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The theory of lacunas for hyperbolic differential operators was created by I. G.
Petrovsky who published the basic paper of the subject in 1945 (). Although its results
are very clear, the paper is difficult reading and has so far not lead to studies of the same
scope. We shall clarify and generalize Petrovsky’s theory.

The various kinds of linear free wave propagation that oceur in the mathematical
models of classical physics are of the following general type. There is an elastic (n—1)-
dimensional medium whose deviation from rest position is described by a function u(x)
with values in some R¥ and defined in some open subset O of R, one of the coordinates
being time. When there are no exterior forces, w satisfies a system of N linear partial
differential equations P(x, 0/6x)u(x)=0 where P is a linear partial differential operator
with smooth matrix-valued coefficients. Further, a unit impulse applied at some point y
produces close to y a movement that propagates with a locally bounded velocity in all
directions. This movement is smooth outside a system of possibly criss-crossing wave
fronts and vanishes outside the cone of propagation K(P,y), a conical region with its
vertex at y and bounded by the fastest fronts. Mathematically, the movement is described
by a distribution E=E(P, «, y) which is defined when =z is close to y, vanishes when z is
outside K(P, y) and satisfies

Pz, 0[ox) E(P, x, y) = 6(x —y)

so that Z is a (right) fundamental solution of P. Under these circumstances we say that P

is a hyperbolic operator. Briefly, P is hyperbolic if it has a fundamental solution with

(*) See the references.
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conical support as described above. When P =P(8/6x) has constant coefficients, its funda-
mental solution E is defined for all z, y, it is unique and depends only on the difference
x —y. It will then be denoted by E(P, x) and we have

P(8/ox) E(P, ) = E(P, x)P(6/ox) = 8(x).

The support of £ is contained in a closed cone with its vertex at the origin which is proper
in the sense that, apart from its vertex, it is contained in an open half-space z{=x,9; +
o +2,8, >0 where 0 =9 € R". We let hyp,, (#) be the class of these operators and write it as
hyp (8) when N =1 so that the operators are scalar. An easy argument (Lemma 3.2)
shows that P€hypy (9) if and only if det PE€hyp (#). The scalar operators are basic. Let
hyp (9, m) be all P €hyp (&) of order m and let Hyp (#) and Hyp (J, m) be the homogeneous
operators in hyp (#) and hyp (&, m) respectively. The operators P in hyp (&) can be charac-
terized algebraically. Writing P =P(D) where D =9/i0x is the imaginary gradient, we attach
to P and its principal part ¢ their characteristic polynomials P(£) and a(£), £€C". Then
Pehyp (9) if and only if a(9) +0 and P(& +#9) +0 for all real £ when |Im ¢| is large enough.
The elements of hyp (#) will also be considered as polynomials with this property. It
follows that hyp (#)=hyp (—9). When P=a€Hyp (4, m), the condition means that the
equation a(£ +#3) =0 has m real roots ¢ for every real £. In particular, apart from a complex
constant factor, such an a(£) is real. If the roots are all different except when £ is propor-
tional to ¢, a is said to be strongly hyperbolic and the corresponding class of operators
is denoted by Hyp® (#). When P€hyp (#) then a €Hyp (&) but if « €Hyp (#) then every P
with principal part @ is in hyp () only if a €Hyp® (9). The class of P with a in Hyp® ()
will be denoted by hyp® (#) and its elements are also called strongly hyperbolic. A scalar
operator P(x, d/ox) with variable coefficients turns out to be hyperbolic if the operators
x->P(y, 9/0x) are strongly hyperbolic and their order is constant. We shall only treat opera-
tors with constant coefficients and, apart from some occasional remarks, also restrict
ourselves to scalar operators. The determinants of the non-scalar hyperbolic operators
(systems) that occur in mathematical physics are as a rule not strongly hyperbolic.

When Pehyp (#), write P=a+b where a €Hyp () is the principal part of P so that
the degree of b is less than that of P. It turns out that b cannot depend on more variables
than a. More precisely, if Q(£), £€Z=C", is a polynomial, let L(Q), the lineality of @, be
the maximal linear space L such that @ is a polynomial on the quotient Z/L. When L(@) =0,
@ is said to be complete. When P€hyp (#), P and a have the same lineality L(P)=L(a).
Its codimension n(P)=n(a) is said to be the reduced dimension of P and a.

The class hyp (9, 0) consists of all non-vanishing constants. For them, L(P)=Z.
The class hyp (¢, 1) consists of all P of degree 1 such that a(#) =0 and a(£) is real apart
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from a constant factor. In that case L(P) is the hyperplane a(£)=0 and has dimension
n—1. With a suitable choice of coordinates, every complete a € Hyp (&, 2), n>2, is a mul-
tiple of the wave polynomial A(£)=¢&% —£%—... —£2 and then A(#)>0. The corresponding
operator A=A(9/0x) is the wave operator. It is strongly hyperbolic. When n =2, every
a€Hyp () is a product of real linear factors such that a()+0. When these factors
are all different, a €Hyp® ().

By the algebraic definition of hyperbolicity, the classes hyp (#) and Hyp (3) are
closed under multiplication and factors of hyperbolic polynomials are hyperbolic. The
process of localization also leads to hyperbolic polynomials. When P(£) is a polynomial
of degree m, let us develop ¢"P(t-1£ +{) in ascending powers of ¢ and let {?P({) be the first
nonvanishing term. The integer p =m,(P) is called the multiplicity of £ relative to P and
the polynomial {~>P({) the localization of P at &. When P =a is homogeneous, (£ +10)=
t°a;(l) +higher terms and p=m(a) is simply the degree of the polynomial {->ag(l). It
turns out that if P€hyp (J) and £ is real, then P;€hyp (J) and a; € Hyp () is the principal
part of P;. In particular, m;(P)=m,(a). When P€hyp® (§) is strongly hyperbolic, all P,
with £+0 are constant or first degree polynomials so that, accordingly, n(P,)=n(a;)=0
or 1. ’

When a(&) is a homogeneous polynomial, let 4: a(&) =0 be the associated hypersurface
in Z and let Re A4 be the real part of 4. The lineality L(a) depends only on 4 and will also
be denoted by L(A). In particular, when x=(x,, ..., z,) belongs to the dual complex space
Z', let X: 2 & +...2,&,=0 be the associated hyperplane and Re X its real part. By the
algebraic definition of hyperbolicity, when a € Hyp (#, m) the surface Re A intersects every
real straight line with direction ¢ in m real points. When a € Hyp® (#, m) and the line misses
the origin, they are all different. The component I'(4, #) of Re Z—Re 4 that contains ¢
is an open convex wedge whose edge is Re L(4). When P€hyp (#) has principal part a,
we also put I'(P, 9)=I(4, ).

A basic property of hyperbolic polynomials is that P€hyp (#) implies P€hyp ()
for every n€I'(P, #)=1'(4, #). More precisely, there is a convex open subset I'; =T",(4, )
of I'=T'(4,¥) such that sI';<TI'; when s>1 and I'= U sI'}, s>0, and P(£+1y)+0 when
n€l'}. The fundamental solution E(P, x)= E(P, ¥, ) of P with support in z# >0 is simply

an inverse Fourier-Laplace transform of P-1, -

(1 E(P,d,x)=(2 n)‘"fP(fS —in) 1T dE, pel,.

Here the right side is independent of # and, by the Paley-Wiener-Schwartz theorem,
E vanishes at « unless 27 >0 for all y €I". This condition defines the dual cone K = K(P, §) =
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K(A4,9) of T'. This dual cone is the propagation cone for P relative to ¢. It is closed and
convex and meets every half-space zn <const, €I, in a compact set. It is also the closed
convex hull of the support of E. It is contained in and spans the orthogonal complement
of Re L(4) whose dimension is the reduced dimension n(a)=n(P). More precisely, put
E=(&,&") where &', & are coordinates in Z/L(4) and L(A4) and let z’, " be the dual co-
ordinates in Z’. Then P'(§’)=P(£) is complete, P(D)=P'(D'}®1 where 1 is the identity
operator on L(4), and (1) shows that E(P, ¥, x)= E(P',¥', ') ® 6(z"). This reduces the study
of fundamental solutions to those of complete operators. Putting P=a +b we also have

@) E(P, 9, %)= 2 (— 1) (DY B(a**, 9, )

80 that there is a further reduction to the homogeneous case. (2) follows from (1) and the

fact that ba—{& —¢s#) tends to zero uniformly in & when s+ oo (Leif Svensson (1969)).
There is a simple connection between the fundamental solution E{zx)=E(P,?, x) of

Pehyp (#) and the fundamental solution E.(x)=E(P,, §, z) of a localization of P pointed

out to us by L. Hormander. If p=mg(P) is the multiplicity of {€Re Z and {—co, then

"7 e#=€ B(x) tends to E ¢(#) in the distribution sense. As a consequence we have the im-

portant fact that
(3) 0+f€ReZ=SE;<SSE,

where S denotes support and SS singular support.

Let us now consider the local cones I'y=I'(P;, #)=I'(4,, ?) and local propagation
cones K;=K(P;,9)=K(A;, 9) where a, is the localization of the principal part of P.
It is easy to show that I',>I'(4, §), K, < K(4,¥) with equality if and only if £€Re L(4).
When a(£)+0, I'; is the whole space and K,=0. When a(£)=0 but grad a(§) 40, then
I'; is a half-space and K is a half-ray normal to Re 4. When q is strongly hyperbolic,
these exhaust all possiblities. At singular points of Re 4 outside the origin, I'; may be smaller
than a half-space and K, bigger than a half-ray. The local cones have important continuity
properties. The functions £, a—~I'(4,, ) and &, a—~ K(A4, ) are inner and outer continuous
respectively. Here inner (outer) continuity of a map ¢ from a space {t} to subsets of another
space means that o(z') N 6(7), (0(z") U 6(7)), is close to a(tr) when 7’ is close to 7.

Let °Re A be the real dual of the hypersurface Re 4, i.e. the set of z€Re Z’ such that
Re X is tangent to Re A. It has been known for a long time, in particular through the work
of Herglotz (1926-28) that if a €Hyp (), E = E(a, 9, x) is holomorphic in K (4, ¥) outside
%Re 4 in significant special cases. For strongly hyperbolic a, the proof is due to Petrovsky.
There is also no better result. In fact, if a €Hyp® (), then, by (3), the singular support of
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E contains the support of every E, with §+0. Since the corresponding a, is constant or
linear this support is all of K,=K(A4,,¥). Now K(4,9)N°Re 4 is the union of these
K, and this shows that E is nowhere smooth across “Re 4 in K(4,?). The same proof
works, also in the inhomogeneous case, when Re A4 is non-singular outside the origin.
When Re 4 is singular, °Re 4 is not the proper object to consider and we replace it by the
wave front surface W = W(4,4) defined as the union of all K(4,, 9) for 0+£ real. If a is not
complete, W =K =K (A4, $) but apart from that case, W has codimension 1, is contained in
%Re 4 N K and contains the boundary of K. Unlike °Re 4, W is an outer continuous func-
tion of a €Hyp (¢#). It also has the stronger continuity property that there are elements b
in Hyp?® (4, m) arbitrarily close to a given a such that W(B, ) meets a given conical neigh-
bourhood of a given ray in W(4, 9).

We shall show that E(P,d, ) is holomorphic outside W (P,d)=W(4,d#) when
Pehyp (9) and a is the principal part of P. When P=a, the proof is achieved by a shift
of the chain of integration in (1). The new chains are images of maps £—>& —iw(§) where
v(£) is a smooth vector field such that »(£)€T';(4, &) for all £. By the inner continuity of
the function T, such fields exist and we show that small multiples of v have the addi-
tional property that a(&—isv(£)) +0 when 0<<s<1. By Cauchy’s theorem, the constant
vector field vy(£)=7 in (1) can be replaced by any such » homotopic to v, provided the
exponential stays bounded. When x €+ W(A,#) ,we can in fact find a v with these proper-
ties such that, in addition, a(£ —v(&))~! is bounded and zv(£) < —¢(&) for some ¢>0 and all
large £. But then we have absolute convergence in (1) and the integral is a holomorphic
function close to z. Applying this result and some simple estimates to (2) takes care of the
inhomogeneous case.

When P=a€Hyp (#, m) is homogeneous, we can use the homogeneity to perform a
radial integration in (1). We perform this operation using our modified form of (1). The
vector fields that are adapted to this process constitute a family V=V(4, X, #) charac-
terized by the properties that v(&)€C® for 0=+& real, v(A&)=|A|v(£) when O+A€ER,
v(£)E€N(4,, 9)NRe X for all &0, a(f—isv(§))+0 for all real £40 and 0<s<1. When
z€+ W(A,), this family is not empty and any two elements of it are homotopic.
Modulo constant factors the result (Theorem 7.16) may be presented as follows. .

If a€ Hyp (&, m) and €K (A4, $)— W(4, 9), then

(4) (@/oxy E(a, G, x) ~ f @€)°& a(®) " (&), ¢>0,

o

(8) (@foxy E(a, d, x) ~ J;

&

. @ a) ), g<0.

8 — 702909 Acta mathematica. 124, Imprimé lo 8 Avril 1970.
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Here (0/0x)" = (8/0m,)™" ..., & =&¢ ..., w(E) =Z(—1)"1&,dE, ... d/E, ... d&, and (4) and (5) hold
when g=m-—n—|y| >0 and ¢<O respectively, |v|=»,+...+v,. The integrands are ra-
tional (n—1)-forms of homogeneity zero on Z and hence also closed forms of maximal
degree in (n —1)-dimensional projective space Z* =Z /é where a dot indicates that the origin
is removed. They are holomorphic on Z* — 4* and Z* — 4*U X* respectively. Here, if Bis a
part of Z, B* denotes the image of B in Z*. The forms are integrated over certain homology
classes o* =a(4, x, #)* and t,0a*. The class o* belongs to H,_,(Z*-—A* X*) and is simply
the class of af where 2a, is the image of the map ReZ3E~E—iw(£), vEV(4, X, 9), and
oy is oriented by z£w(£)>0. Since V(4, X, ?) is one homotopy class, this defines o* uni-
quely. Its boundary do*€ H, ,(X*— X* N A*) is an absolute class. The tube operation
b H, o(X*—X*N A%~ H,_1(Z*— A*U X*) is generated by the boundary of a small 2-disk
in the normal bundle of X* when its center moves on X*. Because of the orientation
xz&w(£) > 0, the homology class «* depends in a very essential way on the parity of n. When
a€Hyp® ($), the formulas (4), (5) are essentially due to Herglotz and Petrovsky. The
formulas of Petrovsky are obtained by taking one residue onto 4* in (4) and two succes-
sive residues onto A*N X* in (5). These operations are well-defined only if 4* and
A* N X* are nonsingular. The class o* was introduced by Leray (1962).

A close study of the fundamental solutions of hyperbolic operators should involve
behaviour near the wave fronts and also determination of supports and singular supports.
The concept of a lacuna is basic in such a study at least for operators with constant coef-
ficients. Before going into the details we shall consider wave propagation in general.
As before, let u(z) be a distribution defined in some open part O of R" and think of it as
describing the movement of an elastic (n —1)-dimensional medium. Let C'(%) be the maximal
open part of O where « is a C®-function. The complement of C(u) is then the singular
support of %, in our case the wave fronts. Let L be a component of C(u) and let « be a point
on the boundary oL of L. We say that « is sharp from L at « if « has a C®-extension from
L to LN M where M is some open neighbourhood of x. The physical implication of this
is clear. An observer that moves at will in space-time and studies the movement u in L
will not notice the part of the wave front at x before actually crossing it. Measurements
that he can make in L will not indicate the singular behaviour at z. In the contrary situa-
tion, of a non-sharp wave front, measurements in L close to z indicate the presence of a
front at x. Sharpness at all boundary points characterizes lacunas. More precisely, a
component L of C(u) is said to be a lacuna of u if » has a (®-extension from L to L. When
» vanishes in L, L is said to be a strong lacuna. Petrovsky only considers strong lacunas.
The definition of lacuna given here follows a suggestion by L. Hormander.

The lacunas for a hyperbolic operator P are simply the lacunas of the distributions
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z—HE(P, z, y), or, if P has constant coefficients, the lacunas of the distribution EP)=
E(P, x). Consider the scalar case P €hyp (&, m) and let a €Hyp (&, m) be the principal part
of P. We know that E is holomorphic outside the wave front surface W= W(4, J). Hence,
if the singular support SSE of E fills all of W, all lacunas are components of the comple-
ment of W. This is the situation when Re A =4 — {0} in regular, when #» <3 and probably
also when n <4. However, if n >4, there are homogeneous operators a in Hyp (&) such that
W is not all of SSE(a). But we shall show that in all cases W =S8SSE(a*) when £ is a large
enough integer. At present, we cannot give a complete description of SSE and S# for all P.
In any case it is convenient to extend the lacuna definition by allowing as lacunas for P
components L of the complement of W having the property that E(P) has a C®-extension
from L to L. Such lacunas are said to be regular. In particular, the complement of the
propagation cone K = K(P) is a regular strong lacuna, called the trivial lacuna. With this
definition, if 2 belongs to a regular lacuna L for P, then E(a) is a polynomial of homogeneity
m—mn in L so that L is a (regular) lacuna for a. In fact, it is immediate from (1) that
=™0/oxy E(P, #, tx)—~>(0/ox) E(a, ¥, x) in the distribution sense as 0. Keeping x in L,
the derivatives (0/otz)? E(P, 9, tx) are supposed to have limits as ¢--0 and hence
(0/ox)” E(a, ¥, )=0 in L when |v|>m—n. By (1), E(a, 9, z) has homogeneity m —n and
this finishes the argument. A similar reasoning gives the same result when P —=P(x, 0/0x)
is hyperbolic with variable coefficients but as we shall stay with constant coefficients, we
do not give the details. In any case we have seen that a component of Re Z — W(a, 9)
is a lacuna for a €Hyp (&) if and only if E(a,d, -) is a polynomial there. Note that if m <=,
then E(a,d, -) has to vanish L so that L is a strong lacuna. If L is a regular lacuna not
only for a but for all powers of & and P €hyp (§) has principal part a, then (2) can be used
to show that Z(P, 4, -) is an entire function in L so that L is a lacuna for P.

The Herglotz—Petrovsky-Leray formulas (4), (5) immediately give sufficient conditions

for an a €Hyp (&, m) to have non-trivial regular lacunas. In fact, by (5), if
(6) Oofd, 2, 9)*=0 in H, o(X*—X*N A4%)

then « belongs to a regular lacuna L for all powers a* of a. If mk —n <0, L is also a strong
lacuna. The condition (6) is essentially due to Petrovsky. For this reason, regular lacunas
L such that (6) holds for all x in L are said to be Petrovsky lacunas. The corresponding
condition connected with (4) and m >n, namely «*=0 in H, ;(Z*—A*, X*) would imply
that x belongs to a regular strong lacuna for a. This case is, however, illusory. In fact,
we shall prove in Part II that if « is outside W but in the propagation cone, then «* has
non-zero intersection number with I'(4, §)*€H,_,(Z* — X*, A*) and hence cannot vanish.

All the classical lacunas are Petrovsky lacunas. If, e.g. n=2, then a is a product of
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linear factors and da*=0 when z€ + W so that the entire complement of W consists of
Petrovsky lacunas. Only the trivial lacuna is strong. Here it is of course quite elementary
that E(a,®, -) is a polynomial in each component of Re Z—W. If n>2 and a=A is the
wave operator and #=(1, 0, ..., 0) then the propagation cone K =K(4, ) is the forward
light-cone z, >0, 2% —a3—...—22 >0 and W=W(4, &) is its boundary. Here, if v€K, do*
vanishes or not according as » is even or odd. This reflects the well-known fact that inside
K, E(A%, 9, x)=c, (2} —af —... —22)2*~™"2 where ¢, , =0 if n is even and 2k <nand ¢, , =0
otherwise. Hence K is a (regular) lacuna or not according as # is even or odd. (!) This fact,
sometimes called Huygens’ prineiple, was the starting point of the theory of lacunas. There
are examples of Petrovsky lacunas for every m and n. These lacunas are also stable in the
sense that they are not destroyed by small perturbations of @ within the class Hyp (&, m).
In fact, the Petrovsky condition (6) is stable under such perturbations. When A4* is regular,
the proof is immediate. In the general case we have to use the continuity properties of
the local cones I'(4,, #). The continuity properties of the wave front surface W =W(4, )
show that no lacuna L containing a piece of W can be stable under all hyperbolic perturba-
tions. In fact, there are operators b€Hyp® (#, m) such that W(B, ) and hence also the
singular support of E(b, #, -) comes arbitrarily close to any given ray in W.

It seems fruitful to try to prove or perhaps disprove some simple but strong state-
ments about supports, singular supports and lacunas which are in agreement with known
facts. Let a€Hyp (4, m), E(a)=E(a,?, -), K(4)=K(A,9) and let a;EHyp (J) be the lo-
calizations. Our statements are

(i) all regular lacunas are Petrovsky lacunas

(ii) SSE(a)=USE(a;) for 0==£ real

(iii) F(a) is holomorphic outside SS E(a).

The statement

(iv) m=2n=SE(@@)=K(4)
turns out not to be true for certain operators a of the form b(£') ¢(§”) where &', £” is a parti-
tion of the coordinates &, but it would be enlightening to know precisely when it holds.

Petrovsky proved a weak form of (i) that can be paraphrased as follows: all stable
lacunas for a strongly hyperbolic ¢ with non-singular A* are Petrovsky lacunas. Doing this,
he used the topological machinery available at the time, in particular the results of Severi
and Lefschetz on the topology of algebraic manifolds. At first, réquiring stability under all
perturbations of ¢ and using the fact that E(a, d, x) is a holomorphic function also of a

when z is outside the wave front surface, he can work in a generic situation where all

(1) The explicit formulas of Hadamard (1932) and M. Riesz (1948) show that this statement also
holds for wave operators with variable coefficients.
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deformations of A are permitted. One of his general results is the following one. Let A(&)
be a homogeneous non-zero polynomial of degree m —n >0 and let ¢ =g, be the correspond-
ing holomorphic (n—2)-form on A* Assume that for some S€H, ,(4*) the integral {s¢
vanishes considered as a function of @. Then §=0. To prove this, Petrovsky analyses
H,_,(A*) explicitly. Assuming 8 +0 he is able to find an a with the property that §¢ =0.
The details involve a substantial amount of intuitive topology.

Working with the cohomology of Z* —A4* and Z* —A4*U X* instead of the homology
of 4* and 4*N X* as Petrovsky does, we shall come much closer to proving (i). This will
be done in Part II of our paper, but some of its results will be presented here. Our main
tool is a well-known theorem by Grothendieck (1966) generalizing an earlier result by Atiyah
and Hodge (1955). This theorem shows in particular that the cohomology of the complement
of an algebraic hypersurface in projective space is spanned by all rational forms with
poles on that hypersurface. It has an immediate application to our case. In fact, the forms
that appear in (4), (5) applied to all powers of a constitute a basis for all rational (n —1)-
forms on Z* with poles on 4* and A*U X* respectively. Since the kernel of £, is zero, this
shows that every regular lacuna for all powers of a is a Petrovsky lacuna and that the
only strong regular lacuna for all powers of ¢ is the trivial one. We shall also see that
Grothendieck’s theorem holds with a bound on the order of the poles depending only on
m and n, so that our statements are true for all sufficiently high powers of @ and hence
(i) holds in a weak form regardless of the singularities of A*. In this weak form and in
combination with (3) it implies that the wave front surface W(4, ) is the singular support
of E(d¥,®, +) for large enough k. All statements (i) to (iii) hold when n <3 or if A* is only
mildly singular. The statement (iv) is probably true when »<3 and it holds in the fol-
lowing weak form: when m>n, a has no stable strong lacunas inside K.

In physics, hyperbolic systems are more important than the scalar operators which
have occupied us here. However, every component of the fundamental solution E(P,#, *)
where PEHypy (#) is a sum of derivatives of E(det P,, -). Hence it suffices to study
supports, singular supports and lacunas for scalar distributions of this form. For instance,
it seems desirable to show that if a € Hyp (¢) and @ is relatively prime to a, then every
regular lacuna for Q(D)E(a,®, -) is a Petrovsky lacuna for ¢. This situation leads to
problems about the cohomology of rational forms that will be treated in part IL.

This introduction combined with the table of contents should give a fair idea of the
problems we pose and our main results. A preliminary outline has been published earlier
(Gérding 1969). Finally, we should like to thank Lars Hérmander for his decisive contribu-

tions to our paper. We are also grateful to St Catherine’s College, Oxford, under whose
aegis this study was initiated.
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Chapter 1. Distributions and the Fourier-Laplace transform

This chapter will present some general material to be used later on.

1. Generalities about distributions

Distributions on a manifold. Let X be a paracompact C®-manifold of dimension #.
Let « be a point on X, (#,, ..., ,) the coordinates of x and put

(0/0y = (@/owy) ... (@/ow,)™,

where »,, ... are integers > 0. The order of this derivative is |v| =, + ... +9,. Let C(X)=
C*(X) be the space of all complex C®-functions on X and Cy(K) the subspace of {(X)
whose elements have supports in a given compact subset K of X. Let Cy(X) be the union
of all Cy(K). Topologize C(X) by locally uniform convergence of all derivatives and topo-
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logize Cy(X) as the inductive limit of all C(K) with the topology induced by C(X) as K
runs through a sequence of compacts tending to X. Consider also n-forms on X,

p(x) =glx)dx, dx=dz,A ... Adz,,

with densities g € C(X). Assume X to be oriented by some g(z) >0. Let Q(X), Qy(X), Qy(K)
be the spaces of forms ¢ such that g/p belongs to C(X), Cy(X), Co(K) respectively, topo-
logized in the obvious way. If X is an open subset of R", we always take p(x) =dx =
dz, A ... A dz,. The distributions on X are by definition the elements of the dual C'(X)
of Qy(X). The support of a distribution f will be denoted by S(f). We let Cy(X) be the
space of distributions with compact supports. Every locally integrable function f(x) gives
rise to a distribution

. fx He)p(a), EQu(X).

We identify f and this distribution. Also in the general case, distributions are written as

f(x), g(x), ... and we employ one or other of the two notations
() =f 1(=) p(x)
x
for the value of f at @. If X is an open subset of R", we identify ¢ with g(z)dx and write
(f.9)= Lf(x) 9(x) de.

Note that Cy(X) and hence also C(X) is dense in C'(X). The derivatives {¢/ox) f(x) of a
distribution are defined in the domain V of the coordinates z;, ..., z, by

f(alax)' (@) g(x)dw =~ 1)'”‘ff(x) (0/ox) g(x) de,

where g(x)dz€Qy(V). Locally, a distribution is a finite sum of derivatives of continuous
functions. Let (x, ..., z,) and (y;, ..., ¥,) be coordinates with a common domain. The chain
rule of differentiation for functions,

offoy, = 2 (0%/0y,) of o,

k
extends by continuity to distributions.

The singular support of a distribution of f is the complement of the maximal open
subset U of X where f equals a C*-function. It will be denoted by SS(f).
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Temperate distribusions. The Fourier transform. When g € C(R"), put
|gly =sup (1 +|z])¥|&g(x)|, x€R", |»| <N,

where |z| denotes some norm on R*, and let §=$(R") be all g€ C(R") for which all gy
are finite. Topologized by the norms |gly, § is a Fréchet space, the space of temperate
test-functions, and its dual §’ = $'(R") is the space of temperate distributions (Schwartz
1950).

Let Z={£,n, ..} and Z'={x,y, ...} be two complex vector spaces of dimension 7.
We shall always choose biorthogonal coordinates (&, ...) and (2, ...) so that x§ =2, & +... +

z,&, and |z|, |&| will denote unspecified norms. The Fourier transform

Fi(&) = fe"'ff(x) dz, w,& real
is a linear homeomorphism §— § with inverse
F @) =(2 n)‘"fe"ef(é') dé

that extends to a linear homeomorphism §’'— §’, also denoted by F.
When g€, (Re Z'), its Fourier transform extends to the Fourier-Laplace transform

(Fg) (&+1in) = fe‘”“f“”’g(x) dz, &,7 realt

which is an entire holomorphic function. In connection with Fourier transforms it is often

convenient to use the imaginary gradient
D =i-19/ox
which has the property that §F=JFD.

Distributions in one variable. Let X = E™ and let f€C'(R). Then f(z;) can be considered
as an element of C'(X) defined by

(f) g) =J‘(J‘]‘(x1) g(xl’ e xn) dxl) dxz Ao A dxm

where all forms are positive and g € 0y(X). The injection C"(R)—C"(X) obtained in this way
is continuous. When X is a manifold, there is a similar construction. Let s(z) €C(X) be
real and such that grad s(x)+0 everywhere. The distribution f(s(z))€C'(X), f€C'(R),
is defined by
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Ly fmmwm=ﬁmmma

where p €Qy(X), V< R is the (open) range of s and

h(t) = L( ).,,""(’”)’ @) = @, (x) Adi

with V and s(x) = oriented so that dt >0 and p,(x) > Orespectively, gp(x) >0 being the orienta-
tion of X. In particular, if V30,

fé"’ (s(2)) p(x) = (— 1) (0),

where 6 is the Dirac measure on R. We note that also

hm=famm—nwn
X

For reference we state the following lemma whose proof is left to the reader.
1.2. LEMMmA. The injection C'(R)—C'(X) defined by (1.1) is continuous.

Distributions which are boundary values of holomorphic functions. Let A be an open
connected part of the upper half-plane y, >0 of the complex (z, + 1y, )-plane whose boundary

contains an interval I of the real axis and let B< B*~! be open. Let
f(x_*_ly) = f(xl +iy1’ Ty eees Z,)
be continuous in 4 x B and holomorphic in its first variable and assume that
(1.3) f@+iy)=0@1"), 340
for some integer N >0, locally uniformly when 2 €1 x B. Then

f(z) =lim f(x +dy), %, 40

exists as a distribution, the limit being taken in the sense that

(1.4) lim ff(x +y) g@)dz, y, 10,

exists for every g €Cy(I x B). Moreover, if the limit vanishes, so does f. In fact, let f;, f, ...
be successive integrals of f with respect to the first variable taken from a fixed point in 4.
Then, using (1.3) one has fy(z+1y) = O(log ¥7') and still another integration shows that,
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as ¥, >0, fyr1(x+iy) tends locally uniformly to a continuous function fy.i(x) on I x B.

Now, by integrations by parts,
(1.5) f}‘ (z+y) g(w)dz=(— ])N+1ij+1 (2 + iy) (0/omy)" " 9(2) dax

and hence the limit (1.4) exists and defines a distribution f(x)=(8/02,)"*'fy,.(x) on I x B.
If this distribution vanishes, fy,,() is a polynomial of degree <N +1 in 2; when x,, ... are
fixed so that, by elementary function theory, fy,;(z+ty) is the same polynomial with
argument x, +iy, €A. Hence f vanishes in 4 x B.

In case A is a band 0 <y, <const, B= B"~* and (1.3) is replaced by

(1.3 Hz+iy) =0 A+ |z|)")
then fusr(@+iy) =O((1 + || B¥*Y)
so that f(@) = (@/6x,)V* frsa(®)

is a temperate distribution. Note that in this case, (1.5) holds when ¢€ § and that the
limit (1.4) exists also when g(x) =g¢,(x) depends on y provided g,—g¢ in § when y, ~0.
Later on, in section 7, we shall employ certain explicit distributions on E which are
boundary values of functions analytic in the upper halfplane. We define them here and
state their main properties.
Let s, z be complex numbers and put

(1.6) 22) =T(—98)e ™2, 5+0,1,2,..., O<argz<um,
Note that
(1.7) Res<0= xs‘(z) =i"f o te'%dg, arg i=mn/2.

0

Hence, when Re s <0, y, is a constant times the Fourier-Laplace transform of a function
that vanishes on the negative axis and equals o™*~* on the positive axis. By the properties

of the gamma function,

(1.8) x5 (2) = A5 (2).
Considered as a function of s, y,(z) has simple poles at s=¢=0, 1, 2, .... We shall need the

first and second coefficients of the Laurent expansion of y,, viz

(L.9) Xsalz) = —17113(2) +2(2) + O8),
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where the first term vanishes unless s=¢=0, 1, 2, .... Since (1.5) does not define y, when
s=g, we are free to denote the constant term by y, in that case and it turns out to be con-
venient to do so. Both coefficients can be computed explicitly. By (1.6) and the properties
of the gamma function,

a
(1.10) Kone@® = ~11(@ =R+ T —p) e,
Hence
X (2)=2%g¢!; ¢=0,1,2,...,
(L11)
22(s)=0 when s%0,1,2,...,

and, multiplying (1.9) by ¢ and taking the derivative at =0, we get

d .
(1.12) Xo(2) =2 tha+t(2) lemo = (g) ™" 2% (log 27" + ¢, + i),

where cq=1"'(1)+quc‘1, co=I"(1).
1

It follows from (1.12) that (1.8) holds also when s=0,1, ... and hence for all s. We note in
passing that (1.9) implies that

d
(1.13) 5 ot (2) f(8) ls-0 =%, (2) (0) — %3 (2) £ (0)

when f is holomorphic at the origin. In fact, in view of (1.9), both sides equal the constant
term in the Laurent expansion of ¢y, ,(2)f(¢) at £=0.

In view of our earlier statements about boundary values of analytic functions, the
distributions

(1.14) 2:(@) =lim g (@ +iy), y40, z€R

exist for all s. As functions of s, they have the same properties as before, in particular the
property (1.8). Passing to the limit in (1.12) we get

(1.15) q! xo(x) = 2%(log ||~ +¢,) +2-1mi(1 +sgn x) 2%
Hence, if 0,€C’(R) is defined by
(1.16) 2oy (@) = 7o(®) ~ (~1)xo(—2), =0, +1, ...

the logarithm gets eliminated and we have
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0y(2) = 2-1(sgn x)2%/q! = 2 Y(sgn x)y2(x), ¢=0,1, ...
(1.17)
O (%) =0 V(x), ¢g=-1, =2, ...

In fact, the first formula (1.17) follows from (1.15) and (1.16) and the second from the
first if we observe that (1.8) and (1.16) imply that oy =

a-1*

2. Inverse Fourier-Laplace transforms of functions holomorphic in tubes

Duality of cones. Let I'=Re Z be a cone with its vertex at the origin, i.e. such that
AI'=T" when A>0. Define the dual cone I'<Re Z’ by

IV = {x; x>0, VEET'}.

Then IV =I" is a closed convex cone. In fact [ = H(I") where H denotes the closed convex
hull. Let

I"={&&x>0,x€l"}cRe Z
be the dual of I". Since H(I") is the intersection of all closed halfspaces containing I', we
have I'" =H(I"). Now, obviously,

(C2+Te)' =TinTy
so that, taking the dual of both sides,
(2.1) (T, Iy =HI +T%).

It is clear that I' is contained in a hyperplane y&£=0, y fixed in Re Z’, if and only if V3 2
implies z-+ty €I for all real ¢. Hence if I is convex, I is open if and only if TV is proper
in the sense that I does not contain any straight lines. Let I be open and convex so that
T'=H(T). Its dual K=I" is then closed, convex and proper. Clearly, £€I" if and only if
x>0 when z€K =K —0. All 7 such that I' +#£<T for all real ¢ constitute a linear space
E, the edge of I'. Obviously, K is contained in its orthogonal complement E°= {y; y E =0}.
It also spans this complement. In fact, if K =0 and £€T, then (§+t5) K=£K >0 for all
¢ so that n€E. If £=0, I is proper and K has a non-empty interior K. One verifies that
z€K if and only if, for every real ¢, the half-spaces £ <¢ have compact intersections
with T,

Inverse Fourier—Laplace transforms. When g€, (Re Z’), its Fourier-Laplace trans-
form

Jg(f +,,;,'7) — fe—iz(ﬁﬂﬂ)g(x) da

is an entire function and obvious estimates of
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(2.2) (&+in)” Fg(& +in) = fe‘”(e””) D¥g(x)dx
show that to every M >0 there is a ¢(M) such that

23) | F9(& +im)| <) (L+ | & +in) ™ emm,
where h(n) =max zn, n€S(g)

is the so-called support function of S{g).
The estimate (2.3) leads naturally to a definition of an inverse Fourier-Laplace trans-
form by duality. Suppose that F(£+1n) is holomorphic in Re Z +¢A where AcRe Z is

open and connected and suppose that

(2.4) | F(&+im)| <e(m) X +[&+i|)Y, neA,

for some N and some ¢(#) locally bounded on A. Then
(2.5) flx)=(2 :n)“"fF(S +ip) 7T dE pEA,

defines a distribution f, called the inverse Fourier-Laplace transform of F and denoted by
F-Yf. Here (2.5) has to be interpreted as

@.5) (d) =2 f P& +in) Fg& +in) &, 7€ A,

where §(x)=g(—x) and g€Cy(Re Z’). The estimates (2.3), (2.4) show that the integral is
absolutely convergent; by Cauchy’s theorem, it is independent of #.
The construction of fundamental solutions of hyperbolic operators relies on the fol-

lowing well-known variant of the Paley—Wiener theorem.
2.6. THEOREM. Let F satisfy (2.4) and suppose in addition that A is convex and
(2.7) IA<A,  oftn) = cly)

when t =1 and let I' = U sA for s>0. Then the support of f=FLF is contained in the cone K
dual to —T. If A=T" and (2.4) is replaced by

(2.4) | F(E+in)| <clp) X+ |&+in )Y A+ [q|7"),

where now c(tn) =c(n) for all t>0, then
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(2.8) F_(§)=1im F(&E+itn), ¢10, ne-T
1s a temperate distribution and

(2.9) f=31F_.

Note. It is easy to see that (2.4') completely characterizes Fourier-Laplace transforms
of temperate distributions with support in K = —I".

Proof. We know the right side of (2.5") to be independent of # and we can majorize
the integrand using (2.3) and (2.4). If S(§)n K is empty and S(§) is convex, there is an
€L such that x>0 on 8(§), i.e. <0 on S(g)= —8(J) and then (2.3) holds with no
exponential factor on the right. Moreover, tn €A when £ is large enough. Hence, replacing
7 by ty in (2.5") and letting {— oo, the integral vanishes. Hence S(f)< K = —I". When (2.4")
holds, then, fixing # €T", replacing # by 5 and letting ¢ | 0, our earlier remarks on distribu-
tions which are boundary values of analytic functions show that the limit (2.8) exists,
that it is a temperate distribution and that (f, §)=(F, Fg). This proves (2.9).

Chapter 2. Fundamental solutions of hyperbolic operators with constant coefficients

Section 3 defines hyperbolic operators and states their main properties. In section 4,
we shall get fundamental solutions expressed as inverse Fourier—Laplace transforms. This
section ends with an outline of how to get the Herglotz~Petrovsky—Leray formulas. This
will be carried out in detail in section 7, which relies on a close analysis of the geometry
of hyperbolic surfaces including the semi-continuity of the local cones and a study of the
wave front surface (section 5). The vector fields and cycles used in section 7 are presented

in section 6.

3. Hyperbolic differential operators and hyperbolic polynomials
Let X be an open part of R" and
P, D)=2P,(x)D*, D=D,=i"9[ox,

a differential operator on X with smooth complex coefficients. A (right) fundamental solu-
tion of P is, by definition, a distribution E(P, z, y) on X x X such that

Pz, D) E(P, x, y) = 6(x —y).

P is said to be hyperbolic in X if E can be chosen so that it vanishes when z is close to y
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except when x belongs to some proper cone with its vertex at y. The same definition applies
to differential operators whose coefficients are square matrices of some fixed order.

We shall only deal with the case when P has constant coefficients. We say that P
is hyperbolic with respect to &=(d,, ..., %,)ERe Z if P has a fundamental solution E =
E(P, 3, x) now satisfying PE=4(x) and having support in some closed cone K with its
vertex at the origin such that 9 >0 on K =K —{0}. Here the coefficients of P are supposed
to be r x r matrices and I is the unit  x matrix. By a translation, this is equivalent to

hyperbolicity in the sense above.

3.1. LemmA. When P is hyperbolic with respect to 9, the fundamental solution E(P,d, x)
18 unique.

Proof. Tt is well known that the space of distributions with support in a proper cone
K with its vertex at the origin forms a convolution algebra and that the space of distribu-
tions with support in a closed half-space whose interior contains K, forms a module under
convolution with this algebra. (Schwartz 1950, IT, p. 32.) The same holds for distributions
whose values are square matrices. Put P (z)=P(D)d(x)I so that P(8/ox)f(x)=(P*f) ().
Then Px E =41 is the unit in the convolution algebra of such distributions with support
in K. Since the corresponding scalar convolution algebra is commutative, this shows that
also ExP=81. Now let F be another fundamental solution of P with support in 8 >0.
Then F=4§%F=ExPx F=E. This finishes the proof.

The convolution algebra also gives a proof of the following lemma that reduces the

study of hyperbolic operators with constant coefficients to the scalar case.

3.2. Lemma. A differential operator P(D) whose coefficients are square matrices s
hyperbolic with respect to O if and only if its determinant (det P)(D) has that property.

Proof. Suppose first that P is hyperbolic with respect to © and let E be the corre-
sponding fundamental solution. Then Px E =4I and, taking determinants in the sense of
convolution, this gives det Pxdet E=4. Since S(det E)<K and det P=(det P)~, this
shows that det P is hyperbolic with respect to . On the other hand, suppose this to be
true and let E(detP, ¢, ) be the corresponding fundamental solution. Let @(D) be the
matrix of cofactors in P(D) so that PQ = (det P)I. Then

(3.3) E(P, 9, x)=Q(D)E(det P, 9, x) I.
In fact, S(E)< K and

P(D)E(P, 9, ) = (det P)(D) E(det P, §, z) I =8(x) I.



128 M. F. ATIYAH, R. BOTT AND L. GARDING

For scalar operators P(D), hyperbolicity is equivalent to an algebraic property of its
characteristic polynomial
P(E) =3P
of P. Assume P to be of degree m and let
Pm(§)=ZPv£v> l’V|=m,

be the characteristic polynomial of the principal part P, (0/0x) of P(0/ox).

3.4. Definition. The polynomial P(£) is said to be hyperbolic with respect to $€Re Z
if P,(8)=0 and P(£+#%) =0 when ¢ is real and Im ¢ is less than some fixed number. The
space of such polynomials will be denoted by hyp (&, m). When m is not specified we write
hyp (9). A polynomial P(£) whose coefficients are r xr matrices is said to be hyperbolic
with respect to 9 if det P(£) has that property. The space of such polynomials will be
denoted by hyp, (3).

‘We now have

3.5. THEOREM. A differential operator P(D) whose coefficients are r xr matrices s

hyperbolic with respect to ¢ if and only if its characteristic polynomial belongs to hyp,(8).

In view of Lemma 3.2, it suffices to consider the scalar case r=1. The theorem is due
to Gérding (1950). It results from Theorem 5.6.1 and 5.6.2 in Hormander’s book Linear
Partial Differential Operators (1963), hereafter referred to as H. The book also gives short
proofs of the most important properties of hyperbolic polynomials. For the reader’s con-
venience, we shall repeat some of them.

We are going to sketch a proof of the necessity part of Theorem 3.5. The sufficiency
will follow from the construction of fundamental solutions in the next section. We have to
show that if the operator P(D) is hyperbolic with respect to ¢ then P€hyp (3). In fact,
let E(x) be a fundamental solution of P with support in a proper cone K such that x>0
on K. Let p€C5°(Re Z’) be 1 in a neighborhood of the origin. Then

P(D)f(x) = b(x) +g(x),
where f=@FE and g=P(D)(p—1) E are distributions with compact supports and
h{n) =max xyn, TE€S(g)

is positive homogeneous in 7, k(4n) =Ak(n) when 120, and, since S(g) is a compact part of
K, h(—9) <0. Taking Fourier-Laplace transforms,

P@)F(&) =1+G(8), €2,

where F = JFf, G= Fg are entire functions and
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|G(€)] <O+ |&[)Vehimb
for some C, N >0. Hence

(3.6) P(§) = 0=h(Im &) > —clog 2+ |&]),

where ¢>0 is another constant. In particular, P 4-0. Let P, be the principal part of P.
If P, (#)=0, it is easy to see that the equation P(£+t9)=0 has a root {=¢(§) such that
Im ¢+ — co as £ tends to some £° along a suitable path. But then A(Im (& +t3)) =A(Im ¢9) +
O(1) tends to —oco and this contradicts (3.6) with & replaced by £+t3. Hence P, (#) ==0.
Further, (3.6) implies

P(£+19)=0=h(Im ) > —c, log (2 + |£]),

where now ¢ is real and ¢, is a new constant. A well-known lemma by Seidenberg—Tarski
(H Appendix, Lemma 2.1) shows that the logarithm in the right can be replaced by a
constant and this finishes the proof.

We shall mainly be concerned with homogeneous hyperbolic polynomials a(£). In view
of the definition above and the homogeneity of a, we have a€hyp (&, m) if and only if

(3.7 & real, Im ¢ 0 =a(f +9) +0

or, equivalently,
(3.7) &real =a(§+143) =0 has m real roots £.

3.8. Definition. The space of homogeneous polynomials a €hyp (&, m) will be denoted
by Hyp (&, m). An a€Hyp (&, m) is said to be strongly hyperbolic if the zeros of a(£--#3)
are all different when & is not proportional to ©. The space of these polynomidls will be
denoted by Hyp® (&, m).

When m is not specified, we write Hyp (#) and Hyp®(#). Note that Hyp (J) =
Hyp (—9).

The interest of strongly (or strictly) hyperbolic polynomials is that they remain hyper-
bolic under addition of arbitrary lower order terms, i.e.

(3.9) a €Hyp® (8, m), degree b<m =a+b€hyp (¥, m).

This will be proved later. We shall sometimes let hyp® (#, m) denote the space of poly-
nomials in hyp (&, m) whose principal parts are strongly hyperbolic. This class also gives
rise to hyperbolic operators with variable coefficients. In fact, if X< R" is open and
P(x, 8/ox) is a differential operator with smooth coefficients and P(z, £) Ehyp? (&, m) for all
z€X, then, locally in X, P has a fundamental solution with the properties required by the

general definition of hyperbolicity (H Theorem 9.3.2).
9 — 702009 Acta mathematica. 124, Tmprimé Ie 13 Avril 1970.
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Homogeneous hyperbolic polynomials. It follows from (3.7°) that if a€Hyp (&), then
a(£)/a(d) has real coefficients so that a restriction to real polynomials is not essential.

All polynomials in the following examples are supposed to be real.

3.10. Examples. The class Hyp (¢, 0) consists of all non-vanishing constants. A linear
polynomial b,&+... b, &, belongs to Hyp (3, 1) if and only if 8634 0. The quadratic poly-
nomial a(£) =&} —b,£3 —... —b, &2 belongs to Hyp (&, 2) with #=(1,0, ..., 0) if and only if
by, ..., b, =0 and it is strongly hyperbolic if and only if b,, ..., b,>0. More generally, it is
easy to see that a quadratic polynomial a(£) belongs to Hyp (9, 2) if and only if a(&)/a(d)
has Lorentz signature 1, —1, —1,...,0, ... and & is a time-like vector for a(£)/a($). It is
important to note that Hyp (&) is closed under multiplication,

(3.11) a,, a,€Hyp (#) = a,a,€Hyp (J),
and that factors are hyperbolie,
(3.12) Hyp (#)3a=a,0a, ... >ay, a,, ... EHyp (#).

Note that (3.11) fails in general for Hyp® (). If, e.g. a €Hyp® (#), then a2€Hyp (#) but
is not strongly hyperbolic. On the other hand, factors of a strongly hyperbolic polynomial
are strongly hyperbolic. Hyperbolic polynomials can also be obtained by polarization.
If a€Hyp (&, m) and

alf +18) =3 ta, (6)

then g, €Hyp (&, m—k), 0<k<m. In fact, a,(3)= (7;:) a(#) +0 and, since the polynomial

t—>a(£ +td) has only real zeros, the same holds for all its derivatives. Since, e.g., &, ...£, €
Hyp (&, »), #=(1,1, ..., 1), it follows from this that the elementary symmetric sum
> & &, ... & belongs to Hyp (8, k). Localizations of hyperbolic polynomials are hyperbolic
(see Lemma 3.42).

It is obvious that if a(£) is real and homogeneous and strongly hyperbolic with respect
to & so is b(&) if b is real and homogeneous and sufficiently close to a and degree b =degree a.
More generally, we have the following result (W. Nuij 1969) where, temporarily, Hyp (&,m)
and Hyp?® (8, m) are restricted to real polynomials.

3.13. LEMMA. Let H(m) be the space of non-zero real homogeneous polynomials of degree
m. Then Hyp® (3, m) is open in H(m) and Hyp (3, m) ts the part of the closure of Hyp® (&, m)
where a(®#) 0. Both Hyp (3, m) and Hyp® (#, m) consist of two connected and simply con-
nected pieces determined by the sign of a(#).

When a(§) is a homogeneous polynomial, let 4 be the complex hypersurface a(£)=0,
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£€Z=C" and Re A its real part. The surface 4 is said to be hyperbolic when a € Hyp (&) for
some . The figure 3 shows the image Re A* in real projective space of a typical Re 4.
The picture also shows Re B* when b is strongly hyperbolic and close to a.

The cone T'(4, ).

3.14. Definition. When a €Hyp (9), let I'=I'(4, 9) be that component of Re Z—-Re 4
which contains ¢ (see figure 3).

By the homogeneity of a, I'(4, —#)= —T'(4, #). It is clear that I is an open cone,
that I'=Re Z when a is a constant and that
(3.15) I'4,9)=NT4,9)
when a=a, a, ... is a product.
When a(n) &0, let us factorize
(3.16) alé+tn) = a(n) [T ¢+An, §).

Then a is hyperbolic with respect to ¢ if and only if all A,(, &) are real when & is real and
strongly hyperbolic if and only if these numbers are real and different when & is not pro-
portional to 9. Further, a real & belongs to I'(4, @) if and only if all 4,(, &) are positive.

Fig. 3. Picture of Re A*, a€Hyp (9, 7), n =3. Every straight line through #* meets Re A* in seven
real points. The dotted lines indicate Re B* when b is strongly hyperbolic and close to a.I'* is the
image in real projective space of I'(4, ).

Algebraic properties of hyperbolic polynomials. It is obvious that Hyp (—&, m)=
Hyp (8, m). The following result is less obvious but easy to prove.
3.17. LeMmMa. hyp (-8, m)=hyp (8, m).

Proof. Let P€hyp (9, m) and let a =P, be the principal part of P. Then a(d)+ 0 and
there is an s, such that
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(3.18) Ereal, Im s <sy=> P(E+s8) +0.
Hence, if we factorize

(3.19) P(&+sd)=a(@)[1(s+pe(d &),
(3.18) means that

(3.18") & real = Im (3, £) = —sy, YEk.

Since a(—9)=(—1)"a(®#) +0, it suffices to show that there is an upper bound to the
imaginary parts in (3.18"). Now u(&) =2 u,(®, &) and hence also Im u(£) is a polynomial in
& of degree one. According to (3.18’), Im g(&) is a constant ¢ and also a sum of m terms which
are bounded from below by —s,. But then no term exceeds ¢+ (m —1)s, and this finishes

the proof.

3.20. LemMmmA. If P belongs to hyp (#, m), its principal part a belongs to Hyp (i, m).
Proof. We have, with & and 7 real,
a(é+19) =lim v "P(r& +189), T+ o0,

where all the imaginary parts of the zeros of the polynomials to the right are bounded by
cr! where ¢ is a constant. Hence the polynomial ¢->a(£ +#9) has only real zeros and, since
a(9) =0, there are m of them.

The preceding lemma motivates

3.21. Defintion. When P€hyp (#), put I'(P, #) =I'(4, #) where a is the principal part
of P.

Note that I'(P, #) and I'(P, —#) are opposite cones. The following simple lemma is
basic (Gérding 1950, H Theorem 5.5.4).

3.22. LEMMmA. Let P€hyp (&, m) so that (3.18) holds and let n €T(P, §). Then
(3.23) & real, Im ¢ <0, Im 8 <sy= P(&+tn+s8) 0.

Proof. Since (3.18) holds, the polynomials
(3.24) t>u P&+ tun+ (s+1(1 —u))P), Im s<s,, & real, u=>1

have no real zeros. In particular, they have a constant number of zeros in the lower half-

plane. To compute this number note that, as u— co, the polynomials (3.24) tend to
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t—~a(tn —id) = a(@) [ (=i -+, 7)),

where a is the principal part of P and (3.16) is used. Now since 7 €I'(4, 9), all 1,(3, n) are
positive so that all the zeros of this last polynomial lie in the upper half-plane. Hence all
polynomials (3.24) share that property and, putting v=1, we have the assertion of the

lemma.,.

3.23. CoroLLARY. If P€hyp (#) and n€Ll’(P,9), then PE€hyp (). The cone I'(P, 9) is

convez.
Proof. If n €I'(P, 9), thenn —ef €1'(P, ) if £ >0 is small enough. Hence, by Lemma 3.22,
P(& +in) = P(E+t(n—ed) +1ed) +0

when Im £ <min (—sy/e, 0). Also, specializing Lemma 3.22 to the principal part a of P, we

have
§20,1>0, s+t>0= a{ +itn +1isd) +0,

when n€I'(4,d) =T'(P, ). Since a€Hyp ({), for any {€I'(4, &), we may here replace &
by such a { and this shows that I'(P, &) is convex.
When P €hyp (&), the fundamental solution E(P, &, z) will be constructed as the inverse
Fourier-Laplace transform of P(£+17)~! where 7 belongs to a certain subset of —I'(4, 9).
The following corollary contains all the necessary information for the econstruction of
such fundamental solutions.

3.24. COROLLARY. Let P€hyp (#). Then there is an 8, >0 such that every function
(3.25) E+in—P(& +in+isd)?, e(Res—esy)>0,e=+1,

is holomorphic and bounded when £ 4ty €Re Z +esl'(P, #). When P=a is homogeneous, the

functions
&+ —>a(f+im)?

are holomorphic in Re Z+iI'(4, §) and satisfy the inequality
(3.26) la(s +in)=| <|a(n)]-1.

Proof. The functions (3.25) are of course holomorphic where P does not vanish. Re-
placing &, s by &+, ¢s in (3.19) gives

P(§+in +isd) = a(B) [T (s +pme(®, & +in)).
By Lemma 3.22, Im y,(8, £ +17) is bounded from below when £ isrealand € —T"'= —I'(P, 9).
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Hence there is an sy such that the functions (3.25) are bounded when &+in€Re Z —iI"
and Re s <s,. Changing ¢ to —& and noting that, by Lemma 3.17, P€hyp (—%) and that
I'(P, —9)= —I(P, ), the first part of the corollary follows. The second part is obvious.

To understand the role of this corollary, the reader should now study Theorem 4.1
before proceeding further. The fundamental solution E(P, ¥, z) constructed there has its
support in the cone K =K(P, #)<=Re Z’ dual to I'(P, ).

Puiseux series. Some of the deeper properties of hyperbolic polynomials result from

expanding zeros in Puiseux series. Qur next lemma collects material of this kind.

3.27. LEMMA. Let P€hyp (3, m) and let a€Hyp (8, m) be the principal part of P. Let
&, n€Re Z. Then the polynomials

s, t—>a(E+in+s0)

s, t—>P(E+tn+sd)
can be factorized in the form
(3.28) a& + i+ 89) =a(6)ff[(s+lk(t9, £+ 1))
(3.29) P(E+1tn+ 89) =a(0)1:i(s+ [, £+ ),
where the functions
(3.30) R3t>1(0, & +1n)

are real and analytic with simple poles at oo so that

(3.31) M@, & +) = th(®, )+ O(1), t—>oco.

When n€l'=I'(4, 9), their derivatives are positive, when nef they are mon-negative. The
functions

(3.32) Rt u(®, & +1n)

can be labelled so that, for large &,
(3.33) @, & +tn) = tA(9, £) +0(1).

Proof. Close to any real ¢, the functions (3.30) can be developed into convergent Pui-

seux series

(3:34) A, &+n) =MD, & +Eom) +eult —1)* (1 +o(1)),
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where ¢, +0 and 7, >0 is rational. All the branches of these series being real when # is real
implies that 7, is an integer and also that the series are power series in {—f, with real
coefficients. Varying ¢, and making an analytie continuation proves the first statement of
the lemma. Taking ¢ large and noting that

t—> oo =t~ "P(& + 1ty +ts?)—~aln + s),
where the convergence refers to polynomials in s, it follows that
(3.35) (D, E+tn) =t (9, n) +olt), 1<k<m

if the u’s are labelled suitably. Now the left sides can be developed in Puiseux series in
descending powers of $/™ starting with ¢. Since by the hyperbolicity of P, their imaginary
parts are bounded, no series can contain a positive power of t/™ except the first term of
(3.35) and hence (3.31) follows. When this reasoning is applied to the real functions (3.32),
(3.33) follows. Finally, if n€l'=I'(4, &), then, since ' is convex, Im (tn +s9) belongs to
I' when Im ¢ >0, Im $>0, Im (£ +s) >0 and hence, by Lemma 3.22,

Im t>0= Im 4,(3, £ +t5) > 0.

This is possible only if 7, =1 and ¢, >0 in (3.34) and hence the functions (3.30) have positive
derivatives. A slight modification of this argument shows the derivatives are >0 when
n €r.

Multiplicities and localization

3.36. Definition. Let P(£) be a polynomial of degree m >0 and develop t"P(t-1£ +0)
in ascending powers of ¢,

(3.37) t"P(t- +{) = PP¢(0) + O(t™*Y)

where P({) is the first coefficient that does not vanish identically in {. The number p =m(P)
is called the multiplicity of & relative to P, the polynomial {—~P,({), the localization of
P at &,

Note that if P=Py+...+P,, is a decomposition of P into homogeneous parts, Pr(A£) =
A¥P, (&), then (3.37) reads

(3.38) 2AMEPUE L) = 1PPL(L) + O HY).
In particular, when P =g is homogeneous,
(3.39) (£ +10) = tPag (L) +O@**Y).

It is obvious that
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(3.40) mg(PQ) = m(P)+m(Q)

(3.41) (PR)(0) =P(0) QD)

when P and § are (non-vanishing) polynomials.

The concept of localization extends to non-zero rational functions f=@/P,
(8.37") tmf(ETE+ L) = fe (L) + O ).

Here the right side is a formal power series in ¢ whose coefficients are rational functions
of ¢, the localization f; is the first non-vanishing coefficient, m =m(f) =m(Q) — m(P) is
the degree of f and p =m(f) is the multiplicity of f at & One has f; =Q¢/P and mg(f) =
me(Q) —my(P).

Ezamples. Let a be the principal part of P. If £=0, then P¢({)=P((). If a(§) +0, then
Py({)=a(£) is a non-zero constant. If a(£) =0 but grad a(§) +0, then

P(() = grad a(£) { +4-const

is a polynomial of degree 1. When P is strongly hyperbolic, these examples exhaust the
possibilities for P; with £=0. When P is not strongly hyperbolic, the degree of such a
P, may of course exceed 1. If P=a is homogeneous, then a({) =0 defines the tangent cone
Ag of A: a(£)=0 at &.

Localizations of non-homogeneous polynomials in the sense given above have been
used by Hérmander (1969) in a study of singularities of fundamental solutions for arbitrary
differential operators.

Our next lemma shows that localizations at real points of hyperbolic polynomials are
hyperbolic.

3.42. LemMA. Let P€hyp (9) with principal part a and let £€Re Z. Then

(3.43) mg(P) = mg(a)

(3.44) ag is the principal part of Py
(3.45) Pg€hyp (), a.€Hyp (¥)
(3.46) A depends only on the double ray I.tg
(3.47) 4, 8)> T4, 9).

Proof. Let us first consider a. Putting =0 in (3.28) and using the differentiability in
(3.30) we get
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a(§ +in) =a() 1—11 (2D, &) + 10, + 00,
where £ is small and all ¢,>0 when n€I'=T'(4, #). Since I is open, a comparison with
(3.39) shows that
(3.48) NEL =agn) +0

and that precisely p =mg(a) of the numbers 4,(9, £) vanish. Now, by the preceding lemma,

P E + ) = ald) [Tt (71 & + ) = () T (4 (B, &) +0(1))
when 7 is real. Hence

t"P(t1E +17) = O(t?)

and this shows that m (P)>p. Hence, developing the left side of (3.37) in a Taylor series
around #-1¢, we get

"P(tTE + ) = Zt"fk(n),

where the f, are polynomials in # of degree < k depending on £ as a parameter. Replacing
¢t by ts! and 57 by s» and letting s— oo this gives

ma(i1€ + ) =§::t"/sz° )

where £ () =lim &%y (sy), 8-> oo,
is the homogeneous part of f, of degree k. A comparison with (3.37) now shows that [ (n) =
ag(n). Hence f,(n) does not vanish identically and this means that P () =f,(n) has the princi-
pal part a;(n). This proves (3.43) and (3.44). By the definition of P; and p=m(P),
(3.50) RB3t->0 =" PP(t1¢ +n+80) = Pg(n +89).
Since P €hyp (), there is an s, such that the polynomials
§—>{""PP(tE 4+ +60)

have no zeros s with Im s <s, when # is real. According to (3.50), the polynomials s—
P(n+s0) have the same property. Since (3.44) holds and, by (3.48), a.(#) =0, this proves
(3.45). Finally, (3.47) is a consequence of (3.48) and the definition of I'(4,, #) and (3.46) is
a simple consequence of (3.39) and the homogeneity of @, one has

a5(n) =A™ "Pag(n)
when 04-A€R.

In passing we shall now prove a quantitative result, to be used later.

3.51. LEMMA. Let P€hyp (), p=m(P), £ERe Z and choose s, such that P(n+s8) <0
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when |Im s| >s,. Then there exist positive numbers ¢ and N depending only on s and & such
that, if £ is real,

0<t<1,|Im s|> sy = [t" 2 P76 + ¢ +59)| 2 e(1 + )Y
t—>0=1""P P E+ L +89) > Pe( + s9).

Proof. Fixing s and &, let us put
R(t, ) = [t"?P(t-2¢ + +9) 2.
Then R is a polynomial in ¢ and # and, since B(0, {) = | P4({ +58){2>0, then

pr)= inf R(EO< inf  R(Q)
<341 0<igl, i8)<z
is positive for all 7. Now by the well-known Seidenberg—Tarski theorem (see Lemma 2.1
of the Appendix in H), for large 7, ¢(z) is not less than a positive constant times some

negative power 7. This proves the lemma.

Lineality and reduced dimension. A hyperbolic polynomial P(§), £€Z, may depend on
less than dim Z variables. The lineality L(P) of P in Z is, by definition, the space of £€Z
such that P(t£+)=P({) identically in {, ¢ or, equivalently, P ({)=P({) for all , i.e.
mg(P)= degree P. It is clear that L(P) is a linear space and that

L(PQ) = L(P)N L(Q)

when P, @ are not identically zero. Hence, writing P as a product of irreducible factors,
we see that if P =0, then L(P) depends only on the complex surface P(£§)=0. When P=a
is homogeneous we shall therefore write L(4)=L(a) where now A is the complex surface
a(&) =0. It is obvious that P is a polynomial P’ on the quotient Z/L(P) and that the lineality
of P’ in the quotient vanishes. The dimension of the quotient, i.e. the codimension of L(P)
in Z, will be called the reduced dimension of P and denoted by n(P). When P =a is homo-
geneous we also write n(4)=n(a). A polynomial whose lineality vanishes is said to be
complete. We have

3.52. LEmMA. Let P€hyp () and let a be the principal part of P. Then L(P)=L(A),
n(P)=n(A4) and Re L(A) equals the edge of I'=1'(4,9), i.e. Re L(A) consists of all §€Re Z
such that

(3.53) '+ R¢=T.

If a; is the localization of a at E€Z, then E€L(A4).
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Proof. By Lemma 3.42, mg(P)=mg(a) when £ is real. In particular, Re L(P)=
Re L(A) so that, clearly, L{(P)=L(A4). Let us factorize

alsn+n' +£) = a(n) Ij (8 +A(n, 7' +18)), nel.

By the definition of I, § satisfies (3.53) if and only if
(3.54) My, ' +18) >0, ¥n, 7' €L, ViER.

If £€Re L(4), then A (n, ' +t&)=A4(n,n")>0 and the condition holds. Conversely, if
(3.54) holds, dividing by ¢ and letting {0, we get 4,(n, £}=0 for all €I so that also
a(n+t&)=a(n) for all ¢ and 5 €I'. But then, since I is open, £ ERe L(4). By the definition

of ag,
a(E +HE +8E)) = ag(l +sE) P +O("H),

where p =mg(a). But the left side also equals
(L +8)™a(& + (1 +88)72HL) = ag(E) (1 +2s)™ P +O(t7*?)
Identifying the coefficients of ¥ of the right sides proves the last statement of the lemma.

The propagation cone. When P €hyp (), we know that the convex hull of the support
of the fundamental solution E(P,#, ) is the cone dual to I'(P, #) =1'(4, #) where a is the
principal part of P. This cone will be called the propagation cone, its formal definition
being

(3.55) K(P,9)=K(A,9) = {x; z€Re Z', 2T'(4, §) > 0}.
We state some of its properties

3.56. LEMMA. Let a€Hyp (&). Then
a) K=K(A, D) is a proper closed convex cone with its vertex at the origin and
['=T(4,9)={§ E€Re Z, (K >0}, K=K —{0}.

b) K is contained in and spans the orthogonal complement

L9A4) = {x; x€Re Z', xL{4) =0}
of the lineality of a. Hence dim K =n(A).
¢) The interior of K relative to LO(A4) consists of all
(3.57) Va(&), &€l



140 M. F. ATIYAH, R. BOTT AND L. GARDING
and also of all

(3.58) VV, loga(¢)™t, &€T
Here V=grad, V, =, grad), ) is any vector in I' and a is normalized so that a($) > 0.

Proof. a) and b) follow from the preceding lemma and our earlier remarks about the
duality of cones. In view of b), it suffices to prove ¢) when a is complete. We know then that
if z€ K, the intersection of I* with any half-space z& <c is compact. In particular, if B is a
closed part of I', the infimum ¢ of z£ on B is positive and the hyperplane x4 =c touches B
at some point 77 =7(x) € B. Taking B to be the hypersurface a(£)=1, £€I" and noting that,
since a has non-zero homogeneity, Va(£) does not vanish in I', we see that every z in K
is proportional to some Va(n), n € B. Clearly, the proportionality constant is positive and
this proves that every x in K has the form (8.57). Actually, B is strictly convex (see Gdrding
(1959)) so that the parametrization is unique. Similarly, letting B be the hypersurface
F(§)=V,loga(§)*= —1, £€T, it follows that every z in K has the form (3.58). In fact,
factorizing

(3.59) ale +t) = aln) [T+ 2, ),

all 1, are positive and
(3.60) F()= —glk(n, &

so that B is not empty. Since F has homogeneity —1, VF =0 in I'. It remains to show that
all vectors (3.57) and (3.58) are in K. Writing (3.59) in the form

a(é +n) = (&) [T (L +EAu(&, 7))

we have, if £€I" and 7€Re Z

V,a(€) = a(&) (4a(&, m) + ... +24a(&, 1))

Now, if 0 =|=7]€f, all A, are non-negative and at least one is positive. This shows that the
linear form %V, a(¢) is positive on f‘-{O} and hence Va(f)ei(. Next, let , £€I" and
{€Re Z. Replacing & in (3.60) by &+ and taking the derivative with respect to ¢ at {=0,
we have

Ve F(&) = 2 Maln, £)2aln, &, 0),
where A(n, E+10) =2y, &) +tcy(n, &, £) +O®#2).

By Lemma 3.27, all ¢, are > 0 when { €T and hence also V¢ F(£)>0. If all ¢, vanish, then



LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS 141

(e +t2) = aln) [T 2un, € +1) =l [ Gutn, &) +0)

so that Vya(£§)=0. But then, by a previous argument, { has to vanish. Hence the linear

form {—V; F(£) is positive on T —{0} and this shows that all gradients (3.58) are in K.
The proof is finished.

Local cones. The wave front surface. We shall introduce the cones and linealities associ-
ated with the localizations of a hyperbolic polynomial.

3.61. Definition. When P€hyp (#), £€Re Z, put
PP, d) =T(Pg, #), K¢(P,9)=K(Pg9), LgP)=L(Pg), mngP)=codim L(P).

Examples. Let a be the principal part of P. When £ =0 we have the uninteresting case
P;=P. When a(§) +0, then P({)=a(£) is a constant and I';=Re Z, K;= {0}, n,=0. When
a(f)=0 but Va(§)=0, then ay()=V a(&)=2 (,0a(£)/0F, so that I'; is the half-space
ag(9)1agl) >0, n,=1 and K, is the half-ray spanned by a,(#)-*Va(£). When P is strongly
hyperbolic and £<-0, these examples are exhaustive. When P is not strongly hyperbolie,
I'; may be smaller than a half-space and K, larger than a half-ray and n;>1. Note that
I';=T, K;=K when §EL(P).

By Lemma 3.42, I'y(P, #)>I'(P, ) and hence also K,< K(P,¥) for all real £ The
local propagation cones K, generate the wave front surface

which will be dealt with in detail later. Its role as the carrier of the singularities of the
fundamental solution E=E(P,d,z) is explained in the introduction. In particular, it
will turn out that the restriction of £ to K —W is holomorphic. When L(P) =0, then
W =K so that W is not an interesting object in that case. When L{P) =0, i.e. P is a complete
polynomial, then, as we shall see later, W is a closed subset of K containing the boundary
of K and contained in an algebraic hypersurface. The same would be true in general with a
different definition of W, viz. as U K (P, ®) for £EL(P).

Hyperbolic polynomials with a given principal part. Suppose that a€Hyp (&, m) is
strongly hyperbolic and that the degree of b is less than m. Then

(3.62) supg | (ba1) (£ +88)| = O(|Im s]|-1), & real, Im s> oo.

In fact, it suffices to prove this when & is restricted to some complement ¥ of R& in Re Z.
By partial fractions,
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(ba~) (& +89) = a(@)™* 2, By(&) (s +4) 7,
where the 4, =1,(9, &) as defined by (3.16) are real and

Blc &)= b(f - }'kﬁ)/jgc(lk - }*j)-

Since a is strongly hyperbolic, 4,(?, &) +4,(3, &) when j=k and 0+5€Y and an easy argu-
ment shows that the B, are bounded for large & so that (3.62) follows.

It is clear that (3.62) implies that (a+b)(£+s9) =0 when & is real and Im s is large
enough and hence @ +b€hyp (#). In the general case, (3.62) characterizes every b of degree
less than @ such that a+b€hyp (#). We have the following result due to Leif Svensson
(1970).

3.63. THEOREM. If a€Hyp (9) and the degree of b is less than the degree of a, then
a+b € hyp (9) if and only if (3.62) holds.

Later we shall use this theorem, but the proof is rather long and will not be reproduced
here.

4. Fundamental solutions of scalar hyperbolic operators. Localization.
Analytic continuation

We shall first construct fundamental solutions of scalar hyperbolic operators amd state
their simplest properties.

4.1. THEOREM. Let P€hyp (8). Then
(42) BP,2) = BP,8,2) - @ [ Periniéenag,
Re Z
where € —s — (P, ) with s large enough, is the fundamental solution of P with support

in K=K(P,#). No smaller convex cone than K coniains the support of E(P, z). When P=a
s homogeneous, then also

(4.3) E(a,d,2)=(2 ﬂ)—nf a_(£)~1 e dE,
where
(44) a_(§) =lim a(f +itg)L, £40, n€—I(4,9).

When P=a+b where a is the principal part of P, then
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8

(4.5) E(P,9,z)=> (—1)'b(D)*E(a**', §, x),

0
where the series converges in the distribution sense.
If t>0, then
(4.6) Ea, O, tx) =t"""E(a, ?, x)
while, if t | 0,
4.7) """ E(P, 9, tx) > E(a, ¥, x)

in the distribution sense. If the coordinates x,, ... are chosen so that the first g =mn(P) axes

span the orthogonal complement of L(P), then
(4.8) B(P, 8, x) — B(P', &, «')8(x"),
where &' = (%, ..., %), *" = (%41, ...), P'=P(D').

Note. P'(&') is the restriction of P() to a complement of L{P) and it is a complete
polynomial. The formula (4.8) shows that it suffices to compute fundamental solutions

for complete hyperbolic operators in order to have them for all hyperbolic operators.

Proof. Note that (4.2) has to be understood as the corresponding equality when both
sides are applied to a test function g€, (Re Z),

(4.2 (B,§)=Q2m)"" L ZP(§ +in) ™ Fg(& +in) d§.

With this understanding, the first part of the theorem is a consequence of Theorem 2.6
and Corollary 3.24. The same applies to (4.3). In fact, we only have to verify that E is a
fundamental solution, but this follows from (4.2’) if we replace E by P(D) E. Then, by (2.2),

(P(D)E, §) = (E, (P(D)g)") = (2n)_"f99(5 +in)d€ = g(0).

Next, let K,< K be a closed convex cone containing the support of E(P, x) and choose an
n€Re Z such that 5z >0 on K. Then, by the first part of Theorem 3.5, P €hyp () so that,
by Lemma 3.20, a €Hyp (n) where a is the principal part of P. It follows that a(n)=0
when 7 belongs to the interior I'y of the dual cone of K, Now, since Ko< K, we have
Iy=>T'=T'(P, ). But a(zn) vanishes on the boundary of I" and hence I'y,=K so that K,=K.
To prove (4.5) note that, formally, (4.5) results from (4.2"} by an expansion in a geometric

series
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o

THE+in) =2 (—1)¢b(&+in)a(é +ip) 7 L.

0

The convergence of this series when 7 =s¢ with s large negative results from Theorem 3.63.
Moreover, the convergence is uniform in &. Hence (4.5) follows. (4.6) is an obvious con-
sequence of (4.2) when P=aqa is homogeneous of degree m. To prove (4.7) observe that
" "E(P, d, tx) is the fundamental solution of P,(D)=¢"P(t-1D) and that P,D)=a(D)+
by(D) where b(D)=¢"b(t D). By Theorem 3.60,

1mH(E1E —tLisd) a(& —1sd) = bt~ —t-LisH) a(t~1& —ist~19) = O(Re st72)
when st-1 is large. Hence, fixing s and letting ¢ | 0, the series (4.5) for P, converges in the

distribution sense to its first term. Finally, (4.8) is an immediate consequence of (4.2').

Localization of fundamental solutions. When P €hyp () and P;€hyp (9) is the localiza-
tion of P at £€Re Z, consider the corresponding fundamental solution

(4.9) Ey = E(P, 9, x) = E(P, &, x).
According to what we have just proved,
S(By)=K; = K(Pg, %)< K = K(P,9).

Let a be the principal part of P. As remarked before, K;={0} when a(&)+0 and, when
a(§) =0, grad a; +0, then P, is a polynomial of degree 1 and K is just the positive half of
the normal (grad a(&)-#)~2 grad a(£) to 4: a() =0, at & The following theorem, where SS
denotes ‘the singular support of’ shows that in a sense B, is a localization of £ = E(P, 9, z).
The idea of localizing fundamental solutions by taking limits like (4.11) is due to Lars
Hoérmander; our next theorem is just a special case of a general theory (Hérmander (1969)).

4.10. LocarizaTioN TuroreM. Let PEhyp (&, m), let E, &, E; be as above and let
p=mg(P) be the multiplicity of & relative to P. Then

(4.11) R3t—> oo =t™ P M Pz)> By (%)
in the distribution sense and
(4.12) &4 0=>8(H,)=SS(E).
Proof. Letting { be a new variable of integration in (4.2) we have

Et (x) = e"lt:ceE(P, x) = (2 n)“nf P(tf + C +,i17)—lei.r(5+in)dé-.
Re Z
Hence, by (4.2),
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(" "PE, §)=(2 n)_"f

Re

i (" P(tE + L + i) Fg(L + i) dC.
Putting = —sd with s large negative, Lemma 3.51 shows that the right side tends to
(2 ﬂ)“"fpg (C+in)"t Fg(C +in)dL = (By, £).

This proves (4.11). Next, let ¥V be the complement of SS(E). If g€Cy(V) and £=0, then,
obviously,

J‘t”"pe'“ﬁE(P, ) g(x) da

tends to zero as t-co. Hence S(E,) is contained in the complement of ¥ and this finishes
the proof.
It follows from (4.10) that

SS(B)> U S(Ep).

&40

So far we have been unable to find a case where this inclusion is proper.

The localization theorem extends to derivatives of the fundamental solution. The

precise statement is as follows, the proof is the same as before.

4.10". LocarLizaTioN THEOREM. Let E(P)=E(P,§, x) be the fundamental solu-
tion of P€hyp (§) let @ be a polynomial and put F =Q(D) E, F¢=Q;(D) E(P¢),& real. Let
m(f) =m(Q) —m(P) be the degree of f=Q/|P and mg(f)=mg(Q) —mg(P) the muliiplicity of
f relative to £. Then
(4.11%) B3t oo =» mD—m® g=tizb Py s By ()
in the distribution sense and

(4.12') £+ 0=S(F;) =SS(F).

The homogeneous case. Analytic continuation. Qur further analysis of fundamental
solutions rests upon certain explicit formulas which show them to be holomorphic outside
the wave front surface (Theorem 7.5). In order to prepare for the proofs, it is conven-
ient to interpolate between all E(a*, &, z), (k=1,2,..), using a complex parameter s.
We put

(4.13) B,(a,7)=(2 n)_"fa(f +ig)teErNgE pe —T(4,9),

10— 1702909 Acta mathematica. 124. Imprimé le 8 Avril 1970.
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where s is a complex number. The definition of a~° offers no difficulties.. In fact, by (3.16)
and Corollary 3.18

(& +1im) =aln) 1_11 (8 + () &),
where A,(1, £) is real when £ is real and +#€I'=I'(4, ¢). Hence

arg a(§ -+ én) —arg aln) +3 arg (i -+ Au(r, £)

(where arg ¢=g/2), is continuous and single-valued on Re Z+I" once arg a(+3) is fixed.
The following estimates are immediate

Re =0 = |a(& +1in)7*| < e |a(y)|B°
(4.14)
Re s<0 = |a(£ +in)™°| < e |a(& +in)| R

where ¢ is a constant.

4.15. LEMMA. Let a €Hyp (3). Then the distributions E(x)= H(a, ¢, z) defined by (4.13)

are entire analytic in s and

(4.16) A>0= E,(Az) =A™ " E,(x)

(4.17) S(E,)< K(4, 9)

(4.18) a(D) E(x) = B,_(x)

(4.19) §=0, =1, =2, ... > B,(x) = a(D)*8(x).

Note. (4.13) should be taken in the sense that

(4.13") (Bs §) = (2n)‘"fa(5 +1in)”° Fg(& +in)dE,

where g€C,(Re Z’). That the distributions (4.13) are analytic in s means that all (&, )
have that property.

Proof. Theorem 2.4 and simple verifications using (4.14).

Note. The idea of imbedding the fundamental solution F=E(a, z) in an analytic
family F,is due to M. Riesz (1949) who gives explicit formulas for E, in case a(D)is the wave
operator A(8/ox)=(0/0x,)2 —(6]0xy)? — ... —(8}0x,)2. The construction is also used in Gérding
(1947), Schwartz (1950) and Gelfand—Shilov (1955). For later reference we state here the
formulas of M. Riesz. With a=A as above, we have a€ Hyp (¢, 2), 4=(1,0,...,0),
T(4,8)=1{£8>0,8-&~...—&2>0}, K(4,9)={r;2,>0,25 —23 —... >0} and, if 2€
K(4,9),
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(4.20) E, (A9, 2)=(@i—2—...— x?,)""*"/n‘"”z”2 22 1P ) (s + 2 — 3 n).

When Re s> —1—%n, this defines E, as an integrable function; when Re s< —1—13n,

we define E, by analytical continuation. Note in particular that if z is inside the light-cone
K(A,#) then
2p<mn even = E(A?,9,2)=0
(4.21) 2p>n even = E(AP,$, x) =const (x5 -2 —... —a2)P~ "
n odd = E(A®, &, x)=const (x3 —x%—... —aZ)P "
where p=1, 2, ....

In order to analyse the fundamental solution E(z)= E(a, #, x) outside the wave front
surface W=W(4, {#), we shall change the chain of integration in (4.13). The following is a
heuristic outline of our procedure.

We are going to replace the constant vector field £ in (4.13) by certain real smooth
vector fields &—v(£) homotopic to it. By Cauchy’s, or rather Stokes’, theorem, this does
not change the integral provided we replace d¢ by d(£+1w(£)), &+ (&) stays away from

the complex hypersurface A: a()=0, and the exponential stays bounded, i.e. zv(£) stays
bounded from below.

‘We then have

(4.22) E,(x)=(2 n)“”f a(€ +iv (€)™ & d(E + v (£)).

Re Z
One way to satisfy these requirements is to choose v(¢) in —I'(4, #) and to keep it bounded,
but there are wider possibilities. Localizing a at £ we have
a(E+iv()) ~ ag(w(€)), € large
and, keeping »(£) bounded, it seems possible to allow
(4.23) v(E)E ~T'¢(4,9), & large.

As we shall see in Section 6, all such choices of v are in fact permitted. The proof uses a
semi-continuity property of the cones I'; proved in Section 5: the intersection of a I';
with neighbouring cones is never much smaller than I'; itself.

Our next step is to produce vector fields »(£) such that the real part —xv(£) of the
exponential in (4.22) makes the integral convergent. To this end, let X be the complex
hyperplane x{ =0 and suppose that 0 +x€Re Z’ is such that

Re XNT;+@, V&=+0.

This condition actually characterizes the complement of + W, it means that z€ + W. We
may then strengthen (4.23) to
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(4.24) v(€)€ —Re XNI'((4,d), & large

and a small perturbation v,(£) of v respecting (4.23) makes v;(£)x >0 for large &. But then

we are free to let v,(£) become large for large £, so that
ve(E)x>¢|E], ¢>0, large &.

With such a choice, there is absolute convergence in (4.22) also when z is replaced by some
near-by complex argument. This shows that E(a, z) is holomorphie outside W.

We also want to get the explicit formulas for E(z) = E(a, ¢, x) given in the introduction.
To do this we exploit the homogeneity of ¢ by making v.(£) positive homogeneous. Then
we have convergence difficulties at the origin, but they can be avoided by restricting s
to the half-plane Re s <0. Performing a radial integration and using formula (1.7) we then
obtain a formula for E(z) when Re s <0 that extends by analytic continuation to s=1.
The formula for E(x)=E,(x) at this step still involves the small parameter . Using the
boundary values introduced in Section 1 we now let ¢—0. The formula for E(x) that we
get unfortunately still involves a logarithm which we eliminate by the following device.
Restricting = to be outside — K, we have E(-—x)=0. Subtracting the integral formula for
E(—x) from that for E(z) and using (1.15) we get rid of the logarithmic term and end up,
finally, with the rational integrals (4) and (5) described in the introduction. The non-
homogeneous case is taken care of by (4.5).

To carry out this programme, we have to construct vector fields satisfying (4.23) and
(4.24) and study their homotopy properties. This will be done in Section 6 while Section
5 is devoted to the semi-continuity of the local cones I';. The actual computations sketched

above will be done in Section 7.

5. The geometry of hyperbolic surfaces. Semi-continuity of the local cones

Let a€Hyp (9) and A4: a() =0 the associated hyperbolic surface. Lemma 3.27 shows
that the real singularities of a hyperbolic surface (considered in real projective space)
are of a specially simple type. Any twodimensional plane through ¢ cuts the surface in an
algebraic curve whose singularities are multiple crossings (not necessarily transversal) of

simple branches (see figure 5a).

Fig. 5a
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Consider the localization a; of @ at £ €ERe Z. The associated hypersurface 4;: a,(()=0,
in other words the tangent cone of A at &, is then also hyperbolic. By the definition of
I'(4,,9), for any €'y and any real point {, the equation ag({+¢5) =0 has p real roots,
p=mg(a) being the degree of a,. Since, near the point &, the surface 4 is approximated
by its tangent cone Ay, it is plausible that the equation a(£ +{ +£n) =0 will have p small real
roots for small real { and that this should continue to hold for every hyperbolic b close

to a. This is proved in the following lemma.

5.1. LemMmMA. Suppose that a, b€Hyp (&, m), E€Re Z and let M be a compact part of
Lg(4,9). Then

(5.2) nEM, L€Re Z, Tm t 0= b(§+{ +ty) +0
provided t, { are sufficiently small and b is sufficiently close to a.

Proof. We normalize b and a so that b(@#)=a(?)=1 and measure the distance from b
to @ by the maximal difference |a—b| of corresponding coefficients. Let us factor b as

follows, not exhibiting the dependence on & and &,
(53) B(E -+ +59) =1 1(s + pu(C, )

The first p=m(a) coefficients of this polynomial,

p—1
bE+L+sd) = %fk(c, by ¢ +1,(L,b) s+ ...,

vanish when b=a and (=0 while f,(0, @) =a;(9)=0. It follows that if |{| and |b—a|
are sufficiently small, then p of the numbers g, in (5.3) are small while the others are
bounded away from the origin. In the sequellet |£] and |b —a| be small and let —pu, ..., —p,
be the small zeros of (5.3). We shall relate y,, ..., 4, to the numbers y‘l’, ees ‘u?, defined by
factorizing a,,

ag(C +58) =ag(9) fl’[ (s+p2(0)).

In the first place, since the zeros of a polynomial are (multivalued) continuous functions

of the coefficients, with a suitable labelling we have
(5.4) w8, b) —pilC, @) = 0(1), 1<k<m,

‘where 0,(1) tends to zero as |b—a|->0, uniformly for small . For the same reason, since

TP (€ + 1€ +189) =lf[ (s +717 e (g, a))plf‘[1 (v8 + i (2L, @)
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and also t?a(& +1C +180) =a ({ +9) +O(z),
it follows that, with a suitable labelling,
>0, 1<k<p =7 (1L, a)~>us (),
uniformly when |{|=1. Hence, since the 4% (£) are homogeneous of degree 1,

ull, @) = ue () +o([L])-
Combinining this with (5.4) we get

(5.5) i, ) = i () +o([L]) +o5(1).

Now let 7€ M and replace { in (5.3) by { + &y and put s=0 there. The result is

b(& -+ +tm) =L see + 0, 8) [T s ¢+ .0)

Since b €Hyp (#) and £, 5 are real, by Lemma 3.27 we can arrange the labelling so that the
functions

(5.6) ol +in, b), 1<k<p
are differentiable for small {. On the other hand, it is clear that
(5.7) 2 (C +in) =tul () +or (1), 1<k<p,

where 0z(1)—>0 as {—0, uniformly when 7€M and ¢ is small. Combining this with (5.5)
we have

(5.8) plC+tm, ) = £ () +o1)) +0gs(1) 1<k<p,

where 0,(1)—0 as t—0, uniformly for small {, [b—a] and for €M and o, (1)~0 as {,
[6 —a| -0, uniformly for small ¢ and for € M. Now the numbers u%(n) have a positive lower
bound on M and hence (5.8) shows that to every sufficiently small ¢ >0 there is a § =6(g) >0
such that every function (5.6) has at least one real zero ¢=#((, 7, b) with |#] <& when
n€M, || <8, |a—b| <é. Hence, under the same conditions, the equation b(&+{ +t7)=0
has at least p real roots ¢ with |¢| <e. But we know that the number of small roots is
precisely p. Hence the lemma follows. We can now prove that the cones I';(4), considered

as functions of £ and @ are semi-continuous in the sense explained below.

5.9. LEMMA. Let & (€ReZ and a, b€EHyp (3, m). Then Ty ¢(B,#) contains any
preassigned compact subset M of I" (4, D) provided { is sufficienily small and b is sufficiently
close to a.



LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS 151
Proof. Let g=mg,¢(b) be the multiplicity of £+ { relative to b, so that
b(& +{ +89) = sUbg+ () + O(s)),

where, the coefficient of s? does not vanish (since by Lemma 3.42, b, ¢ € Hyp (#)). Taking
M convex and containing #, it suffices to show that b(&+{ +1n) vanishes precisely of order
¢ at t=0 when n€M, { is sufficiently small and b is sufficiently close to a. In fact, then
bziz(+) does not vanish on M so that I'y ¢ (B, #)> M. We shall prove this by a slight
modification of the arguments of Lemma 3.42. By (5.3)

(5.10) b(§+c+tn+sﬁ)=1’i[(s+pk(c+tn,b))}"jl(s+...)

and, by the preceding lemma and the convexity of I';(4, #),
Ims>0, Tm¢>0, Im(s+8)>0=b(E+L+tn+sd) =0

when ( is real, 5 belongs to M, b is sufficiently close to @ and £, s, ¢ are sufficiently small.
Hence, under the same conditions,

Im ¢>0 =Im w,(l +tn, ) >0, 1<k<p.
As in the proof of Lemma 3.42, this shows that the functions u, can be labelled so that
t—=m(C +1n, )
are differentiable functions of ¢ with positive derivatives. Hence
il &+, B) = (£, B) + e t(1 +O(F))

with all ¢,>0. Hence, using (5.10), we see that b(§ -+ +s9) and b(& +-{ +tn) vanish to the
same order when ¢=0 and ¢ =0 respectively. But this order is ¢ and the proof is finished.

Before proceeding further, it is convenient to introduce the concepts of inner and outer
continuity of functions v—C; from some topological space to conical sets C; in E". We
say that such a function is inner continuous if given any 7, and a closed conical subset
N of C,, U {0}, then C,>N =N — {0}, if 7 is close enough to 7,. By the preceding lemma, the
function a, £—>T'z(4, #) is inner continuous when a €Hyp (9, m), £ €Re Z. Outer continuity
is defined analogously: given any 7, and any open conical set N containing Cs,, then C;c N
when 7 is close enough to 7,. Here ¢ =C —{0}. We now have

5.11. COROLLARY. The local propagation cones K (A, ?) are outer continuous functions
of £€Re Z, a€Hyp (&, m).
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Proof. If C is a closed convex proper cone and 7 is an open conical neighbourhood of
C, then its dual 7" = {x; x€Re Z’, 2T >0} is a closed subset of BU {0} where B is the dual
of C.

Conical algebraic hypersurfaces and their duals. To provide some background for the
wave front surface we shall first deal with some generalities about conical surfaces.

When a +0 is a homogeneous polynomial, let A be the complex hypersurface a()=0.
Localizing @ at & we get a new hypersurface A;: a,({) =0, the tangent cone of 4 at &. The
corresponding lineality L; =L (4)=L(A4;) is called the tangent edge of 4 at &. Let m be
the degree of a and let p=m(a). Then

a(§+30) = 8%ag(L) +0(s"*)

so that, by the homogeneity of @, a;; =A"""a; when 1-0. Hence 4, only depends on the
ray C&. It is obvious that L;>L=L(A4) with equality when &€L so that a; =a. Moreover,
£€L; for all £. In fact, this is the last statement of Lemma 3.52 and its proof only uses the
homogeneity of a.

Examples. When a(&) +0, A, is empty and L;=Z. When a(£) =0, grad a(£) +0, then
Ag=L; is the hyperplane grad a(£){ =0. When a(£) =0 and, locally at &,

(512) () =hHO™ ... [ (O™

is a product of holomorphic factors vanishing at & but with non-vanishing gradients there,
then A4, is the union of the hyperplanes grad f,(£){ =0 while L, is their intersection.

As usual in agebraic geometry, a point £ € 4 is said to be regular if, close to £, 4 has an
equation f({) =0 where f is holomorphic and grad f(£) +0. Any part of 4 consisting of regular
points is said to be regular.

The real part of A, defined as the set of real £ such that a(£)=0 will be denoted by
Re A. A point £€ Re A4 is said to be regular if it is regular in 4 and parts of Re 4 con-
sisting of regular points are said to be regular.

An z€Z’ is said to be normal to 4 at & if xL¢(4)=0. The corresponding hyperplane
X: 2{=0, is then tangent to 4 at £, i.e. X>Lg(4). All # normal to 4 at & constitute the
normal of 4 at &, i.e. the orthogonal complement L(A4) in Z' of the lineality L;(4). The
normal at £=0 is the orthogonal complement L°(4) of L(A).

Examples. When a(£) +0, the normal at & vanishes. When a(£)=0 but grad a(£) +0,
the normal at & is spanned by grad a(£). When a has the factorization (5.12) at £, the normal
at £ is simply the linear span of all grad f,(&). When £€ 4 is a regular point, the normal
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at & is a complex line, but this may also happen at singular points, e.g. if in (5.12) all
grad f,(&) are proportional.

All normals of 4 at points £=0 constitute the dual surface °4 of A. Note that
04 < L%(4). In fact, L, (A4)> L(A) for all &. Since L,(A4)=L(A) when §€L(A), °A coincides
with L9(A4) if L(4)=+0. In general, °4 is a rather complicated object which we shall not

analyse much further except for proving
ProOPOSITION. The dual °4 of A is contained in a proper conical subvariety.

Note. With a slightly modified definition of °4, viz. as the union of normals L}(4) for
EEL(A), %4 is contained in a proper conical subvariety of L%(4). This follows from the
proposition by a passage from Z to the quotient Z/L(4).

Proof. Let A, < A be the set of points of multiplicity = k. Thus
EE€EA, = (9/0&)*a(f) =0 for |a| <k,

showing that 4, is a closed subvariety of Z. Hence B,=4,— A, is a Zariski open set on
A, and so is a locally closed subvariety of Z. For & € By, the local lineality L,(4) is the space
of all  such that

(2m0l08) Icclzsk(m!)"1 (@/08)*a(£){*=0 in L.

This shows that the subset B, ; of all £€ B, such that n(a)=s is a locally closed algebraic
subvariety and the spaces L;(4) then form an algebraic vector bundle of fibre dimension
n—s over B, ; and also over the image B} ; of B, ,in projective space Z*=2/C. The spaces
L2(A) will then form an algebraic vector bundle over B} , of fibre dimension s. The Zariski

closure of the set
Ck,s= ULg(A)s £EB;.3>

is therefore an algebraic subvariety of Z’ of dimension <s+dim Bj ;. Now, from the de-

finition of °4 we easily see that
°4=UC;, 1<k<m, 1<s<n-1.

In fact, when L(4) =0, i.e. Lg(A)+Z, and £40 then a(§)=0 so that 1<mg(a)<m and,
since £€Lg(4), 1 <nga)<n-—1. Hence, to prove the proposition it only remains to show
that, for all values of k, s being considered,

s+dim B} ;<n—1.

Suppose therefore that d=d(k, s)=dim B, ; and let & be a non-singular point of By ,.



154 M. F. ATIYAH, R. BOTT AND L. GARDING

Then we can choose local analytic coordinates (u, v) for Z centered at & so that By , is given
locally by the equations v=0; here u=(uy, ..., %3) and v=(v,, .., ¥n_q). Let f(u, v) be the
analytic function which represents the polynomial @ in these coordinates. Then the multi-
plicity of f at any point { in the domain of these coordinates is equal to m¢(a) and hence,
for all L€ B, ,, it is equal to k. In particular, when u is small and fixed, f vanishes of order
k at v=0. This shows that f has an expansion around »=v=0 of the form f=f;+f; +..-
where f, is homogeneous of degree j and

fk=26a’0“, |“I=k

is independent of w. Now f, corresponds to the homogeneous polynomial a; except
for a linear change of variables. Hence a; depends on <n—d variables. In other words
s=n;<n—d and so

s+dim B} ,=s+d—1<n—1
a8 required.

When a is a real polynomial apart from a possible complex constant factor, and £ is
real, the tangent edge L;(4) and the normal L3(A) are the complexifications of their real
parts Re L;(4) and Re LY(4). We shall be interested in the real dual °Re 4 of Re A defined
as the union of the real normals Re L(4) for & real and = 0. It is clear that °Re A = Re °4
and hence, by the previous proposition, °Re 4 is contained in a proper algebraic subvariety
of Z'. In other words, "Re A4 has codimension > 1 everywhere.

The wave front surface. When a €Hyp (#) and ¢ is real, we know from Lemma 3.42
that a;€Hyp () and we have defined the local cones I';=I';(4, #)=I'(4;, ¥) and their
duals K;=K(A4,9)=K(4;,9). We know that

(5.13) Fe=oT'=I'(4,9), K,.<K=K(4,9);
when £€Re L(4), there is equality. Also, by Lemma 3.52

2€K; = Re XoRe L,
so that

(5.14) K(A,9)<°Re 4, V real £.

Examples. When a(£) =0, then I';=Re L;=Re Z, K;={0}. When a(£)=0, but grad
a(&) 0, then I'; is the half-space (grad a(&)-3)'(grad a(£)-{)>0 while K, is the non-
negative span of (grad a(£)-9)~ grad a(£), i.e. one-half of the real normal. If @ is strongly
hyperbolic or, more generally, Re A has at most one-dimensional normals, these exhaust
all possibilities. When a({)/a($) has the factorization (5.12) at § with real and homogeneous
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factors, then I'; is the intersection of the half-spaces (grad f,(£)-#)~'(grad f,(£)-{)>0
while K, is the non-negative linear span of the corresponding real normals (grad f,(&)-3)!
grad f,(£).

We now come to the wave front surface.

5.15. Definition. When a €Hyp (3), let

W(4,9)=UK(4,8), E€Re Z
be the wave front surface.
It follows from (5.13) that W(A4, #)<K(4,$#) with equality if L(4)=+0, ie. if the

polynomial a is not complete. In view of the definition of K,(4,#), x€ W(4,9) if and
only if 2T';(4, 9) >0 for at least one £ ERe Z. Hence

(5.16) z€+W(A4,9)=Ty4,8)nRe X+, VEEReZ,
which is a useful characterization of the complement of + W(4, &).

5.17. LeMmMA. Let a€Hyp (9, m).

a) The wave front surface W =W (A4, D) i3 a closed subset of K=K(A, ?) and
(5.18) OKcW<Kn®Re 4

with equality on the right when Re A has as most one-dimensional normals or when
L(A) =0 which case W =K< Re A.

b) The function a—W(A, D) is outer continuous. There are operators @ in hyp® (3, m)
which are arbitrarily close to a given P €hyp (#, m) and such that W(Q, 9) meets any
gwen conical neighbourhood of a ray in W(P, $).

Proof. a) That W< K follows from (5.13). To prove that W is closed, note that if
€K, =K(4, ) for some x and £E€Re Z, then by the outer continuity of K, as a function
of &, yE K, when y, 5 are real and sufficiently close to # and & respectively. Hence, since the
manifold |.§ | =1 iy compact, yEK 2 for all real 7 -0 when y is sufficiently close to z. Hence
W is closed. In this line of reasoning, using also the outer continuity of K (4, ©#) with respect
to a, we conclude that every x outside W=W(4,?) has an open conical neighbourhood
which is outside W(B, #) when b€Hyp (&#, m) is sufficiently close to a. Hence, if 7' is an
open conical neighbourhood of W, covering Re Z — T by a finite number of open cones, we

conclude that W(B, $)< T when b is close enough to a. Hence W (4, ) is an outer continuous
function of a.
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The right inclusion (5.18) follows from (5.14). To prove the left inclusion, let 0 =2 €0K.
Then 2I’>0, I'=I(4, 9) and there exists a 0+£€ oI such that x£=0. Let n€I';. Then,

since ['; is convex and contains &, s + (1 —s)n €I’y when 0 <s<1. Since
a(E +H(sd + (1 —8)n)) = Plag(sd + (1 —s)n) + O(t)),

where p=m¢(a), it follows that there exists a #,>0 such that a(§ +fy(s?+ (1 —s)%))=0
when 0<s<1. Since £+¢,0€I" we conclude therefore that &,+#n €L so that x(&+yn)=
tyxn>0 and, consequently, x€K,. Hence K< W. Since agéa when £€L=I(A4), we have
W =K<'Re A when L +0. When L =0, then °Re 4 has codimension > 1in Re Z and hence
W has the same property. When Re A4 is regular, then every 0+=£€Re A has precisely one
real normal, half of it being K. Hence W =K ‘Re 4 in that case. As shown by the exam-
ples below, W may be smaller than K N°Re 4 when Re 4 has normals of dimension > 1.

b) We know already that W{a, ) is an outer continuous function of a. Let f(t) be a
polynomial in one variable whose zeros lie in the band ]Im t] <¢. Then, if s is real, the zeros
of f(t)—sf'(t) lie in the same band. The proof of this remark is left to the reader. Let a
be the principal part of P €hyp (&, m) and let ¢(&) be a real linear form with ¢(3) —0and put

Q&) = (1 —&c(§) V) P(§),
where V is differentiation along . The principal part of  is

b(&) = (1 —ec(£) V) a(é),

we have b(#) =a(d) and, by the remark above, @ €hyp (3, m). In the sequel, P is supposed
to be normalized so that a(#)>0. Let P, with principal part a; be the localization of P
at some point £€ERe 4, let n€l';=I";(4,#) and consider Q(£-+sn). Let p=m,(a)>0 be
the multiplicity of £. A short calculation gives

b(& +sm) = 8"~ ((ag () —ec(n) Voag () s —ec(&) Voag () +O(s?),

where V4 operates on 7. Hence the polynomial s->b(& +sn) has a (p—1)-fold zero at the

origin and one small zero
(6.19) 8 = 89 = ec(E)ag(n) 1 Vsag(n) +O(e?).

Here, since 5 €1, ag(n) is positive and by Lemma 3.56, Vya,(n) is also positive. Calculating
the gradient of b gives
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(VB) (& +sm) = s*"%(Vag(n)s —ec(&) VVsagln) + O(e?),

where V operates on % on the right. Now choose ¢ such that ¢(£) >0 and let £>0 be small.

Then the zero (5.19) is positive for small ¢ and inserting its value in b gives
(VD) (& +s4m) = coe” ag(n) 1 Vyagn) Vasn) —VVya () +O)),

where ¢, is a positive number independent of . Rewriting the right side we have
(5.20) (V) (& +5¢7) = o6 Lag(n) (VY log agln)~ +O(e)).

Now let E(n)= R.(n) be the positive ray spanned by the first term of the parenthesis. By
virtue of Lemma 3.56, these rays constitute the interior of K,=K.(4,¥) relative to
LY A), Hence, as e—0, the positive rays spanned by the left side of (5.20) with n€I'; come
as close as we want to any ray in this interior. This means in particular that, as e—0,
W(B, 9) comes as close as we want to any ray in K;. Now B may not be strongly hyperbolic
but repeating the operation P—@ used above a number of times with different £ and linear
functions ¢(£) but now starting from @ we can construct a @' €hyp® (#, m) whose coeffi-
cients tend to those of @ =@, with fixed £>0. (This is the procedure used by Nuij (1969).)
But then, if &, #€I'; and >0 are fixed and b’ denotes the principal part of @', it is clear
that Vb'(§+s,n) tends to Vb(&+syn) as b’ tends to b and this finishes the proof.

Ezxamples. The following figures show the images in real projective two-space of some
Re 4 and W(4, $) when n~=3 and a € Hyp (#, m), m=2, 3, 4, 6. The polynomial a is supposed
to be strongly hyperbolic except in the cases 3, 5, 6, 7, 8, 9 and in the cases 3, 5, 6, 8, 9, the
dotted lines indicate Re B and W(B, &) for a strongly hyperbolic b€ Hyp (#) close to a.
In all examples, K(A4,9) is bounded by the outer contours to the right. The general properties
of Re A and °Re 4 considered as algebraic curves are well known. In particular, a point of
inflexion and a double point of Re 4 correspond to a cusp and a double tangent respectively
in its dual °Re 4. In all cases we get the dual °Re 4 by adding to W(4, ) all its multiple
tangents. Segments of double tangents appear in W(A4,$) in the examples 3, 5, 7, 8, 9.
In example 5, W(A4, ) has a double tangent intersecting W (4, ?) in a point. The examples
3, b, 6 illustrate the fact that while W(4, $) is an outer continuous function of a, ‘Re 4
does not have that property.

The examples 6 and 9 occur in two-dimensional crystal optics and magnetogasdynam-
ics respectively (see Courant—Hilbert 1962, II. 599-617). The example 10 is copied from
Borovikov (1961). Here Re A is close to three intersecting ellipses.
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6. Vector fields and cycles

Let a€Hyp (9). Following the heuristic outline at the end of Section 4, we shall now
construct certain maps from Re Z to Z — A homotopic to the maps &£ +in, €4, 9).
We shall only consider 0% vector fields Re Z 3&~>v(&) €Re Z which are absolutely homo-

geneous
(6.1) AER = v(AE) = |A|v(£).

Let U be the family of such fields topologized by uniform convergence of v and all its

derivatives when |&| =1. It is convenient to define certain subfamilies of U.
6.2. Definition. Let U(4, $) be all v€U sueh that

(6.3) v(§)ET (A, D), V&

and, when z is real, U(A4, X, #) all v€ U such that

(6.4) v(§)€ET(4,9)NRe X, VE.

Let V(A,9)<U(A,9) and V{4, X,9)<U(4, X, H) be subfamilies characterized by
(6.5) 0<t<1 =a(ftitv(£)) 0.

Note that, since I';(4, 3)=T'(4,, ) only depends on the double ray Re, {6.1) and (6.3)
are consistent. By (5.16), the right side of (6.4) is never empty when z is outside + W(4, 9).
It is clear that U is linear and, since the right sides of (6.3), (6.4) are convex cones, U(4, &)
and U(4, X, #) are also convex cones, i.e. they admit linear combinations su +tv, s=>0,
t>0, s+£>0.

6.6. Example. Let y(£) be any positive and absolutely homogeneous C®-function on
Re Z, e.g. y(£)=|&|. Then »(&)=y(&)n belongs to V(4, )< U(4,9) when n€I'(4,9). In
fact, (6.1), (6.3) hold and, since a{f+dty(&)n)=y(§) "a(éy(§)L+ity) =0 for all real {0,
(6.5) is also satisfied. If 29 =0, then v(£)EV(4, X, 9).

Two elements v, and v, in any of our families, say 7', are said to be homotopic if there
is a function [0, 1] 3s—+w,€T such that s, £—>w,(&) is infinitely differentiable and wy=1v,,
w;=v,. Since I'g(4,9)=Re Z when £€Re A, any w€T is homotopic to an element of 7'
which vanishes outside a given conical neighbourhood of Re 4. We say that T is open if
w€T and v€U implies that w+ev €T when ¢ is sufficiently small. The important families
are of course V(4, #) and V(4, X, #). As shown by the following lemma, they consist of the
small elements of U(4, #) and U(4, X, 9). The lemma is a routine consequence of Lemma

5.1 and the inner eontinuity of the function a, & —>I‘£(A, 9.
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6.7. LeMMA. Let a €Hyp (3). Then

a) U(4, D) is not empty and U(A4, X, B) is not empty when z€+ W(A, 3). Both contain
elements that vanish oulside arbitrarily small conical neighbourhoods of Re A.

b) If Uy(A, ?) and U, are compact parts of U(A, &) and U respectively, then Uy(4, &) +
sU,c U(B,?) ond sUy4, ¥)+eUy,< V(B, &) provided >0 and & are small enough
and bEHyp () is sufficiently close to a.

c) The families U(A,?), V(A,®) are open and connected; the families U(A, X, ¥) and
V{4, X, §) are connected. Any compact part of V(A, 9) or V(A, X, &) belongs to
V(B,#) and V(B, X, 9) respectively when bEHyp (#) is sufficiently close to a.

d) Let x€+W(A, §). Any vEV(A, D) such that
(6.8) v(E)€T;(4,9)NRe X

when & ts in some conical neighbourhood of Re X is homotopic in V(A,9) to a
w€V(A4, X, ®) under a homotopy that respects (6.8). There exists a v€V(A, D) such
that xzv(£) has a given constant sign for all £E€Re Z.

Proof. We give a general construction of elements in U(4, ?). Let {€Re Z and choose
an 7 €¢(4, ¢#). Then, by Lemma 5.9, all positive multiples of 7 belong to I'g(4, 9) when &
is close enough to { and, since I';(4, ) only depends on the double ray RE, the same holds
if & belongs to a small enough conical neighbourhood of RC. Hence there is a function
0<p(£)€C(Re Z) satisfying (6.1) such that ¢(£)y €l';(4, ) when & is in a small enough
conical neighbourhood of RC while p(E)n €l (A4,9)U {0} otherwise. Covering Re Z by a
finite number of such neighbourhoods and adding the corresponding vector fields, we get
an element of U(4, ). When z€ + W(4, 9), then, by (5.16), I'¢(4, )N Re X is never empty
and, chosing % in this set, the construction gives an element of U(4, X, ¢#). This proves the
first part of a). The second follows from the fact that I';(4, #)=Re Z when ¢ is outside
Re A. Tt suffices to verify b) for vector fields restricted to, e.g., the sphere |&|=1. In
fact, if (6.3), (6.4), (6.5) hold for such &, by virtue of (6.1) and the homogeneity of a, they
hold for all & Let M(&) and N(£) be the values of v(£) and w(§) for |&] =1 and v€Uy(4, 9),
and w€ U, respectively. Then M(£)=TI';(4, #) and N(&) are compact sets and the functions
£~ M(£) and £~ N(&) are outer continuous. Normalize a and b such that a(3)=0b(#)=1.
Fix an ) with |n| =1 and let M'(5)<T",(4, #) be a compact neighbourhood of M(&). Then
M(&) +eN(E)<M'(n) if £é—n and >0 are small enough and, by the inner continuity of
£, b->T¢(B,9), M'(n)<T'¢(B, D) if £—n and b—a are small enough. Hence M(§)+eN(£)<=
I'¢(B, 9) if £—n, e>0 and b—a are small enough. Covering |&| =1 with a finite number of
11—702906 Acts mathematica. 124, Imprimé lo 9 Avril 1970.
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such neighbourhoods, we have M(£)+eN(&)<T'y(B,¥) for all £ with |&] =1 when ¢>0
and b —a are small enough. This proves the first part of b). To prove the second part, note
that, by Lemma 5.1, b(£+4sM'(n))+0 and hence also b(&+is(M(E)+eN(£)))+0 when
&—n,b—a, £>0and s>0 are small enough. A covering argument shows that the same state-
ment holds for all £ with |£] =1 when b —a, £>0 and $>0 are small enough and this means
that under the same hypothesis sUy(A4,®)+seU,< V(B, #). This proves the second part
of b). That U(4,9) is open follows immediately from b). If v€ ¥V (4, ¥) and U, is a compact
part of U then, by b), there are positive numbers ¢, 8o, d, such that v(£) +eN (&)< 'y (4, )
and b(£ +is(v(&) + N(&))) +0 for all & with [&| =1 when 0<e<gy, 0<s<s,, |b—a|<dy.
On the other hand, since v€ V(4, #), a(£ +1sv(£)) =0 for all & with |E| =1 when g, <s<1.It
follows that there is an 0<g, <g, such that, under the same hypothesis, a(&+is(v(§)+
eN(£))) =0 when 0<g<g,. Here the arguments of a constitute a compact set and hence
there is a 0<d, <8, such that also b(&-+is(v(£)+eN(£)))+0 for all & with [£] =1 when
5,<8<1,0<e<¢g, |b—a| <4,, But the inequality is true also when 0 <s<'s, and this shows
that v +¢& Uy< V(4, ) when ¢ is small enough. Hence V(4, #) is open. Since both U(4, #)
and U(4, X,®) are positive cones, they are connected. If ¢—v, is a homotopy in U(4, ?)
or U(4, X, ), then by b), t—>sv, is a homotopy in V(4,#) and V(4, X, 9) respectively
when s >0 is small enough and hence V(4,?) and V(4, X, #) are connected. If V (4, #) is
a compact part of V(4,9), then by b) there is a 0 <s,<1 such that s, V(4, #)<= V(B, 9)
when b is close enough to a. But a(&+isv(£)) £0 when g, <s<1, vEV(4,9) and |&| =1
implies the same inequality when a is replaced by b and b is close enough to a. {Hence
Vo4, %< V(B,$) when b is close enough to a. The same argument shows that any com-
pact part of V(4, X,¥) is contained in V(B, X, ) when b is close enough to a. This
proves c). By Lemma 3.52, L;(4, ¢)+ Rf=I";(A4,¥) when {€Re Z. Hence, if veU(4, )
has the property (6.8), then v,(£) =v(&) —txv(&) (x€)1£, 0<t<]1, is a homotopy in U(4, #)
from v to w=v,EU(A, X, #) that respects (6.8). If v€V(4, ¥), then by a previous argu-
ment, the homotopy ¢—sv,(£) from sv to sw takes place in V(4,?¥) when s>0 is small
enough. Hence the first part of d) follows. To prove the last part take v,€V(4, X, d)
and choose u€U such that xu(f) has a constant 'sign. [Then, since V(4,¥) is open
v=v,+&u€EV(A4,9) when £>0 is small enough and xv(£)=czu(£) has the sign of zu(£).
This finishes the proof.

Cycles. We are going to associate to our vector fields cycles and relative cycles in
complex projective space. In the following, all homology and cohomology is over the
complex numbers and all homology has compact supports and all cohomology has arbitrary
supports. Further, with Z=C", let Z+=2/R+ and Z*=%/C be the quotients of Z by the
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positive real numbers and the non-zero complex numbers respectively. In particular, Z*
is (n—1)-dimensional complex projective space, while Z* is the (2n—1)-sphere. When
BcZ,let B+ and B* be the images of B in Z+ and Z* respectively.

Our cycles will be oriented with the aid of the differential form on Z,

(69) o) =3 87,(0)

where 7,(£) is the right cofactor of df;in dé=d&, A ... AdE, so that dé=d&; AT,(E). The
corresponding form w,(£) on the hyperplane X: 2£=0, (z=0), is defined by

(6.10) (&) = d(@&) A w,(£) +O(zé).

Now, when z is real, let f(x)* be the (n—1)-sphere Re Z+ counted with the multiplicity
% and oriented by

(6.11) wtw(£)>0.
This makes §(z)* a cycle of (Re Z+, Re X+); its boundary
(6.12) B(x)* = Re X+
is an (n — 2)-sphere with the orientation
(6.13) w (&) >0
induced by (6.11) and d(z&)>0.
6.14. Definition. When a € Hyp (), z€ +W(A,?) is real and v€EV(A4, X, ), let
(6.15) o = (4, z, 9)*, a*=a(d4, z,9)*€H, ,(Z*—-A* X¥)
be the homology classes of the images of f(z)* in Z* under the maps

(6.16) E-ETiv(f), E€EReZ.

Note. In a different form and for regular Re 4, the class o* has been used by Leray
(1962) in his work on the general Laplace transform (l.c. p. 140).

The classes o*, &* are represented by the images o, &; in Z* — A* of f{z)*+ under (6.16),
oriented by (6.11). Since v(§)€X for all &, these images change their orientation on X*.

The classes

(6.17) dar*, 0%* € Hy_o(X* — X* N A%)
11* —702909. Acta mathematica. 124. Imprimé le 7 Avril 1970,
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are represented by the images oo}, 9&5 in X* —A*N X* of Re X+ under (6.16), oriented
by (6.13).
By Lemma 6.7, V(4, X, ) is one homotopy class and hence the homology classes of
ok &% do not depend on the choice of v€V(4, X, &) and this justifies the notation {6.15).
Let «f, & be the images of B(z)* in Z+ under the maps (6.16) and let ¢: £~ —& be the
antipodal map Z*—~Z*. Then, by (6.11), (6.13) and the absolute homogeneity (6.1) of v,

(6.18) (o) =(—1)"at, o@@)=(-1)""oa*

so that

(6.19) F=(—-1)"a*, oa*=(—1)""oa*

(6.20) 2a*Jof +(— )" 1a¥, 200*30ar +(—1)" 1 oa;.

Note also that
(6.21) € +K(A,9) = o*=0in H, ,(Z*—A*, X*).

In fact, then there exists an 5 €I'(4, #) such that x7=0 and, putting v(£) = |£|7, the homo-
topy & —i|&|n—t& —i|&|n where 0<¢<1, contracts o in Z+— A+ to the point (—3|&|n)* in
X*. We also note in passing that

(6.22) neven, Re XN A=0 =do*=0in H, ,(X*—X*N 4*).

This folows from (6.20) if we choose v€V (4, X, ) equal to zero in a small conical neigh-
bourhood of Re X.

The following lemma summarizes some useful continuity properties of the homology
class o(4, =, §)*.

6.23. LEMMA. Let a€Hyp (8), € + W(4,9), vEV(4, X, D). Then

a) the class a(A, x, 9)* contains every cycle o, for which w€V(A,?) and w(&)€Re X
when & belongs to an arbitrarily small conical neighbourhood of Re X.

b) If b€Hyp (#) and y €Re Z are close enough to a and x respectively, we have a natural

commutative diagram
H, 1(Z*— A*)>Hp 1(Z* — 4%, X*) > H, ,(X* - X* 0 4%)

Vo X Yy
H, \(Z*—B*)~>H,_,(Z*—B* Y*)>H, o(Y*— Y*n B*),

where pa(A, x, §)* =a(B, y, 3)".
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Note. As we shall see in part 11, (4, z, #)* +0 in H,_,(Z* — A*, X*) when 2z € K(4,9) —
W(A,9).

Proof. a) follows from Lemma 6.7d. The homomorphisms ¢ and y of the diagram of b)
are obtained by using projection onto Y*. We indicate the details. Choose an 7 €Re Z such
that xn +0 and restrict y to a ball around x where y7 =0 and let

p=p(Y): L= — L) (yn) 1y,

be the projection on Y along #. Further, let r=#(Y) be the trace of this projection, i.e. the
line segment (1 —#){ +#pl, 0 <t <1, oriented by dt>0. The corresponding maps in projec-
tive space, defined on Z* —#* will be denoted by p* and 7* respectively. When ¢* < Z* —5*is a
compact oriented chain, then r*c*, suitably oriented by the product orientation is a compact
chain in Z* —* such that

or*c* = p*c* —c*.
Let us also put s*c* = oc* -+ r*oc*

80 that, if 6c*< X*, then ds*c*< Y*. The maps y and @ are then induced by p* and s* respec-
tively. The verification that the diagram is well defined and commutative when y, b are

close to z, a is left to the reader. The following figure illustrates the construction.

Xt

Fig. 6

It remains to verify that pa(A4, z, #)* = (B, y, #)*. Consider the chain
ez, y)=rRe X,

where each point counts once and ¢(x, ¥)* is oriented by dt A w,(£) >0. We shall see that
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(6.24) c(z, y)* = Bly)* —plx)*
In fact, the points of ¢(z, y) are
P16 = (L—0)E+1p€ = E—t{yt) (yn) ™, E€Re X, 0<t<I,

and its boundary consists of Re X and Re Y. Since sgn x&;—= —t sgn y& and sgn y&,—
(1 —¢) sgn yé&, the interior points { have the property that sgn y —sgn 2 +0. Conversely,
if £ is such a point, { is a positive combination of the points on the line s—{ +sn where
it meets Re X and Re Y respectively. Hence c(z, y)*+ and f(y)+—f(x)* have the same
carrier. Now the points of S(y)* —B(z)* have the multiplicity } (sgn y —sgn 2{) and hence
(6.24) holds except for a possible factor +1. We leave it to the reader to verify that the
orientations df A w,(£)>0, (E€Re X), and (sgn y—sgn x{)w(f)>0 coincide on c(z, y)*.
Next, by definition, r* 8x; has the real projection (6.24) and its points are

(6.25) {p&—ipw(&)}t, E€clx,y), O0<i<Il.

Further, o} has the real projection 8(z)* and its points are

(6.25) HE— i@y

The boundary of s*af =af +r0a; has the real projection Re Y*, its points

{pE—ipv(£)}*, £€ReX

belong to Y. Small continuous deformations of s*o; that carry Y+ into Y+ do not change
the class of sTa; in (Z* — 4%, Y*). Replacing the imaginary parts of (6.25), (6.25") by pv(p,£)
and pv(pé) is the result of such a deformation when y is close enough to z. But, in view of
(6.24), this changes s* o} to «},. Since V(4,) is open, it contains pv when y is close enough
to « and hence o, € a(4, y,#)*. The whole argument also permits small changes of a
within the class Hyp (#) and this finishes the proof of b).

It follows from (6.19) that «* depends drastically on the parity of #. We shall illustrate

this further by some examples.

Example, n even. Let us first consider the case n=2. Choose a basis %', " of Z such
that ' €I'(4,9) and " €Re X and let £=uy’ +vy" define coordinates u, v in Z. Taking
v=1, we may represent Z* by the complex u-plane U with a point at infinity and then
X* is represented by the origin of U and 4* by a finite number of points of Re U disjoint
from zero and infinity while I'(4, $)* is represented by the component of infinity in
Re U — A4*, Choosing the vector field »(&)=0 off a small conical neighbourhood of Re 4,
it follows from (6.12), (6.18), (6.20) that 2«* is represented by the boundaries of small disks
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centered at the image of A* and oriented by the orientation of U multiplied by the sign of
x£ taken at their centers. All these orientations are the same if and only if X* meetsI'(4, ¢)%,
ie. if and only if z€ +K(A,®). This is now also a necessary condition for «* to vanish.

Many of the features of the case n =2 subsist when n>2 is even. It follows for instance
from (6.20) and the definition of V(4, X, &) that «* is represented by a tube around Re 4%,
i.e. the locus of the boundary of a small two-dimensional disk whose center moves on Re 4*.
The boundary of the disk is outside 4* and the disk should belong to X* when its center has
that property. By (6.13), the orientation changes when the center of the disk passes Re 4*N
Re X*. The class dc* is represented by a tube around Re A* N X*, suitably oriented. Typi-
cally, Re A*N X* is a set of (n —3)-dimensional ovals with certain orientations. When
A* N X* is non-singular, then as will be shown in Part II, da* =0 in H,_,(X*—X*N A4*)
means that Re 4*N X* is homologous to zero in A*N X*. (6.22) provides a trivial ex-
ample. Petrovsky (1945) p. 349-350 gives a non-trivial example when m =4. When n=4,

then 4*N X* is just an algebraic curve.

X*

Fig. 6 a. z=2. Crosses indicate A*, circles 20*. oa* vanishes.

Example, n odd. Let us first take the case n=3. Let %', %" be real and span X and
let &=un"+vy" define coordinates in X. Taking v=1, we may represent X* as a complete
complex plane U. When £€ + W(4,9), then a is not identically zero on Re X. In fact, if
this were the case, a({) must have the factor 2 so that, if §€Re X, I';(4, ¥) is contained in
I';(X,?) which is a half-space not containing Re X and this contradicts the requirement
I't(4,9)0 Re X Q. Hence we can choose 7" such that a(n’) -0 and then 4*N X* is repre-
sented by a number of finite real points in U together with a number of finite complex
conjugate pairs. Further, choosing a (%) € V(4, X, $#) which vanishes off a small neighbour-
hood of Re 4, by virtue of (6.14), (6.15), (6.20), 20«* may be represented by twice Re U
detached from the image of Re (4* N X*) as shown in figure 6 b. According to (6.15), the
orientation of a* is that induced by Re X*. Note that 26x* is homologous in X* —4*N X*
to tubes around the non-real part of 4* N X* oriented by the sign of Im «. They are marked

by dotted circles in the figure. Hence, if n =3, we have
(6.26) Oo* = 0> A*N X* real.

In the figure 5b, points with this property are either outside K(4, #) or, except in the case

8, inside a curved triangle.
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The main features of figure 5b subsist when »>3 is odd. In particular, by (6.12) and
(6.20), o* and d«* may be represented by Re Z* detached from Re 4* and 2Re X* detached
from Re A*N X* respectively. In the first case, the orientation changes on X*.

®© x
<> o>

®

Fig. 6b. n =3. Crosses indicate 4* () X*, lines 29a*.

Re X*

It is easy to generalize one part of (6.26) to higher dimensions. This is done by the
following theorem suggested by an example of Petrovsky (1945, p. 348).

6.27. THEOREM. Let n>1 be odd and let a, be the restriction of a€Hyp (3) to X. If
z€+ W(A4, #) and there is a 3, €Re X such that a, € Hyp (8,) and one of the sets +T'¢(4,,9,)N
I'e(4,8) is never empty when &€Re X, then da(A, x, 9)*=0 in H, o(X*—X*n A*). When
all T (A4, 9)NRe X are at least half-spaces, it suffices that a,€Hyp (8,) for some ¥, €Re X.

Proof. Since the function
Re X 35_)(1-‘5(‘41’ 191) v _Fg(Az: 19::)) n Fg(A, 0)

is inner continuous, the construction used in the proof of Lemma 6.7 shows that there
exists a v€ V(4, X, ®) whose restriction v, to Re X has the property that v,(£) belongs to -
one of the sets +I'y(4,,3,)=Re X. If £€Re A, the sign is well-defined. More precisely,
there is a continuous absolutely homogeneous function ¢(&) = +1 defined in a conical neigh-
bourhood N=Re X of Re 4N Re X such that v,(&)€e(£)x(4,, 9,)<Re X for all ZEN.
Taking v, to be zero outside N, which is no restriction, this gives us a vector field w(§)=
£(£)v,(€) belonging to V(4,, #,). Now da*=0a(4, z,9)* is represented by the image in
projective space X* of the cycle y(z)*={£ —iv,(£); £€Re X }+ oriented by w,(£)>0. Since
n is odd, w,( —&)=w,(&), and hence do* is also represented by half the image of y(x)* plus
its conjugate. This shows that the image in X* of y(z)* is the same as the image of the
cycle y,(z)*={&—iw(£); £€ Re X}+ where w=¢v,€V(4,,8,). Now all vector fields in
V(4,,?,) are homotopic and hence da* is also represented by, e.g., the cycle {& —is|&|9,;
£€Re X}* where s>0. Letting s— oo, this cycle contracts in X* —X*N 4* to a point and
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hence do*=0 in H, o(X*—X*n A*). If all I'y(4, 9)NRe X are at least half-spaces (and
this is true when »=3), then, since I';(4,, #,) is an open convex cone in Re X, at least
one of the sets +I';(4,, #,) NI'¢(4, ¥) is never empty. This finishes the proof.

7. Fundamental solutions expressed as rational integrals

We now have all the necessary tools for justifying our heuristic analysis at the end of

Section 4 of the formula (4.13), i.e. in integrated form
(7.1) (B, §)=(2 n)_"fa(E + i) Fg(& +in) d(& + i),

where g€Cy(Re Z’), §(x)=g(—x). We are going to modify the chain of the integration in
(7.1), replacing # by a real vector field w(£). Later we shall be able to choose w in V(4, 9).
To begin with, for reasons explained earlier, we have to work with bounded vector fields.
For this reason we introduce a cut-off operation v—v, defined for absolutely homogeneous

vector fields by
(7.2) v,(§) = min (r/y(£), L)v(§), r>0,

where 0 <yp(£) €C(Re Z) satisfies (6.1). We could choose y(&) = |&|; our more general choice
will be useful later on. Our next theorem uses the differential (n —1)-form w(£) defined by
(6.9). It has the properties that

(7.3) dgh) A .. A(gfa) =g "dfy A .. Adfy 49" Mg Aoo(fys -y fr)
(7.4) d(h(&) (&) = (2, &Oh[0E, +nh)dE| A ... A déy,

where g, f, ... are functions and %(£) a holomorphic function. Note that the first term on
the right of (7.3) vanishes when f,, ..., f, are dependent and that the right side of (7.4)
vanishes when A(£)is homogeneous of degree —n. The theorem also employs the holomorphic
functions and distributions ,, 43, defined by (1.6), (1.9), (1.11), (1.14).

7.5. THEOREM. Let a€Hyp (3, m), vEV(4,8), g€CyRe Z').

a) When Re s<0, then

1.6) (B, §)=@m)" f o0 T AL, T =E—ivn (@),

Re Z

for all r>0.
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b) When xv(£)<0 for all £€Re Z and all x€S(J), the same statement holds with v,
replaced by v.

¢) The functions s, z— Efa, ¥, z) are holomorphic when x is outside W(A4, ) and, if x
is outside +W(A4,9), then

(7.7) Es(a,ﬂ,x)=(2n)‘”i'"s‘”f Xms—n (x8) &(8) ™ @(C)

7&H=1
—@m) f o (i) ()™ (3 i — ™" log a(0) w((),
=1

where { =& —1v(£) with v€ V(A4, D) chosen so that xv(&) <0 for all &.

d) The formula (7.7) is true also when v€ V(A, X, #), provided the integrations are taken
in the distribution sense. Differentiation under the integration signs is permitted.

Note. The second term of (7.7) vanishes unless ms—n=0,1, 2, ... and then it is a
polynomial. The formula (7.7) is useful only when W(A,d)+=K(4,9), i.e. when a is a
complete polynomial. In fact, E, vanishes outside K(d4,#). When a is not complete we
can combine (7.7) with the formula (4.8).

Proof. For simplicity of notation, introduce the differential form
0(& +in) = 2m)~"a(é +im)™° Fg(& +in)d(& +am).

It is holomorphic and hence closed, and entire analytic in s when n€ +T'= 114, #). By
(2.3), to every M >0 there is a ¢(M) < oo such that

(7.8) | Fg(& —in)| <c(M)(1+ |&—in|)~HeMm,
where hn) = max zn, 2€S().

Also, by (4.12)

(7.9) Re s <0, n€T = |a(& —in)~*| <c(s) | & —in| ™"

where ¢(s) >0 is locally bounded.
First, let n €T, put v(&) = ()5 and consider the homotopy

wy(€) = (1 —t)p +tw,(£), 0<t<1

connecting wy(£) =7 with the cut-off vector field v,(£). Combining (7.8) and (7.9) gives the
following estimates of 8, =0,(& —iw,(&)),
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dt=0=0,| <cy(s) (1 +|&|)~mBes—Mrr® | gg|
dy(£) =0=|0,| < the same factor times >, |d¢ A 7,(£)},

where 7,(£) is the right cofactor of d£; in d&, so that d&=d&; A1,(£). The function c,(s) is
locally bounded. Also, 0(& —iw,(&)) is a holomorphic (n+1)-form on the compact chain

Ce = {E—iwy&); e <p(§) <&} 0<t<1}

and hence 0,=0.
ac,

By the estimates above, the integrals over the parts of 8C, where y(&) =&, £~ tend to zero as
£~0 and the integrals over the other parts remain absolutely convergent. Hence (7.6)
follows for all r>0 when »(§)=y(&)n, n€T .

Next, let v(t, &), 0<t<1, be a homotopy in V(4,#) from v(0, &) =y(&)n to a given
o(1, §)=v(£) and consider the corresponding cut-off homotopy »,{t, £) from v,(0, &) to v,(1, &).
We are going to estimate 0,((), { =& —iv,(t, &), and first of all a(f)™°. Since Re s<0 and

(7.10) Ia(C)-sl=Ia(C)|—Reselmsarga(C)’
we only have to estimate arg a(f). We claim that

arg a(§ —ivy(t, £))

is bounded when £€Re Z, 0<t<1. Using the homogeneity of a, it suffices to consider

¢(&, i, @) = arg a(§ —igu(§))
on the product

(V&) =1} x {0<t<1} x {0<p<1}.

Since v€V(A4, ), a() =0 for all £€Re Z and hence @ is a continuous function, Clearly,
@ is bounded when p=1, and ¢ being the argument of a polynomial in g of degree < m,
the variation of ¢ as 0 <7 <1 does not exceed msm. Hence ¢ is in fact bounded. By virtue
of (7.10) we have the same estimates of a()™* as before and hence

dt=0=6,()] < cu(5) p(£) "R (1 -+ | £[)~ M eheert- | |
(7.11)

dy(£)=0=0,({)| < the same factor times ) |dt A 7,(£)|,
where all dependence on r and ¢ is displayed. Also, 6, is holomorphic on the chain
{§—iv,(t, &); e<p(£) <&t 0<E<1}.

Hence our previous argument works and we have
11% — 702906. Acta mathematica. 124, Imprimé lo 9 Avril 1970.
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fes (§ —,(0,8) = fes(f —w,(L, §)),

where both integrals are absolutely convergent. This proves a).

If v(£)2<0 on S(§), then h(v,(£)) <0 and the first estimate (7.11) proves that we can
let r— oo in (7.6). This proves b).

To prove ¢) and (7.7), we first note that by Lemma 6.7 d), if x€+ W(4, 9), there is a
v(E)EV(4,9) such that zv(£)<0 for all £€ReZ. Hence, by the homogeneity, zv(£)<
—2ep(&) for some &>0. More generally, if y €Re Z' is close enough to z, say |y —z| <4, then

(7.12) yo(&) = —2ep(8) + (y —2)v(§) < —ey(8).

This means that the integral
(7.13) Fy(y) = (2n)‘"fa(5 —i(£)) " M EPE A(E —iv(£))

is absolutely convergent when |y—x[<6 and Re s<0. Introducing polar coordinates,

&E=pn, y(n)=1, using (1.6) and (7.3) and reverting to £ again, we have

(7.14) Fi(y)= (27t)'"i”‘“""f

76)

 Knaen ) a0 0(2),

where [ =£ —1w(£). Since, by (7.12),

Im y{ = ey (8),

and the functions y are holomorphic in the upper half-plane, the right side of (7.14) is a
holomorphic function of y, s when ¥ is close to z and y,,,_,(yC) is holomorphic in s. Hence,
by (1.6), Fy(y) is holomorphic in y, s when y is close to « and s is complex except perhaps
for simple poles when ms —n =0, 1, 2, .... On the other hand, we shall see that

(7.15) ms—n=0,1,2,... =>J =1xms_n(yC) a(f) () =0

Y4

which then implies that F(y) is holomorphic in s, y for all s and all y close to z. Assume this
for the moment. Multiplying (7.13) by g(—y) where g€Cy(Re Z’') and |y —z| <6 on 8(§),

we get

(Fs )= (2n)""fa(é’)"39(€) g, {=&—w(f).

By b), the right side equals (E,, §), which we know to be entire analytic. Hence E(a, ¥, ) =
F(y) for all y close to = and all s. Since E,= E,(a, 9, x) vanishes outside K(4, ) for all s,
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this shows that E; is holomorphic in s, z when z is outside W(4, #). At the same time, we
have (7.7) when x is outside + W(4, ¢#) and ms —n=+0, 1, 2, .... To prove (7.7) in the excep-
tional cases, just apply the operation

Gs"%tthﬂlho

to both sides. The formula (1.13) and a small computation gives the desired result. To
prove (7.15), note that y,._,(@{)a({)™® is holomorphic and homogeneous of degree —mn.
Hence the integrand is a closed (n —1)-form. But then it is independent of the choice of
vin V(4,d) and remains the same if we put, e.g. »(&) =y(&)9. Next, the cycles {t& —iy(£)9;
p(£)=1} being homotopic in Z—4 when ¢ is real, letting {->0, we see that the integral
vanishes. This finishes the proof of ¢).

To prove d), take a family of vector fields »=v, in (7.7) such that zv.(£) tends to zero.
We may e.g. put v(§) =w(&)—ey(§)ny where we€V(4, X, #), an=1. Then, since V(4, ) is
open, v€V(A4,9) when £¢>0 is small enough. Then, as ¢—0, the functions y,,_,(xf)=
KAms—n(®& +1€) tend to the distribution y,,_,(x&) on the manifold y(§)=1. The passage to
the limit is legitimate by Lemma 1.2. The proof is finished since, clearly, (7.7) permits

differentiation under the integration sign.

Generalization of the Herglote—Petrovsky—Leray formulas. At long last we can now prove
the formulas (4), (5) of the introduction. Our next theorem employs a tube operation ¢,
from X —XNAtoZ-AUX. When 0= X — XN A is a compact chain, let ¢, be the product
{|®&| =7} xo with r so small that ¢,=Z -4 when 0<s<r. When ¢ is oriented, orient
o, by the product of orientation w(Re z&, Im x£) >0 of the complex plane with coordinate
x& and the orientation of ¢. Then £, =0, defines a chain map from X -XNA4 toZ—-4AU X
that increases the dimension by 1 and induces a map ¢,: H(X —-XNA)>H,,(Z—AU X)
independent of the choice of ». We let £, denote also the induced map H (X*—X*n A*) —
H, (Z*—A*U X*).

7.16. THEOREM. Let a€Hyp (9, m) and let E(a, x)=E(a, ?, x) be the fundamental
solution of a(D)=a(0]iox) with support in K=K(A,?). Suppose that xE—W(A,ﬂ), z€ —K.
Then E(a, x) is holomorphic and

(7.17) D¥E(a, %) =i(2ﬂ)l_"f %o (52E) £ a(8) " w(§)
when g=m—n—|v|>0 and

(7.17") D’E(a, z)=(27)"" f

tx

| FA (B a() ™ o)
when ¢ <0. Here
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(7.18) L =rrLr=0, 2O=(—DY(—r—1!Fr<0
and of =a(d, x, 0)*€H,_(Z* — A%, X*)

is the homology class of Definition 6.14.

Note. The differential (n —1)-forms ¢ and ¢’ appearing in (7.17) and (7.17’) are rational
homogeneous of degree zero and induce rational (n —1)-forms on the projective space Z*
(see Part II). By (7.4), they are closed and it is clear that ¢ is holomorphic on Z—4 and
vanishes on X, while ¢’ is holomorphic on Z — AU X. Hence, if «, &’ are (n —1)-cycles of
(Z—A, X) and Z— AU X respectively, then {,¢ and [, ¢’ depend only on the homology
classes o* and o' of « and a' respectively. In particular, if « or &’ is homologous to zero,
the corresponding integral vanishes. Hence (6.21) combined with (7.17), (7.17’) reflects
the basic fact that E(x)=0 outside K(4,#). As remarked in the note following Theorem
7.5, our formulas are interesting only when e is a complete polynomial.

This theorem has the following corollary, which is important in the theory of lacunas
to be exposed in the next section. Let p be an integer. A function @(x) defined in some open
conical set M is said to have homogeneity p if @(Ax)=A"Q(z) for x€M and 1>0. It is

obvious that polynomials of negative homogeneity vanish.
7.19. CoroLLARY. If, for some z,
(7.20) ou(d, x,#)*=0 in H, ,(X*—-X*NA4%),

and bE€Hyp (9, mk) is sufficiently close to a*, k=1, 2, ..., then E(b, ) is a polynomial of

homogeneity mk —n in the component of the complement of W (B, &) that contains x.

7.2, Examples. When n=2, (7.20) is always true so that E(a, d, -) is loeally a poly-
nomial outside W (A4, &) for every a €EHyp (#). This is of course also immediate by elementary
calculation. Let us choose coordinates such that #=(1, 0) and normalize ¢ €Hyp (&, m)
such that a(9#)=4™ Then a(£) is the product of m purely imaginary factors a,(&)=1(5, +
A€s) and we bave By (x) = E,(ay, 9, ) = H(z; + 2, %,) 6( — A %, + ;) where H is the Heaviside
function, H(¢) =1 when ¢ >0 and 0 otherwise. Further, E(a, z) = (¥, * ...) () is a convolution.
The wave front surface W=W(A4,¥) consists of all half-rays (g, pd,) with >0, K=
K (A, 9) is their convex hull and, if a is complete, m >2 then E(a, -) is a positive polynomial
of homogeneity m —2, in each component of K —W. In particular SE(a, -)=K, a fact
which will be of some importance later. By (6.22), if n is even and Re X n 4 is empty,
E(a,, -) is a polynomial in the component L of the complement of W that contains .
This applies e.g. to a product of wave operators with different speeds of light and L equal
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to the smallest dual light-cone. Any e €Hyp (&) close to such a product also has the cor-
responding property.

Proof of the corollary. Since all positive powers of a have the same associated hyper-
surface A, it suffices to consider the case k=1. If (7.20) holds, then {,0a* =0 in
H, ,(Z*—A*U X*) so that, by (7.17"), all derivatives of order >m —n of E(a, ) vanish at .
Now, by Lemma 6.23, (7.20) implies the same equality with =, 4 replaced by y, B provided
y is close to « and bE€Hyp (&, m) is close to a. Hence, for every such b, E(b, -) is a poly-
nomial of degree at most m —n close to z. But then, by analytical continuation, E{b, -) is
such a polynomial in the entire component L{x, B) of the complement of W(B, ¢} that con-
tains . Since E(b, -} is homogeneous of degree m —n, the polynomial has homogeneity
m —n. Thig finishes the proof.

Proof of the theorem. Since xEW(A, ?), €-K , we have € + W (4, 9) so that Theorem
7.5d) applies. Letting v€V (4, X,¥#) and s=1 and using (1.8), differentiating (7.7) »
times gives

DYE(x)= (2n)'”i“f

¥

176,,(905) & o) w(l)
—@m [ R0 )y @t —m~ g ald) w(0),
y=1
where {=£& —w(£). Now since #€ —K and E vanishes outside K, the right side vanishes
if « is replaced by —a. Hence
DE(x) = D*E(z) — (-1 D*E(—=x).
Now, by (1.16) (@) — (= 1)y ( —x&) = 2mio(x£)
while, if y is replaced by %, the corresponding expression vanishes. This gives

(7.22) DVE(x)= i(2n)1""f li“aq (&) &a(l)  w(0).
y=

If ¢=>0, then, by (1.17),
0q(®E) = 271 sgn (w€)xo(xé)

so that D’E(x) =i(27)'"" j

y

=12-1sgn (@&) 23(i2L) £ all) (L)

where { =& —iw(£). In view of the definition 6.14 of «*, this is precisely (7.17) with { as the

integration variable. Next, let ¢ <<0. Choose coordinates such that z=(1, 0, ..., 0). Since
12 —1702909 Acta mathematica. 124, Imprimé lo 14 Avril 1970.
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(&) = —d& Aw(&s, ..., En) +E,AE A .. NS,

this choice gives w, (&)= —w(&,, ..., &), (see (6.10)). Let us also make p(§,, ..., &,) inde-
pendent of £, when £, is small compared to p(£). Then, since xv(£) =v,(£) =0, we have

(l) = ALy Nwy(Las -y Cn)y {=E—0(§)

on y(&)=1. Since, by (1.7), ¢,(x&)=46""""Y(x) when ¢ <0, (7.22) gives
DB = i@~ (=016t a0 o0 G L

where o' ={C; L =E—w(f), EERe XN {p(§) =1}}

is an (n—2)-cycle on X — X N A oriented by w,(£) >0. Hence, if r >0 is small, by the defini-

tion (7.18) of ¥3(t) and Cauchy’s formula in one variable, we have

DYE() = 2m)" f Ho(i) 2 a0) "y A 0aCorover Ea)

with w(Re &y, Im &) Awy(Ea -y £,) >0 on the product f={|l,| =7} x0«’. Here, by the
definition of «* and t,, § represents t,8e*. This proves (7.17').

Note. That fundamental solutions of homogeneous elliptic operators can be expressed in
terms of ‘algebraic’ integrals was discovered by Fredholm (1900) whose work was extended
to hyperbolic operators by Herglotz (1926-28) and Petrovsky (1945). Petrovsky’s formulas
(l.e. p. 315 and 324) result from (7.17) and (7.17’) when »=0 by taking one residue onto
(4*, X*) and two successive residues onto A* N X* respectively when a is strongly hyperbolic
and A* is regular. Petrovsky’s proofs are rather complicated but have later been simplified
by Leray (1952). Leray has also extended the formalism involved to a general Laplace
transform that gives explicit formulas for fundamental solutions of certain strongly hyper-
bolic operators with analytic coefficients (Leray 1962). In the cases that he considers,
Leray employs the homology class o*.

It is also possible to express E(z)=E(a, ?, «) in terms of the distributions

a (&)t =lim a(f+isP) L, 0<s—>0.
Taking 0<y(¢)€C(Re Z) such that p(A§)=|A|y(£) when A€ R and y(£)=0 if and only if

& is proportional to a fixed 5 €I'(4, 9), the following formula can be deduced from (4.11),

E(x) = (2n)’"i“'"fxm-n (&) a_(8)"18(y(€) — 1) dé.
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It is true for all = if the product of distributions appearing on the right is interpreted
properly. Using the fact that E(x) =0 outside K = K(4, ), this gives

Bo) =2 i@ [ (28) 0 €7 0000) 1) 8
when 2 € — K. We can also use the fact that E(a, —9, x) vanishes outside — K and get

E(w) = (2n)_"i”‘_"f%m_n(x§) (@- (&) —a. (&)™) 8(y(§) —1) d&

when 2€ — K. Here i—"E (#) is real and a_(£)* —a., (£)~! is purely imaginary and, separating
real and imaginary parts, we get the formulas for E(x) which, for strongly hyperbolic a
have been employed by Gelfand and Shilov (1958).

The inhomogeneous case. Let P€hyp (&, m), let a€Hyp (&, m) be the principal part of
P=qg+bandlet &= E(P,d, x) be the fundamental solution of P with support in K(P, #)=
K(A,®), so that, by Theorem 4.1,

(7.23) E- ? (— 1)b(D}E(a**, 8, @),

where the series converges in the distribution sense.

7.24. THEOREM. Outside W(A4,), the series (7.23) converges locally uniformly and
E(P, 9, x) is a holomorphic function there. If every E{(a**',9, x) is a polynomial in some

component of the complement of W(A, #), E(P, &, x) is an entire function there.

Proof.'Since E vanishes outside K =K(4,#), it suffices to investigate (7.23) when
€K —W(A,#). Let ¢(&) be a homogeneous polynomial of degree 7. We can use (7.7) to
compute ¢(D) E(a**', 9, x) simply by replacing @ by a**! and carrying out ¢(D) under the
sign of integration, using (1.8). This gives

o(D) E(@**', 9, x) = (27t)""f 1i“’%q(ﬂvé) (8 a(l) " wll)
-

— @[ e o) a) @ i~ m log al)) (2,
y=
where g=m(k+1)—n—j, {=&—iv(é). Let N be a complex neighbourhood of & which is
so small that |yC| +0 when y€N. Put
t,=min |a(l}|, f =max|c)|, ¢ =(1+max|yl]|)
when y(§)=1, y€N. Then (1.11) and (1.12) and obvious estimates show that
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(7.25) le(D) B(@**, 9, y)| < Otz “ 4. T(g —1)7,
where y €N, ¢>1 and C depends only on m, n. Next, put

b(&) = bo(&) + ... + b y(£),

where b,(£) is homogeneous of degree j. Developing we have

bDy=3 (") bo(D)* .. by (DY,

Y,

k .
where v=(v,, ..., ¥,.;) has integral components and yg+...+vy 1=k, (v) are the multi-

nomial coefficients and the degree of
(D) = bo(D)” ... by_1(D)™1

is =00+ 1y, +... + (m —1)v,,_; <k(m—1) and £,<C¥ for some C,. Hence, by (7.25)
ib(D)kE(alHl’ ,’9’ y)| <C z (:c}) t&"‘“”‘t;"’IC’{‘I‘(p — 1)—1

when p=min {m(k+1)—j—n)=k-+m —n >0, which is true for £ sufficiently large. Summing
over the multinomial coefficients gives a new majorant

[B(DY:B(a**1, 9, y)| < COFT(k+m—n—1)7,

where y €N and C, is independent of k. Hence the series (7.23) converges uniformly in N
and this proves the first part of the theorem. To prove the second part note that if ¢(D)=D#
with || =m{k+1)—n then the arguments that lead to (7.25) show that

(7.26) | DFE(a**1, 8, z)| < CF 1,

where Cy is a constant independent of u. If E(a**', 9, -) is a polynomial @, ,,(y) in the
component L(x, A) of the complement of W(4,?) that contains 2, then this polynomial
has homogeneity g,=m(k+1)—n and hence, by (7.26),

Que1(®) <<Ci (1 +... +ya)*T(g +1)
in the sense of dominating power series. As before, this gives
b(DYQurr(y) < <Ol (yr +...4n)T(k+m—n+1)

with a new constant C,. Hence E(P,, -) equals an entire function in L(z, A) and this
finishes the proof.
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Chapter 3. Sharp fronts and lacunas

We shall review some basic notions and results of the theory of lacunas and make
the connection with Petrovsky’s work. For Petrovsky, a lacuna for an operator P €hyp (&)
was a component of the complement of the wave front surface W(P, &) where the funda.-
mental solution E(P,#, -) vanishes. We shall take a wider point of view suggested by L.
Hormander and based on the notion of sharp wave front. Most of the results that we state
use topological properties of algebraic manifolds that will be proved in Part IT.

8. Supports and singular supports of fundamental solutions

Knowing that the fundamental solution E(P)=E(P,, ) of a hyperbolic operator
Pchyp () vanishes outside K(P,#) and is holomorphic outside the wave front surface
W(P,?) gives some but not all information about the support SE(P) and the singular
support SSE(P) of E(P). We know only that

(8.1) SE(P)cK(P, )
(8.2) SSE(P)= W(P, ).

As we shall see in a moment, the two inclusions may be proper. We begin by stating some
simple cases when there is equality. The following lemma employs the notations above,
a€Hyp (#) is the principal part of P€hyp (#), L(4)=L(P) their common lineality and
n(4)=n(P) the reduced dimension, i.e. the codimension of L(4). An index & indicates the
corresponding objects for the localizations Py, a;.

8.3. LEmma. If the reduced dimension n(P) of P is < 2, in particular if n<2, then
(8.4) SE(P)=K(4,9).

If the reduced dimension ng(P) of Py is < 2 for all 0 +£€Re Z, in particular if Re A is regular
or if n<3, then

(8.5) SSE(P) = W(4, 9).

Proof. If n(P)=0, P=q is & non-vanishing constant and the statements are trivial.
Next, we shall see that it suffices to prove (8.4) for complete polynomials. In fact, choose
coordinates x=(z’, ") and dual coordinates £=(£&’, £”) such that &' =0 characterizes L(4).
Then P'(§')=P'(£) and a'(&)=a(f) are complete polynomials in & and E(P, 9, z)=
E(P', ¥, x)0(z") so that xESE(P) if and only if 2' ESE(P’) and 2" =0. On the other hand,
x€K(A,J) if and only if ' €K(4’, #) and 2" =0. Hence (8.4) holds for P if and only if it
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holds for P’. The proof of (8.4) when »=1 is immediate and is left to the reader. Also
when n=2 and P is complete, the proof is elementary. In fact, letting @ be the principal
part of P, we know from the examples 7.21 that SE(a) = K. Now, by Theorem 7.24, E(P, &, -)
is holomorphic outside W and hence, if SE(P)+K, E(P) has to vanish in some component
of K—W. But then, by (4.7), E(a) also vanishes there which is impossible. Hence (8.4)
follows. Finally, (8.5) is a consequence of (8.4) and the Localization Theorem 4.10 that says
that SSE(P) contains all SE(Py) for £€Re Z. In fact, if n,(P) <2, then by (8.4) SE (P;) =
K(Ag, ). If this is true for all 0+£€Re Z, by the definition of W(4, #), we have (8.5).
We now pass to some examples showing that (8.1) or both (8.1) and (8.2) may be

proper inclusions.

8.6. Examples. When a=A? is a power of the wave operator, a € Hyp () with =
1,0,..,0), K=K(4,9)=K(A, ) is the future light-cone x, >0, 27 —2§ — ... —2% >0 and
W=W(4,9)=W(A,?d) its boundary. Since Re A: & — &5 —... —&2 =0, £ 0, is regular, we
know from Lemma 8.3 that SSE(a)= W, and this also follows from (4.20). However, by
(4.21), if 2p<n and 7 is even, E(a) vanishes in K so that SE(a)=W +K. The simplest
case when this happens is when p=1, =4 which corresponds to the propagation of light
in free space-time. That SE(a)= W reflects the possibility of omitting sharp light-signals
and is sometimes referred to as Huygens’ principle. If P €hyp () has principal part o =A?
and P +A?, it is probable that SE(P)=K, but if, e.g., n=6 there are operators P=A
plus lower terms with non-constant coefficients such that SE(P)=W (Stellmacher (1955)).

8.7. It is easy to construct examples where both (8.1) and (8.2) or only (8.2) are proper
inclusions. In fact, let a €Hyp (&) be a product a’(§'}a”(§") where £=(&’, £”) is a partition
of the coordinates and put E(a)=E(a,d, z), BE@')=EB@', ¥, ), E@)=E@", ¥, <
and K=K(4,9), W=W(4, D) etc. Then SE(a)=8E(a’) xSE(@a"), K=K'x K" and

SSE(a) = (SSE(a') x SE(a”)) U (SE(a') xSSE(a"))
W=(WxK)U(K xW").

In fact, W is the union of all K, =K, x Kz for £40, ie. for &+0 or & +0.
Hence, if, e.g., SE(a’) =SSE(a’)= W'+ K’ we get proper inclusions in (8.1) and also in
(8.2). In fact, then SH(a)=W’' xSE(a")c W’ x K" is a proper part of K and SSE(a)<
(W’ x K")U (W' x W") does not contain (K' —W’) x W”< W. Note that these circumstances
prevail when a” is replaced by anyone of its powers. Hence, for given n, both (8.1) and (8.2)
may be proper inclusions when P =a has arbitrarily large homogeneity. The simplest choice
we can make is to put a’'(£&') =& —... - &2, a"(£") =£&5 where 4<g<n is even and p=>0 is
arbitrary. However, note that by replacing a’ by a’* with 2k>¢, we have SE(a*)=K’
SSE(a*) =W’ so that (8.1), (8.2) hold with equality for high powers of a.
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Next we shall give an example where (8.1) holds with equality but (8.2) is a proper
inclusion. Let a,(&) =&} — ... £2 with ¢ as before and put ay(§) =216 —... £&&. Then a =@, a, is
a complete polynomial in Hyp (9), #=(1,0, ...,0). Here K,=K(4,, 9)<K,=K(4,, )
and K,=K = K(A,¥) is the cone x, >0, 223 >3 + ... + 5. Further, W = W(4,9) is the union
of W,=W(4,,9)=K, and W,=W(4,,9)=06K,. Note that dim W,=g<n=dim W, and
that W, and W, intersect only at the origin. An explicit calculation of E(a)= E(a,) * E(a,)
shows that SE(e) =K while SSE(a) consists of W, and 0K, &=W,. In this case, (8.1) holds
with equality but (8.2) is a proper inclusion. Again, taking 2k>¢ we have SE(af)=K,
and an explicit calculation (or an appeal to the Localization Theorem 4.10) shows that
SSE(@")=W.

8.8. Emmple. (Garding (1947).) Let Re Z’ be real n2-space represented by nxn
hermitian matrices ¥ =(z;,) and let Re Z be another copy of this space put in duality with
Re Z’ by the bilinear form <&, 2y =tr &x. Interpret 8/0xy, j==k, in the usual way for a
complex variable so that (0/0z;,) <&, x) =&;. Put a(&) =det £ and let I be the cone of all
positive definite matrices # €ERe Z. Then a €Hyp (¢, n) for all €I’ and ['(4, 3)=I". The
dual cone K =K(4,$) characterized by tr zI'>0 consists of all £>>0 and the wave front
surface W =W(4,9) is the boundary of K. Let E, (x) be the fundamental solution of a(d/0x)”
with support in K. In the paper quoted it is shown that S(E,) consists of all x € K which are
of rank <p. Also, if k>n, E(a¥ ¥, x) is a nonvanishing multiple of (det z)*~*. Hence
S(E,)=K if and only if p>n, while, if p=n—1, S(E,)=SS(E,)=W and, if p<n-—1,
S(E,)=SS(E,)+=W. If, e.g., p=1, then S(E,)=8S(Z,) has dimension 2n —1 which should
be compared to the dimension n? —1 of W. Also, when p <n —1, the complement of S8(Z,) =
SS(E,) is connected. Similar examples have been found by Gindikin and Vajnberg (1967)
and for certain parabolic operators by Gindikin (1967).

From the examples above one gets the impression that raising an operator P to a high
enough power will give equality in (8.1), (8.2). This is indeed the case.

The following theorem will be proved in Part II.

8.9. THEOREM. Let PE€hyp (9, m) and let a€Hyp (&, m) be its principal part. There
are integers ky and ky depending only on m and the reduced dimension n(P), such that

(8.10) SSE(P*) = W(4,9)
(8.11) SE(P¥y = K(A,®)
when k>=2ky and k >k, respectively.

Note that (8.10) is a corollary of (8.11) and that, choosing %, as a monotone function
of m and n=n(P), we have kym, n)<k,(m—1,n—1). In fact, by the Localization The-
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orem 10.4, we have SSE(P*)>SE(P}) for all £€Re Z and m(P;) <m, n{Pg) <n so that, by
(8.11), SE(PY)=K(A,?) for all £ and consequently also SSE(P¥)> W(4,9) when k>
ky(m—1, n—1). More precise estimates are also possible. If Re 4 is sufficiently regular or if
certain stability requirements are imposed, (8.10) holds for £>1 and (8.11) when mk —n =>0.

9. Sharp fronts, lacunas, regular lacunas

Petrovsky (1945), defined lacunas for a hyperbolic operator P with fundamental solu-
tion £ as components of the complement of the wave front surface W in which  vanishes.
The outside of the cone of propagation K is a lacuna, called the trivial lacuna. The lacunas
inside K are of course important when we want to study the support of E, but as a rule,
the property that £ vanishes is not stable under addition of lower terms or a f)a,ssage to
variable coefficients. Following a suggestion by L. Hérmander, we shall define lacunas by
a weaker property.

Starting with a general situation, let 4 be a distribution defined in an open subset
O of R". We may think of « as describing the movement in space-time of a general elastic
(n—1)-dimensional medium. Let C(x) be the maximal open subset of O where u is a C®-
function. The complement of C(x) is then the singular support SS(u) of u. The following

definition is motivated in the introduction.

9.1. Definition. Let L be a component of C(u). The distribution u is said to be sharp
from L at a point y€4L if w has a C®-extension from L to LN M for some neighbourhood
M of y. When u is sharp at all points of &L, then L is said to be a lacuna for u. If % vanishes
in L, L is said to be strong lacuna for u.

The requirements of this definition make sense for any open part L of O and it is
sometimes convenient to allow L to be smaller than a component of C{u). We are going to
deal with the case when u=E = E(P, §, -) is the fundamental solution of some P €hyp (#).
Here E is holomorphic outside the wave front surface W = W(P, #), but as we have seen, it
may happen that the singular support of E is a proper part of W, although this does not
happen if we raise P to a high enough power. In the sequel, components Lof (W —=Re Z' — W
such that E = E(P) is sharp from L at all points of oL are also called lacunas and, more
specifically, regular lacunas. The word regular will be motivated later. When L is a lacuna
of E, we also say that it is a lacuna for P. The complement of K(P,#) is a strong lacuna
for P called the trivial lacuna. When SS(E)= W, in particular when n <3, all lacunas are

regular.

9.2. Examples. Let PE€hyp (#, m). When n=1, E is sharp from both sides at W ={0}
and W divides the real line into two lacunas one of which is the trivial one. The other lacuna
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is strong if and only if m =0. When » =2 and P is complete, then, by virtue of Theorem 7.24,
P is an entire function outside W so that the whole complement of W consists of lacunas.
Also, there are no strong lacunas apart from the trivial one. Consequently, if »>2 but
L(P) has codimension < 2, then SE=8SSE=W =K and there is only the trivial lacuna.
When the principal part of P is a power of the wave operator A’ €Hyp (8), #=(1, 0, ..., 0),
then K: x,>0, 22 —a3—...—2% >0 is the future light-cone and W =SSE its boundary.
When P =A?, (4.21) shows that E is nowhere sharp at W from K if n is odd and everywhere
sharp at W from K if n is even. Hence K is a lacuna or not for P according as » is even or
odd. By Theorem 4.1, this statement extends to the non-homogeneous case. Again, by
(4.21), when P=A?, Kisa strong lacuna if and only if 2p <n and = is even. Later we shall
give examples. of components L of the complement of W such that £ is sharp from L at
oL except at the origin. Such an L fails to be a lacuna. Irregular strong lacunas are to be
found in the examples 8.7 and 8.8.

There is a general criterion for sharpness that can be presented as follows. Let n>2,
y€EW and assume that W is smooth near y and that its curvature has maximal rank » —2
there. If f(x)=0 is a real equation of W near y with grad f(y) &0 and f;, f; are the com-
ponents of grad f(y) and grad® f(y) respectively, this means that y 40 and that the quad-
ratic form ¢ =3 fuz,, restricted to the tangent plane D f;z;=0 has rank n —2. Let » be
the number of negative eigenvalues of c.

9.3. THEOREM. E s sharp at y from the side sgn f=const if and only if
(9.4) (sgn f)" = (—1)".

Note that (9.4) is independent of the choice of f. If n is even, (9.4) shows that E is
sharp from both sides of W if » is even and non-sharp from both sides when v is odd. If n
is odd, E is sharp from one side but not from the other. We shall not prove Theorem 9.3
which is well known in somewhat less general forms (see Davidova (1945), Borovikov
(1959), Gérding (1961), Leray (1962), Ludwig (1965)).

9.5. Examples. When n=2, W consists of half-rays and (9.4) is identically true as it
should be. When n=3, (9.4) shows that E is sharp or non-sharp at a curved piece of W
according to the following figure

we
non-sharp ) sharp

where W* is the image of W in real projective space. As we shall see in the next section,
when 2 =3, an ¢ in K — W belongs to a lacuna if and only if A*N X* is real. All the triangles
in the figures 5b have that property except those of the figure 5b 8 (dotted) where Re X*
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must meet I'* for 4*N X* to be real. However, the criterion applies to the dotted triangles
of figure 5b 8 and hence E is sharp from the corresponding conical regions except at the
origin and the cusps (actually,  is sharp at the cusps). There are other instances of the
same phenomenon. Let m,n both be even, let P=a€ Hyp® (#) and assume that every
component of Re A bounds a convex cone. This would be true if, e.g., @ were the product
of m(2 wave operators with different speeds of light. Then W consists of m/2 telescoping
pieces, each bounding a convex n-dimensional cone and (W has 1+ (m/2) components.
One of them is the outer component (K and one is the inner component that bounds
the smallest convex cone. Provided the curvature of W has maximal rank outside the
origin, (9.4) shows that E is sharp from both sides of W outside the origin. In fact, » is
either 0 or n—2. Further, E is trivially sharp at the origin from (K and, by the examples
7.21, also from the inner component of { W. On the other hand, it has been shown by
Borovikov (1961) that E is not sharp at the origin from the other components of § W at
least when g is irreducible.

The following lemma shows that sharpness at the origin is the essential feature of

lacunas.

9.6. LEMMA. Let Pehyp (9) and let a €Hyp (9) be the principal part of P. Let L be o
component of K(A,9)—W(A4,9) and suppose that E(P, 9, -) is sharp from L at the origin.
Then L is a lacuna for a and E(a, #, *) is a polynomial in L. If B(Py, &, -) is sharp from L
at the origin for a sequence of operators P,E€hyp (9) with principal parts of, k=1,2, ...,
then L is a lacuna for any @ €hyp (&) with principal part a”.

Proof. Let P€hyp (4, m). By Theorem 4.1, if £ § 0, then
™0 /ox)” B(P, 9, tx) — (0/ox)” E{a, &, x)

in the distribution sense for every ». Now, since E(P,d, -) is sharp from L at the
origin, (¢/otx)” E(P, ¥, tx) tends to a limit as ¢4 O for all » when x€L. It follows that
(8/ox)” E(a, 9, x)=0 when |v| >m —n and 2€L so that E(a,d, -) is, in fact, a polynomial
of homogeneity m —n in L and L is a lacuna for a. The same reasoning applied to P,
shows that E(a*, 9, -) is a polynomial in L. But then, by Theorem 7.24, E(P,J, -)is an

entire function in L. Replacing, in this argument, @ by a power of @ finishes the proof.

10. Stability. Petrovsky lacunas

10.1. Definition. Let F be a subset of hyp (9, m). A lacuna L for P€hyp (8, m) is said
to be stable under F if every Q€ F close enough to P has a lacuna Lg such that LgN L
tends to L (i.e. absorbs any compact subset of L) as @ tends fo P.
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We shall also say that L is stable under perturbations in F. As a special case, F may be
all of hyp (&, m). Imposing stability leaves only the regular lacunas. In fact, we have

10.2. LEMmmA. A lacuna for P €hyp (9, m), stable under all hyperbolic perturbations must

be regular.

Proof. Let 0+x€ W(P)=W(P,$). By Lemma 5.17 there are strongly hyperbolic opera-
tors @ close to P such that W(Q) meets an arbitrarily small conical neighbourhood of z.
Also, by Lemma 8.3, W(Q) is the singular support of E(Q, ¢, -). Hence, if a lacuna L for P
is stable under all hyperbolic perturbations, it cannot meet W(P).

The Herglotz—Petrovsky-Leray formulas immediately give sufficient conditions for

regular lacunas.
10.3. THeoREM. Let a EHyp (&, m) be complete and suppose that
(10.4) (A, z, 9V =0 in H, (X*—A*N X*)

for some x€K(A, ) — W(A4, #). Then x belongs to a regular lacuna L for any bEHyp (&, km),
(k=1, 2, ...) which is close enough to o* and L is also a lacuna for any PEhyp (8) whose

principal part is such a b.

Proof. Corollary 7.19 and Theorem 7.24.

In a somewhat less general form, the condition (10.4) was invented by Petrovsky
(1945). He considered only strongly hyperbolic operators @ with non-singular A*. Tt is
convenient to have a name for components L of K(4, #)—W(A4,d) having the property
(10.4) at all points. We shall call them Petrovsky lacunas for any P €hyp (#) with prineipal
part a. By Lemma 6.23, Petrovsky lacunas are stable under all hyperbolic perturbations.

Petrovsky also employed the stronger condition
(10.5) (4, 2, )* =0 in H, (Z*—A* X*)

which implies (10.4). Acecording to (7.17) it also implies that E(a,d, -) vanishes close to z
8o that = would belong to a regular strong lacuna for a. However, this case is illusory
since (10.5) is not true when z is inside K(4, 9). In fact, we shall prove in Part II that in
this case, a(4, , #)* has a non-zero intersection number with I'(4, 9)*€ H, ,(Z* - X*, A*).
Note that by (6.21), we know (10.5) to hold when x is outside + K (A4, &). For this reason,

the trivial lacuna will be included in the Petrovsky lacunas.

10.6. Examples. When n=2, then da*=0 for all z in K(4,#)— W(4,?) so that the
entire complement of W(4, &) consists of Petrovsky lacunas. When % =3, then by (6.26),
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Oo* =0 if and only if 4* N X* is real. In particular, all the curved triangles in the figures
5b except those of 5b8 are Petrovsky lacunas. Theorem 6.27 provides other examples
for n odd > 3. When « is even and Re X N 4 is empty, = belongs to a Petrovsky lacuna.
This applies in particular to the case when a=A is the wave operator and z is inside the
future light-cone.

The interest of the Petrovsky condition (10.4) is that it is both necessary and sufficient
at least when a certain stability is required. To begin with we shall prove this for low
dimensions without using stability.

10.7. LeMMA. Let a€Hyp (9). If n<3, oll lacunas for a are Petrovsky lacunas.

Proof. By Lemma 8.3, W=W(A4, ) is the gingular support of E(a,, ) so that all
lacunas for a are regular. The cases n=1, 2 are trivial and the only thing we have to show
is that, for n=3, a complete and z in a lacuna for a, we have éa(4, z, #)*=0, i.e., by (6.26),
that A* N X* is real. Since a is complete, m > 2. Putting |v| =m —2 in (7.17’) and using
figure 6 b, if E(a, ¢, *) is a polynomial of degree m — 3 close to z, we get j'., Q(2)a,(z)1dz=0
for all polynomials Q(2) of degree <<m —2. Here z is an inhomogeneous coordinate in X*,
a, is the restriction of a to X* and y consists of small circles around the nonreal part of
A*n X* oriented by the sign of Im 2. If w, & are two points in this non-real part, a suitable
choice of Q gives [, dz/(z—w)(z —) =0 which is a contradiction.

A complete investigation of supports, singular supports and lacunas does not seem to
be easy, but it may be fruitful to try to prove or disprove some simple and strong hypo-
theses which agree with known facts. We adopt the following very tentative

10.8. ConJECTURE. Let a€Hyp (#, m). Then
(i) all regular lacunas are Petrovsky lacunas.
(ii) SSE(a)=USE(a;) for 0:£€Re Z.
(iii) E(a) s holomorphic outside SSE(a).
By Theorem 10.3 and Lemma 9.6, the first part of this conjecture implies the corresponding

statement for non-homogeneous operators. In view of the structure of the Herglotz—Petrov-
sky-Leray formulas, it is tempting to consider also the statement

(iv) m=n =>SH(a)=K(4),
but, as we have seen in Example 8.7, this statement is wrong. It may still be true outside
the product situation considered there.

Petrovsky proved a weak version of (i), namely that if « €Hyp® (#) and 4* is regular

then every stable lacuna is a Petrovsky lacuna. Petrovsky’s method was to calculate
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H,_,(A*) for general non-singular 4* and to study Abelian integrals on A* as functions of a.
In Part II of this paper we shall prove more precise results using theorems on the coho-
mology at algebraic varieties due to Atiyah and Hodge (1955) and generalized by Grothen-
dieck (1966). We state some of them here. By Grothendieck’s theorem, all rational forms on
projective space Z* with poles on 4*U X* span the cohomology of Z*—4*U X*. Now all
such forms of degree n — 1 appear in the formula (7.17’) for D*E(a*, x) when mk —n — |v]| <0
and £=1, 2, ... and it is easy to show that the kernel of the tube operation ¢, vanishes.
Hence, any component of W (4,#) which is a lacuna for all powers of a is a Petrov-
sky lacuna. Note that a similar cohomology argument was used in a very simple case
in the proof of Lemma 10.7. When dx(A4, z, #)* =0, then «(4, z, #)* comes from an ele-
ment of Hn;l(Z*—A*) and we can apply the same argument to (7.17) with a replaced
by powers of a. The conclusion is that a4, =, #)*=0, but we know this to be true only
when z is outside + K(A4, #)*. Hence, there is no non-trivial strong lacuna common to all
powers of a. In both cases, we can also use a sharper form of Grothendieck’s theorem to
be proved in Part 11, namely that in order to span the desired cohomology groups, we need
only forms with a bound on the order of the poles depending only on m and n. What we
then get is

10.9. TeEOREM. Let a €Hyp (&, m). There are numbers k, and k, depending only on
m and n such that,

(i) all regular lacunas for a* are Petrovsky lacunas when k> k.

(ii) The trivial lacuna is the only strong lacuna for a* when k>k,.

In fact, (ii) follows from the above reasoning and also (i), restricted to regular lacunas.
Now (ii} is precisely the statement that SE(a*, #, -)=K(4, #). It implies Theorem 8.9 so
that, if k is large enough, SS(a®,?, -)=W (4, #) and this means that a* has only regular
lacunas.

10.10. CoroLLARY. Let a€ Hyp (#) and let L be a component of K(A, ) — W (4, D).
If the Petrovsky condition (10.4) holds for one x in L, it holds for all x in L.

Proof. Theorem 10.3, Theorem 10.9 (i) and the definition of a Petrovsky lacuma.

Example. In example 8.8, K , 1.e. the set of all x>0, is a Petrovsky lacuna. That the
Petrovsky condition (10.4) holds for such an « is a non-trivial fact.

We shall also prove some more direct generalizations of Petrovsky’s result that do
not involve powers of a, but then we have to require some regularity of 4* or stability under
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certain restricted perturbation families. In particular if A* is regular, all lacunas are
Petrovsky lacunas and hence also stable under all hyperbolic perturbations. The other
parts of the conjecture are also true in this case, and (iv) holds when n <3, and may be

true for all n. In any case, when m >n, a has no stable strong lacunas inside K(4).

11. Remarks about systems

Let P€hyp, (#), i.e. P=P(D) has coefficients in the ring of complex 7 x r matrices and
det P€hyp (9), and let E=E(P)=E(P, ¥, ) be the corresponding fundamental solution.
By virtue of (3.3), E(P) is locally holomorphic outside W (A, #) where a is the principal
part of det P. More generally, every component K, of £ has the form

Eﬂc = ij(D) E(Pik)’

where (D) is a polynomial, P, €hyp (9) is a factor of det P and P, and @, are relatively
prime. Hence, if a; is the principal part of Py, E,(P) is locally holomorphic outside
W(Ay, )= W(A4,9). The notions of sharp front, lacuna and strong lacuna extend im-
mediately to E or any E, and whenever E(a) or E(a;) has such an object, £ and Ey
respectively also have it. Also, if P,=a, has homogeneity m, and @, has degree>
m;, —n, a lacuna for ay, is a strong lacuna of E;. For this rather trivial reason, K, or K
may have more strong lacunas than E(a;) or E(a) respectively.

Converse propositions of the type that lacunas for P are also lacunas for det P should
be deduced from more detailed ones, namely that lacunas of E, are also lacunas for P,
Throwing away the indices we are lead to the following problem about scalar operators.
Let P €hyp (#) and let Q(D) be a polynomial. When is a lacuna L of Q(D) E(P, 9, -) a lacuna
of E(P,d, -)? Taking P=a homogeneous, it is easy to see that it suffices to suppose that
also @ is homogeneous. Requiring that L be a Petrovsky lacuna for @ and using Theorem
7.16, we have the following algebraic problem. Is it true that all rational (» —1)-forms on
Z* — A*U X* with poles of order 1 on A* and arbitrary order on X* and divisible by a
fixed polynomial @ span H, ,(Z*--A*U X*)? As we shall see in Part II the answer is
affirmative for instance when A4* is non-singular and @ =0 is relatively prime to a. When
n <3, a rather complete analysis is possible. Systems with n=3 possessing lacunas occur
in magnetohydrodynamics and have been studied extensively by various authors (Weitz-
ner (1961), Bazer and Yen (1967), (1969), Burridge (1967)).

References

Atrvam, M. F.&Hopee, W. D. V., Integrals of the second kind of an algebraic variety. Ann. of
Math., 62 (1955), 56-91.

Bazgr, J. & YeN, D. H. Y., The Riemann matrix of (2 + 1)-dimensional symmetric-hyperbolic
systems. Comm. Pure Appl. Math., 20 (1967), 329-363.



LACUNAS FOR HYPERBOLIC DIFFERENTIAL OPERATORS 189

—— Lacunas of the Riemann matriz of symmetric-hyperbolic systems in two space variables, Pre-
print. Courant Institute, New York University, 1969.

Borovikov, V. A., The elementary solution of partial differential equations with constant

coefficients. Trudy Moskov. Mat. Obsé., 66, 8 (1959), 159-257

Some sufficient conditions for the absence of lacunas. Mat. Sb., 55 (97) (1961), 237-254.

BurrIDGE, R., Lacunas in two-dimensional wave propagation. Proc. Cambridge Phil. Soc., 63
(1967), 819-825.

GAirpING, L., The solution of Cauchy’s problem for two totally hyperbolic linear differential
equations by means of Riesz integrals. Ann. of Math., 48 (1947), 785-826. Errata bid. 52
(1950), 506-507.

—— Linear hyperbolic partial differential equations with constant coefficients. Acta Math., 85
(1950), 1-62.

—— An inequality for hyperbolic polynomials. J. Math. Mech., 8 (1959), 957—-966.

—— Transformation de Fourier des distributions homogénes. Bull. Soc. math. France, 89 (1961),
381-428.

—— The theory of lacunas. Battelle Seattle 1968 Recontres. Springer (1969).

GELrAND, 1. M. & SHILOV, G. K., Generalized functions 1. Moscow 1958.

GINDIKIN, 8. G., Cauchy’s problem for strongly homogeneous differential operators. Trudy Mos-
kov. Mat. Ob&&., 16 (1967), 181-208. :

GINDIKIN, 8. G. & VAINBERG, B. R., On a strong form of Huygens’ principle for a class of differen-
tial operators with constant coefficients. Trudy Moskov. Mat. ObSd., 16 (1967), 151-180.

GROTHENDIECK, A., On the de Rham cohomology of algebraic varities. Publ. IHES, 29 (1966),
351-359.

Havpamarp, J., Le probléme de Cauchy et les égquations aux dérivées partielles linéaires hyper-
boliques. Paris 1932.

HercroTz, G., Uber die Integration linearer partieller Differentialgleichungen I. (Anwendung
Abelscher Integrale) II, III (Anwendung Fourierscher Integrale). Leipzig. Ber. Sdchs.
Akad. Wiss., Math Phys. Kl., 78 (1926), 93-126; 80 (1928), 6-114.

HORMANDER, L., Linear partial differential operators. Springer 1963.

—— On the singularities of solutions of partial differential equations. International Conference
of Functional Analysis and Related Topics. Tokyo 1969.

LEeRrAY, J., Un prolongement de la transformation de Laplace ... (Probléme de Cauchy 1V}, Bull.
Soc. math. France, 90 (1962), 39-156.

—— Hyperbolic differential equations. The Institute for Advanced Study, Princeton N. J. (1952).

Lupwie, D., Singularities of superpositions of distributions. Pacific J. Math. 15 (1965), 215-239.

Nuis, W., A note on hyperbolic polynomials. Math. Scand., 23 (1968), 69-72.

PeTROVSKY, I. G., On the diffusion of waves and the lacunas for hyperbolic equations. Mat. Sb.,
17 (59) (1945), 289-370.

Riesz, M., L’intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Math., 81 (1949),
1-223.

Scawarrz, L., Théorie des distributions I, I1. Paris (1950-51).

STELLMACHER, K. L., Eine Klasse huygenscher Differentialgleichungen und ihre Integration.
Math. Ann., 130 (1955), 219-233.

SvENnssoN, L., Necessary and sufficient conditions for the hyperbolicity of polynomials with
hyperbolic principal part. To be published in Ark. Mat., 8 (1970).

WEITZNER, H., Green’s function for two-dimensional magnetohydrodynamic waves I, II. Phys.
Fluids, 4 (1961), 1250-1258.

Received September 30, 1969



