3.19, every algebraic structure C(X, E) of continuous functions
(in the sense of [21] and [22]) ¢s ¢somorphic to a structure C(X*, E) on an B-completely regular
space X*.

It is easy to see that

3.20. The following three conditions are equivalent

(a) X vs E-Hausdorff;

(b) X admits a continwous one-to-one map onto an E-completely regular space;

(c) the map @ in the E-transformation (X*, p) of X is one-to-one.

In connection with condition (b) note that if ¢ is a one-to-one continuous map of X
onto an £-completely regular space X*, then (X*, @) need not be an E-transformation of X.

It is easy to see that the E-transformation depends only upon the degree of com-
plete regularity of £; i.e.,

3.21. If §(B)=C(E,) and (X*, @) is the E-transformation of X, then (X*, ¢) is the B,-

transformation of X.

Proof. X* is E,-completely regular. On the other hand, we can assume that E is a
subspace of E™ (for some m). Let f€C(X, E,). Then f€C(X, E™). Considering the co-
ordinates of f, we infer that there is a g€ C(X*, E™) with f=gog. The last formula implies
that the range of ¢ is contained in E,; thus, in fact, g€ C(X*, E,). Thus (X*, ¢) is an K-
transformation of X.

If E=J or if E=R, then the E-transformation (the E-modification) of X will be
called the completely regular transformation (modification) of X. The completely regular
modification of X coincides with the space discussed by Cech in [8], p. 826, and denoted
there by pX. The F-transformation (F-modification) of X will be called the 7'j-transforma-
tion (T'g-modification) of X. T,-modifications also were discussed in [8] (pp. 825-826,
‘... the theory of general topological spaces ... can be completely reduced to the theory
of Kolmogoroff spaces”). To see this it suffices to show that

3.22. Let ¢ be a continuous map with ¢: X ... X*. (X*, @) 15 the T y-transformation of
X if and only f

() @(p)=0lg) if and only if {p}=1g};

(b) @ is a quotient map.

Proof. Let (X*, ¢) be the F-.transformation of X; we shall prove that (a) and (b)
are satisfied. If {p}={q}, then p€{q} and ¢€{p}; consequently, by the continuity of
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@, 9(p) E{p(q)} and ¢(g) € {g(p)], hence {p(p)} ={p(g)}. But X* is a T -space; consequently,
the last equality implies ¢(p)=@(g). On the other hand, if m#@, then one of these
points does not belong to the closure of the other; say pé{q}. The function f, defined
by f(s) =1 for s€{g} and f(s) =0 for s€ X\ {g}, is a continuous function with f: X > F. If fol-
lows that there exists a continuous function g: X*— F with f =gog. Clearly, g{p{p)) =f{p) =0
and g(¢(q)) =f(q) =1; consequently, ¢(p) +¢(g). Thus (a) is satisfied. On the other hand,
by 3.13, the class C(X, F) is F-separating; consequently, by 2.7, ¢ is a closed map (note
that ¢ is the parametric map corresponding to C(X, F)); thus ¢ is quotient.

Conversely, if (X*, ¢) satisfies (a) and (b) then (X*, ¢) must be the F-transformation
of X; indeed, conditions (a) and (b) uniquely determine the pair (X*, ¢) (in the sense of
Theorem 3.19).

The concepts of an E-transformation and E-modification, as well as their uniqueness,
deserve some comments. It can be easily seen that the E-transformation has the following
maximality property:

3.23. If (X*, @) is an E-transformation of X, then for every continuous map ¢, of X onto
an E-completely regular space X7 there exists a continuous map @, of X* onto X1 such that
PL=P209-

In fact, the E-transformation is determined by the above maximality property:

3.24. If @ is a continuous map of X onto an X*€C(E) and the pair (X*, @) satisfies the
conclusion of 3.23, then (X, @) is the E-transformation of X.

Now, the E-modification of X is, by definition, a space X* such that there exists a
continuous map g: X - .., X* such that (X*, ¢) is an E-transformation of X. Consequently,
from the uniqgueness of E-transformations we obtain the uniqueness (up to homeomor-
phisms) of E-modifications. However, it is not true that if X* is the E-modification of X
and @ is an arbitrary continuous map of X onto X*, then (X*, ¢) is an E-transformation
of X. For instance, if X =X* is an E-completely regular space and ¢ is a continuous map
with @: X - ¢, X* and such that ¢ is not one-to-one, then X* is the E-modification of X,
but (X*, @) is not the E-transformation of X; indeed, ¢ does not map C(X*, E)onto C(X, E).

From 3.23 we obtain a maximality property of the E-modifications:

3.25. The E-modification X* of X is a maximal E-completely regular continuwous vmage
of X; i.e. if X, is an arbitrary E-completely regular continuous image of X, then X, is a con-
tinvous image of X*.

In contrast to 3.24., the E-modification of X is not determined by its maximality
property 3.25. Examples are trivial.
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IV. E-compact spaces
Throughout this chapter all spaces will be assumed to be Hausdorff.

4.1. Definition. A space X is said to be E-compact provided that X< , E™ for some
cardinal nt. The smallest infinite cardinal m for which X < _; E™ is called the large exponent
of X relative to E and it is denoted by Exp;X. (ExpzX is defined only for an E-compact
X). The class of all E-compact spaces is denoted by S(E). Classes of the form R(E) are
called classes of compactness. If B, ER(E) and EER(E,), then we say that E and E; have
the same degree of compactness.

4.2. KE)Y<=Q(E).

4.3. E€R(E); in fact, Expz B =¥,.

4.4. If XEQE) and X, , X, then X ER(E); in fact ExpzX,<ExpyX.

4.5. If X €R(E) for every EEE, then X{X  EEZ}EQ(E); in fact BExpy X{X,: £€E}<
% {Expp X §€E} (< cannot be replaced by =and X {Exp;X,: £€E} cannot be replaced
by sup {Exp,X,: §€Z}).

4.6. QB)< Q(E,) if and only if EE€R(E,).

4.7. Q(B)=Q(E,) if and only if EE€R(E,) and E,€R(E).

4.8. If X;, E€E, are E-compact subspaces of a space X, then the intersection() {X,: £€E}
us also B-compact; in fact, Bxpy N {X: £€E} <X {Exp; X,: £EE} (<cannot be replaced by =
and X {Exp; X,: £€E} cannot be replaced by sup {Expy X, £EE}).

4.9. Let X be an E-compact space and let | be a continuous function with f: X—~Y.
If Yy is an E-compact subspace of Y, then Y] is E-compact; in fact, Bxpef2[Y,]<
Exp; X +Exp; Y.

Proof of 4.8 and 4.9. N{X;: £€E} is homeomorphic to the diagonal A of the product
X{Eg; E€E} and A is closed in X{E;: £€E}. f1[Y,] is homeomorphic to the set {(z, y):
y=Hz), z€X, and f(x)€Y,} (the “graph” of f restricted to f1[¥,]) and this set is closed
in X x Y. (These are classical facts; see [13], p. 144.)

From part d) of Theorem 2.1 we obtain

4.10, THEEOREM. Let X be an E-completely regular space. X is E-compact if and only if
for every proper extension eX of X there exists a continuous function f: X - E which cannot be
extended to eX. In the above, it suffices to consider only E-completely regular extensions of X

Equivalently, an B-completely regular X is E-compact if and only if C(X, E)is an E-non-
extendable class for X (or if X admits an E-non-extendable class).

Clearly, R(J) = the class of all compact spaces and (D) = the class of all 0-dimensional
compact spaces. In fact, it can be easily shown (see the proof of 3.10) that
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4.11. K(E)=8(J) if and only if E is compact and J< ., E.

4.12. K(E)=8(D) if and only if E is a O-dimensional compact space containing more
than one point. '

There is a great variety of classes of compactness. Blefko has shown ([6], Ch. III) that

4.13. Let w; and w, be initial ordinals. If cf(w;)=cf(w,), then K(8(w;))=8(S(w,)),
and if cf(w;) +cf(w,), then neither R(S(w ;)< K(S(w,)) nor K(S(w,))< K(S(w))-

In the above, S{«) denotes the space of all ordinals & <e (with the order topology).

4.14. Theorem on the existence and the unigueness of ; X.
(a) For every E-completely regular space X there exists an extension ;X such that
(i) PeX is E-compact;
(il) every continuous function f: X —E admits a continuous extension f*: Bz X~ E.
(b) PpX is uniquely determined by the above properties; i.c., if eX is an arbitrary exten-
sion of X that satisfies (i) and (ii), then eX = .Sz X.
(¢) PxX has also the following property: every continuous function g: XY, where

Y is an arbitrary E-compact space, admits a continuous extension g*: fr X —Y.

Proof. Part (a). The proof is a duplication of the famous Cech construction of 8X [8].
Let F=0C(X, E), let h be the parametric map (see Ch. IT) of X into Em=X{E f€F},
where m =card {§ and E,= E for every f€{, corresponding to the class . There is a super-
space Bz X of X which is homeomorphic to A[X], the closure of A[X] in E™, by a homeo-
morphism A* with A<A*. It is easy to see that §;X satisfies (i) and (ii), in particular,
if fEC(X, E), then f*=m,0h* is a continuous extension of f over f; X.

Part (c). Suffices to embed Y into E™ = X{E;: £€E} as a closed subspace and extend
the functions m.0g and then take the parametric map corresponding to the class of these
extensions. ‘

Part (b). Assume that ¢X satisfies the assumptions of (b). Repeating the proof of (¢),
we see that ¢X has the property expressed in (c¢). This enables us, by extending the identity
map of X onto itself, to define two continuous functions f and g with f: fpX—eX,
g:eX—>B; X, and f(p)=g(p) =p for every p€X. By Lemma 1.2, e X = ;8- X.

415. CoroLLARY. Let X€G(E). X vs E-compact if and only if fz X =X.

p;X coincides with the usual fX; fX is the largest, in the sense of <., compacti-
fication of X. $,X is defined for every 0-dimensional space X; it was studied in [5]. 8, X
is the largest, in the sense of <, 0-dimensional compactification of X. In general, if Z
is compaect, then ;X is the largest E-compact (equivalently, E-completely regular and
compact) extension of X. However, if F is not compact, then 5z X need not be the largest
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E-compact extension of X; in fact, an E-compact space can admit proper K-compact
extensions. On the other hand, among extensions satisfying condition (ii) of Theorem 4.14,
BzX can always be characterized as a largest or a maximal(!) extension in the sense of
< ext:
4.16. Let €(X) be the class of all B-completely reqular extensions of X sabisfying condi-

tron (ii) of Theorem 4.14 and let e X €E(X). The following conditions are equivalent

(a) EX:extﬂEX;

(b) &X is the largest extension in E(X) (tn the sense of < y);

(e} &X is @ mawimal extension in §(X) (in the sense of < o).

Proof. (a) implies (b). Sg(eX) exists and it is an extension of X. It is easy to see that
Bz(eX) satisfies 1. and 2. of Theorem 4.14. Consequently, by part (b) of this theorem
Be(eX) =ufeX. But eX<f(eX); consequently, eX < [(pX. Thus fzX is the largest
extension in E(X).

Obviously, (b) implies (c).

{¢) implies (a). Assume £X is maximal. If X 5,85 X; then, by part b) of Theorem
4.14, ¢X is not K-compact. Consequently, Sz(¢X) is a proper extension of £X and clearly,
Pp(eX) €E(X). Thus, X is not maximal in §(X).

In sequel, we shall compare the extensions §z X for different &’s.

417, TaeorEeM. Let E; and E, be two spaces with &(E,)=C(E,). B, €R(H,) if and
only if Pe, X < oxBe, X for every X €C(H,).
In other words, the more compact E the larger the extension ppX.

Proof. Assume E,€8§(E,). By part (c¢) of Theorem 4.14 we infer that gz X satisfies
condition (ii) of this theorem relative to the space E,. Consequently, by Theorem 4.16,
B X S exefip, X

To prove the converse, note that, in particular, we have E,<f; E,< o\:fr, E,. By
Corollary 4.15, 8z, £, = E,, hence 8, E,=FE,; thus F, is E,-compact.

As a particular case of the above theorem we obtain that g, X <. X for every com-
pletely regular space X and 8, X< ,,8, X for every 0-dimensional space X.

To complete Theorem 4.17 we shall give an exact formula for 8z X in terms of f5, X.

4.18. THEOREM. Assume that §(E,) =C(B,) and E,€R(E,). Let Ef be an E,-compact
superspace of E,. Then, for every X €C(H,),

() An element z of a partially ordered set P is said to be the largest element of P provided
that y<x for every y€P. x is said to be a maximal element of P provided that there is no y€P
with x<y. A largest element is a maximal one, but the converse is, in general, false.
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Be. X =oxt {PE€Pr, X: (P)EE, for every continuous function f with f: Pz, X—~>E7 and
fIX]<= By}

Proof. Denote the right-hand side of the above equality by eX. Let {§ be the set of all
continuous functions f: Az, X — E7 with f{[X]< E,. Clearly eX = N {f-[E,]: f€F}. To com-
plete the proof, it suffices to show that ¢X satisfies conditions (i) and (ii) of Theorem 4.14
(relative to E,). By 4.9, f~[E,] is E,-compact for every f€¥; consequently, by 4.8, eX is
also E,-compact. Let f, be an arbitrary continuous function with f;: X~ E,. By part (c)
of Theorem 4.14 f, admits a continuous extension f with gz X~ E,. Clearly, f[X]< E,,
hence, by the very definition of X, f(p) € E, for every p€eX. Thus, f*=f|eX is a continuous

extension of f, with f*: eX—H,.

4.19. CorOLLARY. Under the assumption of Theorem 4.18, a space X €(H,) is E;-
compact if and only if for every p,€Pr, X\ X there exists a continuous function f: Bz, X - ET
such that f(p) € B, for every p€X and f(p,) € BT\ E,.

Proof. In view of Theorem 4.18, the condition of the above corollary is equivalent to
the equality gz X=X.

It is clear that ®(R)=&((0, 1)). Indeed, (0, 1)<, R and R< (0, 12 (R is homeo-
morphic to the set {(x,y): #, y€(0,1}, x+y=1}); thus (0, 1]€R(R) and REK((0, 1]).
Consequently, applying the above corollary with E,=(0,1], E,=Ef=J, we obtain a
known characterization of R-compact spaces (see [18], p. 947, Proposition).

A completely regular space X is R-compact if and only if for every p,€BX\ X there exists
a continuous function f: X I such that f(p) >0 for every p€X and f(p,)=0.

We shall now comment Herrlich’s generalization of classes of complete regularity
and classes of compactness [12]. Herrlich considers a class € of topological spaces and he
defines X €€(€) (X € R(€)) iff X is homeomorphic to a subspace (closed subspace, respec-
tively) of a product of spaces each of which is in §. Classes €(€) (R(€)) will be called gen-
eralized classes of complete regularity (of compactness). Herrlich demonstrates that some of
our considerations remain valid in this more general setting; this, in particular, concerns
the E-transformation and the extension §;X. Furthermore, Herrlich discusses these prob-
lems within the framework of the category theory.

The distinction between these two concepts can most conveniently be discussed within
a system of set-theory which admits (proper) classes that are not sets. In what follows
we shall adhere to this exact meaning of the terms ‘“set’” and “class”. If a generalized
class of complete regularity (of compactness) % admits a set € of spaces such that A =
C(€) (U =K(€)), then A is a class of complete regularity (of compactness); in fact, it suffices
to let E be the product of all spaces in €. Generalized classes of complete regularity and of
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compactness admit a simple characterization: every generalized class of complete regularity
(of compactness) is closed under taking arbitarary products and arbitrary subspaces (arbi-
trary closed subspaces, respectively). The converse is also trivially true: for a class %
satisfying the above conditions we have A =E(A) (A = K(A), respectively). Anatural problem
is to find, for a given class U, a minimal class § with A =E(E) (A =K(E)). Such a minimal
class € can be characterized by the condition: E¢C(E\{£}) (B ¢R(E\ {£})) for every
E€@. The class 9 of all T -spaces is trivially a generalized class of complete regularity
(and U is not a class of complete regularity); here we have Y =E(E€), where €= {Ly: m is
an arbitrary cardinal}; this class € is not minimal; in fact, no subclass §;of € with €(Ey) =%
is minimal. T do not know if there is at all a minimal class &' with §(€’) =the class of all
T,-spaces.

We shall discuss another example (suggested by Bletko’s result 4.13). Let E€E(D).
It can easily be derived from Corollary 4.19 that if 8(w;), where w; is a regular initial ordinal,
is E-compact, then card B =¥ ,.(1) It follows that the generalized class of compactness 8(E),
where €={S(w;): w; is an initial ordinal}, is not a class of compactness. However, it can
easily be derived from Blefko’s proof of 4.13 (see [6], Ch. 3) and from Theorem 2.1 that the
class €,={S(w;): w; is a regular initial ordinal} is a minimal class with §(E)=&(€)
(this statement is stronger than 4.13). We thus see that Herrlich’s approach leads us some-
times to a stronger formulation of some questions and results.

To conclude this chapter we shall state (without proofs) several results(?) which
point out the difficulty involved in an attempt of a complete description of the totality
of classes of compactness. Since K(E)<=E( &), it is natural to study classes of compactness
contained in a given class of complete regularity. The smallest class of complete regularity
{(save for the trivial class consisting of the empty space and the one-point space) is the
class of all 0-dimensional T'j-spaces; i.e., the class €(D). The smallest class of compactness
(save for the trivial class) contained in €(D) is the class {(D) of all compact 0-dimensional
spaces. Another natural class is the class §(M) of all H-compact spaces (this class was
first mentioned in [9]). Concerning this class the following can be proved:

- 4.20. Let E be N-compact. The following are equivalent:
(@) K(E)=8MN);

(1) It can easily be derived from 4.18 that 4f S{wa) is E-compact, then (a) there is a transfinite

descending sequence
Fo Fyyene, Fey oo &<y,

of closed non-empty subsets of E with the total iniersection empty.

(@) implies (in case w; is regular) that (b) card E > Ry, (¢c) E does not have a base of cardinality
<N;, and (d) E is not Nj-compact.

(3) These results have been obtained in cooperation with Blefko and are stated in [6].
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(b) N<aE;

(¢) E admits a continuous map onto ‘N.

One easily derives from 4.20 that

4.21. If E is N-compact, but N is not E-compact (i.e., if B is more compact than N), then
E is D-compact.

4.21 asserts, in fact, that there is no class of compactness between §(D) and K(N);
ie., R(N) is an immediate successor of §(D) in the partially ordered (by set-theoretic
inclusion) totality of 0-dimensional classes of compactness. Now, by Blefko’s result, the
classes ®(S(w,)), where w, is a regular initial ordinal, are mutually incomparable; each of
these classes follows 8(D). Unfortunately, none of them, save for the class R(S(w,)) =RK(N),
is an immediate successor of §(D). Thus, for instance, there are classes of compactness
strictly between ®(D) and K(S(w,)); however, not much is known about them. Here are
some of the open questions. How many such classes are there? Are they (linearly) ordered
(by <)% Does (D) have an immediate successor < K(S(ew,))? Does K(S{w,)) have anim-

mediate predecessor = §(D)?

V. Estimation of exponents

Tt is frequently useful to have estimations for exp; X and Exp, X. Theorem 2.3 provides
us with the following

5.1. Let E be a T-space and let X be E-completely reqular. expz X <m if and only if
X has an E-separating class § with card §§ <mt (m —an infinite cardinal).

5.2. Let E be a Hausdorff space and let X be E-compact. Expg X <ut ¢f and only of X has
a class T such that § is both E-separating and E-non-extendable and card 3 <m.

Statement 5.1 enables us to relate expz X to the weight of X (weight X is the smallest
infinite cardinal m such that X has a base of cardinality <m).

5.3. Let E be a Ty-space and let X be E-completely regular. We have

(a) expgX <weight X;

(b) weight X <max {exp;X, weight E}.

Proof. (a) This proof duplicates the Tihonov procedure [23]. Let B be a base in X
with card B <m=weight X. Let 8 be the set of all pairs (U, V) such that U, V €5 and there

exists a finite » and a continuous function g: X~ E" such that
(1) glUINgIX\V]=0

By the very definition, for every pair (U, V)€ there exists a finite set §y y of continuous
functions from X into E such that, if we let &y y={f;, for .-» [x} and g={fy, fo, .0, fo),
12 - 682902 Acta mathematica 120. Imprimé le 19 juin 1968
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then ¢ satisfies (1). It is easy to see that §={ U {Fv.v: (U, V)E€P} is an E-separating class
for X. Clearly, card {§ <m; consequently, by 5.1, expy X <m.

(b) is obvious.

Statement 5.2 is not so convenient. For one thing, it involves the estimation of both
expz X and Exp, X. In many cases expz X is known and one would like to have a condition
for Expz X which does not involve reconsideration of expz X. On the other hand, the very
magnitude of expy X and ExpyX does not distinguish between the ordinary embedding
and the closed one. For instance, we have exp, D™ =Exp,D% =exp,Q=Exp,Q =%, (in
other words, exp, and Exp, do not distinguish between the Cantor set D*° and the space
of irrationals Q), but every embedding of D™ into W™ is a closed one; while there are
embeddings of @Q into W™ which are very far from being closed. () However, Theorem

2.1 provides us with a concept which seems to satisfy the above requirements.

5.4 Definition. The E-defect of X (in symbols: def; X} is the smallest (finite or infinite)
cardinal p such that X has an E-non-extendable class ¥ with card F=p.

Thus, def; X is defined only for an E-compact X. However, if X is not E-compact,
then we will write defz X =co.

Clearly, we have

5.5 Expy X =expy X +defy X for every E-compact space X.

We shall now give a complete product theoretic characterization of def; X.

5.6 Definition. A space E is said to be admissible provided that there exists a compact
space E* with C(E*) =C(E).

Non-admissible spaces exist. DeGroot [10] has proved the existence of a subspace
E of the Euclidean plane such that & contains more than one point and every continuous
function from E into E is either constant or it is the identity. It follows from the proof in
[10] that E is dense in the plane (in fact, E intersects every Cantor set in the plane); conse-
quently, ¥ is not compact. Now it is easy to see that # is not admissible; in fact, the
assumption that €(E)=E(E*) for some compact space E* implies that, for some cardinal
n, we have E'< C< E™, where B’ is homeomorphic to E and C is a compact subset of
E™. For at least one projection 7, of K, m;| B’ is not constant; on the other hand, 7, [C]isa
proper subset of £ (F is not compact). This yields a non-constant continuous map of &

whose range is a proper subset of .
5.7. THEOREM. Let X be an E-compact space. The conditions below are related as
follow: (a) implies (b) and (c) implies (a). If E s admissible, then (b) implies (c), hence, in

this case, (a), (b), and (c) are equivalent.

() Recall that Q is homeomorphic to N
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(a) defpX<p;

{b) for every homeomorphism h of X into E™ (where m is an arbitrary cardinal) there
exists o homeomorphism b’ of X into E™ x B such that h'[X] is closed in E™ x E® and h=
m oh’, where 7, is the projection of E™ x E? into E™;

() X< ,CxEP where C is a compact space with §(C)=E(E).

Remark 1. Condition (b) can be expressed in a form more resembling a classical theorem
of Kuratowski ([13], p. 151, Théoréme):

(b’)  for every embedding X' of X into E™ there exists a continuous function f: X' — E»
such that the graph of f is closed in E™ x EV.

These conditions can be expressed intuitively as follows: every embedding of X into
E™ can be modified to a closed embedding by adding at most p axes.

The proof of the above theorem will be based on the following

58. LeMMA. Let X be a closed subspace of C x E, where C is compact, and let eX —
XU {po} be a one-point extension of X (p,¢X). There exists a one-point extension &, X —
XU {go} of X (g,¢X) such that
eX S 80X

and the function g(p)=ri(p) for every p €X, where 7 is the projection of O x E onto C, can be

extended to a continuous function g*: eX 0.

Proof. Let & be the class of all open subsets G of X such that GU {p,} is a neighborhood
of p, in £X. There is a point ¢, €C such that ¢,€x[G] for every G€®. Add a new point g, to
X taking as neighborhoods of g, in & X =X U {g,} all sets of the form (m{U]N G)U {40}»
where G€® and U is an arbitrary neighborhood of ¢y in C. & X is the required extension.
In fact, if GU {p,} is a neighborhood of p, in eX (@< X)), then GU {g,} is a neighborhood of
%o in & X. Thus eX <& X. Furthermore, g can be continuously extended over &, X by

setting g*(gq) =cq.

Proof of Theorem 5.7. a) implies b). Let 2 be a homeomorphism of X into E™=
X{Ee: E€E]. Let us set fy=n oh for every £€E and F={f:: £€E}. Let F, ={fr: £€EE,},
where card Z;, <p and ENE, =0, be an E-non-extendable class for X. Suffices to define
I’ as the parametric map corresponding to the class f,={f;: £EEU E,} and apply Theo-
rem 2.1.

c) implies a). We shall start with the case p=1. Assume that X is a closed subspace of
U x E; define f(x, y) =y for every (z, y) € X. We claim that {f} is an E-non-extendable class
for X. Indeed, let ¢X be a proper extension of X; we can assume that £X is a one-point ex-

tension. Suppose that f admits a continuous extension f*: eX—> E. Take the extension ¢, X
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described in Lemma 5.8. Since £X <,,.¢, X, f admits a continuous extension fi: e X~ E.
On the other hand, (by Lemma 5.8) there is a continuous function g*: &y X~ such that
g*(x, y) =z for every (z, y) € X. Define f(p)=(g*(p), fi(p)) for every p€X. h is a continuous
map of ¢ X into C x E; furthermore, h(p)=p for every p€X. Since X is closed in C' x E,
the last condition implies h: & X—X. This, however, contradicts the fact that & X isa
proper extension of X (see footnote on p. 166).

The general case can be reduced to the above as follows: from the above we obtain
an existence of an E¥-non-extendable function f (strictly speaking, an existence of a
one-element EP-non-extendable class {f}), f: X—~EP. Suffices to set EP=X{E; £€E},
card Z=p, E;=F for every £€E, and F={n;of: §€EE}. § is an E-non-extendable class
for X.

b) implies ¢), provided that E is admissible. Let B, be a compact space with C(E,) =
G(E). Let X<, B™ for some cardinal m. Since (&) =C(E), we have Ec,, Ei"<, E™
for some cardinals 1, and 1m,. Let € be a homeomorphic image of ET* in ™. Then X< C.
Let X’ be a homeomorphic image of X in . We have X'< E™:; consequently, by b), there
exists a closed subspace X” of E™ x B, such that X" is homeomorphic to X and 7,[X"] =
X', where 7, is the projection of E™ x E¥ onto E™. The equality 7,[X"]=X" implies that
X"<(C x E*. Thus X< ,,C x E».

‘We shall conclude this section with a few simple remarks concerning #- and D-defects.

5.9. If X is N-completely regular (completely regular), then the following conditions are

equivalent:

(a) def, X<1 (def,X<1);
(b) def, X <&, (defzX <¥,);
{¢) X 1is locally compact and Lindelof.

Proof. We shall give the proof for R-defect. Obviously, (a) implies (b). Assume (b).
Since R is admissible; we infer from Theorem 5.7 that X< ;C x R"; where C is compact
and » ig finite; consequently, X is locally compact and Lindelof. Assume (c). The point co
in the one-point compactification ¢X =X U {0 } of X satisfies the first axiom of countability;
cconsequently, there is a continuous function f: ¢ X—[0,1] with f(p)>0 for p€X and
f(o0)=0. It is clear that the class {g}, where g(p)=1/f(p) for p€X is an R-non-extendable
function for X. (In the proof for N-defect one has, using 0-dimensionality of «X, to modify
f so that its values on X are of the form 1/n; see [9], proof of Lemma 2).

Clearly, def,Q<¥, where @ is the space of irrationals (in fact, Q =1, H™); and, by
Theorem 5.9, we infer that def,Q=¥,. On the other hand, &, <def, D <2*; where D is
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the space of rationals (in fact, def, D<R®, would imply that p<, 1™, but P does not
admit a complete metric); I do not know if one can prove, without the continuum hypo-
thesis, that def, D =2%.
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