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1. Introduction 

1.1. The /unction-theoretic problem. This paper is concerned with a problem in the  

Nevanl inna  theory  of functions meromorphic  in [z[ < c~ (referred to  in the  sequel s imply 

as functions). We shall assume acquaintance with the  s tandard  nota t ion  of the Nevanl i ima 

theo ry  (cf. [3], [5] or [10]) 
T(r, /), 1V(r, a), m(r, a) 

and  with Nevanl inna 's  fundamenta l  theorems (see [5] pp. 5, 31 or [10] pp. 168, 243). The 

Valiron de/iciency A(a,/)  of a value a for the  funct ion /= / (z )  is, by  definition, 

re(r, a) = lim sup T(r, /) - 1V(r, a) 
A(a, / )  = limr_~sup:r T (r, /) r-~:~ T(r, /) 

I f  A(a, ]) >O for a part icular  value of a, then  t h a t  value is said to be Valiron de/icient for 

the  func t i on / .  

We here investigate the  size of the  set of Valiron deficient values, when the  funct ion 

/ is given. 

To say t h a t  a funct ion value a is Valiron deficient means, roughly,  t ha t  it is assumed 

significantly less often in ]z I ~ r  t han  are other  funct ion values, for some sequence r = 

rn-~ ~ .  I f  this is the case for all sufficiently large r-values, then  a is Nevanl inna deficient. 

1.2. Some known results. A meromorphic  funct ion can have at  most  countably  m a n y  

values a which are Nevani inna deficient (lim inf m(r, a)/T(r, / )  >0),  bu t  Valiron has con- 

s t ructed an  example of an  entire funct ion of order one such t h a t  the set of (what is now 

called) Valiron deficient values has "effect ivement la puissance du cont inu" and hence is 

non-countable  (cf. [12] pp. 263-266). 



A N D E R S  H Y L L E N G R E N  

The set of Valiron deficient values, however, is a nullset and is also known to have 

(logarithmic) capacity zero (ef. [10] p. 280 and [4]). Therefore (via connections between set 

functions, [2] p. 28 or [10] pp. 281, 151) the set of Valiron deficient values has Hausdorff 

measure zero with respect to all measure functions h(t) for which 

ob(t) t - l d t <  (1) 

1.3. Some results presented here. The set of Valiron deficient values (for a meromorphic 

function of finite order in [z] < ~ )  is a point set of Hausdorff measure zero for all measure 

functions h(t) for which 

foh(t) t - l ( t )  -1 dt< (2) ~ l o g  ( x )  

This follows from (b) ~ (a) of Theorem 1, since (2) means 

~h (exp  ( - e x p  (n/c))< c~ 
n = l  

for given k > 0. (For complementary results, see [9].) 

Estimates for sets of Valiron deficient values are given by means of a sequence of circles, 

the upper limit of which contains the point set considered. 

We give both necessary and sufficient conditions in order tha t  a given point set be 

contained in a set of Valiron deficient values. 

Dan F. Shea has suggested tha t  our methods from [7] might apply to the present 

problem of Valiron deficient values (oral communication, La Jolla, 1966). 

2. Theorem on Valiron deficient values 

2.1. We now state our main result. 

T~EOREM 1. Given a point set U in the complex plane, then the/ollowing three conditions 

are equivalent: 

(a) There exist a positive number k and an infinite sequence al, a2, ... o/ complex numbers 

so that each element a o~ U satisfies the inequality 

l a - a n ]  < e x p  ( - e x p  (nk)) 

/or an inf ini ty  o/values o~ n. 

(b) There exist a real number x, 0 < x < 1, and a meromorphic /unction /(z) o/ finite order 

in [ z [ < ~ so that 
A(a, /) > x 

/or every a in U. 
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(c) There exist a real number t, 0 < t < l ,  and an entire/unction g(z) so that the entire 

]unction g(z) exp (az) is o/lower order less than t /or  every a in U. 

2.2. Comments. A point set U which satisfies (a) is called a set of finite/z-measure. The 

#-measure is a subadditive set function, its value is denoted by #(U), and it can be defined 

as the lower bound of l /k,  for those k for which the sequence in (a) of Theorem 1 exists 

(cf. [7], [8], [9]). 

The equivalence (a)~(c) of Theorem 1 has been established already (cf. [7] Satz 1 

and Satz 2, or [8] Theorem 7.1 with p = l ) .  (Misprint in [8] Th. 7.1, delete ~(/) in (17) of 

tha t  theorem.) 

Here we prove that  (a) and (b) are equivalent, thereby completing the proof of 

Theorem 1. 

The proof of (b) ~(a) occupies the main part of this paper. This result is a "covering 

theorem" for the set of Valiron deficient values. The inverse result, (a) ~(b), is an explicit 

construction. We also obtain some quantitative results, i.e. inequalities connecting the 

bounds for k and x in Theorem l, 

x(:)  
9l/.~>~k~>-~log 1 -  . 

2.3. Proo] o /Theorem 1, (b) * (a). The starting point in this proof is the second funda- 

mental theorem in Nevanlinna's theory of meromorphie functions. Roughly, this asserts 

tha t  most function values are taken reasonably often. I t  is used here in the following form 

(el. [5] pp. 31-32, [10] p. 243). 

THE SECOND FUNDAMENTAL THEOREM. Let ](z) be a given non-constant mero. 

morphic ]unction in I z I < ~"  Let al, a s . . . . .  aq, where q > 2, be distinct ]inite complex numbers, 

0<(~<1, and suppose that l a ~ - a,  l >~ (~ /or 1 <~ /z < v <~ q. Then 

mIr, 2 TIr, ]1 + m r, + m r, + q log + log 2 - l o g  I/'r (3) 

i / there is no zero or pole o / / o r / '  at the origin. 

Otherwise, - l o g  []'(0) 1 is to be replaced by +O(log r). 

In  our application we need 2T(r, ]) to be the dominant term in (3). Accordingly, we 

require some restriction on ~ and av and on the growth of ]. If ]a~l <r ,  then the first 

fundamental theorem (cf. [5] p: 5, r= R) implies 

T(r, /) - N ( r ,  a~) <~ re(r, a~) +O(log r). 
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In condition (b), the function/(z) is assumed to be of finite order, i.e., 

log T(r,/)  = 0(log r). 

Without loss of generality, we can assume that / (z)  is non-rational, i.e., 

log r = o(T(r, I)). 

Since f is of finite order, we can apply estimates from the ordinary theory of Nevanlinna 

deficient values for meromorphic functions (cf. [5] p. 36, Lemma 2.3 with R =2r), 

m r, <41og+T(2r, /)+O(logr)=o(T(r, / )) ,  

and m (r, ~)=o(T(r , / ) ) .  

The proximity function m satisfies an inequality similar to the one satisfied by the loga- 

rithm, i.e., 
o 

m r, ig, ~<logq+,~i ~ m(r,g,). 

Thus some of the error terms in (3) can be absorbed in others. This permits writing 

the seeond fundamental theorem in the following form: 

THE M O D I F I E D  S E C O N D  F U I ~ D A M E N T A L  T H E O R E M .  Let /(z) be a given non-rational 

meromorphic /unction o//inite order in I z I < co. I / s  > 0 is given, then/or all sufficiently large r 

and all 8, 0 <8 < 1, the [ollowing holds. 

I / a l ,  a2, ..., aq (q>2) are given so that 

and 

then 

]a~]<r ,  l~<v~<q (4) 

(T(r,/) - N ( r ,  a,))< (2 +eq) T(r,/)  +q log ~ +  logq. (6) 

We shall use the following result: 

L E M MA. Let/(z) be a given non-rational meromorphic function of finite order in [z[ < c~. 

Let s and y be given, 0 < 5s < y < 1. 

(I) Then/or each sufficiently large r, the set o/those complex numbers a in 
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]a I < r  (7) 

/or which T(r, / ) - N ( r ,  

is a point set that can be covered by 

a) >~ yT(r, /) 

Y T(r,/)) [~] circles o/ radiu~ exp ( - ~  . 

(s) 

(II) Moreover, ]or each su]/iciently large r, the set o/those complex numbers a in 

la l<r  (7) 
/or which the inequality 

T(e, /) - N ( e ,  a) >1 2yT(e, /) (9) 

holds/or at least one Q such that 

Y(r,/) < T(e, / )  ~< (1 _y ) - i  T(r , / )  (10) 

can be covered by circles o/radius exp - g  . 

For the proof of (I), let ~ = e x p ( - e T ( r ,  [)) in the modified second fundamental 

theorem. We want to find anuppe r  bound for the number q when al, ..., aq is a solution of 

(4), (5) and (8) with a =a~. This would then be an upper bound for the number of solutions 

a of (7), (8), having mutual distances ($ or more. The inequalities (6), (8) give 

qy <~ 2 +eq+eq+ (q log 3q +log q) (T(r , /))- t .  (11) 

For a given q, if qy >4, (11) could not hold for all T(r, [). This gives the desired bound, 

q ~< [4/y], for the number of circles needed in (I). 

To prove (II), now that  (I) is established, let a be one point in the set which is to be 

covered, i.e. one solution of (7), (9) for some Q in (10). The inequalities (9), (10) give (8): 

N(r, a) ~< N(e, a) < (1 -2 y )  T(e, /)  <~ T(r, [) (I -2y)/(1 - y )  <(1 - y )  T(r, [). 

Therefore (I) applied at the left end point of the interval (10) gives (II). 

To prove that  (b)~(a),  now that  (II) has been established, let T ( r , / ) = ( 1 - y ) - m  in 

(II). For each sufficiently large integer m, let us consider the [4/y] covering circles described 

in (II). This infinite sequence of circles has some useful properties: 

Let  a#/(O), r be one Valiron deficient value for the function [, A(a, [ )>x ,  and let 

x = 2y. This complex number a is then a solution of (9) for an unbounded set of Q-values. I t  is 

therefore a solution of (9), (10) with T(r, ])=(1 ~Y)-m for an unbounded set of m-vahies. 

As a consequence of (II), this complex number a is then contained in infinitely many of the 

circles considered. 

1 -- 702909 Acta mathematlca. 124. I m p r i m 6  lo 9 Avri l  1970. 
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The radii of the circles in this sequence decrease faster than  {exp ( - e x p  (nk))}~.~ 

in (a) of Theorem 1, provided k is small enough, 

4 k < - y l o g  ( l - y ) ,  2y=x.  (12) 

This proves the desired implication, (b) ~ (a). 

Remarks. The bound for 1/k gives (by the definition of the set function/x) a bound for 

the re-measure for the set of function values of Valiron deficiency greater than  x. By  a 

more complicated method of proof, i t  is possible to get better  quanti tat ive results than  (12). 

The assumption in (b) tha t  ] be of finite order can be replaced by  the assumption tha t  

d log T(r,/)/dr be bounded. 

The bound (2) for the Hausdorff  measure (or ra ther  for the measure function) is a 

direct consequence of the proof of the above result, (b) ~ (a). 

2.4. Proo/ o/ Theorem 1, (a) * (b). Given a point set U in the complex plane, such tha t  

there exist a number  k > 0 and a sequence al, a s . . . .  of complex numbers so tha t  ] a - a p ]  < 

exp ( - e x p  (pk)) for an infinity of p-values, whenever aE U. Then (b), i.e. the existence of 

a certain meromorphic function ](z), is to be proved. We now give an explicit construction 

of/(z). 
Given the number  k >0.  The number  k in (a) can be replaced by  any  smaller positive 

number,  and therefore we can assume tha t  5 k < l .  Let  y = e x p  (k/2). There is also given the 

sequence a 1, as . . . .  and without loss of generality we m a y  assume tha t  ]avl < p  for all p 

(cf. [7] p. 563). Define 

c~ = a v ,  

and let the function / be defined as 

exp ((p- 1)k) <n <exp (pk) 

/(z)  = e  - z  Z 
n - o  n !  " 

There remains to prove tha t  / satisfies (b) for the given point set U and for some 

x > 0. Without  loss of generality the function / just  defined is assumed not to be constant. 

This corresponds to the non-trivial case tha t  the point set U in (a) is large enough (at least 

two elements). 

Now we must  find a positive lower hound for A(a,/),  when a E U. Since a E U, we have 

la-a~[ <exp (-exp (pk)) 

for an infinity of values of lo. Let  p be one of them. Write exp ( ( p - 1 ) k )  ---• and ylY=r.  

Then for z =re t~, 
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N oo Z n ] 
[l(z)-a~l=[e-" ( 7 + 7 I (c~-a') I=le-"((eY)N+(e/Y)~e)lO(1)' 

I \n~O n=Ny'] ~I 

as T-+ oo. The assumptions just made on the constants in this proof imply tha t  

(ey)N<exp (r eos k) ,  (e/y)N~'<exp (r eosk), l a -%l  <exp (-r) .  

The resulting inequality is 

log l/(z)-al <r(cos~-eosq~) +O(1). 

For  the proximity function re(r, a), this gives 

1 / " ~  l I / k k k\ rk a 
m ( r , a ) = ~  Jo l~ ~ --d~p>~rzr ~ 3 ) s i n  ~ - ~  cos - 0 ( 1 )  > ~ 3 - ~ -  0(1).  

For  each a E U, this inequality holds for some infinite set of p-vnlues, i.e. for some unbounded 

set of r-values. 

A trivial upper  bound for the characteristic function for the entire function / is 

given by  the logarithm of the maximum modulus, 

T(r, /) < 2r +o(r). 

The desired estimate for the Valiron deficiency then becomes 

ka 
A (a,/) >~ 60--- ~ . 

The implication (a)~(b)  is therefore established. 
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