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There are two problems naturally connected with topological products: (a) given a 

space E find all spaces that  are homeomorphic to subspaces of topological powers of E, 

and (b) given an E find all spaces that  are homeomorphic to closed subspaces of powers 

of E. Problem (a) has been solved in [16]; to solve Problem (b) I have introduced in [17] 

the concept of E-compact spaces; the first systematic investigation of this concept has 

been given in [9]. The present paper is the first part  of the summary of the author's further 

results in this direction. I t  contains a discussion concerning arbitrary spaces E; the second 

part will concern some particular cases of E. Some of the present results have been stated 

in [6], [19] and [20], some were announced in various issues of Notices Amer. Math. Soc. 

Various results included here have been obtained in cooperation with R. Blefko. 

This paper is self-contained; all the results given in [16] and [9] are reproved, some- 

times in a more general form and frequently with more efficient proofs. 

In  this paper, for the sake of logical simplicity, we define an E-completely regular 

(an E-compact) space as a space that  is homeomorphic to a subspace (closed subspace, 

respectively) of some topological power E m of E. (Thus, our original definitions in [16], 

(x) The preparation this paper was partially supported by the U.S. National Science Found- 
ation (Grants GP-1843 and GP-5286). 
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[17], and [9] now become necessary and sufficient conditions for E-complete regularity 

and E-compactness.) I t  should be pointed out that  recently H. Herrlieh [12] (1) has initiated 

a still more general approach to this type of problems. Herrlich considers a class ~ of 

topological spaces and he calls a space X ~-completely regular (~-compact) in ease X is 

homeomorphie to a subspace (a closed subspace, respectively) of a product of spaces from 

the class ~. We give only a brief comment on Herrlich's approach at the end of Ch. IV. 

Undoubtedly, this approach is very promising; it sometimes enables us to state some results 

and some problems in an essentially more general form. 

The following terminology and notations are used. 

The domain and the counter-domain of a function ] is denoted by D(]) and C(]), 

respectively./: X-~ Y (/: Xo-~t ~ Y) stands for: ] is a function with D(]) =X, C(/)c Y(C(/) = Y, 

respectively)./[A] and / - I [A]  denote, respectively, the image and the counter-image of a 

set A under / .  In general it is not assumed that  AcD(/)  (AcC(/)) ;  it is easy to see that  

][A] =/[A f1 D(/)], /-I[A] =/-I[A ~ C(/)]. The compositions of the functions ] and g (i.e. 

the function h defined by h(x)=](g(x))) is denoted by ]og. In general it is not assumed 

that  D(/)~ C(g); consequently, D(/og) can be a proper subset of D(g); in fact, we have 

D(fog) =g-l[D(f)]. idx denotes the identity function on a set X. 

By a regular, completely regular, normal space we mean a Tl-space which satisfies the 

corresponding separation axiom. 

XCtopY (X~ol Y) stands for: X is homeomorphic to a subspace (closed subspaee, 

respectively) of Y. 

A function / whose domain and range are topological spaces is said to be open (closed) 

provided that  for every open (closed) subset A of the domain of ], ][A] is open (closed) 

in the range of ]. ] is said to be quotient provided that  for every subset of B of the range 

of f, B is open in the range of / i f f / - I [B]  is open in the domain of ]. 

:~ denotes the Alexandrov connected dyad; i.e., the two-point space {0, 1} whose 

only proper non-empty open subset is the set {0). ~ is the discrete dyad {0, 1), ~ denotes 

the space of the reals, ~ denotes the space of non-negative integers ( = t h e  discrete space 

of cardinality ~0). 0 and 0 denote, respectively, the spaces of rational and irrational 

numbers. s where 11t is a cardinal, denotes the space consisting of m points whose only 

closed proper subsets are the finite sets; l:m is a compact Tl-space. 

Given two spaces X and E, C(X, E) denotes the set of all continuous functions / 

wi th / :  X ~ E. 

(1) The manuscript of [12] was prepared already in 1965. 
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I. Extensions of topological spaces 

An extension of a space X is a pair (X, eX), where eX is an arbitrary Hausdorff super- 

space of X such that  X is dense in eX. An extension (X, eX) will usually be denoted by 

eX. An extension eX of X is called proper provided that  eX # X .  

If  e~X and e2X are two extensions of X, then by a canonical map of el X into e2 X we 

mean any continuous map ~: elX-->e2X such that  ~v(p) = p  for every p EX. Clearly, a canoni- 

cal map, if it exists, is unique. 

We shall consider three relations between extensions e~ X and e2 X of X. We write 

elX=e~te2X provided that there exists a canonical map ~v of el X onto e2X and this 

map is a homeomorphism; 

ex X =  exte2 X provided that  there exists a canonical map V of e~X into e~X and this 

map is a homeomorphism; 

e~X ~<~xte2X provided that  there exists a canonical map of e2 X onto e~X. 

I t  follows from the uniqueness of canonical maps that  if a canonical map ~ of ~IX 

into ~2X is not a homeomorphism, or ~ is not onto eeX, then ~rX :t%xt~2X. 

The above relations have the following properties. 

1.1. THEOREM. For every three extensions e lX ,  ~2X, e3X we have 

1. ~1 X = ext E1X; i/ e l i  = ext 82X, then ~2 X = ext e l i ;  

i / z  1 X = cxt ~2 X and ~1 X = ext ~3 X,  then e 1X = ext 83 X. 

2. 81Xcext~lX; i/ ~lX  Cext82X and 82X ~ext83X, then ~l i Cext~3i. 

3. 81X ~ ext el X; i/81 X ~ ext 82 X and E 2 X ~ e~t e3X, then r X ~ ext ~3 X. 

4. 81X=exte2X ill ~l X C ext sgX and 82X c ext ~l X i// 81X ~ ext 82X and 82X~extS1X. 

5. I /  r and ~lX <~ext~2 X ,  then 8li=ext82X'~ 
i/~1 X c ~xt ~2 X and ~2X <~ e~t ~1 X ,  then e I X = ext ~2 X. 

Proo/. The only non-trivial parts of this theorem (4. and the first statement in 5; the 

second statement in 5 follows from the uniqueness of canonical maps) follow from the 

following lemma. 

1.2. LEMMA. I /  / and g are continuous/unctions wi th/ :  81X-->~2X, g: e2X--+81X and 

/(p) =g(p) =p /or every p EX, then /=g-1. Consequently, each o/ the /unctions / and g is onto 

and each o/ them is a homeomorphism. 
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Proo/ o/ Lemma 1.2. Consider the composit ions/o9 and go/. We have go/: el X--> ~ X, 

/og:~X-+e~X and log(p) =go](p) =p for every p~X .  Since X is dense in both eiX and 

e2X, we have gof=ide~ x a n d / o g = i d ~ x ;  consequent ly /=g-a .  

One could consider still another relation between extensions ei X and e~X asserting 

the existence of a canonical map of e2X into (but not necessarily onto) ezX. However at 

the present moment, we did not find this relation very useful; furthermore, this relation can 

be expressed as the composition of the relations ~ e~t and ~< ext. Consequently, no special 

symbol will be introduced. 

Note. The definition of an extension adopted in this paper is formally different from 

the one frequently used in the theory of compactifications. According to the latter an 

extension of X is a pair (h, Y), where h is a homeomorphism of X onto a dense subspace 

of Y. We have found, however, that  our definition frequently makes various proofs for- 

mally simpler. If an extension of X (in our sense) is to be constructed via an embedding of 

X into a space Y, one can always appeal to the following. 

1.3. T~EOREM. (The formal theorem.) I / h  is a homeomorphism o/ X into Y, then there 

exists a superspace X* o / X  which is homeomorphic to Y by a homeomorphism h* which is an 

extension o/ h. 

Clearly, the topological relations between h[X] and Y are identical to those between 

X and X* (for instance, h[X] is dense, open, closed, ere . . . . . .  in Y iff X is dense, closed, 

open, etc., .... in X*). 

II. The embedding theorem 

Let {E~: ~E~.} be a class of topological spaces; the topological (Tihonov) product 

of this class of spaces will be denoted by X{E~: ~ E 7~}. Elements of the product X{E~: ~ e 7~} 

are functions e defined on ~ and such that  e(~) E E~ for every ~ E ~.. e(~) is called the ~-th 

coordinate of e and it is denoted by Jr,(e). The map ~ is called thepro]ection of the product 

X{E~: ~ E~} onto the ~-th coordinate axis X~. We shall also consider a more general type 

of projections: if ~'0 is a subset of ~, then we let zt=0(e ) =e[~.o ( = t h e  restriction of e to ~0) 

for every eE X{E~: ~E~}. ~ 0  is called the projection of X{E~: ~E~} onto the product 

X{E~: ~ E ~'o). (There is a formal difference between ~r~ and ~ . )  Projections are continuous 

open maps. If  all spaces E~, ~E~, are equal to a space E, then the product X{E~: ~E~)  

is denoted by  E m, where m = card ~, and it is called the m-th (topological) power of E. 

Sets of the form 

(1) #F/[G~] n ... n ~F~ [G,,], 

where ~1, ..., ~nE ~ and G~ is an open subset of X~, i =  1, 2 . . . . .  n, 
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are called elementary neighborhoods in the product X{E~: ~ E ~.}; elementary neighborhoods 

form a base for the topology in this product. Every elementary neighborhood can be 

written in the form (1), where the indices ~,  ~ ..... ~ are all distinct. 

Let X be a space and let ~ = {/~: ~ E ~} be a collection of functions with 

(2) /~: X->E~ for every ~ ;  

let h be a map with 

(3) h: X-~X{E~: ~E~} 

and consider the condition 

(4) ~oh=/~  for every ~EE. 

Condition (4) can serve a dual role: if a map h with h: X->X(E~: ~E~} is given, then (4) 

defines a class ~ of functions/~: X~E~.  Conversely, if such a class ~ of functions is given, 

then (4) defines a map h: X-->X(E~: ~E?~) (i.e., there is one and only one map h: X-+ 

X(E~: ~E~} satisfying (4)). This map h will be called the parametric map (of X into 

X(E~: ~E~}) corresponding to the class ~. 

If/~,,  /~ ...... /~  is a finite system of functions with ]~: X-->E~,, then by ( /~, /~ ...... /~ )  

we shall denote a map whose value at a point p EX, (/~,,/~ ...... /~ )  (p), is equal to the point 

(/~,(P),/~(P) ..... /~n(P)) of the product E~,• E ~ • 2 1 5  E ~  (i.e., ( /~ , /~ ,  . . . , /~)  is the 

parametric map corresponding to the class (/f,,/~ ...... /~}). 

Our main embedding theorem is as follows. 

2.1. T~EOREM. (The Embedding Theorem.) Let ~=(/~: ~ E~} be a class o//unctions 

with/~: X-->E~, where X and E~, ~E~, are topological spaces. Let h be the parametric map 

corresponding to the class ~ (i.e., h is a map o / X  into X{E~: ~E~} such that condition (4) is 

satis/ied). We have 

a) h is continuous i/ and only i/ each /~ is continuous; 

b) h is one-to-one i/and only i/the class ~ satisfies the/ollowing condition: 

(i) /or every p, qEX, p:~g, there is an /~e~  with/~(p) 4/~(q); 

c) h is a homeomorphism i/ and only i/ h is continuous and one.to-one and the class 

satis/ies the /ollowing condition: 

(ii) /or every closed subset A o/ X and /or every p E X ~  A there exists a/inite system 

/~ ...... /~ o/ /unctions /rom ~ such that (/~ ...... / ~  (p)~cl(/~ ...... / ~  [A], where cl 

stands/or the closure in E~, • • E~n; 
11 - - 6 8 2 9 0 2  Acta  mathematica 120. I m p r i m ~  le 19 j u in  1968 
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d) assume that the spaces E ~ are all Hausdor// and assume that h is a homeomorphism, h[X] 

is closed in X(E~: ~ E ~} i] and only i/ the class ~ satis/ies the/ollowing condition: 

(iii) there is no proper extension ~X o / X  such that every/unction/~ E F admits a contin- 

uous extension /~: eX--* E~. 

Furthermore, in condition (iii) it suffices to consider only such extensions eX  o] X that 

~ X ~  ~o~ X{E~: $ e ~}. 

Proo/. Parts  a) and b) of the theorem are well-known and are stated here only for 

completeness. 

Par t  c) Assume that  h is continuous and one-to-one and tha t  the class ~ satisfies con- 

dition (if). Let A be a closed subset of X. For every finite system 21 .... .  ~n of elements of 

~. we denote by  T~ ...... ~n the set of all points e of the product X{E~:~E~,} such tha t  

7~(e)=l~i(p) for some p E A  and for i = 1 ,  2 ..... n. I t  is now clear tha t  condition (if) is 

equivalent to the fact that  h[A] is the intersection of all sets of the form h[X] N T~ ...... ~n 

where 21 ..... ~n ranges over all finite systems of elements of ~ (and T~ ...... ~n denotes the 

closure of T~ ..., T~,, in X(E~: ~E~}). Thus h[A] is closed in h[X], hence h is a homeo- 

morphism. 

Conversely, assume tha t  h is a homeomorphism. Let  A be a closed subset of X and let 

p E X ~ A .  We have h(p)~h[A]; consequently, there is an elementary neighborhood 

U=TI~I[GlJN...N~[,I[Gn] (~t are all distinct) with h(p)EU and UNh[A]=O.  Set 

(/~ ..... , / ~ )  = ~ , o h ,  where '~ 'o=(~ .... .  2,}. I t  is clear tha t  the system 1~ ..... , / ~  satisfies 

the requirements of condition (if). 

Par t  d) Assume tha t  h[X] is closed in X{E~: ~ E,~,}. Let  eX be a Hausdorff  extension of 

X with the proper ty  tha t  each/~  in ~ admits a continuous extension/~: 8X-->E~. Let  h* 

be the parametric map of s X  corresponding to the class ~ * =  {1~: ~ E ~}. Clearly, h* is an 

extension of h. This implies (X is dense in eX) tha t  h*[sX]~h[X] =h[X].  In  other words, 

h* maps eX into h[X]. Consequently, setting g =h- loh  *, we see that  g is a continuous func- 

tion with g: ~X-->X and g(p)=p for every p EX. Therefore eX=X.(~)  Consequently, no 

proper Hausdorff extension s X  of X has the property expressed in (iii). 

Conversely, assume tha t  h[X] is not closed in X{E~: ~EE}. By the Formal Theorem 

(Theorem 1.3) there exists a superspace sX of X which is homeomorphie to the space 

Y =h[X] by a homeomorphism h* with h*~ h, Clearly, s X  is a proper extension of X with 

(1) Here we use the following statement: 
I] P is a subset o] a Hausdor]f space S and g is a continuous ]unction such that g:S---~P and 

g(p) =p ]or every pEP, then P is closed in S. 
The proof follows from the equality P = {p E S: ](p)=g(p)}, where f is the identity function on S. 
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sX c top X{E~: ~ E 7~} (so sX is Hausdorff). Furthermore, for every ~ E ~, the formula /~ = 

~r~oh* defines a continuous extension of /~ with l~: eX-+E~. Consequently, condition (iii) 

is not satisfied. 

In  connection with the Embedding Theorem we shall introduce the following definition. 

2.2 Definition. An {E~: ~ E ~}-distinguishing, an {E~: ~ E ~}-separating, an {E~: ~ E.~}- 

non-extendable class for X is a class ~ = {/~: ~ E ~} of continuous functions with/~: X-+ E~ 

satisfying condition (i), (ii), (iii) of Theorem 2.1, respectively. If all the spaces E~ are equal 

to a fixed space E, then we shall use the terms: an E-distinguishing, an E-separating, an 

E-non.extendable class. 

I t  is clear that  if 7~ = ~:1 U 7~ 2 U 7~ 8 and ~1 = {/~: ~ E 7~1} , ~2 = {/~: ~ E ~2}; ~3 = {/4: ~ E ~a} 

are, respectively, {E~: ~ EE~}-distinguishing, {E~: ~ E ~}-separating, {E~: ~ E~a}-non- 

extendable classes for X, then ~ = ~ U ~2 U ~3 = {/~: ~ E 7~} is an {E~: $ E E}-distinguishing, 

{E: ~E~}-separating and {E~: ~ET~}-non-extendable class for X. Z~ are not assumed to 

be disjoint. 

2.3. I / X  is a To-space, then an {E~: ~ ~ ~}-separating class is {E~: ~ E ~}-distinguishing. 

Proo/. Given two distinct points of X there exists a closed set containing exactly one 

of them. Suffices to apply the definitions. 

2.4. I / E ~ ,  ~ E ~., are Hausdor// and X is compact, then every {E~: ~ ~ ~}-distinguishin~ 

class /or X is {E~: ~E~)-separating. 

Proo/. Let ~={/~: ~E~} be an {E~: ~ET~}-distinguishing class for X, let A c X  be 

closed and p o E X ~ A .  For every q EA we can find an /f~E F so that  /~q(Po)#/~q(q). Select 

disjoint open set Gq and Hq of E~  so that/~q(po)EGq and/~q(q)EHq. The class {/[~[Hq]: 

qEA) is an open cover of A; l e t / ~ i [ H q ~ ]  . . . . .  f~[Hqk ] be a finite subcover. Let  ~ . . . .  , ~ be 

all the distinct indices out of tq ..... , $~; it is easy to see that  the map </~ ...... /~> 

satisfies the requirements of condition (ii) of Theorem 2.1. 

I t  can easily be seen that  the proof of part  c) and Theorem 2.1 yield the following 

2.5. I /  ~={/~: ~E~)  is an {E~: ~E~)-separating class /or X, then the corresponding 

parametric map h is continuous and closed (consequently, h is quotient). 

In the above statement we do not assume, in contrast to part  e) of Theorem 2.1, 

that  h is one-to-one (i.e., we do not assume that  ~ is an {E~: tE~)-distinguishing class). 

However, the converse of 2.5 is false, i.e., if h is not one-to-one, then h being continuous 

and closed does not imply that  the class ~ is {E~: ~ E ~W)-separating. 

2.6. Let E~, ~E~, be Hausdor// and let h be a homeomorphism o / X  into X{E~: ~E~).  

Let eX be a Hausdor]/ extension o / X  such that h admits an extension to a continuous map h*: 

eX--->X { E ~: ~ ~ ~). Then there exists an extension ex X such that 
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~1X < exteX, 81Xc top X{E~: ~: E ~}, and 

h admits an extension to a homeomorphism hi: el X-+ X{E~: ~ E E). 

Proof: By the Formal Theorem, there is an extension el X of X tha t  is homeomorphic 

to h*[X] by  a homeomorphism h 1 with h ~  h 1. 

We shall conclude this section with the following criterion for non-extendability. 

2.7. Let cX be a eompacti/ication of X, and let eX~ be an extension o/ X~; cX and eX~ are 

assumed to be Hausdor//. Let {g~: ~E~} be a class o/ continuous /unctions with g~: cX~eX~ 

and g~[Z]cE~. Let ]~=g~]X. The class ~ = { / g : ~ E ~ }  is {E~:~E.~}-non-extendable i/ 

and only i//or every po e c X \  X there exists a ~ E ~ with g g(Po) (~ E ~. 

Proo/. The necessity of the condition is obvious; we shall prove the sufficiency. Let 

eX be a proper extension of X, let qoEeX~X. Let  ~ be the class of all open subsets of 8X 

containing q0. There exists a point poEcX such tha t  p 0 ~ G ~  cx for every GE~.  Clearly, 

2oEcX~X.  Take a ~E~ such that  g~(po)~E~. ]~ does not admit  a continuous extension 

]*: eX-~ E~. 

Historical remarks on the Embedding Theorem. The method of producing maps into 

topological products via classes of  functions into coordinate spaces is as old as parametric  

equations. Parametric  equations of, say, a circle, x = cos 2~t, y = sin 2~t, 0 ~< t ~ 1, give raise 

to a map h of the interval 0 ~< t ~< 1 into the product of the ranges of the functions x = cos 2~t, 

y = s i n  2~t; this map h assigns to every point t, 0~<t~l ,  the point (cos 2ut, sin 2gt)of  the 

plane. I t  is clear tha t  "the parametric map corresponding to a class of functions" is con- 

structed in exactly the same way. Urysohn [24], [25] to prove his famous metrization theorem, 

applied the technique of parametric maps to countable classes of functions with values in 

the unit interval y; subsequently, Tihonov [23] extended this procedure to classes of 

arbitrari ly many  3-valued functions. Both [25] and [23] contain sufficient conditions for 

a parametric map to be a homeomorphism. In  [16] classes of functions with arbi t rary 

ranges were considered; furthermore [16] contains a necessary and sufficient condition for a 

parametric map to be a homeomorphism. (In [16] only T0-spaces were considered; conse- 

quently, conditions (i) of Theorem 2.1 was not mentioned; see 2.3 in the present paper.) 

Further  comments on this topic can be found in [1], pp. 67-68, or [2], p. 42. Par t  d) of the 

Embedding Theorem was shown, in a somewhat less general form, in [9]; however, the proof 

given here follows tha t  of [19]. The origin of par t  (d) can be traced to Kuratowski and 

Sierpifiski [15] (1921) who, in fact, used one-element R-non-extendable classes to prove tha t  

a difference of two closed subsets of a metric space X is homeomorphic to a closed subspaee 
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of X • ~. Subsequently, Kuratowski used countable ~-non-extendable classes to prove 

that  a G~-subset of a metric space X is homeomorphic to a closed subspace of X • ~ , .  

For further information see [14], pp. 240-241. 

UI. E-Completely regular spaces 

3.1. Definition. Given two spaces X and E, we say that  X is E-completely regular 

provided that  XCtopEm for some cardinal m. The class of all E-completely regular spaces 

will be denoted by ~(E). The smallest infinite cardinal n1 for which XCtopEm is called 

the E-exponent o / X  and it is denoted by eXpEX (exp~X is defined only for an E-completely 

regular X). Classes ~(E) are called classes o/complete regularity (i.e., a class ~ of topological 

spaces is called a class of complete regularity provided that  there exists a space E with 

~=~(E) ) .  If EE~(E1) and E1E~(E), then we say that  E and E 1 has the same degree o/ 

complete regularity. 

The following statements (3.2-3.7) are direct consequences of the definition. 

3.2. E E l ( E ) ;  in ]act, expEE=~ o. 

3.3. I /  X E~(E) and XoCtopX, then XoE~(E); in/act, eXpEXo ~eXpEX. 
3.4. I / X ~ e ~ ( E )  /or every ~E~, then X(E~: ~E:~}E~(E), in/act, expEX(E~: ~'E,~,}~ < 

~E(expEX~: ~E~.} (~< cannot be replaced by =and Z(expzX~: ~E~} cannot be replaced by 

sup (expEX~: ~ E 7~}). 

3.5. ~ ( E ) ~ ( E i )  i /and only i/EE~(E1). 

3.6. ~(E)=~E1) i /and only i /EE~(E~) and E~E~(E). 

3.7. ~ ( E ) = ~ ( E  m)/or every cardinal m >0. 

From part  c) of Theorem 2.1 we obtain the following characterization of E-completely 

regular spaces. 

3.8. THEOREM. A space X is E-completely regular i/ and only i/ the /oUowing two 

conditions are satis/ied: 

(a) /or every p, qEX, p ~:q, there is a continuous/unction/: X ~ E  with/(p) ~/(q); 

(b) /or every closed subset A o/ X and/or every p E X ~  A there is a finite number n and a 

continuous/unction/: X ~ E n such that/(p) (~/[A]. 

Equivalently, X is E-completely regular i/and only i /C(X, E) is both an E-distinguishing 

and an E-separating class/or X (or, i/ X admits a class which is both E-distinguishing and 

E-separating). 

Remark. If X is a T0-space, then, by 2.3, condition (a) can be ommitted. In this form 

Theorem 3.8 was stated in [16]. I t  was shown in [9] that  in condition (b) it is not sufficient 

to consider only functions ] with ]: X ~ E .  
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Another characterization of E-completely regular spaces (due to R. Blefko) is as 

follows. 

3.9. A To-Space X is E-completely regular i! and only i//or every net {x~: n E D} o/points 

o / X  we have 

(1) x~-~x i/and only i~/(Xn)-+/(X)/or every/eC(X, E). 

Proof. Assume (1) and let h be the parametric map corresponding to the class C(X, E). 

If  X, yEX,  x=ky, then one of these points does not belong to the closure of the other; say 

x ~ - ~ .  Then xn+->y , where xn=x for n = l ,  2 . . . . .  Consequently, by (1), /(x) =~ /(y) for at 

least one /EC(X,  E). I t  follows that  h is one-to-one. I t  is now clear that  (1) implies that  h 

is a homeomorphism. Thus XCtopEm , where l i t=card C(X, E); consequently, X is E- 

completely regular. The converse follows immediately from Theorem 3.8. 

In 3.9 the assumption of X being a To-space cannot be omitted. In  fact, if X is an 

indiscrete space and E is a T0-space, then condition (1) is always satisfied. 

I t  is clear that  ~(Y) =~(~)  = the  class of all completely regular spaces. In fact, we have 

3.10. ~(E) --the class o/all completely regular space i] and only i ]E  is completely regular 

and y c top E. 

Proo]. Assume that  ~ ( E ) = t h e  class of all completely regular spaces. Complete regu- 

larity of E is obvious. On the other hand, we have y c  tope m for some cardinal m. Let  I o 

be a subspace of E m with I0=topY; write Em=X(E~: ~E~0}. For at  least one ~06,~,, ~~ 

contains more than one point. Now, z~0[I0] is a locally connected (metrizable) continuum; 

therefore ~s contains a homeomorph of I o. Thus Ycto~E. 

The proof of the converse is obvious. 

Similarly, we have 

3.11. ~ (~)= the  class o/all O-dimensional To-spaces. Furthermore, ~(E)=~(~)) i] and 

only i / E  is a O-dimensional To-space containing more than one point. 

3.12. ~(~)=the class o] all To-spaces. Furthermore, ~ ( E ) ~ ( ~ )  i/ and only i/ E is 

To-space and E is not a Tl-space. 

Verification of 3.1l and 3.12 is straightforward (use Theorem 3.8). The first parts of 

3.11 and 3.12 are classical results due, respectively, to N. ]3. Vedenisov and 1 ). S. Alexan- 

drov. For references see [1], p. 47, or [2], p. 42. 

The first par t  of 3.12 implies, in particular, that  for every T0-space X the class C(X, :~) 

is ~-separating. In fact, a stronger statement holds: 

3.13. For every space X the class C(X, ~) is ~-separating. 

For the proof of 3.13 [16] can be consulted. 3.13 indicates the necessity of the assump- 
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tion tha t  X is a T0-space in 2.3. In  fact, the class C(X, :~) (which by  3.13 is always :~- 

separating) is :~-distinguishing iff X is a T0-space. 

3.14. Let :~* be the space consisting o/ three points O, 1, 2 in which {0} is the only non- 

empty proper open subset. ~(:~*)= the class o/ all topological spaces. 

Proo/. By 3.13 and the fact tha t  :~ is a subspace of :~* we infer tha t  (for every space X) 

the class C(X, :~*) is ~*-separating. To prove tha t  C(X, ~*) is :~*-distinguishing one uses 

functions with values 1 and 2 (every such function is continuous). 

In  a similar way one can show tha t  ~(E) =the class o/all topological spaces i / / E  contains 

a non-trivial (i.e., containing more than one point) To-subspace and a non-trivial indiscrete 

subspace. 

According to the above each of the following classes: the class of all topological spaces, 

the class of all To-spaces, the class of all 0-dimensional T0-spaces , the class of all completely 

regular spaces, is a class of complete regularity. I t  was shown in [16] tha t  the class of all 

Tl-spaces is not a class of complete regularity. This result has been strengthened by 

Bialynicki-Birula in 1958, who has shown (using Theorem 1 of [16]) tha t  there is no Tl-space 

E such that ~(E) contains all Hausdor//spaces (1)). In  [ l l ] ,  H. Herrlich has obtained a still 

stronger result showing tha t  there is no Tl-space E such that ~( E) contains all regular spaces. 

These results include, of course, the result concerning the class of all Tl-spaces; they also 

imply tha t  neither the class of all t tausdorff  spaces nor the class of all regular spaces is a class 

of complete regularity. I t  follows from the above and from 3.12 tha t  if ~(E) contains all 

regular spaces, then ~(E) contains all T0-spaces. In  other words, the class of all T0-spaces it 

the smallest class of complete regularity containing all regular spaces. 

3.15. De]inition. A set A c X is said to be E-closed (2) (E-open) in X provided tha t  for 

some finite n there exists a closed (an open) subset T of E n and a continuous function 

]: X->E ~ such tha t  A = / - I [T] .  

I f  E = J or E = ~, then the E-closed sets coincides with the so-called Vedenisov sets 

[26] or zero-sets of continuous real-valued functions. 

3.16-3.20 follow directly from the definition. 

3.16. A c X is E-closed i /and  only i / X ~ A  is E-open. 

3.17. I] ]: X--~ Y is continuous and A is an E-closed (E-open) subset o] Y, then 1-1[A] 

is E-closed (E-open) in X.  

3.18. A/ini te  union and a linite intersection o/E.closed (E.open) subsets o I X is E-closed 

(E.open) in X.  

(2) This result has never been published. 
(~) This concept was introduced in [7]. 
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3.19. Let m be a cardinal and assume that every closed subset o / E  ra is E.closed. Then the 

intersection o/11t E-closed subsets o / X  is E-closed in X.  

3.19 is a generalization of a well-known fact: the intersection o/countably many zero- 

sets is a zero-set. Indeed, 3 s0 is a metric space. 

3.20. A To-space X is E.completely regular i] and only i] the class o] all E-open subsets 

o/ X is a base (/or open subsets). In  particular, i / X  is E.completely regular, then every open 

(closed) subset o / X  is the union (the intersection) o] E-open (E-closed) sets. 

3.21. De/inition. A space X is said to be E.Hausdor//provided that  the class C(X, E) 

is E-distinguishing. X is said to be E-normal provided that  for every two disjoint closed 

subsets A and B of X there exist two disjoint E-closed subsets A ~ and B ~ of X with A c A  ~ 

and B ~  B 1. X is said to be strongly E-normal provided that  for every two disjoint closed 

subsets A and B of X there exists a finite number n, a continuous function /: X ~ E  ~, 

and two disjoint closed subsets F1 and F~ of E n such that  A~/ - I [F1] ,  B~/-~[F~]. 

If  E = Y or E = R, then E-normal as well as strongly E-normal Tl-spaces coincide 

with normal spaces (in the usual sense). However, the property of being Y-Hausdorff is 

stronger than the usual Hausdorff separation axiom; Y-Hausdorff spaces are sometimes 

called /unctionally Hausdor//. 

3.22. An E-completely regular space is E.Hausdor]/; an E.normal Tl-space is E.com- 

pletely regular; a strongly E.normal space is E-normal. 

An E-normal T0-space need not to be E-completely regular; for instance, :~ is Y- 

normal but :~ is not completely regular. An E-normal space need not be strongly E-normal. 

Indeed, it is easy to see that  if finite powers of E are normal, then a strongly E-normal 

space is normal. Consequently, a non-normal completely regular space is not strongly 

ym-normal for any cardinal m. On the other hand, every completely regular space is jm. 

normal for sufficiently large m. 

3.23. Let E be Hausdor]]. 1 / X  is compact and E.Hausdor//, then X is strongly E-normal. 

Proo]. By 2.4 we infer that  X is E-completely regular. Let A and B be disjoint closed 

subsets of X. For every p E A there is a finite number n~ and a continuous function ]~: X--> E np 

with )'~(p) ~/~[B]. Since ]~[B] is compact, we can find an open subset G~ of E np with [~(p) EG~ 

and Gp D ]~[B] = 0 .  The sets ];I[G~], p e A ,  form an open cover of A; let ]~[Gp,] ..... ] ; I [ G j  

be a finite subcover of A. Set ] = (/~ ...... /pk), F1 = LJ ~l(En~' • "'" • G~ • "'" • E~Pk), F~ =/[B].  

/ is a continuous function of X into E ~, where n =%, § ... +npk, F1 and F2 are disjoint closed 

subsets of E ~ and A ~/-1[F1], B ~  f-I[F~]. Thus X is strongly E-normal. 

Consider now the following situation: Let ~ be a continuous map with ~0: X-~o~toX*. 

~0 induces a map ~ of C(X*, E) into C(X, E) defined by 
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(2) ~(g) =gop for every geC(X*, E). 

The map ~ is always one-to-one; in general, ~ does not map C(X*, E) onto C(X, E). ~ is 

interesting from algebraic viewpoint; it is easy to see that  ~ is an isomorphism relative to 

all pointwisely defined operations in C(X*, E) and C(X, E). More precisely, if | is an 

arbitrary operation (binary, for simplicity) in E; and if | x and | x* are the corresponding 

pointwisely defined operations in C(X, E) and C(X*, E), respectively (i.e., (/l| 

/I(P)| for every p e X  and (gl|174 for every qeX*); then 

~(gl| z*g~) = ~(gl) | x ~(g2) for every gl, g2 e C(X*, E). Similarly, if 0 is an arbitrary (binary, 

for simplicity) relation in E, then r iff ~(gl)Ox~(gO for every gl, g, eC(X*, E); 

where Qx(~x*) is defined by/~Ox/~ =-/I(P)O/~(P) for evc ryp  E X (glQx*g2 =- gl(q)og2(q) for every 

q e r E)). 

We shall now prove that  one can always find an E-completely regular X* for which 

maps C(X*, E) onto C(X, E). 

3.19. T~EOREM. (The identification theorem.) For every space X there exists an E- 

completely regular space X* and a continuous map q~: X~ontoX* such that the map ~ (de- 

]ined by (1)) maps C(X*, E) onto C(X, E). 

The pair (X*, q)) with the above properties is called the E-trans/ormation o/ X and X* 

is called the E-modi/ication o / X .  

The E.trans]ormation o~ X is unique in the sense that i] (X*, ~l) and (X*, q~) are both 

E-trans/ormations o/X,  then there exists a homeomorphism h o/X* onto X* such that q)~ =~ioh.  

Proo/. Construction o/an E.trans/ormation. Let ~ = C(X, E). I t  is easy to see that  the 

pair (X*, ~), where ~ is the parametric map corresponding to the class ~ and X* =~[X], 

is the E-transformation of X. 

Uniqueness o] an E-transformation. Let (X~, 9~1) and * (X2, ~ )  both be E-transformations 

of X. The mapy~=(~l)-~o~2 is a one-to-one map of C(X.~, E) onto C(X~, E). This map yJ 

induces, in a natural way, the map ~Pn of C(X~, E n) onto C(X~, E~); n = 1, 2 . . . . .  ~Pn satisfies 

(3) for every /E C(X~, E n) and every g E C(X*, E n) w e  have /=YJn(g) iff/(qh(P)) =g(~(P))  

for every p E X. 

Using (3) and the E-complete regularity of X~' and X* we obtain that  

(4) for every pl, p~EX, ~0i(Pi)=~i(p~) iff ~(Pl)=~2(P2)- 

(4) enables us to define a one-to-one map h of X* onto X* such that  ~0~=hO~l. Using (3) 

again we prove that  h is, in fact, a homeomorphism. 
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The above proof was obtained in cooperation with Blefko. Another proof of uniqueness 

(also due to Blefko), which is perhaps technically simpler and which, in particular, does not 

involve C(X~, En), can be based on 3.9. 

According to Theorem 3.19, every algebraic structure C(X, E) o/continuous function8 

(in the sense of [21] and [22]) is isomorphic to a structure C(X*, E) on an E-completely regular 

space X*. 

I t  is easy to see that  

3.20. The following three conditions are equivalent 

(a) X is E-Hausdor//; 

(b) X admits a continuous one-to-one map onto an E-completely regular space; 

(c) the map qJ in the E.trans/ormation (X*, qJ) o / X  is one-to-one. 

In connection with condition (b) note that  if ~ is a one-to-one continuous map of X 

onto an E-completely regular space X*, then (X*, qJ) need not be an E-transformation of X. 

I t  is easy to see that the E-transformation depends only upon the degree of com- 

plete regularity of E; i.e., 

3.21. I f  ~(E) =~(E1) and (X*, cp) is the E-transformation o I X, then (X*, ~) is the E 1- 

transformation o / X .  

Proof. X* is El-COmpletely regular. On the other hand, we can assume that  E 1 is a 

subspace of E m (for some m). Let  ]EC(X, El). Then /EC(X, Era). Considering the co- 

ordinates of ], we infer that  there is a gEC(X*, E m) with ]=go~. The last formula implies 

tha t  the range of g is contained in E 5 thus, in fact, g E C(X*, El). Thus (X*, ~) is an E 1- 

transformation of X. 

If E = ~ or if E = ~, then the E-transformation (the E-modification) of X will be 

called the completely regular transformation (modification) o/ X. The completely regular 

modification of X coincides with the space discussed by  ~ech in [8], p. 826, and denoted 

there by ~X. The :~-transformation (:~-modification) of X will be called the T0-transforma- 

tion (T0-modification) of X. To-modifications also were discussed in [8] (pp. 825-826, 

"... the theory of general topological spaces ... can be completely reduced to the theory 

of Kolmogoroff spaces"). To see this it suffices to show that  

3.22. Let qp be a continuous map with q~: X~ontoX*. (X*, cf) is the To-transformation of 

X if and only if 

(a) ~(p)=~0(q) if and only i / - ~  =-~;  

(b) ~ is a quotient map. 

Proof. Let (X*, q~) be the :~.transformation of X; we shall prove that  ( a )and  (b) 

are satisfied. If ~p-~=(--~, then p E ~  and qE~-~; consequently, by the continuity of 
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~, ~(p) e ~ and ~(q) e ~ ,  hence ( ~ }  = {~(q~. But  X* is a T0-space; consequently, 

the last equality implies ~(p)=of(q). On the other hand, if ~-} 4=~-}, then one of these 

points does not belong to the closure of the other; say p ~ {q--). The function ], defined 

by/(s)  =1 for se{q-} and ](s)=0 for s eX~{-~ ,  is a continuous function with]: Z-> :~. If fol- 

lows that  there exists a continuous function g: X*-~ ~ with / =go~.  Clearly, g(q?(p)) =/(p)  =0  

and g(q)(q))=[(q)=1; consequently, ~(p)~:~(q). Thus (a) is satisfied. On the other hand, 

by 3.13, the class C(X, :~) is :~-separating; consequently, by 2.7, ~ is a closed map (note 

that  cp is the parametric map corresponding to C(X, :~)); thus ~ is quotient. 

Conversely, if (X*, q~) satisfies (a) and (b) then (X*, q~) must be the :~-transformation 

of X; indeed, conditions (a) and (b) uniquely determine the pair (X*, q)) (in the sense of 

Theorem 3.19). 

The concepts of an E-transformation and E-modification, as well as their uniqueness, 

deserve some comments. I t  can be easily seen that  the E-transformation has the following 

maximality property: 

X* E-trans/ormation o / X ,  then/or every continuous map q)x o / X  onto 3.23. / / (  , ~ ) i s a n  

an E-completely regular space X~ there exists a continuous map q~2 o] X* onto X~ such that 

~: = ~ o ~ .  

In fact, the E-transformation is determined by  the above maximality property: 

3.24. I] q~ is a continuous map o / X  onto an X* E~(E) and the pair (X*, qJ) satis/ies the 

conclusion o] 3.23, then (X, q~) is the E-trans/ormation o /X .  

Now, the E-modification of X is, by definition, a space X* such that  there exists a 

continuous map ~: X-~ onto X* such that  (X*, q)) is an E-transformation of X. Consequently, 

from the uniqueness of E-transformations we obtain the uniqueness (up to homeomor- 

phisms) of E-modifications. However, it is not true that  if X* is the E-modification of X 

and q~ is an arbitrary continuous map of X onto X*, then (X*, ~) is an E-transformation 

of X. For instance, if X = X *  is an E-completely regular space and q is a continuous map 

with ~: X--~ontoX* and such that  ~ is not one-to-one, then X* is the E-modification of X, 

but  (X*, q~) is not the E-transformation of X; indeed, ~ does not map C(X*, E) onto C(X, E). 

From 3.23 we obtain a maximality property of the E-modifications: 

3.25. The E-modi/ication X* o / X  is a maximal E-completely regular continuous image 

o / X ;  i.e. i] X:  is an arbitrary E.completely regular continuous image o / X ,  then X 1 is a con- 

tinuous image o] X*. 

In contrast to 3.24., the E-modification of X is not determined by its maximality 

property 3.25. Examples are trivial. 
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IV. E-compact spaces 

Throughout this chapter all spaces will be assumed to be Hausdorff. 

4.1. Definition, A space X is said to be E-compact provided that X c r m for some 

cardinal m. The smallest infinite cardinal m for which X c r E m is called the large exponent 

o / X  relative to E and it is denoted by ExpEX. (ExpEX is defined only for an E-compact 

X). The class of all E-compact spaces is denoted by ~(E). Classes of the form ~(E) are 

called classes o/ compactness. If E 1E ~(E) and E E~(E1), then we say that E and E1 have 

the same degree o~ compactness. 

4.2. ~(E)c~(E). 

4.3. EEl (E ) ;  in/act, Exp~E=~ 0. 

4.4. I / X E ~ ( E )  and Xo~r , then XoE~(E); in/act EXpEXo <~ExpEX. 

4.5. I f  X~E~(E) /or every ~E.~, then X{X~: ~E~}E~(E); in/act Exp~X{X~: ~ } ~ <  

Z (ExpmX~: ~EY~} (~< cannot be replaced by = and Z {ExpEX~: ~E~) cannot be replaced 

by sup (ExpEX~: ~E~}). 

4.6. ~ ( E ) ~ ( E I )  i/ and only i~ EEl(El) .  

4.7. S (E)=~(EI ) / / and  only i/ E E l ( E l )  and E1E~(E ). 

4.8. / /X~, $ E.~., are E-compact subspaces o/ a space X, then the intersection[') {X~: ~ET~) 

is also E-compact; in/act, EXpE N {Xt: ~ E ~} ~< E {Exp~X~: ~ E ~) ( ~< cannot be replaced by = 

and Z{ExpEX~: ~E~.} cannot be replaced by sup{ExpEX~: ~E.~.}). 

4.9. Let X be an E-compact space and let / be a continuous /unction with /: X-~ Y. 

I /  Yo is an E.compact subspace o/ Y, then /-l/Y0/ is E-compact; in /act, ExpE/-l[Yo]<~ 

Exp~X + Exp~ Yo. 

Proo/o/~.8 and 4.9. ~ {X~: ~ )  is homeomorphic to the diagonal A of the product 

X{E~: ~E~) and A is closed in X{E~: ~fi~.). ]-~[Yo] is homeomorphic to the set {(x, y): 

y =/(x), x EX, and fix) ~ Y0} (the "graph" of / restricted to/-~[ Yo]) and this set is closed 

in X • Y0. (These are classical facts; see [13], p. 144.) 

From part d) of Theorem 2.1 we obtain 

4.10, T ~ o a ~ .  Let X be an E-completely regular space. X is E-compact i/ and only i/ 

/or every proper extension ~X o~ X there exists a continuous/unction/: X-+ E which cannot be 

extended to r In  the above, it su//ices to consider only E-completely repular extensions o/X" 

Equivalently, an E-completely regular X is E-compact i/ and only i /C(X, E) is an E-non- 

extendable class/or X (or i/ X admits an E-non-extendable class). 

Clearly, ~(3) = the class of all compact spaces and ~(0) = the class of all 0-dimensional 

compact spaces. In fact, it can be easily shown (see the proof of 3.10) that 
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4.11. ~(E) =~(Y) i /and  only i/ E is compact and YCtopE. 

4.12. ~ ( E ) =  ~(~)  i/ and only i/ E is a O-dimensional compact space containing more 

than one point. 

There is a great variety of classes of compactness. Blefko has shown ([6], Ch. III)  that  

4.13. Let 0) 4 and o)~ be initial ordinals. I /  c/(eo~)=c/(o)~), then ~(S(w~))=~(S(w~)),  

and i/ c/(eoa) =4=c/(eo#), then neither ~(S(eo~))c ~(S(e%)) nor ~(S(eo~))c ~(S(eo~)). 

In  the above, S(~) denotes the space of all ordinals ~ < zr (with the order topology). 

4.14. Theorem on the existence and the uniqueness o/flEX. 

(a) For every E-completely regular space X there exists an extension fie X such that 

(i) flEX is E-compact; 

(ii) every continuous/unction/: X ~  E admits a continuous extension/*: flEX -§ E. 

(b) flEX is Uniquely determined by the above properties; i.e., i / e X  is an arbitrary exten- 

sion o / X  that satis/ies (i) and (ii), then eX ~ e~tflEX. 

(c) flEX has also the /ollowing property: every continuous /unction g: X ~  Y, where 

Y is an arbitrary E-compact space, admits a continuous extension g*: f lEX~ Y. 

Proo/. Part  (a). The proof is a duplication of the famous ~ech construction of fiX [8]. 

Let ~ =C(X,  E), let h be the parametric map (see ca.  II) of x into E m = X ( E f : / E  ~}, 

where m ~ card ~ and E r = E for every / e ~, corresponding to the class ~. There is a super- 

space flEX of X which is homeomorphic to h/X/, the closure of h / X / i n  E "~, by a homeo- 

morphism h* with hch*.  I t  is easy to see that  flEX satisfies (i) and (ii), in particular, 

i f / E  C(X, E), then/*  =xeroh* is a continuous extension of / over flEX. 

Part  (c). Suffices to embed Y into E m = X(E~: ~ E ~} as a closed subspace and extend 

the functions 7~og and then take the parametric map corresponding to the class of these 

extensions. 

Par t  (b). Assume that  eX satisfies the assumptions of (b). I~epeating the proof of (c), 

we see that  eX has the property expressed in (c). This enables us, by extending the identity 

map of X onto itself, to define two continuous functions / and g with /: f lEX~eX,  

g: eX~f lEX,  and/ (p)  =g(p)=p for every p EX. By Lemma 1.2, eX =~xtflEX. 

4.15. COROLLARY. Let XE~(E) .  X is E-compact i /and  only i / f lEX =X.  

flaX coincides with the usual fiX; f ix  is the largest, in the sense of ~ext compacti- 

fication of X. fl~X is defined for every 0-dimensional space X; it was studied in [5]. f lvX 

is the largest, in the sense of ~< ext, 0-dimensional eompactification of X. In  general, if E 

is compact, then flEX is the largest E-compact (equivalently, E-completely regular and 

compact) extension of X. However, if E is not compact, then flEX need not be the largest 
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E-compac t  extension of X; in fact, an E-compac t  space can admi t  proper  E -compac t  

extensions. On the other  hand,  among extensions satisfying condition (ii) of Theorem 4.14, 

fie X can always be characterized as a largest or a maximal  (i) extension in the sense of 

ext. 

4.16. Let ~(X) be the cla~s el all E-completely regular extensions el X satis/ying condi- 

tion (ii) of Theorem 4.14 and let ~X E ~(X). The/ollowing conditions are equivalent 

(a) eX:=o~tfl~X, 
(b) ~X is the largest extension in ~(X) (in the sense el ~ ~x~); 

(c) eX is a maximal extension in ~(X) (in the sense o~ ~ ~ ) .  

Proo]. (a) implies (b). flE(~X) exists and it is an extension of X. I t  is easy to see tha t  

flE(eX) satisfies 1. and 2. of Theorem 4.14. Consequently,  by  pa r t  (b) of this theorem 

fl~(sX)=extflEX. But  sXCflE(SX); consequently,  eX~e~tflE X.  Thus flEX is the largest 

extension in ~(X). 

Obviously, (b) implies (e). 

(e) implies (a). Assume sX  is maximal.  I f  eX ~=,~tflEX; then, by  par t  b) of Theorem 

4.14, eX is no t  E-compact .  Consequently,  flE(eX) is a proper  extension of sX and clearly, 

fls(eX) E~(X). Thus, ~X is not  maximal  in ~(X). 

I n  sequel, we shall compare the extensions fie X for different E's .  

4.17. T ~ E O R ~ .  Let E 1 and E2 be two spaces with ~(E1)=~(E~). E~ER(E1) i / a n d  

only i/ flE1XCex~flEzX /or every X E~(E1). 

In  other words, the more compact E the larger the extension flEX. 

Proo/. Assume E2E~(E1).  B y  pa r t  (c) of Theorem 4.14 we infer tha t  flE, X satisfies 

condition (ii) of this theorem relative to the space E 2. Consequently,  by  Theorem 4.16, 

To prove the converse, note  that ,  in particular,  we have E2~fl~,E2cextflE~E ~. B y  

Corollary 4.15, flE~ E~ = E2, hence/~z~ E 2 = E~; thus E~ is El-compact .  

As a part icular  case of the above theorem we obtain tha t  f l~X~ e~t/~X for every  com- 

pletely regular space X and fl, X ~  ,~tfl, X for every 0-dimensional space X. 

To complete Theorem 4.17 we shall give an exact  formula for flE~X in terms of flz~X. 

4.18. T~EOI~EM. Assume that ~(E1)=~(E~)  and E:ER(E1). Let E~ be an E~-compact 

superspace el E 1. Then,/or every X E~(E1) , 

(1) An element x of a partially ordered set P is said to be the largest element of -P provided 
that y~x  for every yEP.  x is saidr be a maximal element of P provided that there is no y E P  
with x<y. A largest element is a maximal one, but the converse is, in general, false. 
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flE, X=e~t(pEfiE2X:/(p)EE 1 /or every continuous /unction / with /:flE X---~E* and 

/ [~1  c E 1}. 

Proo/. Denote the right-hand side of the above ~quality by eX. Let ~ be the set of all 

continuous funct ions/ :  fl~.X-->E~ w i t h / [ X J c  E 1. Clearly ~ X =  N ( / - 1 [ E l 1 : / E ~ } .  To  com- 

plete  the  proof, it suffices to show that  sX satisfies conditions (i) and (ii) of Theorem 4.14 

(relative to El). By 4.9,/-1[E1] is El-compact for e v e r y / E ~ ;  consequently, by 4.8, sX is 

also El-compact. Let /0 be an arbitrary continuous function with /0: X->El" By part  (c) 

of Theorem 4.14 /0 admits a continuous extension / with flE X-~E 1. Clearly, /[X]cE1, 

hence, by the very definition of sX,/(p) E E 1 for every p EsX. Thus,/* =/IsX is a continuous 

extension of/0 with/*:  ~X--~E1. 

4.19. COaOLLARu Under the assumption o/ Theorem 4.18, a space XE~(E1) is E 1- 

compact i/ and only i/ /or every po Efls2X~ X there exists a cominuous /unction /: flE X-~ E~ 

such that/(p) E E1/or every p EX and/(Po) E E ~  EI. 

Proo/. In view of Theorem 4.18, the condition of the above corollary is equivalent to 

the equality fiE, X = X. 

:It is clear that  ~ (~ )=~( (0 ,  1]). Indeed, (0, 1]~o1~ and ~cr  , 11 ~ (~ is homeo- 

morphic to the set {(x,y):x, yE(O, 1 ] , x §  thus (O, 1 ]E~(~  ) and ~E~((0,  11). 

Consequently, applying the above corollary with E 1 : ( 0 ,  1], E~=E*=~J, we obtain a 

known characterization of n-compact spaces (see [18], p. 947, Proposition). 

A completely regular space X is ~-compact i /and only if/or every Po E f lX~X  there exists 

a continuous/unction/: f lX~  I such that/(p) > 0/or every p E X and ](Po)= O. 

We shall now comment Herrlich's generalization of classes of complete regularity 

and classes of compactness [121. Herrlich considers a class ~ of topological spaces and he 

defines X E~(~) (X E ~(~)) i f / X  is homeomorphic to a subspace (closed subspace, respec- 

tively) of a product of spaces each of which is in @. Classes ~(~) (~(@)) will be called gen- 

eralized classes of complete regularity (of compactness). Herrlich demonstrates that  some of 

our considerations remain valid in this more general setting; this, in particular, concerns 

the E-transformation and the extension flEX. Furthermore, Herrlieh discusses these prob- 

lems within the framework of the category theory. 

The distinction between these two concepts can most conveniently be discussed within 

a system of set-theory which admits (proper) classes that  are not sets. In what follows 

we shall adhere to this exact meaning of the terms "set"  and "class". If a generalized 

class of complete regularity (of compactness) 9~ admits a set @ of spaces such that  9~ = 

~(@) (9~ = ~(@)), then 9~ is a class of complete regularity (of compactness); in fact, it suffices 

to let E be the product of all spaces in @. Generalized classes of complete regularity and of 
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compactness admit a simple characterization: every generalized class of complete regularity 

(of compactness) is closed under taking arbitarary products and arbitrary subspaces (arbi- 

t ra ry  closed subspaces, respectively). The converse is also trivially true: for a class 9~ 

satisfying the above conditions we have 0/=~(~)  (~ = ~(~l), respectively). A natural problem 

is to find, for a given class ~, a minimal class ~ with ?I=~(~)  (9~ =~(@)). Such a minimal 

class ~ can be characterized by the condition: E ~ ( ~ { E } ) ( E ~ ( ~ { E } ) ) f o r  every 

E E ~. The class 9~ of all Tl-spaces is trivially a generalized class of complete regularity 

(and 9/is not a class of complete regularity); here we have 9~=~(~), where ~ = {I:m: 11l is 

an arbitrary cardinal); this class ~ is not minimal; in fact, no subclass ~oof ~with~(~o) = 

is minimal. I do not know if there is at all a minimal class ~'  with ~ ( ~ ' ) = t h e  class of all 

Ti-spaces. 

We shall discuss another example (suggested by Blefko's result 4.13). Let  E E l ( D ) .  

I t  can easily be derived from Corollary 4.19 that  if S(co~), where ~o~ is a regular initial ordinal, 

is E-compact, then card E >~.(~)  I t  follows that  the generalized class of compactness ~(~), 

where ~ = {S(coa): ~o~ is an initial ordinal}, is not a class of compactness. However, it can 

easily be derived from Blefko's proof of 4.13 (see [6], Ch. 3) and from Theorem 2.1 that  the 

class ~0={S(~o~):w~ is a regular initial ordinal} is a minimal class with ~ ( ~ ) = ~ ( ~ )  

(this statement is stronger than 4.13). We thus see that  Herrlich's approach leads us some- 

times to a stronger formulation of some questions and results. 

To conclude this chapter we shall state (without proofs) several results(~) which 

point out the difficulty involved in an at tempt  of a complete description of the totali ty 

of classes of compactness. Since ~ ( E ) ~ ( E ) ,  it is natural  to study classes of compactness 

contained in a given class of complete regularity. The smallest class of complete regularity 

(save for the trivial class consisting of the empty space and the one-point space) is the 

class of all 0-dimensional T0-spaces; i.e., the class ~(~).  The smallest class of compactness 

(save for the trivial class) contained in ~(~)  is the class ~ (~)  of all compact 0-dimensional 

spaces. Another natural class is the class ~ (~)  of all ~-compact spaces (this class was 

first mentioned in [9]). Concerning this class the following can be proved: 

4.20. Let E be ~-compact. The /ollowing are equivalent: 

(a) ~(E) =~(~); 

(1) I t  can  easily be der ived  f rom 4.18 t h a t  i] S(eo~) is E.compact, then (a) there is a trans]inite 
descending sequence 

oJ closed non-empty subsets o] E with the total intersection empty. 
(a) implies (in case eo~ is regular)  t h a t  (b) card  E ~  > ~ ,  (c) E does no t  have  a base  of card ina l i ty  

< ~)., and (d) E is no t  ~ - c o m p a e t .  
(s) These resul ts  have  been  ob ta ined  in coopera t ion  wi th  Blefko a n d  are s l a t ed  in [6]. 



FURTHER RESULTS O1~ E-COMPACT SFACES. I 181 

(b) TLc cIE; 

(c) E admits a continuous map onto ~. 

One easily derives from 4.20 tha t  

4.21. [1/E is "~-compact, but ~ is not E-compact (i.e., i~ E is more compact than ~), then 

E is ~-compact. 

4.21 asserts, in fact, that  there is no class of compactness between ~ ( ~ )  and ~(~) ;  

i.e., ~ ( ~ )  is an immediate successor of ~ ( ~ )  in the partially ordered (by set-theoretic 

inclusion) total i ty of 0-dimensional classes of compactness. Now, by  :Blefko's result, the 

classes ~(S(~o~)), where co~ is a regular initial ordina], are mutual ly  incomparable; each of 

these classes follows ~(~) .  Unfortunately, none of them, save for the class ~(S(w0) ) = ~(TL), 

is an immediate successor of ~ (0) .  Thus, for instance, there are classes of compactness 

strictly between ~ ( 0 )  and ~(S(col)); however, not much is known about them. Here are 

some of the open questions. How many  such classes are there? Are they (linearly) ordered 

(by ~)?  Does ~ ( ~ )  have an immediate successor ~ ~(S(o)1))? Does ~(S(col) ) have an im- 

mediate predecessor ~ ~(0)?  

V. Estimation of exponents 

I t  is frequently useful to have estimations for eXpEX and ExpEX. Theorem 2.3 provides 

us with the following 

5.1. Let E be a To-space and let X be E-completely regular, eXpEX~m i/ and only i/ 

X has an E-separating class ~ with card ~ ~<m ( m - a n  infinite cardinal). 

5.2. Let E be a Hausdor// space and let X be E-compact. Exp~X 4<.1lt i/ and only i / X  has 

a class ~ such that ~ is both E-separating and E-non-extendable and card ~ ~<i~. 

Statement  5.1 enables us to relate expEX to the weight of X (weight X is the smallest 

infinite cardinal ~ such tha t  X has a base of cardinality ~<m). 

5.3. Let E be a To-space and let X be E-completely regular. We have 

(a) exp~X ~<weight X; 

(b) weight X~<max {expE X, weight E}. 

Proo]. (a) This proof duplicates the Tihonov procedure [23]. Let ~ be a base in X 

with card ~ ~ m  = weight X. Let ~ be the set of all pairs ( U, V) such tha t  U, V E ~ and there 

exists a finite n and a continuous function g: X ~  E n such tha t  

(1) g[U] n g E i \  V] = O 

By the very definition, for every pair (U, V) E ~ there exists a finite set ~ , v  of continuous 

functions from X into E such that,  if we let ~v,v={/1, Is ..... In} and g=(l l , /2  ..... In}, 
12- 682902 Acta mathematica 120. Imprlm~ le 19 ]uin 1968 
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then g satisfies (1). I t  is easy to see that  ~ = {  [3 {~v.v: (U, V)E ~} is an E-separating class 

for X. Clearly, card ~<~m; consequently, by  5.1, expEX~m. 

(b) is obvious. 

Statement  5.2 is not so convenient. For one thing, it involves the estimation of both 

expEX and ExpEX. In  many  cases expsX is known and one would like to have a condition 

for ExpEX which does not involve reconsideration of exp~X. On the other hand, the very 

magnitude of eXpEX and EXpEX does not distinguish between the ordinary embedding 

and the closed one. For instance, we have exp,  DSo=Exp~D~~ (in 

other words, exp ,  and Exp ~ do not distinguish between the Cantor set D so and the space 

of irrationals Q), but  every embedding of Ds~ into ~s~ is a closed one; while there are 

embeddings of O into ~s0 which are very far from being closed. (1) However, Theorem 

2.1 provides us with a concept which seems to satisfy the above requirements. 

5.4 Definition. The E-de/ect o / X  (in symbols: def~X) is the smallest (finite or infinite) 

cardinal p such tha t  X has an E-non-extendable class ~ with card ~ =p .  

Thus, defEX is defined only for an E-compact  X. However, if X is not  E-compact ,  

then we will write def~X = ~ .  

Clearly, we have 

5.5 EXpEX =expEX +de fEX/o r  every E-compact space X. 

We shall now give a complete product theoretic characterization of defEX. 

5.6 Definition. A space E is said to be admissible provided tha t  there exists a compact 

space E* with ~ (E*)=~(E) .  

Non-admissible spaces exist. DeGroot [10] has proved the existence of a subspace 

E of the Euclidean plane such tha t  E contains more than one point and every continuous 

function from E into E is either constant or it is the identity. I t  follows from the proof in 

[10] that  E is dense in the plane (in fact, E intersects every Cantor set in the plane); conse- 

quently, E is not compact.  Now it is easy to see tha t  E is not  admissible; in fact, the 

assumption tha t  ~(E) =~(E*) for some compact space E* implies that ,  for some cardinal 

11t, we have E ' c C c E  m, where E '  is homeomorphic to E and C is a compact subset of 

Em. :For at  least one projection ~ of E, ~ [ E '  is not constant; on the other hand, ~ [ C ]  is a 

proper subset of E (E is not compact). This yields a non-constant continuous map of E 

whose range is a proper subset of E. 

5.7. THEOREm. Let X be an E-compact space. The conditions below are related as 

]ollow: (a) implies (b) and (c) implies (a). I / E  is admissible, then (b) implies (c), hence, in 

this case, (a), (b), and (c) are equivalent. 

(1) Recall that Q is homeomorphic to ~v~t*,. 
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(a) defEX <~p; 
(b) /or every homeomorphism h o / X  into E m (where 1~ is an arbitrary cardinal) there 

exists a homeomorphism h' o/ X into E m • E~ such that h'[X] is closed in E n~ • Ev and h = 

~elOh' , where ~1 is the pro~ection o / E  r" • E~ into Era; 

(c) X ~ olC • E~, where C is a compact space with (~(C)=~(E). 

Remark 1. Condition (b) can be expressed in a form more resembling a classical theorem 

of Kuratowski ([13], p. 151, Th~or~me): 

(b') /or every embedding X '  o/ X into E m there exists a continuous/unction/: X'-> E~ 

such that the graph o/ / is closed in E m • E~. 

These conditions can be expressed intuitively as follows: every embedding of X into 

E "  can be modified to a closed embedding by adding at most p axes. 

The proof of the above theorem will be based on the following 

5.8. LEMMA. Let X be a closed subspace o/ C • E, where C is compact, and let s X =  

X U (Po} be a one-point extension o / X  (po(~X). There exists a one-point extension s i X =  

XU {q0} o/ X (qo~X) such that 

eX  <~ ~xt s 2 X 

and the/unction g(p)=x(p)  /or every p E X ,  where • is the projection o / C  • E onto C, can be 

extended to a continuous/unction g*: eX--->C. 

Proo/. Let C~ be the class of all open subsets G of X such tha t  G U (Po} is a neighborhood 

of P0 in sX. There is a point c o E C such tha t  c o E~[G] for every G E (~. Add a new point qo to 

X taking as neighborhoods of q0 in s i X  = X  U {qo} all sets of the form (7/:-l/U/(1 G) U {qo}, 

where GE (~ and U is an arbi trary neighborhood of c o in C. s i X  is the required extension. 

In  fact, if G U {Po} is a neighborhood of Po in sX (Go X), then G U {qo} is a neighborhood of 

q0 in s iX .  Thus sX<--.~xtslX. Furthermore,  g can be continuously extended over s iX by  

setting g*(qo)=co. 

Proo/ o/ Theorem 5.7. a) implies b). Let  h be a homeomorphism of X into Era= 

X{Er ~EE}. Let us set /~=:~oh  for every ~E~ and ~={/ r  SE~}. Let  ~1={ /~ :  ~E'~I},  

where card E1 <P and ~ N 7~ 1 =O,  be an E-non-extendable class for X. Suffices to define 

h' as the parametric  map corresponding to the class ~2 = {/~: $ E ~ U '~'~1} and apply Theo- 

rem 2.1. 

c) implies a). We shall s tart  with the case p = 1. Assume tha t  X is a closed subspace of 

C • E; define/(x, y) = y  for every (x, y) EX. We claim tha t  {/} is an E-non-extendable class 

for X. Indeed, let sX be a proper extension of X; we can assume that  sX is a one-point ex- 

tension. Suppose tha t  / admits a continuous extension/*: eX-->E. Take the extension s i X  
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described in Lemma 5.8. Since eX<~extex X, f admits a continuous extension/*:  elX->E. 

On the other hand, (by Lemma 5.8) there is a continuous function if*: e l X ~ C  such that  

g*(x, y)=x for every (x, y)EX. Define/(p) = (g*(p),/*(p)) for every p EX. h is a continuous 

map of elX into C x E; furthermore, h(p)=p for every pEX.  Since X is closed in C x E, 

the last condition implies h: e lX- ,X .  This, however, contradicts the fact that  elX is a 

proper extension of X (see footnote on p. 166). 

The general case can be reduced to the above as follows: from the above we obtain 

an existence of an E~-non-extendable function / (strictly speaking, an existence of a 

one-element E~-non-extendable class {]}), ]: X-+E~. Suffices to set E '=X{E~:  ~E7~}, 

card E=O, Ee=E for every ~E~, and ~ = { ~ o / :  ~E~,}. ~ is an E-non-extendable class 

for X. 

b) implies c), provided that  E is admissible. Let  E x be a compact space with ~(E1) = 
1111 ri12 ~(E). Let X~topE m for some cardinal tit. Since ~(E1)=~(E), we have E=topE1 =tope 

for some cardinals ml and 11t2. Let  C be a homeomorphic image of E~ ' in E m~. Then X ~  topC. 

Let  X '  be a homeomorphie image of X in C. We have X ' c  Em*; consequently, by b), there 

exists a closed subspace X" of E TM x E~, such that  X" is homeomorphic to X and 7el[X" ] = 

X', where ~1 is the projection of Em* x E~ onto E m~. The equality ~I[X"] = X '  implies tha t  

X" ~ C x E~. Thus X = clC X E'. 

We shall conclude this section with a few simple remarks concerning 7/- and O-defects. 

5.9. I / X  is ~-completely regular (completely ~'egular), then the/ollowing conditions are 

equivalent: 

(a) def,  X~< 1 (defnX ~< 1); 

(b) d e f ~ X < ~  0 (def~X<N0); 

(e) X is locally compact and LindelS/. 

Proo/. We shall give the proof for R-defect. Obviously, (a) implies (b). Assume (b). 

Since R is admissible; we infer from Theorem 5.7 that  X ~  olC x R~; where C is compact 

and  n is finite; consequently, X is locally compact and LindelSf. Assume (c). The point oo 

in the one-point compaetification tX = X  tJ { c~ } of X satisfies the first axiom of countability; 

consequently, there is a continuous function /: tX-+[0, 1] with / (p )>0  for p E X  and 

./(co )=  0. I t  is clear that  the class {g}, where g(p)= 1//(p) for p E X is an R-non-extendable 

function for X. (In the proof for T/-defect one has, using 0-dimensionality of eX, to modify 

] so that  its values on X are of the form l/n; see [9], proof of Lemma 2). 

Clearly, def~Q~ll0, where Q is the space of irrationals (in fact, Q=topTls~ and, by  

Theorem 5.9, we infer that  def~Q=ll 0. On the other hand, l~0<defn0<2~'; where 0 is 
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the  space of ra t iona l s  (in fact ,  d e f n ~ < ~  0 would  i m p l y  t h a t  ~ColT/s~  bu t  ~ does no t  

a d m i t  a complete  metric);  I do no t  know if one can prove,  wi thou t  the  con t inuum hypo-  

thesis, t h a t  de f ,  ~ = 2 ~~ 
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